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RESEARCH MEMORANDUM

COOLING CHARACTERISTICS OF AN EXPERTMENTAL TATL-~PIPE
BURNER WITH AN ANNULAR COOLING-ATR PASSAGE

By William K. Koffel and Harold R. Kaufman

SUMMARY

The effects of tall-pipe fuel-alr ratio (exhaust-gas btemperatures
from spproximstely 3060° to 3825° R), radlael distribubtion of tall-plpe
fuel flow, and mass flow of combustion ges on the temperature profiles
of the combustion ges and on temperstbure profiles of the inside wall of
the combustion chamber were determlined for an experimental tall-pipe
burner cooled by alr flowlng through an insulated cooling-sir passage
1/2 inch in helght. The effects on inside-wall temperature of verying
the mass-Plow ratio of cooling-alr to combustion-gaes mass flow from
approximately 0.067 to 0.19, inlet coollng-air temperature from about
520° to 1587° R, and combustion-gas mass flow from 22.3 to 13.8 pounds
per second were also determined.

Large clrcumferential varistions existed in the combustlion-gass tem~
perature near the lnside wall. These varlabtions resulted in similar
varlations in the insilde-wall temperature. The clrocumferentlisl veris-
tions formed consistent pabtterns that were similar, al‘bhough different
in magnituvde, for all conflgurations tested.

The two exbtremes in radlal distrlbution of tall-plpe fuel flow, high
fuel concentratlon toward the combustlon-chanber wall and high fuel con~
centratlon in the center of the combustion chamber, changed the circum-
ferentlal average lnside-wall temperabure 235° T at g station 48 inches
downstream of the flame holdsr. The configuratlion having a high fuel
concentratlon near the wall presented a more severe coollng problem as
the cilrcumferential variation was greatest for thls conflguration.

The spread of flame to the inside wall, as determined from measure-
ments of combustlon-gas temperature near the wall, was practlcally -
unaffected by fuel-alr ratio. However, the fleme spread to the well was
a function of radial fuel dlstributlion. AL no time did the flame I1mpinge
on the wall within 24 inches downsbtream of the flame holder. Radlant
heat transfer to this sectlion of the 1nside wall was insufflcient to
require wall cooling in the first 24 inches, 1f the tail-pipe materials
could withstend nonafterburning operation without cooling.

UNCLASSIFIED.
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Wlth the most uniform distribution of tail-pipe fuel tested and an
inlet cooling-alr tempersture of 520° R, an average Inside-wall tempera-
ture of 1300° F at a station 48 inches downstream of the flame holder
required mass-flow ratlos of 0.12 and 0.09 with exhaust-gas temperatures
of 3825° and 3435° R , respectively. When the distance was lncreassed to
56 Iinches downstream of the flame holder, & mase-flow ratlo of 0.115 was
necessary with an exhaust-gas temperature of 3435° R.

At a mass-flow ratio of 0.145, the inside-wall temperature 48 inches
downstream of the flame holder was incressed about 4/100 per degree
Increase in inlet cooling-elr temperature.

The temperature of the structural wall of an inanlated taill-pipe
burner having an inner liner would be practically the same with or with-
out tall-pipe burning. :

INTRODUCTION
The combustlon-chamber walls of tell-plpe burners must elther with-

stand high opersting tempsrabures or be coocled to temperatures that give
adequate strength and service life. The trend toward nonstrateglc mater-

lals and improvements In performance and the operating range of tall-pipe—

burners have made cooling more criticel. Many methods have been consid-
ered for cooling the walls of a tall-pipe combustion chamber including
the flow of &ailr through an annular pagsage surrounding the combustion
chamber, the flow of turbine outlet gas through an annuler passage
Fformed by a concentric immer liner, the establlshment of a cool-alr film
between the walls and the combustion ges by means of a porous wall or a
series of annuler nozzles, as well as ceramic coabtings and fuel additives
that coat the walls and reduce the radlant heat tramsfer to the walls or
lower the wall temperature by thelr insulative properties. Many cambi-
nationg of these methods have been and are belng investigated at the
NACA Iewls laboratory. Conslderable atbtention has been glven to the ann-~
uler cooling-air shroud and to the lmner liner and to thelr use in com-
Ppination. : L - '

An snalytical method was developed (reference 1) for calculating
the maximum average wall tempersbure in tail-pipe combustion chambers
cooled by the parallel flow of alr through an anmular cooling pessage
or cooled by turbine dlscharge gases flowlng between an imner limer and
the combustlon~chamber wall. The method was based on the simplifyling
sssumptions of a uniform transverse temperature profile, a llnear rise
in combustlon-gas temperabure from £leme holder to exhsust-nozzle exit,
and the fact that radiation from the combustion gas to the wall was
twice the nonluminous redilation of a ccampletely burned stoichlametric
mixture of octane and air. Well temperatures or cooling-alr flows cal-~
culsted by the method of reference 1 have chetked well with values
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measured on experimental tall-plpe burners in which & uniform transverse
tempersture profile was approached. Agreesment was poorer for burners
produclng nonuniform profliles. Same effects of changing the flame~
holder design and tall-pipe fuel dlstrlbutlon, and consequently the
transverse tempersture profile, are given in reference 2.

The cooling and pumplng characteristics of a tall-plpe burner hav-
ing an 1nner liner and an external cooling-alr shroud with an eJector
nozzle ares presented in reference 3, and an anelytical method is devel-
oped 1n reference 4 for predlcting the pressure drop through the cooling
passages. These lnvestigabtlons on taill-plpe-burner cooling had limited
ranges of cooling-alr flows and lnlet cooling-sgir temperature and no
attempt was mede to determine the combustion-gas temperature proflles as
effected by changes In Internal configuration end to relate them to the
temperstures of the combustion-chamber walls.

Thls report includes some resulte of an experimental investlgatlon
on a tall-pipe burner which was extensively lnstrumented. Ranges of
independent comtrol of the cooling-air temperature, flow, and pressure,
as well as the combustion-gas temperature and flow wider than those glven
in the references are presented hereln. The daba presented were obtalned
with a combustlion chamber having a constant-flow area and an annular cool-
ing passage of constant helght. The effects of exhaust-gas temperabture
level, distribution of tail-plpe fuel across the turblne annulus, and
mass Tlow of combustlon gas on the tempersture proflles of both the com-
bustion gas and the inside wall are presented.

APPARATUS

Engine

A conventional and axial-flow turbojet engine was used in this
investigation. The sea-level static thrust of the engine was approxi-
mately 3100 pounds at a rated engine speed of 12,500 rpm end a maximum
turbine-outlet temperature of approximstely 1200° F (1660° R). At this
condition the air flow was slightly less than 60 pounds per second.

The fuel used 1n the engline and the tall-plpe burner wes MIL-F-5572,
grade 80, unleaded gasollne and had a lower heating value of 19,000 Btu
per pound end & hydrogen-carbon ratio of 0.185. ' '

Installabtlon
The standerd tail plpe was replaced by an experimental tall-pipe~

burner assembly abtached to the turbine flange. The engine and the tail-
pipe burner were mounbted on a wilng sectlon in the 20-foot-dlamster
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test section of the altitude wind tunnel. Refrigerated alr was
supplied to the compressor inlet through a duct from the tunnel make-up
alr system. This duct was comnected to the engine with a labyrinth seal,
which made possible messurement of thrust with the tunnel balance system
Alr was throttled from apprbximately sea-level pressure to the desired
Pressure at the compressor Inlet; while pressure in the tunnel test sec-
tion was maintained at the deslred albtitude. Cowlings and falrings were
omitted from the engine and the tail-pipe burner in order to simplify
the Ingtallation and to facllitate inspection and servicing of engine,
tall-plpe burner, and instrumentation.

Tail~Pipe-Burner Assembly

The entire tail-pipe-burner assembly was febricated of 1/16-inch
Inconel. The over-all length of the engine and tall-pipe burner was
gpproximately 16.1 feet, of which the tall-pipe diffuser, the combustion
chamber, and the nozzle wore 2, 5, and 1 feet, respectively. TFigure 1
1ls g schematic drawlng of the 1ns‘balla.'bion showing the fuel-gpray bars
in the snmular diffuser, the cylindrical combustion chamber with inaula-
ted coollng paessage, and the flxed-conical exhaust nozzle. The flame
holder had a single V-gutter with sinusoidal corrugations on the trail-
ing edges. The V-gutter had a meen dlameter of 18 :anhes, a mean wildth

across the corrugations of 1-3— inches, and an included angle of 35°. The

blockage at the downstresm face of the flame holder was about 23 percent
and the velocity at the flame holder under the conditions of this inves-
tlgation was spproximstely 480 feet per second. The cooling passage had

a constant height of 1/2 inch and was insulated with 1 inch of refractory

cement.

Fuel-gpray bars. - Twelve radial fuel-spray bars were equally spaced
8.75 inches downstream of the turbine flange and 13.25 inches upstream of
the flame-holder center line. Hach bar had seven holes (number 76 drill)
that sprayed fuel normel to the gas flow. Three different sets (twelve

bars per set) of spray bars were used to vary the fuel distribution across

the turbine discharge snnulus. The first set (fig. 2(a)) produced a
nearly uniform fuel distribution with a slightly higher fuel concentra-~
tion at the very center for flame stability amd piloting action, The.
second set (fig. 2(b)) inocreased the fuel concentration toward the
combustion-chember wall and decreased the fuel flow in the center aof the
cambustion chamber. The third set of spray bars (fig. 2(c)) concentrated
more fuel st the center and decreassed the fuel concentratlon near the
combustlon-chamber walls.

Configurations. - The three sets of fuel-spray bars were used 1n
conmbination with four different exhaust nozzles to form essentlally three
conflgurstions as follows:
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Conflguration Fuel-spray Exhaust-nozzle Figure
bars exit area
(sq £%)
A Set 1 1.846 3(a)
1.803
1.980
2.160
B Set 2 1.903 3(b)
c Set 3 1.903 3(c)
2.180
INSTRUMENTATION

Because it was recognlzed that the combustion pattern would be
irregular and the temperatures to be measured were severe on thermocou=
Ples, as many thermocouples as practicable were used 1n order to obtain
representatblve aversge temperatures and to provide sufflicient thermocou-
Ples if some thermocouples should fall. Six instrumentation statlons,
B to G (fig. 3), were provided along the length of the cylindrical com-
bustlion chember. Thermocouples were: Installed at station B for measure-~
ment of the inlet coolling-air temperature. Stations ¢ to F hed six
groups of instrumentatlon, equally spaced sround the circumference, for
measurlng the temperatures of the inside and outside walls of the tall-
pipe burner end of the cooling alr as well ags the statlc and total pres-
sures of the cooling alr. The btemperatures of the inside amd outside
walls were also measured at four points around the cilrcumference at
station G, and the cooling-alr btemperatbures and pressures at station G
were measured Iln the dlscharge ducts on the downstream plenmum chember.
The locatlons of the Instrumentation at each of these stations, at the
exhaust nozzle, the cooling-alr meterling nozzle, and the upstream plemum
chanber are shown in flgure 4. The cross sectlon of a typleal group of
ingbtrumentation at stations C through F 1s shown 1n figure 5.

The means of providing for longltudlinal movement due to thermal
expansion can be seen In figure 5. The platinum-rhodium -~ plabinum
thermocouple probes extended through sliding seals in the outslde wall
and the sliding channels connecting the inside and outside walls per-
mitted longitudinal movement of the walls.

The ususl pressure and temperature instrumentation was Iinstalled at
several measuring statlons through the engine. Fuel flows to the engine
and tall-pipe burner were measured with calibrated rotameters.

Wall-temperature measurement. - The temperature of the inside wall

of the tall-pipe burmer wae measured with chromel-alumel thermocouples
spot-welded to the outer surface of the wall (fig. 5). Conductive
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cooling of the Junctlion was reduced by strapplng the leads to the wall
for 3/4 inch downstream of the--Junction before extending the leads across
the cooling passage. The temperature of the oubside wall was measured
by a chromel ~alumel thermocouple welded into the head of & hollow oval-
headed screw (fig. 5). Conductive cooling of the Junction was negligible
because the stem of the screw was burled under the cooling-passeage
Insulation.

Cooling-alr temperature meagurement. ~ The cooling-alr temperatures
were measured by means of National Bureau of Standards type (fig. 6)
shielded thermocouples (reference 5). The-radlastion shield comnsisted of
& 1/4-inch length of 1/8-inch silver tubing which was slid over the bare
Junction and campressed to a bilconvex alrfoll section.

Combustlon-gas temperabure messurement. - Combustion-gass tempera-
tures near the lnside wall were measured by means of the plablinum-
rhodlum - platlinum thermocouples shown 1in figure 7. Each thermocouple
probe hed a water-cooled supporting stem and btwo thermocouples in para-
llel having & common hot Junctlon. The leads from the Junctlon were
erranged 1n & cross to glve mechanlcal support at high tempera'bures
Negligible conduction error wss obtalned by means of the high length-
dilsmeter rablio of the leads between the Junction and the cooled supporb-
ing stem. No radistion shleld wes used because of ths low emlsslvity
and gbsgorptivity of the platinum and platinum-rhodium wires.

Ges ‘temperature profiles at statlon F were obtalned by means of a
rake having seven sonic-flow orifice tempersture probes (fig. 8). THe'
temperature of a gas sample flowing into one of thesse probes I1s obtalned
from & thermodynanmic equation end. 1ls theoretlcally independent of radla-
tion effects (see reference 6).

The exhaust-ges bemperature was computed (as glven in appendix A)
from rake messurements of tobal pressure at the exhaust-nozzle exit and
the measured gass flow.

Accuracy

Four flight recorders were used because of the large number of ther-
mocouples and in order to reduce the recording time whille maintaining
equilibrium conditions. The estimated over-all accuracy of the tempera-
ture measurements are as follows:

Wall temerature, e &
Cooling ailr, OF .. B I +10
Gas 'bem;pera'bures near the wa.ll e v e v e e e e e e e .« . *20
Sonic-flow orifice Probe, OF . « ¢ v ¢ + v « « & o« o o o o o « o #1580

Exhaust gas temperature, OF . ¢« « o ¢ o + s s o « o o s s s o « « 50
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The gecmetry of the tall-pipe diffuser and the flame holdsr in com-
bilnation with the fuel-spray bars producing approxlmstely uniform dlstrl-
butlon of fuel across the burbine annulus (conflguration A) was shown,
in preliminsry tests on a simllar burner, to glve good performance
and operating characteristics over & wide range of altitudes and
fuel-alr ratios. Coollng characteristics of the experimental tall-pilpe .
burner were obtained wlth the seven combinations of exhaust-nozzle exit
area and fuel-spray bars, at pressure altltudes of 30,000 =nd 40,000 feet,
a flight Mach number of 0.52, and an engine speed of 12,500 rpm. Tt wes
Impossible to run the tests at lower pressure altlbtudes because the flow
of dry cooling alr, at approximstely atmospheric pressure from outslde
the tunnel, was dependent on the difference in the atmospheric pressure
and. the pressure ln the tunnel test section. Dry refrigerated alr was
supplied to the engine at 505°45° R. The total pressure at the engine
Inlet was regulated to correspond to the deslred pressure at each altl-
tude with complete free-stream tobal-pressure recovery.

Most of the daba were obtalned by adjustlng the tall-pipe fusl flow
to maintalin an average turbine-outlet temperature of 1633°112° R; an
approximately constant exhaust-gas temperature was thus obtalned for each
nozzle-exlt asrea snd mess flow. The remalnder of the data were taken ab
lower turbine-outlet temperatures.

The cooling-air flow and the cooling-alr temperature were system-
atically varied while holding all’other quantities constant.

The approximste range of varigbles investlgabted with a 1limiting
turbine-outlet temperature of 1633° are given in the following table:
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Confilguration |Altltude Exhsust- | Conmbustion-| Mass Cooling-~
(£%) gas temper~| gas flow ratic |ailr inlet
ature ) w. /W temper-
T g a e ature
g (1v/sec) >
(°R) a
(°R)
A 30,000 3060 22.1_ 0.0672 500
. to to
. .1872 1587
30,000 3240 22.2 | 0.1002 500
to ‘o
.1917 1222
30,000 3435 22.3 0.0953 502
to to
.1796 1408
40,000 3265 13.8 0.1440 528
to
1340
30,000 3825 22.8 0.1374 515
to
.1906
B 30,000 3215 22.2 | 0.0885 495
to to
.1891 1223
§ 30,000 3235 22.3 0.1420 524
to
_m ) 1450
30,000 3764 22.4 | o0.1912 524

T

= - et e o ke okl e T 3} e e Rt

L T PR S

The cooling-eir mass flow was controlled by flap valves on the oub-

let ducts of the downstream plenum chamber.
cooling pegsage was balanced agalnst the statlc pressure of the combus-
tlon gas at statlon P by means of pressure-regilating valves upstream of
‘the alr-metering nozzle in conJunction with the flap valves.
pressures were balanced, large pressure forces were transferred from the
hot, and consequently wesker, inside wall to the cooler outside wall.
This transfer tended to minimize any changes ln cooling-passage height.
The cooling-air temperature was varied by means of a turbojet can-type

The statlc pressure 1n the

When the

combustor in the cooling-air supply duct _dqwn_e;tream of the ailr-mstering

nozzle.

RESULTS AND DISCUSSION

Typical results of thils cooling investigatlon are presented graph-
ically snd the performence of the three conflgurations are tabulabted in
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tebles I and IT. The effects of exhaust-gas temperature level, radial
distribution of tall-pipe fuel flow, and combustlon-ges mess flow on the
temperature profiles of the combustion gas are presented First becauss
of the influence these profiles heve on the temperatures of the inside
wall.

Reproducibllity of Combustion-Gas Tempersbure Profiles

Circumferentlal proflles. - The combustlion-ges temperstures near the
inside wall, the temperature of the inside and outside walls of the cool-
ing passage and the cooling~alr tempersture asre plotted against the group
positions around the circumference at station F in figure 9. The repro-
ducibility of the data is indicated in figures 9(a) to 9(c) for a check
point having an exhaust-gas temperature of approximately 3060° R, mass-
flow ratio of 0.098, and an inlet cooling-alr temperature of 530° R. The
profiles are similar as the accumulated afterburner time Ilncreased from
32 minutes to 9 hours and 22 minubtes. The profiles with an exhaust-gas
temperature of 3484° R (fig. 9(d)) are similar although the temperature
lovels are higher. The profiles shown in figure Y were obtained with
the first set of fuel bars, which produced the most uniform fuel dlstri-
bution. The reproducibllity shown is typical of data obtalned with the
other configurations. The large varlations in gas temperatures around
the clrcumference are reflected in the inside-wall temperature. The 4dif-
ference between the highest and the lowest gas temperatures around the
circumference, as measured by the platinum thermocouples at statlon F,
was approximately 500° to 900° F, and the difference for the inside-wall
temperatures was about 400° to 600° F. The larger circumferential varia-
tions in gas temperature are belleved to be caused by assymetrical dis-
tributions in the engine fuel-alr ratio and 1n turbine-discharge gas
flows because dally inspections disclosed no plugging of the fuel-spray
bars in the tall-pipe burner.

Longltudinal profiles. - Typlcal longitudinal profiles of the
cambustlon-ges temperature measured by the platlnum~rhodlum - plebinum
thermocouples 1/2 inch from the inside wall are shown in figure 10. The
genersl reproduciblllty of the combustion pattern for a given set of fuel-
spray bars can be seen by comparing the relative positions of the temper-
ature profiles for sach clrcumferentlal group as the exhaugt-ges temper-
ature 1s increased (fig. 10). Similar reproducibility of the relative
positions of each group was observed in the longitudinal profiles for the
combustlon-gas temperature messured 1/4 inch from the ingide wall and for
the temperature of the lnside wall.

Tnasmuch as the longltudinal temperature profiles for various cir-
cunmferential positions reproduced in a consistent masnner 1n splte of
large circumferential tempersture variatlions, the effects of exhaust-gas
temperature, of fuel distributions, and_of combustion-gas mass flow are
based on circumferential average temperatures. (The temperatures in
table IT ars circumferential averages.)
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Effect of Varisbles on Average Longitudinal Profiles
of Combustion~Gas Temperature

Exhaust-gas temperature. - The effect of increased exhsust-gas tem~
perature (or tall-pipe fuel-air ratio) and the spresd of the flame toward
the inside wall are shown in figure 11. The combustion-gas bemperature
within 1/4 inch of the wall (fig. 11(a)) remains at approximstely turbine-
dlscharge temperature as far downstream as stabtlon D indlocating that, for
the same fuel distribubtion, the spreasd of the fleme boward the inside
wall ig practically unaffected by fuel-air ratlo (exhaust-gas temperature
level) although the trensverse temperature. gradlents between statlons C
and D increase with fuel-glr ratio as can be seen from figure 11(b).
Consequently, no cooling would be required for configuration A in the
Filrgt 24 inches downstresm of the flame holder if the burner walls could
withstand the nonafterburning operation without cooling. Downstream of
this point, the cooling requirements increase as the transverse gas tem-
perature gredients near the wall incresse wlth both distance from the
flams holder and with exhsust-ges temperature level.

Fuel dlstribution. - The effects of marked changes 1n tall-plpe fuel
distribution across the turbine-dlgcharge snnulus on the gas temperatbures
near the inside wall are shown in figure 12, Figure 12(a) shows that the
flame spresds out to the wall between 24 and 36 Inches downstresm of the
fleme holder depending on the radial dlstributlion of fuel, The flame
intercepted the wall first wlth oconfiguration B, which had a high fuel-
alr ratlo near the wall, and last with configuration C, which hed a high
fusl-alr ratio in the center of the burner. The coollng problem appar-
ently can be altered by changes in fuel dlastribution at a given exhaust-
gas temperature level. It is not, however, always possible to alleviate
the cooling problem by albering the radisl distribution of fuel because
of possible adverse effects on performance and operational characterlstlcs
of the tsll-plpe burner. For exsmple, configurstion C produced low lnside~
wall temperatures with the third set of fuel-spray bars, and had very
smooth combustion and the exhusgt nozzle was colder than for conflgura-
tion A at the same sxhaust-~ges temperature, but it was impossible to
obtaln g turbine-outlet gas temperature of 1633° R with these fuel-
spray hars when the exhaust-nozzle exlt ares was 2.160 square fest. On
the other hand, configuration B, which produced high inside-wall tempera-
turesg, was difficult to ignite, burned roughly, and blew-out whenever
the turbine-gutlet gas temperature dropped below 1615° R.

The corresponding changeg in transverse temperature profiles with
changeg in fuel distribution will be dlscussed 1n the sectlion Fuel
Digtributlion.

Combustion-gas mess flow. ~ The effect of decreasing the combustion-
gas masg Tlow on the ges temperatures near the inside wall is shown in

. g0¥e
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figure 13. The decrease in mase flow of combustion gas from 22.29 to
15.85 pounds per second, resulting from increasing the altlitude from
30,000 to 40,000 feet, lowered the combustlon-gas temperabtures between
stations E and F, &bout 400° and 200° F at distances from the inside
well of 1/4 amd 1/2 inch, respectively. These temperature reductions,
however, would be about one-half as great If cross-plotted data from
flgure 11 were used to estimate the longitudinal temperature profile at
the sems exhaust-gas temperature as with the lower msss flow. The
decrease 1n exhaust-gas bemperature occurred becsuse the tail-plpe fuel
flow was adjJusted for & constant indicated turbine-outlet gas temper-
ature, but the mean turblne-outlet ges temperature decreased because

of a change in the radlal temperature profile as altitude was changed.

Varlstion of Gas Temperatures Near the Wall wlth
Cooling-Alr Flow and Tempersture

The temperature of the combustlon gas near the wall was affected
a8lightly by the iInslde-wall temperabure, snd consequently, by the maas
flow and the temperature of the cooling air. The influence of cooling~
alr flow and the inlet coolling-air btemperature on the gas temperature
measured 1/4 inch from the inside wall was found to be negligible at
stations C and D. The effect of cooling-alr flow at stations E and F is
glven by the approximste equation

w&.
A T8,1/4 = 1000 A W_g (1)

and the effect of Inlet cooling-alr temperature is about 1/10° per degree
rise in inlet cooling-alr temperature. (The symbols used are defined in
append.ix B.)

Effects of Varlables on Trsmeverse Gas-
Temperature Proflle at Station F

Soms of the more representatlve transverse profiles of the combustlon-
gas temperature at station F were selected for presgentation. The temper-
atures 1in the combustion zone were obtalmned by means of the sonic-flow
orlfice reske and the temperatures near the wall were measured by the
plebinum-rhodium ~ platinum thermocouples 1/4 Inch from the lnside wall.

Fxhaust-gas temperature. - Transverse temperature proflles are shown
for configuration A in figure 14. Temperature peaks 1n figure 14(a)
corresponding to the wake of the single-V flame holder tend to dlsappear
and the profile to become more uniform ag the exhaust-gas temperature ls

increased (figs. 14(b) and (c)).

o
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The gas temperatures 1/4 inch from the inside well and in the center .
of the combustion zome increassed 600° to 700° R as the average exhaust- -
gas temperature lncreased approximately 440° R.

Fuel distributlion. - The effeots of changlng the radial distribubtion
of fuel across the turblne amnulus on the transverse profile of combustion-
gas tempersture are shown in figure 15. Figure 15(a) shows that the
trensverse tempersture profile of configuration A at an exhaust-ges tem- &
perabure of 3266° R had a temperature pesk in the weke of the FPlame~holder g
gutter similer to the pesks existing at an exhaust-gas temperature of
approximately 2926° R (fig. 14(a)). The high fuel concentrstions near the
inside wall iu configuration B (fig. 15(b)) resulted in much higher gas
temperatures near the inslde wall at the bottom of the burner and the gas
temperature at the center of the burner was greatly reduced because the
tell-pipe fuel-alr ratlo amd exhaust-gas temperabures were practically
constant. The average gas temperatures 1/4 inch from the inside wsall
were approximstely 400° R higher for configuration B than for configura-
tion A at a masg-flqw ratio of 0.143 and an exhsust-gas temperature of
approximately 3240° R. The fuel distribution of configuration C moved
the peak temperatures toward the center of the burner and the averasge gas
tempersture 1/4 inch from the inside wall was sbout 350° R lower than for
configuragtion A st a mass-flow ratio of 0.143. For the three radlal fusl
distribubtions tested, the Increase in fuel concentrabtion in the center of 4
the burner produced a slightly smaller effect on the gas temperatures near
the inside wall than d41d the incresse in the fuel concentration toward the
walls, This fuel distribution also asggravated the clroumferentlal temper-
ature varistions. The relation of these profiles to the average ilnside-
wall temperature wlll be dilscussed in the next section.

Effect of Varlables on Iongltudinal Profiles of
Average Inslde-Wall Temperatures

Because the variations in longitudinal and clrcumferential tempers-~
ture profiles of the inside-wall tempersture were consistent, circumfer-
entlal average temperatures are used in the following ocompsarisons.

Exhaust~gas temperature. - The variations in the longitudinal pro-
file of the average inslde-wall tempersture with exhaust-ges tempersture
level is shown in figure 16. The inside-wall temperature increases from
the flame holder to the exhaust-nozzle inlet with exhaust-ges temperature
level. The variation of wall temperature with exhaust-ges temperaturs
level is sllight at statlons C and D because the flame has not spread to
the wall. The wall temperatures at these stations are influenced more by
the mass flow and inlet temperature of the cooling air than by the exhaust-
gas temperature level. Downstream of station D, the wall temperature .
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increases because the tempersbture gradients near the wall and the

radisnt heat transfer increasse as exhaust-ges temperature level increases.
The proflles shown were obtalned with a mass-flow ratio of approximately
0.145. The effect of mass-flow ratio on the wall temperature will be
shown in the Combustlon-Gas Mass Flow sectlon.

Fuel distributlion. - The effect of fuel distribution on the lnsglde-
well temperatures 1s shown in filgure 17 for an average exhaust-gas tem-
persture of 3290° R and s mess-flow rablo of 0.145. The curves have been
extrapolated lineerly bo statlon G, as indicated by the dats of flgures 18
and 18, because only two thermocouples were functloning during these
reedlngs and the temperstures at these pogitlons were usually higher than
the circumferential average temperature. Configuration B had the highest
average Inside-wall temperature as & result of the very high gas tempera-
tures &t the bottom of the burner; the average Inslde-wall temperstures
of configuration A are lntermedlste, whereas conflguration C had the
lowest wall temperatures es a result of the lower gas-temperature gra-
dlents near the walls of the burner. For the two extremes In fuel dis-
tribution tested, the spread 1ln average inslide-wall temperatures at
station F was 235° F, but the circumferential variations in wall temper-
ature were greatest wilth configuration B.

Combustlon-gas mass flow. - With an average masss-flow rablo of 0.144,
the average inside-wall temperabture was lowered 40° to 100° at stations F
and G when the mass flow of combustlon gas was decreased from 22.259 to
13.85 pounds per second (fig. 18). Comparison of the wall temperatures
at the lower mass flow with wall btemperatures interpolated from figure 16
indicetes, however, that these reductions resulted primarily from the
decrease in exhaust-gas temperasture level.

Effect of Mass-Flow Rabtlo and Cooling-Alr Tempersture on

Average Inslde-Well Tempersatures

Mass-flow ratio. - The effect of coollng-air mass-flow ratio on the
average inslde-wall temperature 1s shown in figure 19. The limiting
values of the average inside-wall temperabure abt statlons C, D, snd B
with no cooling-air flow were assumed to colncide wilth thelr respective
average gas tempersbtures 1/4 inch from the inside wall wilth no cocoling-

glyr flow.

As previsouly discussed, the inslde-well temperatures atb stations C
end D are nearly independent of the exhaust-gas temperature level and
vary inversely with mass-flow ratio. The higher wall termperatures ab
station D result from increased rsdlent hest transfer from the combustion
zone. Both rediant and convective heat transfer became lmportant down-
stream of station D as a result of the higher gas-tempersture level and
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the flame impingement on the walls. Thus, from statlon D on downstream,
& distinct curve results for each tall-pipe fuel-&ir raetlo (exhaust-gas
temperature level) as shown in figure 19. Figuré 19(a) shows that no
cooling alr l1s required in the first 24 inches downstream of the flams
holder (station D) if the tall-pipe masterisls cen withstand nonafter-
burning operation without cooling.

A messs-flow ratlo of 0.12 is required in order to maintain an
average inside-wall temperature of 1300° F, 48 inches downstream of the
fleme holder (station F) with an exhaust-gas temperature of 3825° R, and
the mass-flow ratio ls sbout 0.09 wlth an exhsust-gas temperature of
3435° R. An average inside-wall temperature of 1300° F, 56 inches dowh-
stream of the flame holder (station G), requires & mass~flow ratio of
approximately 0.115 at 3435° R. An average ilngidé-wall temperature af
1300° F wes selected as represehbtative in order to allow for possible
hot spots as high ag 1600° F.

Cooling-alr temperatures. - The variatlon of Inslde-wall temperature
with Inlet cooling-alr temperature (fig. 20) 1s similar for all exhaust-
ges temperatures but differs in temperature level. The wall tempeFabure
Increased with & slightly. increasing rate as the cooling-air temperature
was Increased. When the 1nlet cooling-alr temperature was inoressed
1000° F, the inside-wall btemperatures incressed at stations F and G
about 400° F at a mass-flow ratlo of 0.145. The inside-wall temperatures
at station G (fig. 20(b)) were ebout 100° F higher than at station F
(fig. 20(a)) with an exhaust-gas temperature of approximately 3060° R,
and sbout 150° higher with an exhaust-gas temperature of 3435° R.

Interrelation of Temperatures

The_interrelation of the exhaust-gas temperature, gas temperatures
near the wall, inside-wall temperature, and cooling-air temperatures are
shown in figure 21 for station F. The cooling-air temperature rise to
statlon F 1s the vertical disbance between the éooling-air tempersture
curve and the diagonal dashed lime. This rise in cooling-alr temperature
hecomes small as the inlet cooling air is ralsed to temperatures of 1500°
to 1700° R, indicating that a combustion chamber wlth an inner liner
maintains a layer of gas at approximately tu¥bine-outlet temperature
next to the outside structural wall. Conseguently, the temperature of
the structural wall of an insulated tall-pipe burner having an lnner
liner would be practically the same with or without tall-pipe burning.

The data of figure 22 can be shown to better advantage by means of

T - T .
the parameter -£2&  ¥oF ynich 1s obtained from a heat balance across
Tw,F - Ta.,F

the inside wall at statlion F. This parameter 1ls the ratio of the over-

el

0%z
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all heat-transfer coefficlents on the cooling-air and combustion-gas
gldes of the inside wall Ha./Hg' The ratio H&/Hg is a function of the
inlet cooling-alr temperature, exhaust-gas temperature, turbine-discharge
gas temperature, and mass-flow ratlo for a glven fuel distribution and
burner geometry. This parameter can be plotted agasinst the ratlo of the
Inlet cooling-ailr temperatbure to the exhaust-gas temperature Ta.,B/Tg

for given mass-flow ratiocs, turblne-discharge ges temperatures, and
radial fuel distributlons. Inassmuch as the cooling-alr tempersture Ta,F

and the effective-gas tempersture EI?s 7 are not gemerally known, and
becauge these tamperatures are functions of the same varlasble as the

'
ratio Ha./HgJ the more convenlent parameter Tw - Ta., is plotted in
tomt  18,B Tg - Tw,F
figure 22 asgalnst —-,fl— The parasmeter T T varies approximately
F "~ *a,B
linearly with —%’—B— %u'b varies in level ané. slope wi'bh the radial fuel
digstributlon a.nd.gmass-flow ratlo. The upper curve is for conflguration C
wlth g magss-flow ratlio of 0.143, The second curve from the top 1s the
mean line through the data of configuration A wilth mass flows of combus-
tlon gas of 22.3 and 13.8 pounds per second abt a mass-flow ratio of
epproximately 0.143. The effect of exhaust-gas temperature level from
3064° to 3845° R is not apparent wlthin the scatter of the data. The
large discrepancy between the data points and the curve for conflgura-

T
tion A ab —,%’-’2 = 0.54 amounts to only 41° R in TW,F' The parameter
g

. _T; E is very sensitive to small changes in .7 for values of
TW‘,F - *a,B ’

T .
-%LE grester than approximstely 0.50. -
&

The third curve i1s for conflguration A at a mass-flow ratlo of 0.098.
The daba of configuration C fall along the lowest curve at a mass-flow
ratio of 0.143.

COOLING-ATR PRESSURE DROP

The pressure drop through the cooling passage 1s phown In figure 23
ageingt the cooling-air flow, The use of 0 based on inlet temperature
and pregsure satisfactorily correlated the data. The pressure drop
increases with exhaust-gas temperabure because of increased momentum
pregsure ¢rop accompanying higher heat transfer to the cooling alr,
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The isothermal frictlon factor for the instrumented cooling passages
is shown in figure 24. The turbulence oreated by the instrumentation and
the Interlocking sbringers was greabt enough to make the friction fector
practically Independent of Reynolds number. The va.lue was about 0.009
for a Reynolds number range of 1. 6x104 to 1.3%10°. Without the instru-
mentation the frictlon factor should lie closer to the line Ffor commercial

pipe.
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SUMMARY CF RESULTS

The effects of tall-plpe fuel-air ratio (exhaust~gas bemperature
level), radial distribution of tail-plpe fuel, and mass flow of combus-
tion gas on the temperature profilles of the combustion ges and inglde
wall of the combustion chamber were determined far an experimental taill-
pipe burner coocled by alr flowing through an. insulated cooling-air
pessage 1/2 inch in height.

Large circumferentlsl variations existed in the combustion-gas tem~
Perature near the inside wall. These variations in cambustion-gas tem-
perature resulted in similer varistions in the inslde-wall temperaturs.
The difference between the highest and the lowest gas temperatures around
the clrcumference 1/4 inch from the inside wall was approximately 500° '
to 900° F, whereas the corresponding difference in the inside-wall tem- '
peratures was 400° to 600° F. These clrcumferential varlations formed
conslstent patterns that were slmilar, although different :Ln mag:i‘bule, -
for all configurations tested. .

The two extremes in radial disbtribution of 'bail-pipe fuel flow, high
fuel concentration toward the cambustlon-chamber wall and high fuel con-
ceontrgtion In the center of the combustlion chawber, produced s spreed in
clrcumferential average inside-wall temperstures of 235° F at a statlon
48 inches downstream of the flame holder. The configuration having &a
high fuel concentration toward the wall presented more of a cooling
problem than is indicated by the difference in saverage inside-wall tem-
peratures because the clrcumferential variation in temperature was

greatest for this configuration.

The distance downstream of flame holders at which the flame spresad
to the inside wall, as determined from messuremsnts of combustlion-gas
tempersture nesr the wall, was practlcally unaffected by tall-pipe fuel-
air ratio. However, the spread of the flame toward the wall was a
function of radial fuel distribution. At no time did the flame impings
on the inside wall closer than 24 Inches downstream of the flame holder.
Radisnt heat transfer to this section of the inside wall was Insufficient
as to require wall cooling in the flwst 24 incheés 1f the tall-pipe materw~
ials could withstand nonafterburning operation without cooling.

AR
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With the most uniform disitributlon of tall-pipe fuel tested and an
inlet cooling-ailr temperature of 520° R, an average Inside-wall temper-
ature of 1300° F at a station 48 inches downstream of the flame holder
required mass-flow ratios of 0.12 and 0.09 at exhasust-gas btemperatures
of 3825° and 3435° R, regpectlvely. Inoreasing the dlstance to 56 imches
downgtream of the flsme holder necessltated & mass-flow ¥ratlio of 0.115
with an exhasust-gas temperabture of 3435° R.

At a mess~flow ratlo of 0.145, the inside-wall temperatures at a
statlon 48 inches downstream of the flame holder were lncreased approxl-

" mately 4:/10o per degree lncrease In inlet cooling-sir temperaburse.

It was shown that the temperabture of the structural wall of an insu-
lated tall-pipe burnmer having an inner liner would be practically the
same wilth or without tall-plpe burning.

Lewls Flight Propulsion Iaboratory
Netilonal Advisory Commlttee for Asronautbtlces
Cleveland, Ohlo.
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APPENDIX A

CALCULATION OF EXHAUST-GAS TEMPERATURE

NACA RM ES1KZ3

The exhaust-ges temperature was caloulated from the following

equatlion when the nozzle was choked: )
' 2
7 o et t) g (PnOn Op A
g7~ 2 R LA
where O, = 0.965.

op = [1+ 07 (v, - 70_)] 2

(B1)

and. p, was obtalned from the critical pressure ratlo corresponding

to ¥

Y
g vy, + 1 7—%.-
pn""Pn 2 g

When the nozzle was unchoked

where C, = 0.97.

J

CONFIDENTIAL

(B2)

2408
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APFENDIX B
SYMBOIS
area of exhaust-nozzle throat ®ut 70° F, sq Pt
ratlo of scale Jet thrust to ideal Jet thrust
exhaust-nozzle flow coeffilcient
area thermal expansion coefficlent

hydraulic diameter of cooling passage (twlce cooling passage
height), ft

gcale Jet thrust, 1b

isothermal fricti;n factor

fuel-alr ratio

tall-pipe fuel-alr ratio
acceleration dus to gravity; £t /sec?

comblned coefficlent of heat transfer on the cooling-air side,
Btu/(kr) (sq £t)(°R)

combined coefficient of heat transfer on combustion-gas side,

Btu/(hr)(sq £5)(°R)
Tlow digstance between stablions B and ¥, ft
total pressure at exhaust-nozzle throat, 1b/sq £t abs.
turbine-outlet total pressure, 1b/sq £t abs. -
exhaust-nozzle total pressure, 1b/sg ft abs.
static pressure in tunnel test section, 1b/sq £t abs.
gtatlc pressure at exhaust-nozzle throat, lb/sg £t abs.
average dynamic pressure between stations B and F, 1lb/sg ft
ges constant, ft-lb/(l'b)(OR). ”

Reynolds number
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cooling-air temperature, °R or °F
exhaust-gas temperature at nozzle exit, °R

combustion—gas temperature measured 1/4 inch from insid.e wall,
°R or OF R o '

combustion-gas temperature measured 1/2 inch from inside wall,
°R or

outside-wall temperature, op

turbine-cutlet total temperature, °R

inside-wall temperabure, °R.or Op

engine-inlet total temperature, °r

average temperature of exhaust nozzle lip, °F

cooling-air flow, lb/sec

engine fuel flow, lb/hr

tail-pipe fuel flow, Ib/hr . . _ .

combustion gas flow, 1lb/sec

mess-flow ratlio.. .. _ .. _ .

ratio of gpecific heats of exhaust gas corresponding to tot&l
fuel-air ratio and exhaust-ges temperature

talil-pipe combustlon efflciency

ratio of denslty at prevalling temperature and pressure to
denslty at standard temperaturs and pressure

Subscripts:

B to G

longitudinal stations
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TAHLE IT - CIRCIMFERENTIAL AVERAGE TRMPERATURES, °F
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TABLE I - CIRCUMFEREMTTAT, AVERAGE YRMPERATIRES, °F - Gonoloded

sov2

Run Btation C Atation D Station X Btation ¥ R,
Oombustion |Insldd Outeids |Cooling| Oombusticn | Insids |Cutside|Oooling | Combustion |Inalde jOutsids|Cooling| Combustion |Inaside|Owtaide|Cooling
gme vall | wall edr s wall | wall air gnB wall | wall | “atr gas wall | wvall air

T T T T ? by T T T T T » T 7 T T b ¥
a,1/2) s, 1/¢| v 7 n | a4 g1/d v a s (e,1/2ls,1fe] w 8 a rj:3,.1./2 a,lfi w o a
CONFIGURATION B
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2| 1088 | 1026 B49 60 &5 1542 | 1084 €88 ) 133 2400 | 1628 888 181 221 2752 | 2588 | 1170 a8l 313 2
5| 1078 | 1025 510 50 58 1308 | 1081 827 98 117 2424 | 2128 800 149 163 2708 | 2380 | 1089 221 R_70 5
4] 1069 | 1031 477 8 56 1182 | loea 582 88 108 2512 | 2008 858 143 189 2565 | R404 | los7 215 248 4
6| 1077 | 1013 445 52, b4 1352 | 1058 543 6l 105 2456 | 18489 7 110 18 2727 | 2323 985 188 218 5
) 1085 | 1044 618 84 67 1382 | 1079 B57 0 150 2600 | 1936 ohd 154 207 2718 | R410 | 1184 286 288 6
7| 1064 | T04L 628 290 293 1535 | 1088 736 341 338 2214 | 1788 9723 361 588 2607 | 2232 | 1189 458 488 7
8| 1061 | losg 835 296 300 1403 | 1088 757 326 348 2488 | 1739 909 384 388 2880 | 2488 | 1196 463 473 <]
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13| lo8g | 1100 914 755 768 J452 | 1158 | 1008 761 788 2500 | 2087 | 1281 804 814 2509 | 2325 | 1579 898 B66 15
CONFIHIRATION C
1| 101 | lors 818 % 78 1341 | 1107 654 140 146 1810 | 1190 800 179 20L 1987 | 1638 928 258 267 1
2| 102 | 1074 668 271 en 1254 | 1101 785 304 28 le4s | 1528 a58 Z4E 59 2015 | 1847 M5 440 413 2
3| 1112 | 1087 87 367 31T 1868 | 1117 T80 390 421 1605 | 1523 911 453 148 1994 | 1639 999 513 498 3
41115 | lo9s 7680 483 4T3 1285 | l1eR as1 133 5l 1625 | 1ms2 968 528 537 2000 | 1647 | 1046 696 a2 4
6| 1117 ! los6 B4l 672 885 1258 | 1128 892 585 8a7 1684 | 1321 | lold GRS 836 1990 | 1649 | 1096 683 815 H]
6| 116 {1118 965 764 T8 1278 | 1158 | looe 768 802 1850 | 1364 | 1126 788 81% 2020 | 1701 | 1200 850 843 6
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(a) Station B, cooling-pessage inlet, looking downstream.

Figure 4., - ILocation of instrumentation.
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(b) Stations C through B, looking downstream.

Flgure 4. - Continued. Location of instrumentation.
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(c) station F, looking downstream.

Figure 4. - Continued.

Location of Instrumentation.
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Figure 9. - Circumferential temperature variations at station ¥,
configuration A.
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(b) Accumulated afteérburner time, 3 hours and-36 minutes;
exhaust-gas total  -temperature. epproximately 3060° R; mass-
flow ratio; 0.0949; inlet.cocling-air temperature, 536° R.

Figure 9. - Continued. Circumferential temperature veriations
at stetion F, configuration A.
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Figure 9. - Continued. Circumferential tempersture variations
at station F, configuration A.
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Figure 9. - Concluded. Circumferentisl temperature variations
at station F, configuration A.
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Figure 21. - Concluded. Relation of temperatures at station F.



Config- Fxhaust-gaa Mass-flov Combustion- Turbine-

uration total ratio gas Tlow outlet
teamperature temperaturs
Tg Va/¥g g
(°r) (1b/aec) (°r)
A A 3064 0.143 22.2 1828
h A 3095 .088 P1.9 1886
o A 3224 45 22,2 1820
[n] A 5422 .143 £8.2 1830
4 A 5845 .137 23,0 1637
o A 3268 . 143 15.8 lelz
v B 3225 144 £2,2 1888
4 [+ 5238 . 145 22,3 1829
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Figure £2. -~ Comparison of effaecte of exhevst-gas tewpereture
level, radial distribution of tali-pips fuel flow, and maas-
flow ratic on oooling charscteristics.
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Figure 24. - Isothermal friction factor for instrumented cooling passages.
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