TECHNICAL NOTES
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

No. 270

THE CHARACTERISTICS OF THE N.A.C.A. 97, CLARK Y, AND N.A.C.A.-M6 AIRFOILS WITH PARTICULAR REFERENCE TO THE ANGLE OF ATTACK

By George J. Higgins
Langley Memorial Aeronautical Laboratory

FILE COPY
To be returned to the files of the Langley Memorial Aeronautical Laboratory

Washington
December, 1927
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 270.

THE CHARACTERISTICS OF THE N.A.C.A. 97, CLARK Y, AND
N.A.C.A.-M6 AIRFOILS WITH PARTICULAR REFERENCE
TO THE ANGLE OF ATTACK.

By George J. Higgins.

Summary

This note gives the aerodynamic characteristics of the
N.A.C.A. 97, Clark Y, and N.A.C.A.-M6 airfoil sections as de-
termined in the variable density wind tunnel at Langley Field,
Virginia. Particular attention is called to the relation of
the characteristics to the angle of attack in their use in
airplane design.

In the adaptation of a certain airfoil section to an air-
plane design, it is necessary to make a careful study of the
airfoil characteristics in order that the best performance may
be attained on the completed airplane. Speed range and pay
load are the important factors which are dependent directly on
a careful selection and use of the wing section. The angle of
wing setting or incidence on an airplane should be known in
terms of the absolute angle of attack.
The angle between any reference line on an airfoil section at any time and that line when the direction of motion is such that the lift is zero, is called the absolute angle of attack (see Figure 1). It is this angle that is used in theoretical formulas for determining airfoil characteristics. One finds from experimental tests that the lift of an airfoil is directly proportional to the absolute angle of attack, being approximately the same for all sections. The minimum drag coefficient occurs at about zero lift or at about zero absolute angle of attack. The value of the minimum drag is, however, dependent on the choice of the section. Likewise, the maximum lift is determined by the burbling characteristics of the individual airfoil.

The ordinary or geometric angle of attack, measured from a chord line is, with most airfoils, different from the absolute angle of attack. For checking rigging and angle of incidence it is most convenient to use the geometric angle as it can readily be measured. The designer, however, should be careful that he does not confuse the two, particularly if employing empirical formulas.

To illustrate the above points, suppose that the following three airfoil sections are chosen as suitable for use in design:

- N.A.C.A. 97 - high camber,
- Clark Y - medium camber,
- N.A.C.A.-M6 - low camber.
These sections are all medium thick and the structural details of the wings would be very similar.

A medium sized airplane (say, a braced monoplane) carrying a gross load of about 5000 pounds with suitable wing area and powered with a 400 HP. engine will have, say, a landing speed of between 50 and 60 M.P.H. and a speed range of about 2.5.

The high speed condition will make it necessary, therefore, that the airplane fly with the wings set to give a lift corresponding to a coefficient $C_L$ of about 0.22. Should the Clark Y section be adopted, the geometric angle of attack for level flight at high speed would be $-2.2^\circ$ (see Figure 2).

Had the M6 or 97 section been chosen, the respective angles would be $+2.3^\circ$ and $-5.7^\circ$. However, on the basis of absolute angle of attack, the correct angle would be $+3.1^\circ$ for all three sections (Figure 3). The three airfoil sections are shown in Figures 2 and 3 in the above attitude for high-speed flight. The appearance of the sections is very misleading. It would scarcely be suspected that the 87 or Clark Y would give the same lift as the M6 in the attitude shown.

Referring to Figures 4 and 5, it may be seen that the drag coefficient curves as well as the lift curves based on absolute angle of attack are similar. Polar curves and curves of profile drag coefficient $C_{dp}$ plotted against $C_L$ are given in Figures 6 and 7, respectively. The use of either of these latter curves for design eliminates possible errors due to the
wrong use of the angle of attack. Figure 7 includes curves of
induced drag coefficient \( \mathcal{C}_D \), for convenience in obtaining
the correct \( \mathcal{C}_D \) for a wing of any aspect ratio. \( \mathcal{C}_p \) curves
are given (Figure 8) for the Clark Y and M6 to complete the
data. Similar information for the 97 is not available; how-
ever, for a section with a high camber like the 97, the \( \mathcal{C}_p \)
travel is more than for a section like the Clark Y.
N.A.O.A. Technical Note No.270

Direction of flight when the lift is zero.

Fig. 1

Direction of flight.

Chord

N.A.O.A. 97

Direction of flight.

Chord

N.A.O.A. -M6

Geometrical Angle of Attack $\alpha_g$ $-5.7^\circ$ $-2.2^\circ$ $+2.3^\circ$

Absolute Angle of Attack $\alpha_a$ $+3.1^\circ$ $+3.1^\circ$ $+3.1^\circ$

Figure 1.

Airfoil Attitude At High Speed
same lift on each Airfoil, $C_L=0.22$
Fig. 4.

Geometrical angle of attack, $\alpha$

N.A.C.A. 97

Clark Y

N.A.C.A.-MG
Fig. 6.

N.A.C.A. Technical Note No. 270

Profile 12.8°
Induced 12.3°

-0.1°
+7.7°
+3.2°

11.6°
Clark Y
N.A.C.A. M6

12°-Absolute angle of attack.

2.9° Geometrical angle of attack.

0°-Absolute angle of attack.