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CALCUT.JATIONOF WING SPARS OF VARIABLE CROSS-SECTION

AND LINEAR LOAD.*

By Le& Kirste.

The calculation of wing spars of

load has been thoroughly treated by a

constant cross-section and

large number of authors.

Such is not the case, however, regarding the calculation of

wing spars whose section and linear Ioa.ddimi-nish toward the ends,

as in wings of trapezoidal contour and decreasing section.

Since the employment of such wings is becoming nloregeneral

it seems opportune to indicate a inetlmdwhich enables the attain-

ment of the requisite degree of accuracy and is easy to apply.

For the sake of illustration, let us consider an el~nent

AB of a girder (Fig. 1) stzbjectedto a bendiil~ load p (kg per

linear meter) and a longitudinal load. C (kg).

Let us assume, as is customary for the establishment of bcnd-

in,gformu~sj that the inclination of the bend is small with re-

spect to the horizontal.

1’ On Wssing from section A to section B and projecting
i
/j& the forem on the ylane of the latter, we obtain, for the change.._~,. -- ,.

I

...,, ./
in the shearing stress,

f:):
f dT=p~+Csindq.
;

* From “L~Aeronautique,’t January, 1925, pp. 25–2$5.
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On the other hand, wc have

Hence

sin dqj . % I Mand -=—
P P 131

dT = pdx+” C~
.

which may be written

dT– D+~
dx - EI

lTowthe change in the shearing stress, in a girder stiessed

only in flexure, is nothing but the linear load, applied at the

given point. We may therefore conclude that, in a girder simul-

taneously subjected to both transverse and longitudinal loads,

the resultant bending moments are identical with those which

take place in the same girder when subjected to the same trans-

verse loads increased, at every point, by the qua.ntity CM/EI.

It is understood that the bending moment M, which enters .

into this formla, is t-heresults-nt’moment due to the stress

composed of the two loads. Since this is just the resultant

rnentwe arc seeking, the v.ethod consists in proceeding by an

-mo-

in-

tegration or successive approximations, ‘oe~~nning with the bend- .

ing moment corresponding to t’nesole transverse loads. Since the

latter is the more general, we will demonstrate it by an example.

Let ABC represent the given wing spar (Fig- 2), jointed at

A and held at B by a stay or oblique strut, the portion BC

forming an overhang.

The reaction of the support B occasions a ‘compression and,
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unless it passes through a neutral fiber, also a bending

,L--. The latt”ei~ com15in-ed“~i~ri&ne “moment due to the overhang
-....,.

gives the moment l% at the point .B.,.

The compression in the portion AB is increased as
~.

3

moment.

“load,

a result

of the reactions of the diagonal bracing inside the wing. In

general, one exterior element or section corresponds to two or

three interior. In this case, the diagram of the longitudinal

stresses will have steps, as in Fig. 2. If, on the contrary, a

covering of metal or plywood confines the stresses in the plane

of the wing, the diagram of the longitudinal stresses will be a

continuous curve.

The distribution of the transverse loads depends on many

factors, namely, the contour of the wing, variations

section, variations in the angle of attack, marginal

It will therefore constitute a curve whose ordinates

toward the fzee end.

in the wing

losses, etc.

decrease

We have already assumed that the cross-section of the spar

decreases. Hence the same will be tne of the moment of iner-

tia, as shown in Fig. 2.

With the aid of these data and a Cremona diagram, we can

trac~ curve I of the bending moments due to the transverse loads

al.~ne,(Fig. 3) ..,... . .- ----e —.,=,. ,--. – .-- J,- .------

With these moments of simple flexure, we d~termine cuxve I

of the theoretical loads MC/EI, which gives the first correction

of the transverse loads.
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With tineamplifidd loads,

the transverse loads and first.,.... ,,, -. -,. -,,

II of the theoretical loadsc

obtained by the superposition of

theoretical loads, we trace curve.,...=.—..

On repeating these operations two or three times, we gener-

ally find that the corrections keep on diminishing, so that we

ultimately obtain a moment curve which is practically the defin-

itive curve.

If, on the contrary, the corrections should continue to

incr~ase, this would be an indication that equilibrium is impos-

sible. In this event there would be produced the phenomenon of

instability well known in aviation, namely buckling, which is due

to .insuffici.entmoments of inertia.

It may be asked whether, on knowing the analytical expres-

sions for the different curves, an integration would not give

the desired result more quickly than tracing the successive mo-

ment curves.

Since, however, the longitudinal stress and the moment of

inertia are not constant, integration.is hardly possible, be-

cause any linear variation leads to a differential equation

the second order, with linear coefficients which produces a

velopment in series.

of

de-

Moreover, the graphic solution renders it possible to take
,.

accountof the local variations “in’”’themoment ””ofinertia, load,

etc., due to fillings of the wing spar, notches in the wing, lo–

cal stresses, etc., and which cannot be expressed by an a~lYti-

cal curve.

I
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Figs.1,2& 3.
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