HARD AND SOFT

J. Christensen Gray, B.F.A.

Problem in Lieu of Thesis Prepared For the Degree of

MASTER OF FINE ARTS

UNIVERSITY OF NORTH TEXAS

December 2000

APPROVED:

Elmer Taylor, Major Professor
Harlan Butt, Minor Professor
Jerry Austin, Committee Member and Chair of the
Division of Studio
D. Jack Davis, Dean of the School of Visual Arts
C. Neal Tate, Dean of the Robert B. Toulouse
School of Graduate Studies

The purpose of this investigation is to explore the possibilities of manipulating clay in three distinct ways to effectively show that clay objects were at one time moist and pliable. The techniques used are faceting while wet, manipulating a variety of additions, applying different glazing techniques, and three separate firing methods.

In addressing the problem, the following concerns were considered: (a) Which of the pieces made best expresses my aesthetic concerns? (b) Which firing method, oxidation, reduction or atmospheric, best illustrates these concerns? (c) Which glazing technique was most successful?

In an attempt to explore and solve these problems, a series of twenty pieces were produced. A visual record of slides showing individual pieces were made to demonstrate the differences and similarities between firing methods.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td></td>
</tr>
<tr>
<td>Questions to be Answered</td>
<td></td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
</tr>
<tr>
<td>2. DESCRIPTION OF WORK</td>
<td>3</td>
</tr>
<tr>
<td>3. CONCLUSION</td>
<td>9</td>
</tr>
<tr>
<td>4. SLIDES</td>
<td>10</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

As a potter I am presented with a paradox. I love clay because it is soft, pliable, and receptive to the touch, yet when it is fired to maturity it becomes hard. This has been my struggle in dealing with clay. How can I show that clay was once a soft material after it has been fired?

I have been using a technique that I believe conveys to any viewer that the clay was once a malleable material. First, I throw a very thick vessel shape on the potter’s wheel using quite a bit of water, certainly more than is necessary. Next, I facet, or cut, large slices of the surface clay away while the vessel is still on the wheel. Once the faceting is done, I then push the clay out from the inside while the wheel rotates. This technique visually softens the form and actually causes it to waver and undulate. Often I need to push the form to the verge of collapse to achieve the look I desire.

Many of the vessel forms I make have hand-built additions, such as handles, spouts, and feet. To make these additions, I usually add surface texture to a thick piece of wet clay and slap it down on the table, causing it to stretch and warp. This also illustrates the clay’s soft nature and its plasticity.

I have been glazing my vessels in a single-color, transparent glaze that pools up in the low areas and pulls away from the high spots. This allows the surface texture and overall softness of the clay to show through. This is the final step in the process of making
a piece and really accentuates the overall soft quality I am looking for. Other firing techniques can also achieve this aesthetic quality, such as salt and wood firing. These atmospheric firings can really soften the surface of a vessel.

Statement of the Problem

In using clay as my primary material, I focus on keeping the soft, malleable qualities of the wet clay all the way through to the final fired piece. The purpose of this investigation was to explore the possibilities of manipulating clay in three distinct ways to effectively demonstrate that a clay object was at one time moist and pliable. The techniques mentioned are faceting while still wet, the use of manipulated additions, and different glazing methods. I considered the following while addressing my problem:

1. Which of these pieces, glazed and fired, best expresses my aesthetic concerns?

2. Which firing method--oxidation, salt, or wood--works best to illustrate the concerns previously mentioned?

3. Did a particular glazing technique--spraying, dipping, pouring, or brushing--best illustrate my aesthetic concern?

Methodology

In my attempt to explore and solve these problems, I produced a group of at least 20 pieces. I used a variety of glazing techniques to achieve the desired results. I kept a visual record of these pieces in the form of slides to demonstrate the differences and similarities between wet pieces and finished pieces.
CHAPTER 2

Description of the Work

When looking at the work produced for this particular project, it became quite evident to me that aesthetic concerns took precedence. With no functional concerns, I was able to study the individual components that made up the whole piece. This, in turn, made it easier to judge individual pieces and techniques to determine their effectiveness based on my concerns. I will discuss certain pieces that I think are very successful and some that are not.

The first group of vessels I will analyze will be the salt-fired group. All of the vessels were fired without any type of glaze application. The glazing occurs as a result of the firing process. Sodium from the salt bonds with the silica in the clay to form a glaze on the surface of the vessel. The first vessel I will consider is a pouring vessel. Pouring vessels, which are the dominant form in this project, have several constituent parts to make up the whole and, thus, gave me many opportunities to manipulate the clay. This vessel (slide 1) was thrown on the wheel and altered while still quite wet. This alteration closed the opening quite a bit and gave the form a backward thrust and motion. Next, a long, narrow spout was formed from a small disk of soft textured clay that was slapped out into an oval slab. After it was rolled into a spout, it was attached to the vessel. Next, a long, tapering, cylindrical handle was pulled from a “carrot” of clay that was attached to the back of the vessel. This handle was then rolled into a spiral shape and set into place.
With a different colored slip, I decorated the surface of the vessel with small spirals. The spirals achieved two results—one result was to repeat the motif of the handle, and the second was to show a soft frosting-like surface quality. Small dots of this slip also decorated the surface. After firing, the surface of the vessel turned a toasty brown with a nice, even sheen while the slip remained a cream color. This piece was somewhat successful in that it demonstrates many of the qualities I am striving to achieve. It does fall short, though, in my opinion, because it has a certain stone-like quality to it, mostly due to the color of the surface and lack of surface depth.

The next piece I will consider in the salt-fired category is another pouring vessel (slide 4). This vessel was also thrown on the wheel and altered while still wet. It differs from the first, however, because I used so much water that it wrinkled and almost collapsed. This gives the surface an undulating warped appearance and visually softens the form. The lip was then brought together to form a figure eight that created an opening for the neck and an opening for the spout. The neck and spout were formed from soft, textured clay similar to the previous vessel and attached while still wet. These also fold and warp to create visual softness. I feel that this piece works more effectively than the first vessel strictly because of the surface quality. No additional slips or glazes were applied. Although I believe it to be more effective, it still portrays the stone-like quality previously mentioned. Salt firing can be a very effective finishing method when concerned with surface quality. I do not, however, think it to be the most effective for my aesthetic concerns.

The next firing method I will discuss is wood firing. Wood firing is another atmospheric type of firing. Wood is not only the fuel source, it is also what glazes the
pots in the kiln. Wood ash that settles on the pots throughout the firing eventually melts and turns to a glaze. It is this ash that can soften the surface of a vessel; it can also result in a dry, chalk-like surface. Of the wood fired vessels produced for this problem, I will again focus on two pouring vessels. The first of the two is a large teapot (slide 6). This basic shape, the body of the teapot, was formed on the wheel and was then covered with a very thick slip. This slip was then spread around the entire surface of the body in a wavy manner. Later, when the vessel was leather-hard, the handles, feet, and spout were added. These were all made in the same manner; a piece of moist clay was textured and then slapped out on the table. This slapping out of the clay causes the pattern to warp and stretch, indicating this was done while still very moist. These were all then attached and the teapot finished. This teapot resulted in everything I want and love when dealing with clay. It showed movement and plasticity and was quite obviously moist at one point. It was successful only until it was fired. The wood firing produced a somewhat dry matte surface that obscures the surface. It also was over reduced, that is to say, fired in an oxygen-poor environment. It subsequently turned an unappealing shade of gray. This, combined with an opaque ash buildup, really caused a lack of surface depth and deadened the surface. Some glaze was applied to this piece, but only on the interior, and that was poured in. This certainly was not enough to counteract the other negative effects.

The next piece in the wood-fired group is a small pouring vessel (slide 8). This vessel, like the previously mentioned ones, was also formed mainly on the wheel. Unlike the other, however, the neck was thrown and added later. While the neck was still wet, I gave it a slight bend or tilt backwards. Later, when the piece was leather hard, the spout and feet were made in the same manner of the previously mentioned vessels and added to
the piece. Another feature of this particular vessel is a repeated, diamond-shaped stamp which was applied while moist. This is the area that received glaze decoration which consisted of a black glaze applied with a brush. This piece achieved more of the qualities I am looking for, yet it still fell short. The gray color is not as prevalent, but it is still there. Mixed in with the gray are several shades of brown and tan. In the center of one side are the very pronounced markings of the wadding. Wadding is a moist clay mixture that prevents the pot from sticking to the shelf during a firing. In place of the wadding, there are now three circular white marks that reveal the raw clay body. This piece is a fine example of what is sought after in a wood firing. It has shiny, slick parts and dry matte parts as well. The color range is varied and is an interesting light tan to orange to red. Even with all of these qualities present, I still think this piece fell short of achieving the aesthetic effect I desire. I have come to the conclusion that the very things that make up a typical wood-fired pot are the very things that detract from my intentions. The varied surface colors take on too much life and detract from the things I have done to the clay. The “glaze” from the ash appears to be more of a mask, or covering, than anything else.

The final group for consideration is the oxidation-fired group. Oxidation firing is a firing method characterized by sufficient oxygen to burn the fuel, resulting in a clean, efficient fire. Rather than firing with an oxygen-poor atmosphere, it is an oxygen-rich environment and tends not to “muddy” up a glaze surface. All of the pieces for this oxidation group were glazed with single-color, transparent glazes. There are two pieces that contain elements I am seeking. The first piece to be considered is a small tea bowl (slide 11). I began this tea bowl on the wheel as a very thick cylinder which I then
heavily faceted. I then pushed it out from the inside while the wheel was turning. This particular piece almost collapsed from the differing thickness of the clay due to the faceting. This caused a pronounced waver in the lip and a buckling effect in the wall. The base was left very thick and feet were added by pinching with my finger tips. This gave the bowl a lift and also demonstrated that it was done while wet. The piece was then finished with a single-color, transparent green glaze that was applied by dipping the piece into the glaze. This is the most effective method I have discovered, and it truly demonstrates the effect I am trying to achieve.

The next, and last, piece I will be examining (slide 13) is another pouring vessel fired in oxidation. This vessel was also primarily made on the wheel and then constructed later. The main body of this vessel started out as a thickly-thrown cup shape which I then faceted with a twisted wire. I stretched the vessel out from the inside while it was still rotating on the wheel. This really gave it volume and a stretched, soft surface. The neck and spout were also thrown and attached later while still soft. The neck was given a slight backward tilt. The spout was pushed from the inside to give it a slight belly and then tilted forward. The handle was made from three triangular pieces of very soft clay that was put together and curved into a horseshoe shape and attached. The piece was then oxidation-fired in a single-color, transparent green glaze which was also applied by dipping. All of these techniques contributed to a successful piece. This oxidation-firing method is, I believe, the most successful.
CHAPTER 3

Conclusion

I was concerned with certain qualities being present in order for a piece to be successful. The entire reason for this project was to explore and analyze certain methods and to record the findings, successful or not. There are certain questions which need to be answered. First, which piece did I feel best addressed my aesthetic concerns? After repeated analyzation of the pieces made for this problem, it is my opinion that the piece shown in slide 13 was the most successful for the reasons mentioned earlier--a soft surface quality and a single-color, wet-looking gloss glaze. Second, which glazing techniques worked best? I found that dipping was the most effective method because it achieved a nice, even coat that best portrayed what I wanted. Third, which firing method worked best within my set criteria? I believe that the transparent, oxidation-fired, single-color pieces succeeded the most. This method really demonstrated the soft, wet and malleable clay-look that I seek. The transparent nature of the glaze did not obscure the work I put into the surface of each piece. Oxidation firing is a method which does not muddy up a surface and allows the clay to show through. This is the method I intend to pursue and study for a long time.