Radio frequency propagation differences through various transmissive materials.

PDF Version Also Available for Download.

Description

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication ... continued below

Creation Information

Ryan, Patrick L. December 2002.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18564 times , with 43 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ryan, Patrick L.

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

The purpose of this research was to determine which of the commonly used wireless telecommunication site concealment materials has the least effect on signal potency. The tested materials were Tuff Span® fiberglass panels manufactured by Enduro Composite Systems, Lexan® XL-1 polycarbonate plastic manufactured by GE Corporation and Styrofoam™ polystyrene board manufactured by The Dow Chemical Company. Testing was conducted in a double electrically isolated copper mesh screen room at the University of North Texas Engineering Technology Building in Denton, Texas. Analysis of the data found no differences exist between the radio frequency transmissiveness of these products at broadband personal communication service frequencies. However, differences in the signal do exist with regards to the angle of incidence between the material and the transmitting antenna.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2002

Added to The UNT Digital Library

  • June 24, 2008, 6:50 p.m.

Description Last Updated

  • Aug. 15, 2014, 7:38 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 1
Past 30 days: 43
Total Uses: 18,564

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ryan, Patrick L. Radio frequency propagation differences through various transmissive materials., thesis, December 2002; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc5801/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .