Automated Low-cost Instrument for Measuring Total Column Ozone

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

Networks of ground-based and satellite borne instruments to measure ultraviolet (UV) sunlight and total column ozone have greatly contributed to an understanding of increased amounts of UV reaching the surface of the Earth caused by stratospheric ozone depletion. Increased UV radiation has important potential effects on human health, and agricultural and ecological systems. Observations from these networks make it possible to monitor total ozone decreases and to predict ozone recovery trends due to global efforts to curb the use of products releasing chemicals harmful to the ozone layer. Thus, continued and expanded global monitoring of ozone and UV is needed. ... continued below

Creation Information

Nebgen, Gilbert Bernard May 2006.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 69 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Nebgen, Gilbert Bernard

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Networks of ground-based and satellite borne instruments to measure ultraviolet (UV) sunlight and total column ozone have greatly contributed to an understanding of increased amounts of UV reaching the surface of the Earth caused by stratospheric ozone depletion. Increased UV radiation has important potential effects on human health, and agricultural and ecological systems. Observations from these networks make it possible to monitor total ozone decreases and to predict ozone recovery trends due to global efforts to curb the use of products releasing chemicals harmful to the ozone layer. Thus, continued and expanded global monitoring of ozone and UV is needed. However, existing automatic stratospheric ozone monitors are complex and expensive instruments. The main objective of this research was the development of a low-cost fully automated total column ozone monitoring instrument which, because of its affordability, will increase the number of instruments available for ground-based observations. The new instrument is based on a high-resolution fiber optic spectrometer, coupled with fiber optics that are precisely aimed by a pan and tilt positioning mechanism and with controlling programs written in commonly available software platforms which run on a personal computer. This project makes use of novel low-cost fiber optic spectrometer technology. A cost advantage is gained over available units by placing one end of the fiber outdoors to collect sunlight and convey it indoors, thereby allowing the spectrometer and computer to be placed in a controlled environment. This reduces the cost of weatherproofing and thermal compensation. Cost savings also result from a simplified sun targeting system, because only a small pan and tilt device is required to aim the lightweight fiber optic ends. Precision sun-targeting algorithms, optical filter selection, and software to derive ozone from spectral measurements by the spectrometer are a major contribution of this project. This system is a flexible platform which may be adapted to study other atmospheric constituents such as sulfur dioxide, nitrous oxides, and haze.

Subjects

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • May 2006

Added to The UNT Digital Library

  • June 24, 2008, 8:09 p.m.

Description Last Updated

  • Jan. 15, 2014, 3:07 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 69

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nebgen, Gilbert Bernard. Automated Low-cost Instrument for Measuring Total Column Ozone, dissertation, May 2006; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc5792/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .