- $\because 9114535$

MAR 251935
$x-x+3$

CALCULATIONS OF THE EFFRCT OF WING THIST ON TRE
AIR FOROES ACTING ON A MONOPLANE MITG
By G. Dätwyler
California Institute of Technology

Hashington
Marcin 1935

ITATIONAL ADVISORY COMAITTEE FOR AERONAUTICS

I Wish to thank Dr. J. Ackeret, Institute for Aerodym namics at the Tidg. Techinische Hochschule, Zurich, for his interest in this research, shown at numerous times by his suggestions. As a private assistant of Professor I. Karner, at the same Hochschule, I became familiar with statics as applied to aircraft. Further, I Wish to thank the Kreigstechnische Abteilung at Bern, from whom I was able to obtain the elastic data of the wing framework of D.27.

DEVEIOPMENT OF THE PROBLEM

The calculation of the final deformations, considering the mutual relation between wing forces and deformetions, involves two fundamental problems:
I. Calculation of the lift distribution along the span of the deformed wing;
2. Calculation of the wing deformations for given lift forces.

There are different types of wing deformation. Among them, the wing twisting is of predominating importance since the air forces are especially sensitive to changes in angle of attack. The problem may therefore be restricted to the one of elastic wing twisting.

Fir a given twist of the wing, the air forces are calculated for a given angle of atteck and a given dynamio pressurio. From them follow certain angles of wing twist. The final trist doponds lupon the condition that the agm sumed twist will lead to the same resulting twist.

Aerodynamic Fundamentals
The symbols used in the remaining sections of the pam per are lifted here for reference
x, distance of any point or section along the wing span from the center wing section (plane of symmetry).
b, wing span.
$\xi, \quad \frac{x}{b / 2}$

```
        N.A.C.A. Technical Note No. 5\overline{NO}.
    , Wing chord at the distance }x\mathrm{ or }\xi\mathrm{ .
V, speed of flight.
W, vërtical downwash velocity induced by the trailm
        ing vortices.
\alpha, angle of attack.
8, angle of twist.
\rho, mass density of air.
q}=\frac{\rho}{2}\mp@subsup{V}{}{2},\quad\mathrm{ dynamic pressure.
S, wing area.
I, İft of the wing.
D, drag of the wing.
Dp, profimle drag of the wing.
Di, induced drag of the wing.
M, moment of the wing air forces with respect to the
        profile leading edge.
CI. = I_
CD}=\frac{D}{qS},\quadabsolute drag coefficient
C (D 
C}\mp@subsup{D}{i}{}=\frac{\mp@subsup{D}{i}{\prime}}{q}, absolute induced-drag coefficient.
CM}=\frac{M}{qSt, absolute pitchingmmoment coefficient.
T, circulation as defined by
```

$$
\Gamma=\frac{\text { inft per meter iength of span }}{\rho V}=\frac{\bar{C}}{V} V t
$$

f, U, absolute dimensionfoss coefficient
All values regarding the center wing section $(x=\xi$ $=0$) aro denoted by the subscript zefo.

In addition, there is the symbol α_{∞}, geometrical angle of attack of the wing measured with respect to the flight direction. The symbol sonis.used. bocause the. Wing With infinite span has mo induced downwash velocities. Then the eeometrical and the effective aneles of attack are the sawe. Thus $C_{I_{\infty}}$ is the lifit coofficient corresponding to the geometrical angle of attack α_{∞} : The connection between α_{∞} and $C_{L_{\infty}}$ is given by the polar of the wing section (wing profile) for infinite wing span.

Now, as to the first fundamentai problem, i.e., tho calculation of the air forces (lift distribution along tho wing soan), the formulas developed by \mathbb{B}. Anstutz (reforence I) aro usod. They start from Prandi's formia for tho lift distribution

$$
\frac{\Gamma}{\Gamma_{0}}=\sqrt{1-\xi^{2}}\left\{i+\mu: \xi^{2}+v: \xi^{4}+\cdots \cdot\right\}
$$

Foroby adaitional. lift distributionstaro suporimposod upon tho orlginal olliptic distribution. The cocfficionta μ, v.... give tho magnitude of their ratio.

Following Amstutz: formulas, which consider only the first two coefficients μ and v, the approximate lift distribution of a given wing may be calculated, at a givon angle of attack and a given dynamic pressure, as a funcm tion of the geometrical data and the anjles of trist of two sections along the wing span. They advantageously aro asamed at about 60 percent and 90 percent of the wing semispinn. As sinown by J. \#üeber of Gottincen (referonce 2), tho mothod of Amatutz (referonce 1) sives very good rosulte in comparison with the more aocurato fethod developod by I. Iotz (reference 3). (If the method or Lotz were used, the curve showing tho wing twist along tine wing span weuld have to bo assumed a priori. the method of amstutz, howover, is more goncral in this respect. By moans of it both the curve of the wing twist along the wing span
and the values of the angles of trixit may be calculated without the foregoing assumption.)

Static mundamentals

The second fundamental problem, the ealculation of the Wing twist for agiven lift distribution, ts treated by means of lines of influence for the wing twist. They are the results of an extended research (interaction between the spars due to the ribs) on the wing framemory of the Swiss military fighter Di2y, shown in figure i, and fully described in reference 4. This fighter has an allmetal aluminum framework wing with two parallel and identical spars.

The ordinates of the lines. of influence give the angles of twist along the wing epan for eny given single vertical load of 100 kilograms acting at two points of one. of the spars, these two points being symmetrically placed With regard to the center wing. section For given dietributed loads acting on both spars at the same time, the ordinates of the curve showing the difference between the load on the front spar and that on the rear múst be mutiu plied by the ordinates of the Iines of influience. Then the angles of wing twist are given a the tntegrais of the curves obtained by the above riultiplicatiom. For equal. loads on both spars acting in the same direction pure wing bending :Without any twisting is obtained.

The lines of influence are shown in fieute 2. As the wing is of tre semicantilever type (a so-caliod Tparasol" wing), the lines of influence wero formerit feferfed to the points where the strits are attached. In this ceiculationi, however, these "influence lines mist ber referred to the center wing section because of the requirements of the aerodynamio, calculationsia that change in reference was accomplished by: suibtracting the ordinetesor the infiuence ine belonging to the center wing section from the corresponding ordinates of the influence lines belonging to the otho er sections. In that way the angle of twist at the center wing section always becomes equal to zero and the wing seems to be a real cantilever one. Theline of influence of the section where the struts are attached now is the same as the earlier line of influence of the center wing. section, except that the sign is changed. .

The general ideas having now been given, tio calculations using the D. 27 as an example, follow.

The wing plan form is changed slightly into an ellipm tical one with nearly the same area (fig. 3)

$$
S=17.8 \mathrm{~m}: 2
$$

and exactly the same span

$$
b=10.3 \mathrm{~m}
$$

as that of the D.27, the mean chord being

$$
t_{0}=2.20 \mathrm{~m}
$$

Further, a plane wing is assumed without any original twist, having the same profile along the entire span; preserving this profile for any wing deformations. Thus a pure elliptical lift distribution is obtained on the plane wing. The wing plan form is placed in such a way that the distance \bar{s} of the center line betwecn the two spara from the leading odgo of the wing has the constant value of 37.15 oercent of the.wing chord. This is done in order to simplify the calculations. As tho static wing-coli atructuro is symmetrical, the conter line is the so-called "olastic wing axis." Any load acting along that axis prom duces pure wing bonding as both tho spars bend idontically.

The profilo Gottingen 398 (sce reference 0) is asm sumod. Fívie 4 shows this profilo togotior with ita pow lar for infinito span. We obtain tho oquation

$$
c_{I}=5.2042\left(\alpha_{B}+0.1149\right)
$$

where $\quad \alpha_{B}$ is the angle of attack with respect to the profile chord, measured in radians.

The sIope $\frac{d_{I}}{d \alpha}=5.2042=k$.
Furthem: $\quad C_{m}=1.2615\left(\alpha_{B}+0.18569\right)$

$$
C_{m}=0.2424 C_{L}+0.08982
$$

Values of $C_{D_{p}}=f\left(C_{I_{\infty}}\right)$ for large angles of attack may be found in reference 6 ．

The Calculation of the Angles of Twist δ_{3} and δ_{5}

By means of the lines of influence，their ordinates being T ，the general expression for the angles of wing もயモ゙st

$$
\delta=\int_{0}^{b / 2} \tau \Delta p d x
$$

is obtained，Δp being the difference between the load per unit length of the front spar pif and the load for unit length of the rear spar pif，i．e．，$\Delta p=p_{V}-p_{H}$ ． The vertical wing load is approximately equal to the wing lift per unit length of span（assuming the cosine of the angle of attack equal to unity），

$$
p \sim \frac{\partial I}{\partial x}=\Gamma \rho V
$$

the resultant of p having its point of application at an approximate distance

$$
\theta=\frac{c_{m}}{C_{I}} t
$$

from the leading edge of the wing．
The wing lift is now distributed between both the spars．Therefore（see fig．5）

$$
p_{V}+p_{H}=\frac{\partial I}{\partial X}=\Gamma \rho V
$$

Each element of the wing contributes to the moment M with
or

$$
d M=p_{V} d x \nabla+p_{\text {E }} d \dot{x} h
$$

$$
\frac{d M}{d X}=p_{V} V+p_{H} h .
$$

On the other side

$$
d M=c_{\mathrm{m}} q \mathrm{t} d S=c_{\mathrm{m}} q t^{2} d x
$$

and

$$
\frac{d M}{d x}=c_{\mathrm{m}} q t^{2}
$$

Hence $\quad \mathrm{c}_{\mathrm{m}} \mathrm{q}^{\mathrm{t}} \mathrm{t}^{2}=\mathrm{p}_{\mathrm{V}} \mathrm{V}+\mathrm{p}_{\mathrm{E}} \mathrm{h}$
Putting

$$
\begin{aligned}
& v=h-d \\
& p_{V}+p_{H}=\Gamma \rho V
\end{aligned}
$$

results in

$$
p_{V}=\frac{h \Gamma \rho V-c_{m} q t^{3}}{d}
$$

In the same way

$$
p_{I}=\frac{C_{m} q t^{2}-v \Gamma \eta}{d}
$$

Within

$$
\left.\begin{array}{c}
q=\frac{\rho}{2} \nabla^{2} \\
\ddots v+h=2 S
\end{array}\right\}
$$

NOW

$$
\left.\begin{array}{rl}
\therefore \quad \Gamma & =\frac{C_{L}}{2} V t \\
\cdots \quad \therefore \cdots & =0.2424 C_{I}+0.08922
\end{array}\right\}
$$

hence.

$$
\Delta p=q \frac{t^{2}}{\alpha}\left\{0.2582 \sigma_{I}-0.1796\right\}
$$

As developed by Amstutz,

$$
C_{I}=\frac{2 \Gamma_{0}}{\nabla}\left\{\sqrt{1-\xi^{2}}\left\{i+\mu \xi^{2}+v \xi^{4}\right\}\right.
$$

and

$$
\Gamma_{0}=\frac{\dot{C}_{L_{\infty}} V t_{0}}{2\left\{1+\frac{k t_{0}}{4 b}\left[1-\frac{\mu}{2}-\frac{v}{8}\right]\right\}}
$$

By putting: : $t^{2}=t_{0}{ }^{2}\left\{1-\xi^{2}\right\}$

$$
C_{I}=C_{D_{0}} \frac{\left(I+\mu \xi^{2}+v \xi^{\xi^{4}}\right)}{\left\{I+\frac{1}{4 b}\left[I-\frac{\mu}{2}-\frac{v}{8}\right]\right\}}
$$

$$
\text { Hence } \Delta p=q \frac{t_{0}^{2}}{a}\left(1-\xi^{2}\right)\left\{\frac{0.2582 \mathcal{C}_{L_{\infty_{0}}}\left(I+\mu \xi^{2}+v \xi^{4}\right)}{1+\frac{t_{0}}{4 b}\left[I-\frac{\mu}{2}-\frac{v}{8}\right]}-\right.
$$

$$
-0.1796\}
$$

From this is obtained the even power series

$$
\Delta \mathrm{p}=\mathrm{E}^{*}+\mathrm{I}^{*} \xi^{2}+\mathrm{M}^{*} \cdot \xi^{4} \cdot-\mathbb{N}^{*} \xi^{\boldsymbol{s}}
$$

the coefficients K^{*}; L^{*}........containing all the terms independent of ξ. Hence,

$$
\delta=\int_{0}^{\mathrm{b} / 2} T\left\{\mathrm{~K}^{*}+\mathrm{I}^{*} \xi^{2}+\mathrm{H}^{*} \xi^{4}: \mathbb{N}^{*} \xi^{6}\right\} d X^{-}
$$

Replacing $d x$ by $\frac{b}{2} d$ and considering that the ordinates T are based on 100 kg as a unit; and with

$$
\begin{aligned}
& \mathrm{K}^{*} \frac{\mathrm{~b}}{200}=\mathrm{K} \mathrm{I}^{*} \frac{b}{200}=I \\
& \mathrm{I}^{*} \cdot \frac{\mathrm{~b}}{200}=\text { H } \mathrm{N}^{*} \frac{b}{200}=\mathrm{H}
\end{aligned}
$$

there is obtained
$\delta_{3}:=I \cdot \int_{0}^{1} T_{3} d \xi+I \int_{0}^{1} \tau_{3} \xi^{2} d \xi+E \int_{0}^{1} \tau_{3} \cdot \xi d \xi-2 \int_{0}^{1} T_{3} \xi^{6} d \xi$ $\delta_{5}=\pi \int_{0}^{1} T_{5} d \xi+I \int_{0}^{1} T_{5} \xi^{2} d \xi+M \int_{0}^{1} T_{5} \xi^{4} d \xi-N \int_{0}^{1} T_{5} \xi^{6} d \xi$
The curves $\left[T \xi^{2 n}\right]$ are shown in figure 2. By graphical integration

$$
\begin{aligned}
& \delta_{3}=0.12447 \mathrm{I}+0.06447 \mathrm{I}+0.03903 \mathrm{M}-0.03555 \mathrm{~N} \\
& \delta_{5}=0.28850 \mathrm{I}+0.16620 \mathrm{I}+0.10370 \mathrm{M}-0.07184 \mathrm{~N}
\end{aligned}
$$

Replacing K, L, M, and N by their expressions

$$
\begin{aligned}
& \delta_{3}=\frac{q}{100}\left\{\frac{\mathcal{I}_{\alpha_{0}}[0.5149+0.2183 \mu+0.1157 v]}{1+\frac{k}{t_{0}}\left[1-\frac{\mu}{2}-\frac{v}{8}\right]}-0.3582\right\} \\
& \delta_{5}=\frac{q}{100}\left\{\frac{{ }^{0} I_{\infty_{0}}[1.0495+0.5363 \mu+0.2734 v]}{1+\frac{k t_{0}}{4 b}\left[1-\frac{\mu}{2}-\frac{v}{8}\right]}-0.7302\right\}
\end{aligned}
$$

The coefficients μ and v for generally given valvies δ_{3} and δ_{5} must be calculated. Amstutz dovolopod the linear equations

$$
\begin{aligned}
& A_{1}-\mu B_{1}-v C_{1}=0 \\
& A_{2}-\mu B_{2}-v C_{2}=0
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{C_{I_{\infty}} t_{1}}{C_{I_{\infty_{0}}} t_{0}}+\frac{k t_{I}}{4 b}\left(\frac{C_{I_{\infty_{1}}}}{C_{I_{\infty_{0}}}}-1\right)-\sqrt{1-\xi_{1}^{2}} \\
& B_{1}=\frac{k t_{I}}{8 b}\left(\frac{C_{I_{\infty_{1}}}}{C_{I_{\infty_{0}}}}-1\right)+\frac{k t_{1}}{4 b} 3 \xi_{1}^{2}+\xi_{1}^{2} \sqrt{1-\xi_{1}^{2}} \\
& C_{1}=\frac{k t_{1}}{32}\left(\frac{C_{I_{\infty_{1}}}}{C_{I_{\infty_{0}}}}-1\right)+\frac{k t_{1}}{4 b}\left(5 \xi_{1}^{4}+\frac{3}{2} \xi_{1}^{2}\right)+\xi_{1}^{4} \sqrt{1-\xi_{1}^{2}}
\end{aligned}
$$

$A_{2}, B_{a z}$, and C_{2} are deduced by replacing $C_{L_{\infty_{1}}}, t_{1}$, and $\xi_{I} \quad b_{i} \quad C_{I_{\infty_{2}}}, t_{2}$, and ξ_{2}.

$$
\text { since } \quad \xi_{1} \longrightarrow \xi_{3} \quad \xi_{2} \longrightarrow \xi_{5}
$$

the equations become

$$
\begin{aligned}
& A_{3}-\mu B_{3}-v C_{3}=0 \\
& A_{5}-\mu B_{5}-v C_{5}=0
\end{aligned}
$$

The values $C_{I_{\infty_{3}}}$, and $C_{I_{\infty_{5}}}$ contained in the terms A, B, and C are given by the values $C_{L_{\infty_{0}}}$ of the center wing section and the angles of twist δ_{3} and δ_{5}, ie.

$$
\begin{aligned}
C_{I_{\infty_{3}}} & =C_{I_{\infty_{0}}}+k \delta_{3} \\
C_{I_{\infty_{5}}} & =C_{I_{\infty_{0}}}+k \delta_{5} .
\end{aligned}
$$

The expressions A, B, and C are calculated first, then the coefficients μ and v as functions of δ_{3} and δ_{5}, and of $C_{I_{\infty_{0}}}$. Then inserting the values for μ and v into the equations for δ_{3} and δ_{5}, there is obtained, after extended transformations.

$$
\begin{aligned}
& \delta_{3}=\frac{q}{100}\left\{0.0229 \delta_{3}+0.0083 \delta_{5}+0.40 \dot{2} 9 \sigma_{I_{\infty_{0}}}-0.358 \dot{2}\right\} \\
& \delta_{5}=\frac{q}{100}\left\{0.0557 \delta_{3}+0.0190 \delta_{5}+0.8213 \sigma_{I_{\infty_{0}}}-0.7302\right\}
\end{aligned}
$$

The solutions are

$$
\begin{aligned}
& \delta_{3}=\frac{C_{I_{\infty_{0}}}\left\{\frac{\left\{\frac{4871.621}{q}-0.1067\right\}-\frac{4331.227}{q}+0.0949}{\frac{1209043}{q^{2}}-\frac{507.169}{q}-0.003002}\right.}{} \\
& \delta_{5}=\frac{C_{I_{\infty_{0}}}\left\{\frac{1473.349}{q}+0.0655\right\}-\frac{1309.924}{q}-0.0583}{\frac{179401.1}{q^{2}}-\frac{75.255}{q}-0.000445}
\end{aligned}
$$

Neglecting the small values in numerator and denominator, tho simple formulas are derived

$$
\delta_{3}=\frac{9.2389 G_{I_{I_{0}} 0}-8.2134}{\frac{235 I_{.03}-09}{q}-1}
$$

$$
\delta_{5}=\frac{19.9663 \mathrm{C}_{\mathrm{I}_{00}}-17.750}{\frac{2351.09}{q}-1}
$$

These angles aro given in degreos, and sincoitis assumad that $\Delta p>0$ whon $p_{V}>p_{\text {五, }}$ thoy havo tho samo sign as that of the anglo of attacte.

Hoth the angles depend linearly on $C_{I_{\infty_{0}}}$, i.e., on the Eoomotrical angio of attack α_{∞} at the conter fing soction. (Seo figs. 6 and 7) Furthermore, at eny dynamm ic. pressure q, they become equal to. zero when $C_{I_{\infty_{0}}}=$ 0.889 i. i. $0_{0}, \alpha_{\infty}=3.22^{\circ}$. At this angle of attack the Wing preserves its original untwisted chape. At $q=$ $2851.09 \mathrm{~kg} / \mathrm{m}^{2}, \quad$ i.e., at a speed of about $700 \mathrm{~km} / \mathrm{h}$ at sea level, the angles of wing twist evidently become infinite for all angles of attact of the center wing soction. This value of dynemic pressure represents the Ifmit of the static torsional stability of the wing (Seo also :-eforences rand ${ }^{\circ} \mathrm{B}$.)
phe ratio of magnitudo between δ_{3} and δ_{5} is.constant and has the valuo

$$
\frac{\delta_{5}}{\delta_{3}}=2.161
$$

Hence it is deducod that tho curve showing tho distribution of thu angles of wing twist along the wing span will alwayb bo tho same.

As an example

$$
\delta_{3}=-2.3^{\circ} \quad \delta_{5}=-5.0^{\circ}
$$

for $\quad v_{L_{\infty_{0}}}=0.2 ; \quad q=625 \mathrm{~kg} / \mathrm{m}^{2}, \quad$ i.c., $\quad V=360 \mathrm{~km} / \mathrm{h}$ at

[^0]sea level. As Wili be noted (fig. 8), the aingle of trist. at the fing tips becomes 20 percent larger than δ_{5}. Therefor'o, the ting tips mate easily fall into negative stalled flight. Since the flow detaches itself from the lover side of the wing tips at this noment, there will bo a considerable change in air forces, which may give an impulse to ring osciliations. This explanation is suggested by some researches recently made by J. Ackeret and E. I. Studer (reference §).

The Polar of the glastic Wing
The inowledge of the values δ_{3} and δ_{5} enables. the calculation of the values μ and v. The lift distrioutions may therofore be calculatod along the wing span as a function of $C_{\text {Imo }}$, i.e.t.of α_{∞}, and of tho dynamic prossuro q.. The angles of wing twist alons the wing span is also obteined as was previously shown, by the intogral

$$
\delta_{n}=\int_{0}^{b / 2} \cdot \Delta p \cdot T_{n} d x
$$

introducing now the different lines of influence with their ordinates T_{n}. These integrals are evaluated to find the values (see fig. 8).

$$
\begin{array}{ll}
\frac{\delta_{A}}{\delta_{5}}=0.0586 & \frac{\delta_{2}}{\delta_{5}}=0.2028 \\
\frac{\delta_{3}}{\delta_{5}}=0.4628 & \therefore \frac{\delta_{4}}{\delta_{5}}=0.7330
\end{array}
$$

The Iift distribution along the wing span being known for any condition of flight, all the local aerodynamic values $\left(C_{I}, C_{D}, C_{m}\right)$ along the $\begin{aligned} & \text { ing span may be calculat- }\end{aligned}$ ed. Hence the Iift of the entire wing with its absolute coefficient $\overline{C_{I}}$, and the profile drag representod by the coefficient $\overline{C_{D_{p}}}$ is obtained, both as avorage values of all tho local values, C_{L} and $C_{D_{p}}$. Finally the induced drag of tio wing is roprosontod by the coofficiont $C_{D_{i}}$. (Soo formilas dovoloped by Amstutz.) All theso valuos on-
able the plotting of the polars. of the elastic winge (See fige. 9. and. 10 .). The induced polang. in figure 10 are shown by dashes. The palars that include the profile drag are. alid.

Alı the polars go through the point $\bar{C}_{I}=0.696$, corm respomding to the value $C_{I_{0}}=0.889$? where the wing preserves its original untwisted shape. (See roferonco 10.i) Evider.tly tho wing twist is appreciablo only at small anm gles of attacl, i•e., "at" small values of $\boldsymbol{C}_{\mathrm{L}}$, corresponding either to level flight, with full speed or especially to diving. It may also. be mentionod that for the elastic. wing, tie value $f_{I}=0$. does not correspond to the conm dition "in which the local values of the lift coeffioient are equal to zero, as was the case with the original (rieid) wing. But now the center $\begin{aligned} & \text { ing portion produces a posm }\end{aligned}$ itive lift that is compensated for by nogative lift at the Wing tips. Therefore, the semicantilovor ving may bo atressed by additional banding to such a dogroo that it may evon bocome dangorous. On tho otinor hand, tine bonding stross may bocomo simallor in tho caso for which all local valuos of C_{J} aro oithor positivo or nogatiro. This is espocially truo for the full cantilovor サirg, as the wipg load is concentrated at the conter ming section.

Tho polars also includo the $\overline{C_{m}}$ curves of tho olastic wing. These coefficients of pitching momont rogult from the integral

$$
\bar{c}_{\text {m }}=\frac{M}{q S t_{0}}=\frac{1}{q S t_{0}} \int_{-b / 2}^{b / 2} 0_{m} q t d S
$$

from which

$$
\overline{C_{m}}=\frac{4}{\pi} \cdot \int_{0}^{1} \cdot C_{m}\left(1-\xi^{2}\right) d \xi
$$

by a cionisidération of

$$
\begin{gathered}
s=\frac{\pi}{4} b t_{0} d S=t d x \quad t=t_{0} \sqrt{1-\xi^{2}} \\
\quad d x=\frac{b}{2} d f_{-1}^{1}=2 \int_{0}^{1}
\end{gathered}
$$

The numerical calculations show that for: $\overline{C_{J}}=$ constant, there is almost no change in $\overline{\mathrm{C}_{m}}$ for different values of the dynamic pressure q, which indicates that the fing moment M for $\overline{C_{I}}=$ constant is very silighty infiuencod by the wing tyist. (Seo also roferencos il and la and bibliography of reference ll.) The relation

$$
\bar{C}_{\mathrm{Im}}=0.2058 \overline{\mathrm{C}_{\mathrm{I}}}+0.0762
$$

which was usod at first only for the rigid wing may also bo usod for the elastic $\begin{aligned} & \text { Fing. }\end{aligned}$

The Angios of Wing Twist Whon No Changos
in Downwash Velocities are Considored (Strip Mothod)

It may be interosting to give tho rosults of tho apm proximate calculation of ring twist by tho strip mothod.

In this case tho lift distribution is givon by the geometrical angles of attack as shown in the polar of the rigid ring with tho given aspoct ratio

$$
A_{1} R_{0}=5.96
$$

These angles of wing twist differ from the former accurate values by about -5 percent to 15 percent. The outIne of their curve along the wing span is given in the folloving:

$$
\begin{array}{ll}
\frac{\delta_{A}}{\delta_{5}}=0.0721 & \frac{\delta_{2}}{\delta_{5}}=0.199 \\
\frac{\delta_{3}}{\delta_{5}}=0.449 & \frac{\delta_{4}}{\delta_{5}}=0.703
\end{array}
$$

The critical dynamic pressure becomes 2,025.70 $\mathrm{kg} / \mathrm{m}^{2}$, Which occurs at about $650 \mathrm{zm} / \mathrm{h}$ at sea level.

16 IIA.C.A. Tocinfical Noto No. 520°

COKPARISON FITH THM USUAL STRESS CAICUIATION

Jin tho usual: stress calculation tho anglos of wing tワist aro also givon by the intogral

$$
\delta_{n} *=\int_{0}^{b / 2} \Delta p^{*} \tau_{n} d x
$$

But. Ap*, now has to bo calculatod by introducine tho forcos acting on tho rigid ving; as mo influonce of tho ring twist upon tho air forces is considorod.
rine results are

$$
\begin{aligned}
& \frac{\delta_{A}^{*}}{\delta_{E}^{*}}=0.0676 \quad \frac{\delta_{2}^{*}}{\delta_{5}^{*}}=0.2096 \\
& \frac{\delta_{3}^{*}}{\delta_{5}^{*}}=0.490 \\
& \cdots \frac{\delta_{4}^{*}}{\delta_{5}^{*}}=0.764
\end{aligned}
$$

The oxtIine of this curve is practically the same as the one which was obtained by the accurate method. Hence the outline of the curve showing tine wing twist along tho span in the example is: the same, whether or not the inm teraction between ming twist and air forces is considered.

The relation between these values and tine accurate ones ia given by the fact that these approximate values repiesont the tangonts on the curves of tho accurato values at $q=0$. If q_{∞} be the critical value of tho $\mathbb{a} \ddot{y}-$ namic prossure of tho static torsional stability, thoro is obtainod the relation

$$
\delta=\delta^{*}\left\{\frac{1}{1-\frac{q}{q_{\infty}}}\right\}
$$

The value in the parenthesis gives the increase of the ancles of wing twist due to the mutual interference between deformations and eir forces.

The results presented are those of the present rem search. Whey require further checlring to show how velid tiey may be for cases more genoral than that of the examm ple.

1. Amstutz, E.: Calculation of Tapered Monoplane Wings. T.H. No. 578 , IF.A.C.A., 1930.
2. Eueber, J.: Die aerodynaris chen Eigenschaften von doppeltrapezförmigen Tragflugeln. Z.F.M., May 13, 1933, pp. 249-251; and kay 29, 1933, pp. 269-272.
3. Lotz, I.: Bereçnung der Auftriebsverteilung beliebig E日formter Flugel. Z.F.H., April 14, 1931, pp. 189195.
4. Karner, I.: Das Schweiz. Devoitine Jagdflugzeug "D.27". Schweizerische Bauzeitung, vol. 96, 1930, p. 29.
5. University of Göttingen: The Göttingen 398 Airfoi土. srgb. Aero. Vers. zul Gottingen. I Lieferung, I92I, pp. 92 and 106 ; and III Lieforung, 1927, p. 28.
6. Sieferth $\mathrm{R}_{\mathrm{O}}:$ INessung eines Profils bei Anstellwinkelin von 0° bis 360°. Profilmessungen beinnegativen Anstellvinkeln. Ergb. Aero. Vers. zu Gotiingen. III Lieferung, 1927, pp. 78-82.
7. Reissner, H.: Neuere Probleme aus dor Flugzeugstatir. Z.F.M., April 14, 1927, pp. 154-I69.
8. Minelli, Carlo: Sulla stabilità statica torsionalo dolliala a sbalzo a due longaroni. Notiziario Tocnico di Aeronautice, vol. IX, no. II, Movember 1930, pp. 112-140.
9. Ackeret, J., and Studer, E. I.: Bomerkungen "̈ber Trag-flugel-schwingungen. Felvetica Physica Acta, vol. VII, Lay 7, 1934, pp. 501.504.
10. Jarry, J.: Calcul des efforts supportés par un avion dans différents cas de vol et à l'atterrissage. $^{\text {rat }}$ E. Chiron, Paris, 1929, pp. Ill-II7.

Il. Minelli, C.: Sullequilibrio longitudinale del velivolo ad ala deformabile. ItAerotecnica, vol. XI, no. 5, Kay 1931, pp. 507-532.
12. Pugsley, A. G.: Influence of Fing Flasticity upon the Jongitudinal Stability of an Aeroplane. R. \& M. No. 1548, British A.R.C., 1933.

Figure 2.- Lines of influence of tho ming twist from D. 27 airplane

Figure 3.- تlifiptical Fing with approximately the same area as the standard wing of the D. 27 airplane.

Figure 4.-The profile and polar of the Göttingen 398 airfoil.
M.A.C.A. Technical Mote Fo. 520

Wies- 5,6

Tigure 7.- Variation or δ_{5} with $G_{\infty_{\infty}}$ and q.
(Figure continued on noxt page)

Continuation of Fig. ?

Tigure 8.- Variation of $\delta \pi / \delta 5 \mathrm{wt}$ th distance from the wing root.

Figure 9.- Variation of $\overline{\mathrm{C}}_{\mathrm{I}}$ (absoliate lift coefficient of entire wing) with $\mathrm{C}_{\mathrm{I}_{\infty}}$

[^0]: ITho author wiglies to acknowledgo tho kindneas of Dr. C. Minelif for the interest.he showed in the research by furnishing severel Italian papers.

