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SUMMARY

An analysis is presented which predicts the skin-friction and heat-
transfer characteristics of a compressible, laminar boundary layer on a
solid flat plate preceded by a porous section that is transpiration cooled.
The analysis is restricted to a Pmndtl number of unity and linesr
variation of viscosity with temperature.

h The local skin friction has been found to have a low value in the
region of transpiration cool@g and then to increase until it approaches
the value for a completely nonporous surface asymptotically. The initial.

“ increase in local.skin friction is rapid as half of the ultimate increase
occurs in a distance beyond the porous region that is about 20 percent of
the length of the porous region for all rates of iqjection. When the
totsl coolant flow rate is kept constant and the porous length is varied,
it is found that the average skin friction on a partially porous plate is
slightly lower than that on a fully porous plate.

The local heat transfer behaves in a manner similar to that M the
local skin friction. It is found, in an example, that the temperature
at the end of a partially porous plate could be maintained at about the
same temperature as a fuMy porous plate by doubling the total rate of
coolant flow.

INTRODUCTION

For flight at high speeds, aerodynamic heating often requires the
cooling of aircraft in order to maintain tolerable surface temperatures.
Of the various cooling techniques available, transpiration cooling systems.
are usually effective for this application, as is shown in reference 1.
This results because the geometry of the porous surface provides for

a excellent heat exchange between the coolant and the surface, and the
boundary layer on the surface is altered so as to reduce significantly
the skin friction and the heat transfer to the surface.

--
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The attractiveness of transpiration cooling of large surfaces is .

reduced by the intrmhxtion of structural problems. It iS difficult to
manufacture large porous surfaces and to support them in use because of
their inherent weakness. ~ take advantage of transpiration cooling and =
also to alleviate the structural.problems, the use of partially porous
surfaces offers possibilities. In this scheme, the most critical regions

—

from an aerodynamic heating standpoint could be transpiration cmledj and
—

the downstream regions protected by the film of coolant that is introduced
into the boundary layer.

It is the purpose of this investigation, therefore, to examine
theoretically the magnitude of protection offered the downstream nonporous
regions by the film cooling process. The present analysis is restricted
to consideration of a compressible, laminar boundary layer on a semi-
infinite flat plate with air as the coolant. The flat plate is divided
into two regions: an upstream region of finite length which is porous
and transpiration cooled, and a downstream region which is nonporous and
5.sprotected by the upstream cooling process.

SYMBOIS

an(X)j a

aB

c

Cf

Cp

Do

f(q)

f(0) =F

k

L

E&

dimensionless coefficients in assumed velocity profile
pol.yncmlial(A19) *
(The subscrtpt is dropped for n = 1.)

constant vslue of a for no transpiration or Blasius solution “

constant of proportionality between absolute viscosity and
absolute temperature defined in equation (A6)

Ts
local skin-friction coefficient,~

~ Q@M2

specific heat at constant pressure
R50’

constant, ~
‘o

dimensionless stream function used in reference 2 such that

f~(q) = 2* .—

dimensionless number which is proportional to the mass flow
of transpiration cooling
(See eq. ~.) .

thermal conductivity of fluid
w

length of plate

+
R?andtl number, c p
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x
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IJ
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v

pressure

heat-transfer

gas constant

rate per unit area

Reynolds

Reynolds

slope of

absolute

velocity

velocity

RcPciJxnumber, based on distance x, ~

nmbers based on 5, Xo, 5., L

t’?velocity profile at surface, —
h y*

temperature

component

component

total coolant flow

parallel to surface

normal to smface

rate

transfo~d coordinate sll.ongsurface defined in equation (A9)

physical.coordinate along surface

transformed coordinate normal to surface defined in
equation (A9) “

physical coordinate normal to surface

gsmma function

boundary-layer thickness in transformed coordinates

RG
dimensionless bound=y-layer thiclmess, & = —

%0

P=similarity parameter used in reference 2, ~ ~~

value of q corresponding to the edge of the boundary layer

dimensionless temperature function defined in equation (A59),

T-Ts

!l&-Ts

absolute viscosity

kinematic viscosity
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Rx
length along surface, # = —

o Rx.

slope of velocity profile at surface,

shear stress at surface

function defined in equations (A83)

Subscripts

transpiration cooled surface

coolant

surface

stagnation conditions

free stream

conditions at end of porous region

Superscripts

quantities related to original

average

ANALYSIS

physical coordinates

.

&

.

C!onditxtonsand Assumptions

The analysis is performed for a compressible, laminar
boundary layer on a nonporous flat plate behind a porous region which is
transpiration cooled. The geometry is shown in figure 1. The analysis
can employ any cd existing solutions (such as refs. 2, 3, and 4) for the

.

transpiration cooled region, and use their results at xl = xo~ to begin
the present analysis. For convenience, the solutfon (refs. 2 and 3) b
containing the following conditions is employed:

1. The coolmt is the same as the boundary-layer fluid.
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2. The velocity of the coolant normal to the surface is inversely
proportional to the square root of the distance from the leading
edge.

3. The porous surface temperature is constaut.

In addition, the following assumptions concerning the boundary-layer
fluid are tie:

1.

2.

3=

4.

and only.

Prandtl nuniberis unity.

Specific heat at constant pressure is constant.

The fluid behaves as a perfect gas; P = pRT.

The absolute viscosity varies linesrly with the absolute
temperature.

Sumary of Analysis

mathematical.details of the analysis are included in Appen& A,
a summsmy is presented here.

Transformation of basic equations.- The analysis is begun with the
. basic equations of continuity, momentum, and energy for a compressible,

laminsr boundary layer with no pressure gradient. By use of the
Stewartson transformation (ref. ~) in which.the physical coordinate normal
to the surface is modified to take into account the compressibility, the
basic eqyations are reduced to the equations for an equivalent, inccxn-
pressible flow. This transformation not only simplifies the equations,
but together with the previous assumptions concerning the fluid, permits
solution of the momentum equation independently of the energy equation.

Solution of momentum equation for skin friction.- To begin the
present solution, it is necessary to start with velocity distributions
that match those of the boundsry layer at the end of the porous region
where transpiration cooling ceases. Because these velocity distributions
change from those characteristic of transpiration cooling to those char-
acteristic of flow along a solid surface far downstream along the plate,
similarity of profiles cannot be expected, and an -et solution is not
simple to obtain. Thereforej the momentum integrsll.method of solution
was chosen.

A convenient and fairly accurate velocity distribution can be found.
using the following procedure. The boundary-layer velocity profile for
use in the momentum integral eq=tion is approximated by a seventh-degree

. polynomial in terms of y/5,
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where y is the transformed distance normal to the surface and 5 is
the transformed boundary-layer thictiess. The coefficient of the first
term, a, is a measure of the shear stress or the slope of the velocity
profile at the surface. The seven unknown coefficients of the polynomial
and the boundery-layer thickness make a total of eight unknowns to be
determined. In addition to the momentum intewal equation, seven other
equations sre necessary in order to solve the problem. These eqmtions
=e obtained by imosiu seven boundary conditions on tk veloci*Y Proffle.
Four of the co~dit~ons &e imposed at the
and three at the surface. To insure that
boundsry layer approaches the free-stream
that for y = 5

u= %J

outer edge of the boundary layer
the locfi velocity
velocity smoothly,

in the- -
it is required

(2)

To insure that the velocity profile has the correct slope snd curvature

s

b

at the surface, the velocity distribution and the boundsry conditions
u= v = O are inserted into the basic momentum equation and its deriva-
tives with respect to y. This yields for y = o (see eqs. (KL6), (A24),
and (A25))

(3)

P

.

These boundary conditions permit the evaluation of the unknown coefficients
of the polynomial.in terms of the first coefficient a, and lead to an

—

ordinary differential equation relating a, 5, and x. This equation and
the momenlnxnintegral equation are solved simultaneously along the plate.

Before the differential equations can be solved, initial conditions
for these differential equations must be determined. The initial.condi-
tions for the present solution are obtained by matching the seventh-degree
polynomial velocity profile to the exact velocity distribution at the end
of transpiration cooling. This M accomplished by equating the slopes at
the wall and the boundary-layer thicknesses of the two velocity distribu-
tions. A problem arises in the definition of the boundary-layer thickness. -
In the exact solution, the local velocity in the boundary layer approaches
the free-stream velocity asymptotically, whereas with a polynomial solu-
tion the local velocity equals the free-stresm velocity at a finite U
distance from the surface. In this analysis, the boundary-layer thickness
for the exact velocity
u/w = 0.9976, and the

distribution is
reason for this

chosen as the point where
choice is in Appendti A.
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● With these initial conditions, the system of two s~taneous
ordinary differential equations was integrated nmmsrically yielding 5
and a as functions of x. The local skin-friction coefficient was then

. calculated directly from these results.

Solution of energy equation.- Normall.yjthe smface temperature of
the nonporous region will vary and differ from the constant surface tem-
perature of the transpiration cooled region. Hence, the solution of the
energy equation must account for surface teqerature variations. A con-
venient methd of analysis is to separate the solution of the energy
equation into two psrts. First, a solution of the complete inhomogeneous
energy equation is found for the condition that the porous sad nonporous
regions are at the sane constant temperature. Then solutions of the
homogeneous portion of the energy equation are found and added to satisfy
the surface temperature boundary conditions. This addition of solutions
is permissible because the energy equation is linesr in temperature.

The inhomogeneous energy equation can be expressed in terms of total
energy such that it has the same form as the manentum equation (since
R =1). Then, for the case of constant surface temperature, the boundary-
layer temperature distribution can be expressed in terms of the velocity
distribution, which has been solved previously.

Initially, the homogeneous portion of the energy equation is solved
* for the condition of a single surface temperature discontinuity be~nd

the transpiration cooled region. In order to obtain a solution, the
boundsz’y-layervelocity profile is replaced by a linear profile having
the correct slope at the surface as determined previously in the solution
of the momentum equation. Then the temperature distribution in the
b~y layer can he solved for in terms of a single similarity
parameter, ~.

The general.solution of the energy equation, which takes into account
arbitrsry surface temperature variations, is obtained by adding the solu-
tion for the inho?nogeneousener~ equation to as many solutions of the
homogeneous equation as required to satisfy the surface temperature
boundary condition. For an arbi’crsrysurface temperature distribution,
the summation of the solutions of the homogeneous energy equation can be
expressed as an integral. Hence, the general solution of the energy
equation yields the temperature distribution in the boundary layer for
an srbitrary surface temperature distribution.

The heat-transfer rate at the surface is obtained by differentiating
the temperature distribution tith respect to yx. If the surface tem-
perature is given, the heat transfer can be determined. For the case of
a constant surface temperature, the Reynolds analogy is applicable, and
the local heat transfer is directly related to the local skin friction.

Thus far, it has been assumed that the surface temperature distribu-
. tion is given as a boundary condition. In many cases, however, the heat

transfer at the wall is given as a bounhry condition, and the surface
temperature distribution is desired. This problem is solved by using an
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integral equation based on the equation for the heat-transfer rate. In #
particular, the surface temperature distribution was solved numerically
for the condition that the nonporous surface is insulated.

k’

Results of Analysis

The results of the analysis are summarized in the following equations.

The local skin friction is given by

Cf la—= ——=~d(g)
2 R50 5+ %0

(4)

where

E*=—
Xo

Note that both a(l) and R~o sre dependent on the transpiration coolant

rate in the porous region and the Reynolds number of the porous region.
For example, when the 10CSJ.blo~ng rate is e=ressed bY f(o) = F ‘here -.---r

f(o) =-2&&= -g&
then

Rbo ‘~Do@)Rxo

(5) -

(6)

‘s(l) = u(F) (7)

Note that ~ = 2psvs became vs varies inversely as 4x. For

convenience DO(F) and a(F) are tabulated as functions of F = f(0) in
table I. For ~>lorx>~ aplotof a(E)
in figure 2.

for each f(0) is given

If the surface temperature distribution is
transfer rate at the wall for x > X. is found

—

given, the local heat-
from

x—
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1’
(8)

where

The function q(~) is presented in figure 3 for vsrious f(0).

If the heat-transfer rate at the surface is given, the surface
temperature distribution canbe determined from

(lo)

RESUIA33

Comparison of Polyncmisl

MD DISCUSSION

and -act Velocity Distribution

As explained in the analysis, at the start of the nonporous region,’
the seventh-degree velocity profile must match ~ exact transpiration
cooling profile as given in reference 2. To do this, the polynomial.
velocity was made to have the same.slope at the surface and to have the
same boundary-layer thiclmess as the exact velocity profile. A cmparison
of the two entire profiles is shown in figure 4 for three transpiration
cooling rates where the absolute magnitude of f(0) is proportional to
the amount of transpiration cooling. The agreement between the re~e~tive
profiles throughout the boundary layer ls satisfactory. Because the
Wandtl number is assumed to be unity, #agreementof the velocity profiles
imglies an agreement of the caresponding temperature distributions.

Skin Friction .

The effect of upstresm surface transpiration cooli~ on the local
skin friction is shown in figure 5. The abscis5a is’the ratio of the
distance from the leading edge to the length of the porous region. me
ordinate is the local skin-friction coefficient with up;stream.transpiration

,
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cooling divided by the 10CSJ.skin friction that would exist with no
transpiration cooling.

r
This figure was obtained from figure 2. For

each transpiration cooling rate, the reduction of skin friction diminishes
rapidly with downstream distance and approaches the no transpiration solu- b
tion asymptotically. For example, continuous transpiration cooling of
f(o) = -0.50 halves the skin friction. With a finite transpiration-cooled
region, however, the skin friction rises to within 13 percent of the no
transpiration value at g = 2 and to within ~ percent at ~ = 6. simiIsr
effects are shown for the other transpiration coolant rates.

.Heat Transfer

The effect of upstream surface transpiration cooling on the heat-
transfer characteristics of the nonporous region was evaluated for two
cases: the local heat transfer at the surface was determined if the
surface temperature distribution was prescribed, and the surface tempera-
ture distribution was determined if the 10CS3.heat transfer at the surface
was prescribed.

The first case occurs when the surface temperature is constant over
both the porous and nonporous regions. By Reynolds analogy, the effect
of upstream surface transpiration cooling on the heat-transfer rate is
the same as the effect on the skin friction shown in figure 5. For
example, at ~ = 2 with f(0) = -0.50, the internal heat-transfer rate

m

necessery to maintain a constant surface temperature is reduced 13 percent
from the no transpiration value. Similar trends occur for the other
transpiration coolant rates.

An example of the second case occurs when the nonporous region is
insulated, or ~(~) = O. The resulting surface temperature distribution
is shown as the ordinate in figure 6. The ordinate is written in dimen-
sionless form employing the temperature of the cooled uystream region and
the total temperature. It is observed for all coolant rates that the
surface temperature of the nonporous region rises rapidly at first and
ultimately approaches the recovery temperature asymptotically. The
reduction in temperature due to the effect of injecting transpiration
coolant into the boundary layer is not very large, however, as is noted
when the rest of the curves are compsred with the f(0) = O curve, which
represents the temperature distribution caused by cooling the upstream
section to ~c by some internal cooling system.

Practical Implications of Results

Figures ,5and 6 show how the skin friction and heat transfer behave
on the nonporous section when air is transpired in the porous section.
The parameter-of”’thesecurves, f(0), however, does not provide a satis-

, factory crfterionfor a practical evaluation of the usefulness of the..
-...

.

.
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* cookl.ngsystem under analysis. A more useful criterion is the total
coolant flow rate. This permits comparison of various cooling systems on
a corresponding weight basis.

*

For instance, it is interesting to know how the average skin friction
on a plate changes as the proportion of the lengths of the porous and
nonporous regions is vsried, subJect to the restriction that the total
coolant flow rate be constant. Thus, as the porous region is reduced in
length (actudl.y mea), the rate of coolant flow per unit area is
increased. It is quite easy to calculate these effects using the results
of figure 7. Thus, in figure 7, the ratio of the average skin friction
on the plate to the corresponding average skin friction on an entirely
solid plate is plotted as a function of the fractional length of the plate
that is porous. me psmmeter of each curve is a dimensionless group con-
taining a term representing the total.coolent flow rate, w. Starting from
the right side of the figure, it is noted that for a completely porous
plate (~/L = 1) there is a considerable reduction in skin friction for
each coolant rate. As the fraction of porous surface is reduced, xo/L
becoming smaller, it is rather surprising that the reduction in average
skin friction is even greater for each of the total coolaut rates. Appar-
ently, the greater reduction in the locsl skin-friction coefficient over
the porous section of the plate due to the higher local.coolant rate more
than compensates for the rise in local sldn friction experienced over the
nonporous section as shown in figure 5. The line, at the left, represents

-, an estimate of the lower bound of these results, because at a fixed totel
coolant rate the local coolant rate at points to the left of this dashed
line becomes sufficiently lsrge to separate the lsminar boundary layer.
The curves we drawn as far to the left as the information in figure 5
snows. It appears, therefore, that on the basis of average skin friction,
no penalty results from restricting the transpiration cooled portion to a
fraction of the total length of the plate when a given totsl smaunt of
coolant is used.

In figures 8(a) and (b), there sre shown the temperature distributions
that result from using a fixed quantity of coolant flow tith vsrious
lengths of porous regions. The ordinate represents the surface tempera-
ture expressed in terms d the recovery temperature, which for R = 1
is the totsl temperature, and the id.tiel coolant temperature. It can be
seen in figure 8(a) that for the emount of coolsnt used, a fully porous
plate would result in a dimensionless surface temperature of about 0.66.
The temperature distributions resulting from the plate being O.~, 0.25,
and 0.1 porous sre indicated also. For these cases, the temperature of
the porous regions is reduced markedly because of the high local rate of
Coolszltflow. The reductions in the porous surface temperature, however,
sre not sufficient to lower the surface temperature over most of the rest
of the surface down to the value of the fully porous case. It is signi-

. ficant that even at the end of the plate, in these examples, the surface
temperature is well below the recovery temperature. As an example of
these temperatures.
under steady-state
1770°F. If cooled
a hminar boundsry

consider an aircraft flying at a Mach number of 5
conditions, where the recovery temperature is about
as in figure 8(a) with an entirely porous surface and
layer, the surface temperature would be about 1220°F
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for en initial coolant temperature of 150° F. With psrtial cooling, the m

maximum temperature at the trailing edge would be about 1460° F, or still
about 300° F below the recovery temperature.

s–

The effect of doubling the coolant flow rate is shown in figure 8(b). _
For the fully porous case the dimensionless surface temperature becomes
about 0.4. The only partially porous case shown is where the plate is
0.25 porous. Again the dimensionless temperature is low over the porouk -
region (about 0.07) and rises rapidly in the nonporous region reaching a

.—

value of 0.66, which happens to be the v-glueobtained on the fully porous
plate with half the coolant flow. Thus, to maintain a prescribed maximum
surface
coolant

An
surface

temperature, the partially poro&s surfaces will-require more total
than ftiy porous surfaces.

CONCLUDING REMARKS

analysis has been made that determines the effect of upstream
transpiration cooling on the skintiriction and heat-transfer

characteristics of a compressible, laminar boundary layer on a flat plate.

The skin friction has been found to have a low value in the region
of transpiration cooling and then to increase until it approaches asymp-
totically the value for a completely nonporous surface. The initial #
increase in skin friction is rapid as half of this ultimate increase
occurs in a distance beyond the porous region that is only about 20 percent
of the length of the porous region for all rates of injection. When the -
total.coolant flow rate is kept constant, however, it is found that the
average skin friction on a partially porous plate is even lower them that
on a fully ~orous plate. This occurs because the local transpiration rate
per unit -a increases for the shorter porous regions so that additional
reductions tn skin friction in the porous region compensates for the rapid
increase in the skin friction over the nonporous region.

Heat-transfer solutions for the nonporous region were obtained for
two types of problems: the 10CSL heat-transfer rate canbe found if the
surface temperature distribution is given,“and the surface temperature
distribution can be found if the local heat-transfer rate is given. A
detailed example was presented - the solution to the problem of determin-
ing the temperature distribution along the nonporous surface so that there
is zero heat transfer at the surface. This corresponds to a thin surface
at equilibrium behind a transpiration-cooledregion. From this example,
it was found that the temperature rises from the value of the transpira-
tion cooled surface and approaches the recovery temperature at large
distances along the plate. The initial.rise in temperature is quite
rapid as half of the ultimate rise in temperature occurs in the region .

between 1.3 and 2.0 times the porous length, for the range d transpira-
tion coolant rates considered. For constant coolant flow rates, with\
varying proportions of the porous region length to the total length, it ,

is foumd that the additional cooling in the porous region due to the
higher local coolant flow does not compensate for the rapid rise in
temperature over the nonporous region so that the surface temperatures .
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B at the end of the plate sre lsrger than would exist on a fully porous
plate. Far the examples shown, the temperature at the end of the par-
tially porous plate could be maintained at about the same temperature as

.
a fully porous plate by doubling the total rate of coolant flow. In
practical application, the increased flow requirements of the partially
porous system maybe offset somewhat when considerations are made of the
weight of the porous surface supporting structure and of thermal radiation
from the surface on transient effects which normally cause the rear
regions on a surface to have less temperature problems.

Ames Aeronautical Laboratcwy
National Advisory Committee for Aeronautics

Moffett Field, Calif., March 7, 1957

.
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APPENDIX A

MATEEMM!IC!ALDETAIIS Cl@’THE ANAI,lX

Transformation of Basic Equations

Basic equations, assumptions, and boundary conditions.- The basic
equations for a compressible, laminar boundary layer with no pressure
gradient are:

Continuity equation

+ (P’o++ (p’v’) = o

Momentum equation

Energy equation

(Al)

(A2)

A number of assumptions about the boundary-layer
simplify the analysis:

1. W=*=l

fluid are made to

(A4)

2. Cp = constant

3. The fluid is ass-d to behave as a perfect gas, which has an
equation of state.

As a result of the first two assumptions, the
becomes

(A5)

(A6)

energy equation (A3)

v
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The boundary conditions for the nonporous region, Xr > Xoij are

Yt=():ut=o, vt = 0, Tr = Tsr(xi) 1 (A8)

yf +0!2: ~t+~, T’+ Tm

Stewartson transformation of variables.- The independent vsriables
(x’, y’) are replaced by a new set of variables (x, y) in which the y?
coordinate is modtiied to take into account the compressibility as done
by Stewsrtson (ref. 5).

Y=

J’]

y. : dy!
m

o

(A9)

The formulas relating the derivatives tith respect to the physical
“ and transformed independent vsriables me

.

(%)x,‘$ ($)x
(&Lo)

(&)yt‘(3JY<%)Y*(%)XJ
The dependent variables sre then related to a stream function v,

which satisfies the continuity equation and is related to the velocity
components as follows:

(All)

Substitution of equations (AIO) and (All) with the assumptions (A5)
and (A6) into eqyations (A2) and (A7) yields
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(%x%) -(2X9) = “’’(%!)
(Al!2)

@x%) - (3)(!$) = “m [-” +$(Qy] @3)

To put these
equations, let u

equations in the familiar form of the incompressible
and v be defined by

(A14)

It is noted from equations (AIO) ad (All) that u = u?, or that the
transformed velocity and the physicsl velocity components in the x or xr
directions sre identical.. The preceding definition for u and v results P

in a continuity equation identical.to that for an incompressible flow.

.
aJ+&=o
&ay:

(A15)

Substitution of equations (~k) into (A12) and {A13) results in
momentum and energy eqyations identicd. to those for an incompressible
flow.

‘*+V%=CVW9

‘=+’%=c’”[e+&-(%n
(A17)

The primes on the T ?S we dropped for simplicity. Hence, by use of the
Stewartson transformation, the compressible boundary-layer equations have
been reduced to equivalent incompressible equations.

.

In terms of the new coordinates, the boundary conditions (A8) for
the nonporous region, x > Xo, become

.
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.

.

y=o: u =0, V= O,T= T~ (X )

1

y+ co: u+ um, T+ % J

Solution of Momentum Equation for Skin Friction

(u8)

Seventh-degree polynomial velocity profile and evaluation of
coefficients.- The boundsry-layer velocity profile is approximated by a
seventh-degree polynomial in terms & y/5, where 5 is the transformed
boundary-layer thiclmess.

The mth derivative with respect to y is

The slope at

n.7

a(m)u ~—= — I (). .(n-m+l)an(x ~n-m
~(m) ~n=ln(n-l)”

the surface is

where a is the coefficient

(A19)

(A20)

(A21)

of the first power term and is a measure of
the shear stress at the surface.

The introduction of the seventh-degree polynomial velocity profile
adds seven unknown coefficients to the problem, in addition to the
boundary-layer thickness, for a total of eight unknowns. With the momen-
tum integral equation as one ecpation, seven other equations sre required
in order to obtain a solution. These equations are obtained by imposing
seven conditions on the seventh-degree polynomial velocity profile. Four
of the conditions are boundary conditions imposed on the velocity and its
derivatives at the outer edge of the boundary layer. To insure that the
local velocity in the boundsry layer approaches the free-stream velocity
smoothly, it is reqylred that for y = b,

.
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u= %3

(A22)

Substituting these conditions into eqpations

a+az~+ad+as+ae+a7

a+2~+3ag+4a4+5a# 5a0+7a7

az+3asAaA+10X+15%+~ay

*+4aA+10*+2*+35aT

(A19) and (A20) fields

=1

=0

=0

=0 1

(=’3)

J

Before the remaining conditions axe imposed, the first and second
derivatives with respect to y of the momentum equation (A16] are
reqyired. The first derivative is

and the second derivative is

(A24)

The three remaining conditions are imposed at the surface. To insure that
the velocity profile has the correct slope d curvature at the surface,
the seventh-degreepolynomial.with the boundary conditions, u = v = 0, is
substituted into the momentum eqyation (w6) and its derivatives (A24)
and (A25). There results

.

.

az = %3=0

and an ordinsry differential eqyation
.

(A27)
●
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. Equations (A23) and (A26) constitute a system of six algebraic
equations with seven unknowns. These equations are solved simultaneously
to obtain all the unknowns in terms of the coefficient at the first
term, a.

az=O

ag=O

w = 35-20a

a5 = 45a-84

ae = 70-36a

a7 = 10a-20

Substituting a~ from eqmtion (A28)
carrying out the differentiation yields

(A28)

into equatfon (A27) and

.

This equation, in part, determines how the slope of the velocity profile
at the surface vszies with the distance along the surface.

.

Momentum integral equation.- ZPhemomentum integral equation is
obtained by integrating the momentum equation (u6) from y = O to y = 5.

(A30)

The assumed velocity profile (A19) with the coefficients expressed in
terms of a from equations (A28) sad the slope at the surface given by
equation (A21) are substituted into equation (A30). The integration is
carried out to yield

where
.

Al = 0.09318

A= = 0.04371

& = 0.01832
1

(A31)

(A32)



20 NACA TN 3969

Reduction of problem to solution of two simultaneous ordinsxy
differential equations.- Equations (A29) and (A31) form a system Of two
simultaneous ordinary differential.equatims in a, b, and x. These
eqyations can be simplified by expressing b and x in terms of Reynolds
numbers.

(A33)

Substituting these Reynolds nunibers
yields

into equations (A29) and (A31)

( wx)R8a%-&-a~ = 24(3~-20a) (A34)

e=
The preceding equations can
and yield

&&%(A~+ka-&a2 )] (A35)

be manipulated to sepsxate the derivatives

ma al(a)—=—
dRx Rb

(A36)

da—= a2(a)

m~ R# “--
(A37)

where

1-

[

(A38)

< )117A=+(7A2-4Al)a-(4A=+7&)a &+4A3 as

~(a) =%
Al+2A2a-3&a2

The Reynolds numbers Rb and & canbe normal.izedby substituting
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Rx X
~.—

%0=%

I

Equations (A36) and (A37) then become

d~+ al(a)—=—
a~ Deb+

(A39)

(A40)

(A41)

The initial conditions at this stage are

.

Before the
conditions

~=l,?j+=l (A42)

equations can be solved, it is necessary to know the initial
for a and Do.

Determination of initial.conditions for solution of momentum
equation.- Before a solution can be obtained for equations (A40) and (A41),
it is necessary to obtain the initial conditions for a and Do by match-
ing the seventh-degree polynomial, both in thickness and slope at the
surface, to the exact profile at the end of the transpiration-cooled
region. Since the seventh-degree polynomial profile assumes a finite
boundary-layer thickness, whereas in the exact profile the velocity
approaches the free-stream velocity asymptotically, a problem arises in
defining the outer edge of the boundary layer. In this analysis the no
transpiration or Blasius case is used to make this definition.

For the Blasius case, the shesr stress at the surface, or the skin-
friction coefficient, varies as ~-~~2, and the boundary-layer thickness
vsxies as Rxli2. The product of the two quantities is, therefore, inde-
pendent of ~. For the present solution, the product of the shesr stress
at the surface, which is proportional to the slope at the surface as given
in egyation (A21), and the boundary-layer thickness is a function of a
alone. For a to be independent of Rx, it follows from equation (A37)
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that ~(a) = O or ~ = 1.871. This value of aB for t~ seventh-de~ee m
polynomial with no transpiration cooling must now be related to the exact
solution.

The following relations for the exact
reference 2.

.

solution are obtained from

(A43)

(A44)

(A45)

The function f(q) is a dimensionless streqm function, and ~ is the
similarity variable with ~~ denoting its vslue at the outer edge of the
boundary layer.

The local skin-friction coefficient is defined as

~ T8t—=
2 R?#c02 ,

where

()T6f =v’s
% y.o

(A47)

For the present analysis, the local skin-friction coefficient is
obtained by substituting equations (A5), (A6), (AIO), (A=), -d (A47)
into equation (AII-6).There results

(A48)

The boundary-layer thickness and the 10CSJ.skin-friction coefficient,
which is determined by the slope of the velocity profile at the surface,
for the seventh~egree polynomial solution and the exact transpiration
cooling solution are now equated. From equattcms (A43), (A44), and (Al+8) -
there results .

(A49)
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. With no transpiration

76 = 2.%L8. From table 11
outer edge of the boundsry.
velocity ratio is

u
z

This definition is used to

23

COOling, aB = I.&l, f“(o) = 1.3282,~d
of reference 2 and the relation (A45), the
layer is defined as the point where the

(A50)=~ft(qb) = 0.9976

define the boundsry-layer thickness when
transpiration cooling occurs.

The initial conditions for the solution of equations (A40) and (A41)
are thus determined as follows: A value of f(0) is selected using
equation (5), the absolute magnitude of Y(O) being proportional to the
amount of transpiration cooling. With the outer edge of the boundary
layer definedby equation (A50), the value of qb is determined fram
table 11, reference 2. Then a is calculated from equation (A49), and
Do is calculated.from equation (Ak3). With these initial conditions,
the systemcf two simultaneous ordinsry differential equations (A40)
and (A41) was integrated numerically on an IBM 650 computing machine to
obtain a and b+ as functions of ~ for ~ = 1 to ~ = 10. Five differ-
ent transpiration coo~ng rates were selected, including the Blasius case.
The results sre expressed in terms of the local skin-friction c~fficient

. as given by equation (A48).

d

Solution of Energy Equation

Separation of solutions.- Because the su@ace temperature of the
nonporous region will.normslly differ from the constant surface tempera-
ture of the transpiration-cooled region, it is necessary in this analysis
to obtain a solution of the energy eqwtion (A17) that accounts for sur-
face temperature variations. The method of solution followed will be to
obtain a solution for the complete inhomogeneous energ equation when the
porous and nonporous regions are at the ssme temperature. Then solutions
of the homogeneous portion of the energy equation are added to satisfy
the surface temperature boundary conditions. This addition of solutions
is permissible because the energy equation is linear in temperature.

Solution of inlmnogeneous energy equation.- The inhomogeneous energy
equation (A17) is solved for the case of a constant surface temperature,
Tc. If the momentum equation (KL6) is multiplied by u/~ and added to
the energy equation (A17),there results

U+(,+g)+v +(T+&) =
.

Because this equation has the
is a solution of the momentum

.+

““[$( ’+%)1 ‘A’l)

same form as the momentum equation, if u
equation, then
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U2
— = C!1U+C2T+ ~cp . (A52) “

—
.

must be a solution M the energy equation. When the boundsry conditions,

U= O, T=TC 1

u= um, T=

are i~osed, the unknown constants,

Tt-Tc
cl=~

C2 = Tc

(A53)

(A54)

are determined. Hence, an exact solution of the energy equation for the
case of a constant surface temperature is

T1 = (Tt-Tc)&+Tc-~ (A55)
.

.

Solution of homogeneous energy equation for single discontinuity in
surface temperature.- The homogeneous ener~ equation is solved for a
single discontinuity in surface temperature. The boundary conditions on
the surface temperature are for

—

—

X<x-j} T=%

1 (A%)

X>xj, T = !ra

where Xj ~ X. is the location of a surface temperature discontinuity.

In order to obtain a solution of the homogeneous portion of the
energy equation, which is equation (A17) with the viscous dissipation
term neglected, the boundary-layer velocity profile is assumed linear
with the correct slope at the surface, as determined previously in the
solution of the momentum equation. The x component of velocity is
assumed to be

u=
()

S(x)y = * y
y=o

(A57)
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. The y component of velocity is obtained by integrating the continuity
equation (A15) with respect to y.

.

Jv=- Y&dy = ()lasy2

ax ‘Zdx
o

The temperate distribution in
a function of a single psrsmeter ~,

—=
‘l&Ts

and

(A5t3)

the boundary layer is assumed to be
where

~ = X(X)Y(2C,xj)Y

where X and Y are two arbitrary functions of
equations (A56), (A59), and (A60), the boundary

(A59)

(A60)

x and x . FromJ
conditions on e are

x~xj: ally, 0=1
.

all x: y+m, e=l ! (A61)

X>x s y = o,d 6 =0 J
Substitution of equations (A57), (A58), (A59), and (A60) into the
homogeneous portion of the energy eqwtion (A17) yields

If ~ and x sre independent vsriables, both sides of equation (A62) must
equal a cons-t, say -CVm

(xldx )+H!LL.LZE .-CVM*-Z Ydx 2s ax
(A63)

(A64)
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Since X is sn srbitrsry function of x, let

ldx lds O
5= -GZZ=

NACA m 3969

(A65)

Upon integration,

x= Cgs=’=

Substituting equation (A66) into (A63), there results

1 d..——= -~v fJ 3SU2
Y4 dx ms

(A66)

(A67)

Upon integration with the boundary condition, x = XI, Y+m, the arbitrary
function Y is determined

x=

u
as

1

The variable ~ is from equations (A60), (A66), and (A68),

The function e is found by integrating equation
condition @(O) = O.

e=c4
J

Ce-t=lgdc

o

The constant C4 is determined from the boundary

.-

.“

(A68)

.

(A69)

(A64) with the bound~y

(A70)

condition, (3(W)= 1.
.
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.

.

C4

The complete solution of
conditions (A61) iS

27

(A71)

the homogeneous equation for the boundsry

(A72)

General solution of energy equation.- Addition of solutions (A55)
and (A72) with xj = ~ yields t~ temperature distribution in the
boundary layer of a flat plate with the porous surface at a constant
temperature T= and the nonporous surface at a different constant tem-
perature Ts. In order to obtain the solution when the temperature of
the nonporous surface is arbitrary, homogeneous solutions of the form
(A72) can be added as shown i.nreference 6, because the ener~ equation
is linear in temperature. For r surface temperature discontinuities
in the nonporous region, x > ~, the temperature is given by

●
j==-1

T(xjY) = T1-TC+ L (T6j-TSj+=)@%Y,Xj )+Tsr (A73)
j=l

where

% ~ = Tc

As r+ m, the sumnation approaches an integral such that

x

J dTs (Xl)
T(xjY) = T1-Tc+Ts(x)- — e(x,y,x=)dx=

dxl
(A74)

X.

The general solution of the energy equation for an arbitrary surface

temperature distribution in the nonporous region is then

x

T(x,Y) =Ts(x)+(Tt-Tc) ~ -~ -
J

* G(x,Y,xl)~I (A75)

%



It should be noted from equations (A9) and (AIO) that
●

Heat transfer at the surface.-
unit area is by definition and from

dTs~
~- (A76) -

The heat transfer at the surface per
equation (AlO)

~.= -k(~)y,=o=-’<i-$)y=o
Substitution of equation (A75) into (A77) yields

(A77)

From eqution (A69)

()$= gl/2

y=o

(J )

x 1/3

3cvm sl12&

o

(A79) -

.

From eqmtion (A72)

(A&))(15 .o=31h; 4

T T

Substituting equations (A79) sad (A80) into (A78) results in the equation
for the heat transfer at the surface for a given surface temperature
distribution.

C% (A81)
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●

The variables

.

are normalized by letting

E=* 1

(A82)

Also, the following substitutions sxe

Cr(g)=&’

B
(A83)

Then, the heat transfer at the surface, equation (A81), in terms of the
normalized variables becomes

.

Surface temperature with prescribed heat transfer a-tthe surface.-
With the heat transfer at the surface prescribed, the surface temperature
is given by the following integrsl equation based on equation (A&l).

(A85)

where

sl(~)==
[

%094)
1

+ (Tt-Tc)~
90 Wwpm

(A%)
.
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The independent vmiable is now changed from ~ to q in
to yield

The inte~al eqvatlon now has the same form as Volterra~s
first kind with the kernel becoming infinite at the upper
of this equation is given in reference 7.

Upon integration from g = O to q,

Now the independent variable is changed back to ~

I

NACA TN 3969

equation (A85)

(Am)

squation of the
Limit. Solution -—

(A&l)

(A90)

Consider the special case where the nonporous surface is insulated or
%(3 ) = O in equation (A%). Then

The temperature of the insulated surface

Ts(3)-Tc 0.512 I-g

is then

Solution of equation (A92) was performed on an m 650

(A91)

(A92)

computing machine.

,

.

.
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!MJ3LEI.- EZK!?ECTOF UPSTREAM TRANSPIRATION COOLING RATES

ON INITIAL CONDITIONS FOR l?RESENTANALYSIS .
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Figure 2.- Distribution or dimensionless Bhesz function along plate.
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