Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Use of this dissertation is restricted to the UNT Community. Off-campus users must log in to read.

Description

The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending ... continued below

Creation Information

Yuan, Qiuhua December 2006.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 374 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Author

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Yuan, Qiuhua

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead zirconate titanate (PZT) thin films. In this study, we fabricated cerium-doped PZT films (molar ratio of Zr/Ti:: 0.5:0.5) via cathodic electrodeposition on the indium tin oxide ( ITO) coated glass substrate. In the preparation process, the PZT films were modified by adding a small amount of cerium dopants, which led to the formation of Ce-doped PZT films after sintering at high temperatures. The fabricated PZT films on the ITO coated glass substrate may be used as electro-optic devices in the industrial application.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2006

Added to The UNT Digital Library

  • May 14, 2008, 9:19 p.m.

Description Last Updated

  • Dec. 3, 2013, 11:38 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 374

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yuan, Qiuhua. Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions, dissertation, December 2006; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc5604/: accessed November 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .