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By C. W. Frick and R. S. Chubb .

SUMMARY

The longitudinal stability characteristics of elastic swept
wings of high aspect ratio experiencing bending and torsional
deformations are calculated for ‘supersonic speed by the appli—~
cation of linearized lifting-surface theory. A parabolic wing
deflection curve is assumed and the analysis is simplified by
a number of structural approximations. The method is thereby
limited in application to wings of high aspect ratio for which the
root effects are small. Expressions for the 1ift, pitching-moment,
and span load distribution characteristics are derived in terms of
the elastic properties of the wing; namely, the design stress, the
modulus of elasticity, the shearing modulus, and the maximum design
load factor. The analysis applies to wings with leading edges swept
behind the Mach lines. In all cases, however, the trailing edge is
sonic or supersonic. Application of the method of analysis to wings
wilth leading edges swept ahead of the Mach lines is discussed.

The results of numerical calculations for a wing of aspect
ratio 3.2 and 60° sweepback are presented for a Mach number of
1.41%4 end for incompressible flow. The effects of wing elasticity
on the lift—~curve slope, moment—curve slope, and neutral—point
position are shown. The results Indicate that the primary variable
involved in aeroelastic phenomena 1s the dynamic pressure and that
the influence of the flight Mach number is small for wings swept
behind the Mach lines.

INTRODUCTION

In reference 1, R. T. Jones has shown that supersonic flight
may be attained with a reasonable degree of efficiency through
the use of swept wings of high aspect ratio. The use of sweep—
back, however, involves many problems of stability and control,
not the least of which are associeted with the aerodynamic effects
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of the elastic deformation of the airplane structure. In particular,

the longltudinal stability of the aircraft may be affected to a large

degree since the bending and torsional deformations of the wing may

g?ii:nthe center of pressure of the 1ift forward an appreciable
stance.

These aeroelastic phenomens occur undsr those flight condltions
where the magnitude and/or the spanwise variation of the elastic
deformation of the wing varies with angle of attack., Aercelastic
effects may therefores occur either in accelerated flight at constant
dynamic pressure or, under certain conditions, in steady level flight
with varying dynamic pressure., In the latter case, if the loading
due to twist or camber is different than the loading due to change
of angle of attack, the trim change due to elastlc deformation of the
wing in steady level flight varies with the dynamic pressure and
influences the stability of the airplane as indicated by the position
of the control stick as a function of airspeed.l

In solving aeroelastic problems, since the interrelation of the
structural and aerodynamic characteristics of the wing results in
mathematical camplexity, it is usually necessary to compromise to
some extent either the structural or the aerodynamic aspects of the
problem to obtain & solution. In the present analysis, the structural
characteristics of the wing are compromised to the extent that the
form of the deflection curve is assumed. This assumption permits the
application of supersonic lifting—surface theory to the determination
of the load distribution, the 1ift, and the pitching-moment character—
istics of elastic wings, Additional analysis 1s necessary to deter—
mine whether it is better to use more rigorous aerodynamic theory in
seroelastic computations, as in the present report, or to use & more
complete structural theory as in recent work by John W. Miles of
U.C.L.A. or Franklin Diederich of the TWACA.

SIMBOLS
X1,71 Carteslan coordinates

X,y transformed Carteslan coordinates in terms of the semispan
dimension, s

1This particular aeroelastic characteristic is not comsidered in the
present report which is concermed primarily with accelerated flight.
Further, the wing is considered to be welghtless so that the
ameliorating influence of the distributed mass of the wing is not
accounted for in estimating the aeroelastic characteristics.
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X,y coordinates of the apex of any superposed lifting
sector

distance in the y; direction from the root section to the
intersection of the flexural axis and the tip Mach cone

distance along the flexural axis from the root section to
the intersection of the flexural axis and the tip Mach
cone

distance measured from the root section along the flexural
axis

spanwise distance in y direction from the root section to
the center of load on the half wing

wing area
taper ratio, ratio of tip chord to root chord

average chord

mean aerodynamic chord %;%E%%

local chord parallel to the plane of symmetry

root chord paraliel to the plane of symmetry in terms of
the span dimension, s

aspect ratio
angle of sweepback of the flexural axis

slope of the flexural axis in a vertical plane passing
through the flexural axis

maximm load factor
bending moment at any point on the flexural axis

bending moment at the root section of the wing beam

torsional moment at any point on the flexural axis
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torsional moment at the root section ‘of the wing beam

modulus of elasticity for the wing beam material

shearing modulus for the wing beam material

moment of inertia of the wing beam

torsional stiffness; consté.nt

distance between the flexural axis and the center of
E;zigwe of the sectional 1lift in terms of the local

maximm design stress

maximm thickness of the wing at the root section
angle of attack of the root section of the wing

incremental angle of attack at any spanvise station of the
wing

angle of attack of the wing section at any spanwise station

angle of attack of the root section at which maximum load
factor is developed :

n/M2=1 where M 1is the free—stream Mach number

B +times the cotangent of the angle of sweepback of the
wing leadlng edge

B +times the cotangent of the angle of sweepback of the
wing trailing edge

B +times the cotangent of the angle of sweepback of a ray w
from the apex of any superposed lifting sector !

complete elliptic integral of the second kind with modulus

(NT=E)

airplane weight

f e e —————



NACA TN No. 1811 5

o =

o~ plg

C

wing loading

dynemic pressure ;'-pV2>, where p 1s the mass density and
V the velocity the free stream

1ifting pressure coefficient
load per umit span
section lift coefficient
1ift
1ift coefficient (-I:>
aS
1ift coefficient at maximm load factor

sectlon pitching moment of a wing section about the apex
of" the wing

pltching—moment coefficient about the apsx of the wing in
torms of the mean aerodynamic chord and the wing area

the rate of change of 1ift coefficient with the angle of
attack of the root section

the rate of change of pltching-moment coefficient wilith the
angle of attack of the root section

the rate of change of pltching-moment coefficient with the
1ift coefficient

AWATYSTS
Wing With a Subsonic ILeading Edge

In the following analysis, for convenience, the aerodynamic

loading due to bending and that due to torsion are first treated
separately. Expressions for the combined effects of bending and
torsion are derived later.

Bending.— The aerodynamic twist® due to bending of a stream—

wise section of an elastic swept wing under accelerated flight

®The change In camber of the airfoil sections due to the distortion
of the wing surface is, of course, ignored.
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conditions is a function of the applied load and the elastic character—
istics of the wing beam. In order to arrive at a solution for the
aerodynamic properties of the wing without becoming involved in labo—
rious graphical analysis, some simplifying approximations must be made
regarding the elastic properties of the wing.

In a strict sense, a swept wing of conventional structural design
cannot be considered to have a flexural exis. For wings of high
aspect ratio, however, it will be assumed that a flexural axis exists,
since this assumption permits the use of simple beam theory and intro—
duces only & small conservative error.

For the purpose of analysis, the root section of the wing beam
is aspumsd to be:the extension of the wing beam on a plane perpendic—
ular to the flexural axis and passing through the intersection of the
flexural axis and the streamwise root section. (See fig. 1.) This
simplification of the beam analysis is similar to that of reference 2.
The length of the wing beam 8' 1is teken as the distance along the
flexural axis from the root to the intersection of the flexural axls
and the tip Mach cons, The semispan s of the wing is taken as
oxtending from the raot section to the intersection of the flexural
axls and the tip Mach cone in a directlon perpendicular to the plane
of gpymmetry. The portion of the wing lying within the tip Mach cone
is 1gnored since, as shown in reference 3, very little load is carried
in this reglon and the analysls is thereby simplified.

The coordinate system 1s selected as shown In figure 2. The
origin of the coordinate system is placed at the apex of the wing,
the positive branch of the =x; exis lying downstream.

The mathematical treatment may be made less tedlous by trans— .
forming and nondimensionalizing the coordinates so that in the follow--

ing analysis

By
¥y =5
- X3
X=75
_ root chord
Co © )

In general, at both subsonic and supersonic speeds, selection
of the wing plan form for low drag leads to & comblnation of spanwise
loading end spanwise distribution of the bending resistance in the wing
beam such that the wing deflection curve is essentially parabolic. (The
ratio of M to I is constant across the span.) The deflection curve
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deviates appreciably from a parabola only if the aeroelastic effects
experienced by the ying are very large. Calculations show that, for
the usual tapered wing, the assumption of a paraebolic deflection
curve glves resulis comparable to a more rigorous structural treatment
for deviations from rigid wing values as large as, for instance, a
30-percent loss in lift—curve slope. It seems improbable that a
designer would be interested in wings with larger deviations from~
rigid—wing characteristics. )

Since the deflection curve of the flexural axis is assumed to be
parabolic, the slope of the flexural axis is

g =M g1
EL ”
where y' 1is measured along the flexural axis.

The incrementel angle of attack of streamwise sections of the
wing is related to the slope of the flexural axis as

ap = —6 s8in A

The slope of the flexural axis in nondimensional transformed coordi—
nates may be written as

_ M 8
ET B cos A 7

The incremental angle of attack of any streamwise section of the
elastic wing is then

M s
ap=—grp 7 tan A

and the total angle of attack of any streamwlse section is

@ = o - 3L £y tan (1)

vwhere o 18 the angle of attack of the root section of the wing.
Equation (1) gives the magnitude and distribution of twist across
the span of the wing if the magnitude of M/EI is known.

The distribution of pressure over the elastic wing due to twist
may be determined by applying known conical—-flow solutions for super—
sonic flow. In the linearized theory, the principle of superposition
of various solutions may be used to satisfy the particular boundary
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conditions of the problem. For the elastlc wing, the flow fleld
may be considered to comsict of the superposition of two diptinct
flow fields:

1. The Fflow about a flat rigid wing at an angle of attack
equal to the angle of attack of the root section

2, The flow about a twisted wing for which the angle of
attack at the root is zero

The solution for the first flow field is glven In references
4 and 5; the second flow field can be obtained by determining the
solution for a differential twist dag at one station and inte—
grating this solution across the span.

The solution for the pressure dlstribution at any point, corre—
sponding to a differential twist, must meet the followlng boundary
conditions (fig. 3):

1. Outboard of the station of twist, the angle of attack must
be constent and equal to the differential twist.

o, TInboard of the station of twist, the angle of attack of the
surface must be zero.

3. Between the swept leading edge and the Mach cone, no 1lift—
ing pressures may exist.

The conical-flow solution corresponding to these boundary condi-
tions is that for a specisl 1lifting sector given by Lagerstrom in
reference 6 and is expressed in the notation of the present report as

te _ 8an®? /I
qa PBr m¥l A m

Cl'|l:ll

(2)
where t defines a ray from the apex of the sector.

Figure 3 shows both a sketch of the boundary conditions to be
met by this solution and a plot of the pressure distribution given
by equation (2).

The induced pressure resulting from twist due to bending of the
elastic wing may be found by integrating across the span of the wing.
This integration corresponds to the superposition of an infinite number
of the 1lifting sectors along the span, each sector having an infinites—
imal- angle of attack do,.
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The pressure dues to twist is then given by

Ap 8 m/? Me fno 1+t
= = o — tan A d
<9>T B2 (mr1) BT AR

where

g = =1 _ m(y-n)
x—£ mx—1|

The x and vy coordinates of the apex of any superposed sector
are §£,7.

The integration must be carried out from the root section of the
wing n=0 <to the value of 71=7g corresponding to the last superposed
sector, the Mach cone of which encompasses the point X,y umder con—

slderation. The value of 1o 1s found by placing + equal to —1 and
golving for 1.

- I
"o = =3 (z+y)

The integration yields at any point x,y +the pressure dus to
twilat

16 n°/® Ms Xty
<é§>‘r T T 3p% (m1)2 tan Ao (=+3) mE-y (3)

To this expression must be added the conjugate term due to the elastic
deformation of the opposite wing panel. The conjugate term may be
obtained by substlituting -y for y. Then

Ap) _ 16 m®/® . Ms xty /ﬂ
<—<1_ 382 (m+1)2 ten Aﬁ [(ﬁy) Xy v (=) mx+y ] (4

It should be noted that the addition of the conjugate terms edds
some very small 1lifting pressure in the region between the wing leading
edge and the Mach cone where no 1ifting pressure may exist. These
pressures may be canceled by the superposition of constant 1ift sectors
as noted in reference 7. Since these extraneous pressures,on the
average, emount to about 3 percent of the average pressure coefficient
over the adjacent wing surface and, since elimination of those pressures
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would change the pressures over the surface only about one~half of
1 percent, 1t seems that in view of the additional complication
involved the cancellation of these pressures is unwarranted.

The total lifting pressure for the elastlic wing at an angle of
attack 1s then obtained by adding to equation (4) the solution for
the flat 1ifting wing. For the elastic wing, then

bp _  lmeg 16 ms/2 Ms [ 7
=—_— — ——— ———— tan A — + FladlA
T omerDE 3% @)? m | &) -y
o x—y
P ] (5)

Examination of this equation shows that the relationship between M/EI

and o« must be established before the pressure distribution can be
calculated. Since for wings with parabolic deflectlion curves the
maximum stress occurs at the point of maximm thickness, usually
the root, the maximm stress occurring at maximm load factor is

e (2) 3

and since the bending moment at any point on the span is a linear
function of the angle of attack,

- 20max @
dr apn

HI=

where omax 18 the design stress at maximm load factor, dr 1s the
thickness of the root section and an 1s the angle of attack at
maximm load factor; an expression for ap 1s derived later.

The equation for the pressure distribution may then be written as

Ap _ _ hmPa
a BE /mz_(%)z
5/2 a
_ 32 m tan A max_s_g_{(x_l_y) x+y+(x_y) x—Y} (6)
3p2r (m+l)2 E dr an mx—y mx+y
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The load per unit span can be obtained from an integration of equation
(6) with respect to x along any streamwise station (y=constant),

o,
..1.. = sf E <.é22 ax
4 ¥ 4 =const.
m

The integration 1s carried out from the leading edge of the wing,

C
x =% to the trailing edge x = %.2 and ylelds

1 kmPea 32 w2 o g2 o
L £a(y) — 2= tan A LBX = £ (y) (7)
T T 7t 3p2n (wl)® E 4oy

The functions f3(y) and £o(y) are given in the appendix since they
are somewhat unwieldy.

Thea 1ift ccefficlent may be obtalned by an integration of equa~
tion (T7), spanwise from root to tip.

B
BcL=%§f§dy
(o]

The integration ylelds®

2 5/2 o

B oy, = 2~ [——”m%‘Fl--LQ =—— ten A mf’—ﬁ-ﬁ'g] (8)
BS 3p%n (m+l) B odpoay

The constents F; and Fp are glven by equations In the appendix.

This equation may be used to determine the angle of attack at
maximm load factor an which 1s needed in the foregoing equations:

®Tt may be noted that the ratio s2/S 1s essentially the same as
one—fourth espect ratio and that the parameter s/dr is directly
related to s8!'/dy, a common structural criterion.

e — s e e e e e e e e | ————— e e e~
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_ 322 S 32 n/? omax 8
0 = Tr, [55%*;,33;@5?““ B E;FJ (®) ”

The pitching—moment characteristics of the elastic wing may be deter—
mined by an integration of the pressure distribution given by equation

(6).

For any spanwise station, the section pitching moment about the
apex of the wing is

y+mtc
o _ ( L
q { —const

This integration ylelds T

my [hmzct. (3) — 32 n>/? ta.nAGmS C"f():l (10)
T - e VY T E T “E otV

The functions f (y) and £ (y) are given in the appendix.

The total pltching-moment coefficient about the apex of the wing
in terms of the mean asrodynamic chord is found by integration across

the span,
o g° [ lm2g, 32 w/2 Omex 8 a :l 11)
Pu==55 L7 ® 3= @12 E O on (
2 | kR 32 >/2
=_2 o
Boe=~§% | Tp mr—ﬁmmATg%] (2)

The constants Fg and F, which are functlons of the aspect ra.tio,
taper, and sweepback are given in the appendix.

The previous analysis has ignored the effects of wing

twist due to torsion. The solutions obtained are, in reality, those
for wings of infinite torsional stiffness. In general, since the
flexural axis (or torsion center) is behind the center of pressure at

Torsion.—
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8ll spanwise stations of the wing, the twist of the wing due to
torsion will tend to compensate for the twist due to bending. For
wings having large angles of sweepback such as are necessary for
efficient supersonlc flight, the aerodynamic twist due to torsion
has been calculated to be about 15 to 20 percent of the twist due to
bending (for thin wings). _In such cases, the effect of the torsional
deformation on the spanwise loading may be neglected in calculating
the torsional moment. Equation (7) may be utilized in the calcula—
tion of the torsional moment in this iInstance. A complex simulta—
neous solution 1s thereby avoilded.

An expression for the torslonal moment at the root section of
the wing beam(perpendicular to the elastic axis) may be obtained by
assuming that the distance from the center of pressure to the flex—

ural axis for any section of the wing is a constant percentage of the
local chord.

Then
Br.sy (GOBMfBLcdy
q 1

where c¢ 1is the local streamwise chord given by the equation

c =8 ¢Co [l-—(l-l)%}

Where X denotes the taper ratio of the wing and { the distance
from center of pressure of flexural axis in terms of the streamwise

chord. The function describing the spanwlse loading Z/q is given
by equation (7).

The equation for the torsional moment at the root may be written

as
B

T
p-E=82tc cosAfJ'- [l—(l—x)l} dy

q ° L a4 B

T P
B%=52<§60005A[l %&y—%—(l_)‘) f%ydy:]

0

As will be shown later, 1t 1s convenient to derive the ratio of the
torsional moment at the root to the bending moment at the root. The
bending moment at the root is given as

e e e cr o mr o e
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MZ‘ 2
Bt =~ Foosn f%“”
and -
I - o cos®a [ §- (1) (13)
\ [ ‘
where ) z. ¥y dy

[t
0
and corresponds to the spanwise center of pressure for the load on the

half wing. The value of Y may be determined by & mechanical or
analyticael integration of equation (7).

When the assumption is made that the twist due to torsion wvaries
linearly across the span (or that the ratio T/GJ 1s constant across
the span), the incremental angle of attack of any section of the wing
due to torsional deflection may be written as

_CcosA Ts'  _Tsy
TTTE o VW
or
T8
o= EIB(

and by adding this expression to the angle of twist dus to bending
(equation (1)) the total angle of twist of any section is

%=“-%%[m"’<?§> ?;5] (the)

- Smx & T I.E T
ms—m—Q%T;E[tanA—<-j;G- @r] (14p)

Combined bending and torsion.- Expressions for the asrodynamic

properties of swept wings experiencing both bending and torsional
deformation may be obtalned from equations (6) to (12) if +tan A is

replaced by
@ 2]
[ta.nA <J T

—_— e m e e e - - - [P UEPVS S——
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The equation for the angle of attack at maximm load factor for
combined bending and torsion is then

an ._-_Laz _B._an + 32 m 5/2 Smax 8 \:'ba.n A—<I—I'E T—I]Fz} (15)
hm?p, L2g2 3% (m+1)2 E dp JrG/ Mp

where

In api)lying the foregoing analysis to a specific wing, it is
convenient to use the equations to obtain the ratioc of Cm, or
CLG for the elastic wing to the value for the rigld wing. Muiti-—

plying this ratlio by the value of CLQ or Cmu, for the rigid wing

as determined by the complete theory wherein the region within the
Mach cone of the tip, and so forth, is considered, will then glve
more accurate parameters for the elastic wing. Then

2. hm®s £1(y) - 32 m5/22 Tmax Ei f2(y) tan A - — 31: (16)
@@ pE 3% (mrl)® E &4, a, JrG/ My

C

Lo lastic _,._8z= Jo  %max s |:ta.nA _<_I_1-E E'}-_:IF_z a7
Clarigid 3 pr(mtl)® E dpan dxG/ MrJFy

c
Telastic _ ; _ 8 Zom _ Jmex _s [tan A - <-—IIE(;> T—r] = (18)
C 12 E J

Torig1d 3 Prlmet) = T

In using the preceding equations, 1t is necessary to solve for Qe
This, iIn turn, involves finding the ratio Tr/Mr which is determined
by the parameter Y (usually has a value of about 0.40).

A solution of the combined bending and torsional deformation
effects can be obtalned by assuming a value of Y, solving for
and checking the value of Y from a moment and ares iIntegration
of a plot of equation (16) to see if a second approximation is required
to determine o, more accurately.

Gn s

e e e — e . n—
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The previous equations apply primarily to flat lifting wings or
to twisted and cembered wings for which the loading due to twist and
camber 1s the same essentially as the loading due to change in angle
of attack. For wings with samewhat arbitrary camber and/or twist,
these equations apply to all accelerated flight conditions. A solution
for the aerocelastic characteristics 1n steady level flight for such
wings must involve a comnsideration of the effects of the loading due
to the known arbitraery twist.

Wing With Supersonic Leading Edge

The foregoing analysis has treated wings with tho leading edge
swept behind the Mach cone, The same method, however, may be applied
to wings swept ahead of the Mach cone. TIn this case, however, the
expression for the pressure field for the incremental twist at any
sparnwise station, corresponding to equation (2), is given by refer— -
ence 8 as the real part of

Ap - ba _m _ popF 1omt ' (19)

q prc, /mZT It—ml
where a,t, and m are as defined for equation (2).

Expressions for the pressu_:c'e dlstribution, 1ift, moment, and load
distribution may be obtained in the same manner as for a wing with a
subsonic leading edge although the integrations are more involved.

DISCUSSIOR
Supersonic Lifting~-Surface Theory

The results of the foregoing analysis are best illustrated by
applylng them to a specific wing. For this purpose, the wing shown
in figure 4 was selected, having the geometric and structural material
characteristics given in the table in the figure. The calculatlions
were made for various values of the paramster o¥ and for two values
of the maximm design stress.* 5

Span load distributions for the wing are shown In figure 5 for
a Mach number of 1.k1k, a value of nl-g of 150 pounds per square foot,

* Calculations show that the wing has sufficlient depth to withstand the
maximm loading assumed without failure.
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a design stress of 30,000 pounds per square inch, and a dynamic
pressure of 211 pounds per square foot which corresponds to flight
at 60,000 feet altitude. The load distribution curves of part (a)
of figure 5 are for the same angle of attack of the root section and
show that the elasticity of the wing resulits In an appreciable
decrease in lift—curve slope. In this case, the reduction experienced
by the elastic wing amounts to 15 percent of the wvalue for the rigid
wing of the same plan form. Part (b) of figure 5 shows the load
distribution curves for comstant total 1ift coefficient. These load
distributions are of significence in illustrating how the change in
span load distribution due to elasticity may be expected to shift
the longltudinal center of pressure forward. The load distributions
as derived by what is known as strip theory are discussed later.

Comparison of Aercelastic Effects at Supersonic Speed
With Incompressible Flow Solutions

In calculating 1ift and stability characteristics of elastic
wings, 1t should be nated that errors resulting from agsuming the
extent of the wing beam as glven In figure 1 and from lgnoring the
1ift within the tip Mach cone may be minimized by using the analyti-
cal expressions which give the ratio of lift-curve slope ar the
ratlio of moment—curve slops for the elastic wing to that for the
rigid wing. These ratlos may be used with the rigorous values of
Cmu, and CL@ from reference 3 to obtain accurate values of

Cma' and CLQ, for the elastlic wing.

Such ratios have been computed for the wing shown in figure 4
as functions of the dynamic pressure at a flight Mach number of 1.41k,
For comparlison, the sams ratlios have been computed as functions of
the dynamic pressure for incompressible flow by the theory of refer—
ence 9. Figures 6 and 7 show the results of these calculations
which were made for two values of ni of 150 and 300 pounds per
square foot and two values of design”stress, 30,000 and 45,000 pounds
per squere inch, Figure 8 shows the shift in neutral point® dus to
wing elasticity as calculated from the data of figures 6 and 7.

The results indicate that the asrocelastic phenomena are a little
more severe at supersonic speed, although the aeroelastic effects are
found to be primarily a fumctlon of the dypamic pressure and not of
Mach number. At a given dynamic pressure the differences in the
aeroelastic effects as computed by incompressible flow theory and by

SNeutral point 1s defined as the position of the center of gravity
along the msesan aerodynamic chord for neutral stability.
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supersonic lifting—surface theory are found to be dus largely to the
fact that the center of pressure of the sectional 1ift is farther
forward at subsonlic speed, resulting in a difference in torsional
deformation which compensates somewhat for the bending deformation.
The comparison indicates that the dynamic pressure is the primary
variable involved in determining the aeroelastic characteristics,
at least for wings swept behind the Mach linses,

It should be noted that the varlation of the aeroslastic charac—
teristics with dynamic pressure given in figures 6, 7, and 8 for any
velue of n‘g*’ and opmay includes the effect of a small variation in
wing beam moment of linertia which comes about from the manner in
which the maximum design stress was brought into the analysis. Ths
offect is not significant within the range of dynamic pressure for
which the theory applies.

In regard to the range of application of the equations, calcu—
lations made using more rigorous structural theory with simple strip-
theory show that the method of the present report may be expected
to give accurate estimates of asroelastic effects as great as, for
instance, a 30-percent loss in lift-curve slope. Within such limits
it is expected that the estimate of the neutral polint shift due to
elasticlity will be much more accurate than for analyses using
elementary aerodynamic loading.

Strip Theory

The analytical evaluation of aerocelastic effects can be greatly
simplified by the use of strip theory. This simplified method of
determining the aerodynamic loading is based on the assumption that
the loading at any spanwise station of the wing 1s & function only
of the section angle of attack. For the present case, a modified
strip theory suggests itself wherein only the incremental 1ift change
due to elasticity is considered to be a function of the incremental
local angle—of—attack change due to elasticity. The loading at any
spanwise station is then given by the product of the ratio of the
local angle of attack to the angle of attack of the root section and
the expression for the rigid wing loading at any spanwise station.
Then, for strip theory

1 _ km®s

qa BX

£1(y) 28
a

The load distributions so calculated are compared with supefsonic
1lifting—surface theory on figure 5. It is evident that this form



NACA TN No. 1811 19

of strip theory overestimates the effects of wing elasticlty, but
the comparison indicates that the accuracy of strip theory in
predicting lift—curve slope 1s satisfactory. The shift in center of
pressure which strip theory gilves, however, is much too conservative.

It is suggested, however, that the modified form of strip theory
may prove very useful in estimating the effects of wing elasticity on
certalin aerodynamic parameters, the damping in roll for instance.
Further, the use of modifled strip theory permits the structural
characteristics of the alrplans wing to be brought into the problem
more completely and enables the designers to estimate wing character—
istics for all modss of deflsction.

Ames Aeronautical ILaboratory, . )
National Advisory Committee for Aercmautics,
Moffett Field, Calif.

APPENDIX

MATHEMATICAL DERIVATION OF LOADING FURCTIONS

AND PLAN-FORM CONSTANTS ,

The functions f£1(¥), f2(y), & (7), and f2 (y) and the constants

Fi1, F2, E,, E, which appear in equations ('7) to (18) of the text are
glven in thls appendix.

The functions f£;(y) and fs(y) were developed from the
following integral:

yHmeco '

1 mg
g="® f <é2 ax

Yy ? g=const.

m

from which
JHILCq
mg dx
£i(y) =

e e e —————— < e e A R = o N



20 NACA TN No. 1811

which yilelds

t1(y) =Tm%:/<f2?—l> y2 +ﬁ£coy + m2co2

and

JH4Co yHCo
f2(3) = f " (x4y) ) m ax f " (zy) [ By &
g J
m m

which yields

f2(y) = [am(ymt%)mtyw m+3)] L/ (y+mgco+mey) (m:vmco—mty)}

li-mzmt"2

4

3y2(m+l) 2 —~1 2m(y+mpco)+mgy (m-1)
[ y8m5 2__.] ‘:cosh mb(1?1+l)y :l

+

[m(ymigiﬁy(mﬁ)] [ J Grpog) (m-'y"fmt%mty):l

[ 3y2(m+l)2 —, 2m(y+myco)-—nty (m-1)

L 2 ] [C"Sh : o ()5 :l
y2(5m41)  /2(3—m) 3y2(m+1)2 _1 3-m

* Ly Im572 _m] - [——8:51;2 } [°°Bhlm]

-

The constents F, and Fp are evaluasted as follows:

F; = /ﬁfl(Y) dy

e]
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which yields for my 7! 1

2
Fp = g—ﬁ;ﬁ Jm2f2+2pm?—r-aﬂz+mtm_2a_°

2 .
g B cog™L mef—ap —cosl I
2&3/2 m,t
and for mg = 1
1-m?)—m? 2
Fl = ﬁ( ~’ )-—Ill cO '/mzcoa'l'gﬁmzco"'ﬂz(m?—l) + mCqo
2]112 (l—mz) o (l__]na)
Co? —1 B(m2])+mc _
+2(13mz)32 [cosl = °—ooslm]
where ;
a = mtz_mz
f = mc,
and
B
Fa =f fa(y)dy
o

which yields for mg # 1

Fo = <E§m_t%> [(mfz)alz _ (Bdfﬂfz_ﬁab)evz]

e e——

e e e e e e e e i s~ e+ e o e e e
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f(dmhmb)] QBb—df PR nl/2a£2
* [ BrPmy2h Jpatimt % +

mg2 (m+1)2p2 1 _4f-2pb g a
M- [°° met @) °° mt(ml-l):'}

53(m+1)2J —1 pdtom? 1 phomf 3—m]
+ [W cosh —-——Bmt @) + cosh | ——ﬁlnt @) cosh s

£ (m+l)2 £2 (33%+4mb ) 1 dPPpb a
[ o ]{ 8v5/2 [°°S ot (L) m't(m+l)':|

1/2:-2 3
_ 3af+2pb Jer i par—p2p + 3m~/<af }+ [ B°(5mt+l) v2 (1-m) ]

kb kp2 1loms/2

+ (H%.%ﬁ) [ (Iﬂf2+Bhf_B2§;8/2_(mf2)a/2 ]

E-ORE e + B

P2
, P2m? (Lm)® . hf-2pg . n
g [ swen ~ " mew |}

[ {2 [ Sl - e |

_ 2Bet3nt oo 3m'/Zhf2
g VEORRRE Y T
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where

b
| d
: e
i £
g
’ h
J

For mtg = 1

NACA TN No.

23

(mt—m) (m+1)

It

Zm+mmt—mt

It

2m+5mm++ 3m;

mtco

(mm) (mg—1)

2m—mm+t+my

3m+5mm4—2m

Fp = 7m+3> Ji[mcoz'+BCo(3m—l)+2B2(m—l) 12 (moe2) /% } |
4m2 6(m—1)

+ | Co
2m

— CO8

- psdﬂ] WEsE) + [1

L 8(m—1)

—1 3wl

| Sm

[ co®(m+1)2

3co(3m-1)

6(m-1)

_ Co(3m—1)(7m+3)] { [4B(m'-1)+00(3iﬂ—l)

16m®(m—1)

8(m—1) :l [N/m002+300(3m—l)+262(m—]_)jl

m+1J}

6 /2(1-m) 8/2

co®(mt1)? ] [cos_l 48 (1) +co(3m-1)
co(m+1)

i B3(m+1)2 J [~ — B(3m—1)+2mcq — Bgm+l)+2mc —3 3-m
1 (o) 3
R E/E— cosh B( +1) + cosh B( 1) — cosh —+1J

! | 16m Y/ qm-1)2 |

[ 48(m-1)—3c6(3m-1)
8111 J { L l6mco(m__1)2 ] [Jm002+300(3m—l)+252(m__17:]
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co(19m2—10m+3)] 1 p(ml)+eo(3m-1) o 3wl
¥ [32 A/Zm(1-m) 3/% [Cos co(m+1) °08 m+l:|

N {2 [8m2co2—Upmeg(m+l) +382(m+1)2] [ W] _ 16m®/Zcq
15meo 3/2(m+1) 3 15(m+1) 3

s e  H e [T

. [33(51“1) W/2(1-m) ] _ [sgmcoa_) a/2 ]

1om5/2 15m(m+1)

The functions f5(y) and f,(y) were developed from the integral:

JHtCo

m
5 - - g2 f <g> xdx
4 v q y=const.
m

from which
yHCo ,
% xdx
SRy
v Jm2—(3/x)2
m .
Then

£5(y) = %—-2;:—8— 2 (yHmco)E-mtEy”
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m(y+myc,)
R fﬂ cosh_l -(Lm_t__o_.
2m .y
1
Also
y'l'm'bco y+ﬂco
my
X+y =y
f = XE
+(7) “4 (z+y) ey X3x +L/; (z-y) oy Xax
o )
which ylelds
8 (y+mic,)?

o | ST | [

, 2y (yHmic, ) (Tme5)+my 2y (3m2+20m+15) ]
2)-I-m:3m-ba

s 2 L
. [ ¥ (m3_3m —9m—5):| I:cosh_l(m_mb+mt)y+amtc°
1657/2 my (m+l)y

— cosh-l E — COBh-l(em+ )y+ § %o :l
mHl my (m+l)y
8 (y+mgeo)?
+ [ o (THmtco-nty) (my+Hmntcotmty) J [ 2hm m°

_ ey y(yamic, ) (Toe5)-my®y? (3n2+22u+15) ]
2hm3m~b3

_ [ya(3m2+8m+13) Jz(l—m)]
e
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The constant Fg 1is evaluated as:

B
Fs =f fs(Y)dy -
o

kY

which ylelds for my # 1

n°r—(n2r2+0pm2rp2a)9/2 ﬁsa cosp—1. B{B+F)
6m2m2a 6m Bmy,

Fq =

, T(ap-3uw2f) J/nPP2iopuPT—afe & mf>
6m=a? 282

3 2,.2 2
bl +m' m=f—e| mf
N (emy ) (cos"'l B cog—l )

63.5/2 -

2 2
mmtco m‘ch

and for my =1

Fg = n%o -[mRco2+2pm2eo—p2(1-m2) 13/2 | Bss costt {B*co)
6m B

6m? ( 1-m2)

N co[B(l—mz)—3m200] 2 co2+2BmR co—p2 (1-m2) . meq®
6m2 (1-m=)2 2(1-m®)=

+ oo (24m?) [cos_‘l nZco—p(1u?) — cos™t m:]
5(1-m2) 5/2 meo
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Also F, 1s evaluated as:

B
roe [ et
(o} B

which ylelds for mt # 1

Fy

[ A B+ 5df\, __B ] [me2+edf—ééb)3/2 ]
3 3
obm™my 6b > 18m°m; 2 b

2BbAf e | L (mil)® _, dr-2pb
+{ e +RAF—BZD + m—t—gwg—— [cos 1

, m'/%aE2 ) 1 A£2(56%+hnb) +8Bbas+128u°p L
kb }l: 384m°m, “b= ]

+< SAdf ,_B >[(mf2)3/2]
1ll-’+m3m,b3b 18m3m,bs bp

+ %) p*|cosn BREBRE_ _ oogp-1 3 ooy _BdtEmL
i Bmi (m+1) ‘ m+1 pmy (m+1)

3

+ (ml/zf) <B_2_ " 5pdf + 5d.2f2 + aﬂfz >( /mf2+Bdf_B2b)

3b 122 8b° 3b2

L

_ (B2 , 5Bnf _ 5f%h2 2mf2> o ey ar
™ + or + 8gé— + e ( mf2+sfh-—ﬁ-g‘)

_ dfs(lamb—sdz)][ 1 _afogb L4 ]
[ 16b7/< co8 mif(m+l) c08 m (m+1)

- CO
mtf(m+1)

a7

— d
& mt(m+1)']

]
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hf3(12mg+5h2)][ 1 bf2Bg _ 2 _ kb }
[ 16g'/< o8 m £ (m+1) cos my (m+1)

s 12,582 | 2m _ 5h% _ )
(£n )<8b3 32 8e° 367

[egpasgmece | {(as) e

(T i - o ) )
(o) (%) - () [t |

- [praeteny 20T L 2 ][ () () |

where

A = 8m2+1hmPmi+10mmy+3mPmy 2 +20mm 2 +15mt >

i

B = 2mmicol Sm+Tom+5mt;)

D = 8m2-14m®mt—10mnt+3memy 2 +2omm 2 +15m>
H = 2mm,bco(8m—7nnnt—5mt)

and for mt=1

1T |g _ 5co(3m-l) [meo2+Beo( 3m-1)+282(n-1) 13/2
" £2m3 [B () ] 2@3}{ o) }

ekl 2;3}[‘2;2? = {2
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v [00(31'1—1) ]+ ;‘f} 48 (m-1) +co(3m-1)

~ 3423 | h () 5(ma) [»ﬁucozwco( 3m—1)+2B2(m—1)}

_— co2 (m+1)? E:os-l 48 (m-1)+co(3m-1) — 3m—1]+ n'/2co2(3m1)
16 ,/2(1~m) 3/2 co(m+l) m+1l 8(1—m)

.p.

cogpt Blmtl)+omeg 41 3-m o1 B(3m—l)+2mco:'
B(m+1) m+1 B(m+1)

+
Fla
o

283 ~/m2002+Bmco(m+l)
Tmeo(m+1)

+ (mco)

~ 4[8mPeoP—Upmeo(m+1)+38% (m+1)2]

35 (Lrm) * ~JmPeoP+pmeg(m+1)
_[_B®  _ 5Bco(3m-1)
6m(m=1)  48m(m—1)2 -
. 2e®(3m1)2

00‘2 -l 2
6im(m—1)®  6(m-1) 2},/232m(m—1)+3mc0( 3m—l\) e,

, 32m%0°% | co®(63m°-30n2+21n5) [cos—l 4B (m-1) +co(3m-1)
35 (m+1) - 128 »/2m(1—m) (m-1)3 co(m+1)

~ cos™L 3m—1] 5e0°(3w-1)2 _ _meo® H

m+l 64 (m—1) 3 6(m—-l)2

[B (3m2+8m+13) o/2(1-m) ]+ { 2co , (5-m)[2meo—3p(m1)]
96m7/2 9m(m+1) -90m2 (m+1)2
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(5-m) [8m®co®~12pmeo{m+1) +1582 (m+1) 2]
+ OhQOmSCO?Ml)z = }{[ mCoz'i'BCO(m‘*'l) ]3/2}

_ / 2cq. co(5-m) 2co (5-m)
[ (meo®)® 2] [9m(m+l) * BnmE 1051?1(m+1)2]

where
T = 25m°+32m+15
V = 10mey(3m+l)
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A

Figure 2—Coordinate system for calculation
of characteristics of elastic wings, A
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