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SUMMARY

The sandwich plate consisting of corrugated sheet fastened between
two face sheets is considered. Application of existing theories to the
analysis of such a sandwich plate requires the knowledge of certain
elastic constants. Formulas and charts are presented for the evaluation
of these constants. The formulas for three of these constants were
checked experimentally and found to give values in close agreementwith
the experimental values.

INTRODUCTION

A type of sandwich plate for which practical use has recently been
found in airplane-wing construction consists of a corrugated metal sheet
fastened, at its crests and troughs, to two ordinary metal sheets (see_
for example, fig. i). The main advantage of this t_e of sandwich is
that the corrugated-sheet core not only serves to separate the faces
and, ther@by, to achieve high flexural stiffness, but it also carries a
share of any compressive loading applied parallel to the corrugations
and any edgewise shear loading. This type of sandwich has been called
cardboard-box construction (reference i) and also double-skin construction.
It is referred to herein as corrugated-core sandwich plate.

Plate theories applicable to the symmetrical type of corrugated-core
sandwich, illustrated in figure l(a), have been developed in reference 2
for flat plates and in reference 3 for curved plates, a These theories
are essentially homogeneousorthotropic-plate theories extended to
include deflections due to transverse shear, which can be significant
for the corrugated-core sandwich plate because of the relatively flexible
core.

aThe precedent established in reference 4 of referring to sandwich

plates of the type shown in figure l(a) as symmetrical is adhered to

herein. The type of corrugation shown in this figure is also called

symmetrical.
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Application of the general sandwich-plate theories of references 2

and 3 to any particular type of sandwich requires a knowledge of certain

elastic constants for that type of sandwich plate. These constants

describe the distortions associated with simple loadings. They include

two transverse shear stiffnesses DQx and DQy, two bending stiffnesses

D x and Dy_ a twisting stiffness Dxy _ two stretching moduli Ex

and Ey_ a shearing modulus Gxy3 two Poisson's ratios _x and _y

associated with bending_ and two Poisson's ratios _' and _'
x y

associated with stretching.

The purpose of the present paper is to present formulas for

evaluating these elastic constants for the corrugated-core type of

sandwich plate. For the sake of completeness, formulas are also

developed for evaluating the additional elastic constants that would be

needed for a rigorous extension of the sandwich-plate theories to the

unsymmetrical type of sandwich. These additional constants_ denoted

by Cxx_ Cxy_ Cy x, Cyy, and T_ describe coupling - for example, the

curvatures produced by extensional forces. The derivation and formulas

for the transverse shear stiffness DQy are essentially the same as

those given in reference 4 for the case in which interference between

corrugation flats and face sheets is neglected_ but are extended slightly

to include the effects of stretching of the corrugation (in addition to
bending) and the prevention of anticlastic curvature in the elements of

the sandwich plate. The former effect can be important when the sandwich

cross section approaches a truss_ the latter_ because the length of the

sandwich plate parallel to the corrugation axis is several times the

corrugation pitch. The results obtained for the bending and twisting

stlffnesses Dx, Dy, and Dxy for the symmetrical sandwich correspond

to the slightly less precise formulas of reference 5. (Transverse shear

stiffness was not evaluated in this reference. A slight difference in

definition of the symbols D x and Dy exists between reference 5 and

the present paper.)

Because the formulas developed are generally rather involved_ charts

are presented for one of them_ the transverse shear stiffness DQy, and

approximations are given for several of the others_ together with the

results of numerical investigations of the accuracy of these approxi-

mations. In calculating the charts and in investigating the accuracy of

approximate formulas_ a family of corrugation shapes consisting of

straight lines and circular arcs was considered. The bend radii of the

corrugation_ measured to the center line, were generally taken as 0.18

times the corrugation depth hc_ but departures from this value were

also considered_ as were departures from symmetry.



NACATN 2289 3

As a check on the formulas, bending and twisting tests were run on
samples of a corrugated-core sandwich plate. Experimental values of
bending stiffness Dy, transverse shear stiffness DQy_and twisting
stiffness Dxy were obtained and comparedwith the theoretical values.

The function of the elastic constants in a sandwich-plate theory
is first briefly described. A section follows in which the formulas
for the elastic constants for the corrugated-core sandwich are summarized.
The tests and comparison between theory and experiment are then described_
a discussion section follows, and a section of concluding remarks ends
the body of the paper. The symbols used in the body of the paper are
listed and defined in appendix A. A numberof them are also defined in
the text where they first appear. Appendixes B to E contain the
theoretical derivations.

THEFUNCTIONOFTHEELASTICCONSTANTS

IN SANDWICH-PIATETHEORY

The sandwich-plate theories of references 2 and 3 are based on a
structural idealization of the sandwich as a plate of continuous con-
struction with material which is orthotropic with respect to the mutually
perpendicular x-, y-, and z-directions. The modulus of elasticity in
the z, or thickness, direction is assumedto be infinite_ that is,
local buckling of the faces is not considered and the over-all thickness
is assumedto remain constant. Straight material lines normal to the
middle surface are assumedto remain straight, but not necessarily
normal to the middle surface, during distortion of the plate.

This idealized structure can adequately represent a corrugated-core
sandwich plate of either the symmetrical or unsymmetrical type for many
practical purposes, provided the core has sufficient stiffness to keep
the over-all thickness of the plate essentially constant and provided
the plate width (perpendicular to the corrugation axis] is manytimes
the corrugation pitch. If the symmetrical type of sandwich (fig. iCa))
is to be represented, then the elastic properties of the idealized-plate
material maybe regarded as varying symmetrically about the middle
surface through the thickness. In order to represent the behavior of
the unsymmetrical type of sandwich (fig. l(b)), the elastic properties
of the idealized-plate material must be thought of as varying nonsym-
metrically with respect to the middle surface.

The behavior of a differential element of the idealized sandwich
plate under load can be described by a set of force-distortion relation-
ships. For an element of the symmetrical type of idealized sandwich
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(fig. l(a)), subjected to forces and momentsas shownin figure 2(a),
these relationships, as developed in references 2 and 3, are

_2w Mx _! 1 _Qx-- + My+ (1)_x2 Dx _ _ x_-

_2w _x _ i---_ (2)
_y2 - D x Mx - Dy + DQy _y

N x _'y
_x - Ny (3)

Ex F7

_'x Nx + Ny (4)
_Y = Ex Ey

1 1 _Qx 1 1_2w -_+ +--- (5)
_x _y Dxy 2 DQx _)y 2 DQy _x

-- _ (6)
7_ Gxy

82w 82w 82w

where 2' ---_3 and are the curvatures and twist of the middle
_x _y _x _y

surface and _x, ey, and Fxy are the strains of the middle surface. The

quantities Dx, Dy, _x, and so on which appear in the coefficients of
the loading terms are the elastic constants. Each constant describes a

distortion produced by a simple loading. For example, if all loadings

are zero except Mx, then, according to equation (1), _ _1 is the
Dx

amount of curvature in the x-direction produced per unit of Mx-

The behavior of the unsymmetrical type of sandwich (fig. l(b)) is

more complex than that of the symmetrical type. In particular, a certain

amount of coupling among the distortions may be erpected; for example,
extensional forces may in general produce curvatures as well as extensions.

The same type of coupling can be expected in a symmetrical sandwich

subjected to unsymmetrical loading. In setting up force-distortion

relationships for an element of the unsymmetrical type of sandwich, the

loading on the element will be generalized as shown in figure 2(b).

The forces Nx, Ny, and Nxy are no longer assumed to be applied in "

the middle plane; each has an arbitrary plane of application, denoted
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by I, II_ and Ill_ respectively. The strains _xJ _y_ and 7xy are

measured in these same respective planes. The force-dlstortion relation-

ships for the element are then given by the following generalization of
equations (i) to (6):

_2w Mx _Y My + ICxxNx + , I _Ov
_x-7= - o-_+ Dy , c_: + DQx-

(i')

_2w _x My+, ' 1 _

_y2 = D-_Mx- Dy ',%xNx + C_y,, + D% _y (2')

, I Nx _'Y Ny_x : i -CxxMx - Cyx_, + -- -
........ E x Ey

(3')

% :',-Cx_x- c_: - _'___xNx+ _z (4')
i I Ex %

- + 'TNxy' + +-- (5')
8x 8y Dxy , , 2 DQx ()y 2 DQy 8x

, Nxy
7xy = ' 2TMxy ',+

, , Gxy
(6')

The boxed terms are the terms that have been added to express the

coupling behavior. The coefficients Cxx _ Cxy _ and so on in the boxed

terms are the coupling elastic constants. The presence of each

coupling elastic constant in two equations is a consequence of the

reciprocity theorem for elastic structures. (Further consequences of the

_x _y _'_ _'Ylreciprocity theorem are that -- = and _ = _.

Dx Dy Ex Ey /

Through a proper choice of locations for planes I, II, and IIl_

some uncoupling may be effected for any given sandwich. Plane I may be

chosen so that Cxx or Cy x is zero_ plane II so that Cxy or Cyy

is zero_ and plane III so that T is zero. Thus_ in general_ three of

the coupling elastic constants may be made equal to zero. In special
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cases, proper choice of locations of planes I, II, and III will result
in still further uncoupling. For the symmetrical sandwich_ of course,
choosing these planes to coincide at the middle surface of the plate
causes all the coupling constants to vanish.

THEORETICALRESULTS

Elastic Constants for Symmetrical Sandwich

In appendixes B to E, derivations are madeof formulas for the
elastic constants for the general corrugated-core sandwich plate. The
formulas obtained are nowgiven in reduced form for use in conjunction
with the force-distortion equations (1) to (6) for the symmetrical
sandwich plate. Generally, the subscript C denotes the core, and the
subscripts 1 and 2 denote the lower and upper faces, respectively. In
this section, however, only symmetrical sandwiches are considered and
the subscript 1 is used for both faces. It should be kept in mindj
therefore, that the definitions of manyof the terms appearing in the
following formulas for the elastic constants apply only to the symmetrical
type of sandwich.

Bending stiffnesses.- The formulas obtained in appendix B for the

bending stiffnesses Dx and Dy are

where

i
_x = EC_C + _ El tl h2

1
E-Iy = _ Eltl h2

Dx = EYx (7)

1 - 2 1 -  7x]

E 1

EC

Poisson's ratio of face sheet material

modulus of elasticity of face sheet material, psi

modulus of elasticity of core material, psi
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I

IC

t I

h

moment of inertia, per unit width, of corrugation cross-

sectional area about middle plane, inches3

thickness of each face sheet, inches

distance between middle surfaces of face sheets, inches

For practical sandwiches, the moment of inertia _C contributed by the

core is often small compared with the moment of inertia which the faces

contribute to cross sections perpendicular to the corrugations. In

such cases, ___ is very nearly unity_ and the following approximation

Elx

to equation (8) may be made

(8,)

This approximation implies a neglect of the restraining effect of the

corrugation on the Poisson expansion or contraction of the face sheets.

Results of a numerical survey of the accuracy of this apDroximatio_ are

given in table I for the symmetrical sandwich = 1.0 of the common

type shown at the top of the table. The table gives the ratio of the

approximate value of Dy, as computed from equation (8'), to the exact

value of Dy, as computed from equation (8). The error in the approxi-

mate value is seen to be small over a large part of the range of con-

figurations considered and, in extreme cases, no more than 6 percent.

Poisson's ratios associated with bending..- The formulas obtained

for the Poisson's ratios associated with bending _x and _y are
(see appendix B)

_x = _i (9)

: (lO)
Dx

Extensional stiffnesses.- The formulas obtained in appendix B for

tne extensional stiffnesses Ex and Ey, reduced to the symmetrical

case, are

Ex = EAx (ll)
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%
Ey =

i  12(l½1
(12)

where

EA---x : EcA C + 2Elt I

E-Ay = 2Elt I

B

area, per unit width, of corrugation cross section

perpendicular to corrugation axis, inches

If, once again, the restraining effect of the corrugation on the Poisson
/

expansion or contraction of the faces is neglected {that is, _ is

taken as zero and, therefore, ._x as i), equation (12) gives the following

approximat ion: EAy /

Ey ~ (12')

The error in this approximation is somewhat larger than the error

obtained in the approximation to Dy, since the contribution of the

core to _x is relatively larger than its contribution to El x. The

error is indicated in table I, where numerical values of the ratio of the

approximate to the exact values are tabulated.

Poisson's ratios associated with extension.- The formulas obtained

(appendix B) for the Poisson's ratios associated with extension _'x

and _'y are

x=_l

_z (14)
_'y = _'x Ex

Twistin_ stiffness.- The following formula was obtained in

appendix C for the twisting stiffness Dxy:

Oxy = ea-7 (15)
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where

i
_-y : _ Gltl h2

G I shear modulus of elasticity of face sheet material, psi

The stiffness Dxy is independent of the properties of the core since

symmetry requires that the shear flow in the corrugated-core sheet be

zero.

Horizontal shear stiffness.- The horizontal shear stiffness

is given (see appendix C) by

Gxy

a_ = G--Z (16)

where

Gctc 2
GA=

Xc
+ 2Glt I

GC shear modulus of elasticity of core material, psi

tC thickness of corrugated-core sheet, inches

Transverse shear stiffness in planes perpendicular to corrugation

axis.- The transverse shear stiffness in planes perpendicular to the

corrugation axis DQy is given (see appendix D) by the formula

= Sh _ ] (17)

where

depth of corrugation, measured vertically from center

line at crest to center line at trough (see fig. D5 of

appendix D), inches

PC

S

Poisson's ratio of core material

nondimensional coefficient depending upon shape of

corrugation_ relative proportions of sandwich cross

section, and the material properties of the component

parts
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Formulas for evaluating S are derived in appendix D. Becauseof
the complexity of these formulas, a numberof charts were computedwhich
give S directly for the commontype of sandwich with corrugation cross-
sectional shape consisting of straight lines and circular arcs.

The charts of figure 3 are for the case in which the core and faces
have the samematerial properties. They give S for a wide range of

RCI
geometric proportions but are restricted to the value 0.18 for --,

hC
where RCI is the corrugation center-llne bend radius. This restriction
was madeprimarily for computational convenience, but it is generally
consistent with corrugation shapes that have been considered for sandwich
construction. The effect on S of departing from the value 0.18 for
RCI

can be estimated from figure 4(a), where a numberof curves of S are
hc RCI
given for values of -- of 0.12 and 0.24 as well as 0.18. Cross plots

hC
based on the charts of figure 3 would indicate that S becomesrela-

hC
tively insensitive to the ratio t_c at higher values of this ratio. For

that reason \_C/ was not included in the coefficient S in equation (17).

The effect on S of using a core materiaA of different modulus

than the face material may be estimated from figure 4(b). Curves of S

EC

are plotted for values of _ii of 0.23 (magnesium core, steel faces) and

4.30 (steel core, magnesium faces) along with the basic curves, from

Ec
figure 3, for - 1.00. The value of S is seen to be relatively

E 1

insensitive to large differences in elastic modulus between the core
and the face sheets.

If bot,h departures from the conditions of figure 3 occur simul-

taneously <that is, RCI _ 0.18h C and EC / El) , the effect on S may

be obtained approximately by superposing the individual effects as

determined from figures 4(a) and 4(b).

For symmetrical configurations not covered by the charts of

figure 3, 4(a), or _(b), S may be computed from equation (DI9) of
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appendix D, used in conjunction with the auxiliary equations (D20) and
(DI5), with ky and kz taken as i. If, besides being symmetrical,
the corrugation center line consists of straight lines and circular
arcs, then equations (D22) and (D23) or (D24) maybe used instead of
equations (DIS). This system of equations was used to compute the charts
previously described.

Transverse shear stiffness in planes parallel to corrugation axis.-

A general formula for the transverse shear stiffness in planes parallel

to the corrugation axis DQx , as derived in appendix E_ is

Gc It c h ( 18 )
Dqx = Z

Pro Q ds

where

I moment of inertia of width 2p of cross section parallel

to yz-plane_ taken about centroidal axis parallel to

y-axis, inches 4

2p corrugation pitch, inches

length of one corrugation leg measured along the center

line, inches (see fig. E-3)

coordinate measured along center line of corrugation leg,

inches (see fig. E-3)

The quantity Q is the static moment about the centroidal axis (middle

plane for symmetrical sandwich) of the cross-hatched area in figure E-I.

If materials having different moduli of elasticity are used for the core

and faces_ a transformed cross section should be used in computing I

and Q.

An approximate formula, which is more practicable_ is obtained ifj

in the derivation, a bending moment M x is assumed to be resisted only

by the face sheets. The assumption leads to constant shear flow in the

corrugation, and the following approximation is thus obtained:

Gctc h2 _ GCfC 2 (18')

The results of a numerical investigation of the accuracy of equation (18')

as compared with equation (18) are given in table I.
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Elastic Constants for General Case

The general formulas for the elastic constants derived in appen-
dixes B to E are now to be discussed. These formulas, used in conjunc-
tion with the force-distortion equations (i') to (6'), describe the
distortions of an element of either the symmetrical or unsymmetrical
sandwich plate loaded as shownin figure 2(b). The symbols appearing
in the formu/as are defined in appendix A.

Elastic constants associated with flexure and extension.- General

formulas for the constants associated with flexure and extension Dx,

Dy, _x, _y, Ex, Ey_ _'x, _'y, Cxx_ Cxy, Cyx, and Cyy are

given by equations (B25) to (B36) of appendix B. These formulas apply

to a sandwich with arbitrarily shaped corrugation, in which the upper

and lower face sheets may differ in thickness, modulus of elasticity, and

Poisson's ratio and in which the loading planes I and II are arbitrarily
chosen.

Appreciable simplification of the formulas results from the

practical assumption that the Poisson's ratios of the upper- and lower-

face sheet materials are equal (_2 = _i)" Equations (B25') to (B36')

then apply.

It is evident from both sets of these equations (B25) to (B36)

and (B25') to (B36') that the values of the constants associated with

extension (Ex, Ey, _'x, _'y) and the coupling constants (Cxx , Cxy ,

Cyx_ Cyy) are dependent upon the location of planes I and II in which

the stretching forces Nx and Ny, respectively, are applied. If these

forces are applied at the centroids of the transformed cross sections of

_<t ot
/

simplification of the formulas takes p1_ce. Equations (B25') to (B36')
JJ

reduce to equations (B25") to (B36").

The approximations to Dy and Ey given f'or tile symmetrical

sandwich by equations (8') and (12') may also be assumed to apply to

the unsymmetrical sandwich when kll = k_y and _2 = _i" When these

approximate expressions are used, however, Ely and E-Ay should be

evaluated from their general formulas as given in appendix A or from

equations (B20) of appendix B. Table I gives the results of a numerical

investigation of the _ccuracy of tile approximate expressions for Dy

and Ey for the unssqnmetrical sandwich = 0._0 and 0.50 • The errors
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resulting from use of the approximate expressions are seen to be of

the same order for the unsymmetrical sandwich as for the symmetrical

sandwich.

Elastic constants associated with twisting and horizontal shear.-

Formulas for the constants associated with twisting and horizontal

shear Dxy , Gxy , and T are given by equations (C35), (C36), and (C37)

in appendix C. The values of Gxy and T depend upon the location of

plane III in which the horizontal shear force is applied. Locating the
horizontal shear force at the shear center of the cross section (that

is, letting kll I = kG-_, where k_ is defined by equation (C31) or in

the symbol list of appendix A) causes the coupling constant T to

vanish and simplifies the expression for Gx_. The formulas for this
case are equations (C35'), (C36'), and (C37').

As for the constants associated with flexure and extension_ a

simplification in the formula for Dxy occurs if the corrugation is

completely neglected. Equation (C35) then gives the following

approximation:

Dxy = 2G--_ h2 (Gltl)(C2t2)
Gltl + G2t2 (19)

The results of a numerical survey of the accuracy of this approximation

are given in table I. The error incurred through the use of the approxi-

mate formula is seen to be generally quite small. For the symmetrical

case = i , no error at all results from neglect of the core since

symmetry requires the corrugation shear flow to be zero.

Transverse shear stiffness in planes perpendicular to corrugation

axis.- Equation (17) which gives the transverse shear stiffness DQy

for the symmetrical sandwich also applies to the unsymmetrical sandwich

provided the coefficient S is obtained from formulas or charts which

apply specifically to the unsymmetrical sandwich. Figure 3 gives

extensive charts for evaluating S for a symmetrical sandwich with

faces and core of the same material and with the corrugation center line

consisting of straight lines and circular arcs_ the latter having a

radius of curvature of 0.i$_. Figure 4(a) shows the effect of using a

radius of curvature other than 0.18hc, and figure 4(b), the effect ol_

using core material different from that of the faces. The rest of

figure 4 is devoted to showing separately the effects on S of two

departures from symmetry for a sandwich that is otherwise the saF_e as

that c:onsidered in figure J. Figure 4(c) is f'or a case in which the

nonsymmetry is due to the core and consists in the lower and upper flats
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being of unequal width; figure 4(d) applies when the core is symmetrical

but the faces are of unequal thickness. No chart is given for the case

in which the core is symmetrical and the face thicknesses equal but in

which the nonsymmetry arises from the use of a different material for the

lower face than for the upper face. However, for nonsymmetry of this

type, S can generally be cbtained quite accurately by assuming, first,

that both faces are of the upper-face material and_ next, that both

faces are of the lower-face material and averaging the two values S1

and S 2 thus obtained in the following manner:

s-7-- +

or

1.26 SIS 2
S =

SI 3 + $23

In general, when the upper face is different from the lower face, either

in thickness or material or both, S can be determined approximately by

averaging in the previously described manner the two values obtained by

first assuming that both faces are the same as the upper face and next that

both faces are the same as the lower face. The error in such an approxima-

tion will generally be less than 3 percent.

For an unsymmetrical sandwich not covered by the charts, S may be

evaluated from equation (D17) used in conjunction with the auxiliary

equations (D18) and (Dlg)j if the corrugation itself is symmetrical,

then some simplification results from taking ky = kz = 1 in the

auxiliary equations.

If the corrugation center llne consists of straight lines and

circular arcs_ then equations (D21) and (D23) or (D2_) may be used

instead of equations (D15). If, in addition, the corrugation is

symmetrical and if ky and kz are taken as 1 in equations (D18),

then equations (D22) may replace equations (D21).

Transverse shear stiffness in planes parallel to corru_atlon axls.-

Equations (18) and (18') for the evaluation of the transverse shear

stiffness DQx for a symmetrical sandwich also apply to the unsymmetrical

sandwich. The error of the approximate formula (equation (18')) when

applied to the unsymmetrical sandwich is indicated in table I.
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EXPERIMENTALEVALUATIONOF Dy,

General Summary

DQy, AND Dxy

The elastic-constant formulas that were thought to need experi-
mental verification were those which dependedto a large extent in their
derivation upon the assumption that the thickness of the core remains
essentially constant or that the corrugation cross section is undistorted.
Amongthese, the formulas for Dy, DQy, and Dxy were selected for
checking because these constants could be experimentally evaluated
through simple bending and twisting tests on sandwich beamsand panels
as described schematically in appendix A of reference 2.

The test sandwich was of the symmetrical type. The core consisted
of a readily available Alclad 24S-T36 aluminum-alloy standard circularly
corrugated sheet having a nominal thickness of 0.032 inch and a nominal
over-all depth of 3/4 inch. The faces were of 24S-T3 aluminum-alloy
sheet having a nominal thickness of 0.064 inch. Twotest specimens
were used: A beamfor the evaluation of Dy and DQy and a panel for
the evaluation of Dxy. Although blind riveting was necessary only on
one side of the panel, it was used on both sides in order to maintain
symmetry. On the beamdriven rivets were used in both faces since the
beamwas relatively narrow.

The results of the tests and comparisons with theory ar@wsummarized
in the following table. In computing the theoretical values the following
properties were assumed: E1 = E2 = 10,500,000 pounds per square inch_
EC = i0_300,000 pounds per square inch, and _I = _2 = 7"

Rangeof
experimental
values

Theoretical
value

( in. -ib )

221,000

224,000

220,000

D%
(ib/in. )

4010

4310

a4300

Dxy

(in. -ib )

182,000

177,000

aComputed with _i = _2 = _C = 0 because the

beam tested was relatively narrow and Poisson

curvatures were therefore assumed to be unrestrained.
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Test and Analysis

Evaluation of Dy.- The dimensions of the test beam are shown in

figure 5(a). The beam was supported on two knife edges as shown in

figures 5(b) and 5(c) and loaded near the ends so as to obtain a region

of pure bending moment between supports. The supports were placed

19.05 inches apart for one test (the test which yielded the value of

221,000 in.-lb for Dy) and loads P were applied in increments of

5 pounds up to a maximum of 25 pounds and then removed in the same

increments; in a second test (which yielded the value of 2243000 in.-lb

for Dy), the supports were placed 24.56 inches apart and loads P were

applied in increments of 5 pounds up to a maximum load of 30 pounds and
removed in the same increments. Deflections of the beam were measured

at the locations shown in figure 5(b) with gages having a sensitivity

of O.O001 inch.

Despite the fact that spacer blocks were inserted in the sandwich

at the supports to prevent local distortion, downward displacements of

the upper face were observed immediately above the supports. These

displacements, on the order of 2 to 4 percent of the maximum deflections

at the center of the beam, were probably caused primarily by thickness

change of the beam, since gages placed directly on the supports showed

no support displacements. In correcting for the upper-face sheet

displacements above the supports, the vertical displacement of the

"middle surface" of the sandwich at each support was taken as one-half

of the face-sheet displacement. The deflections at points away from the

supports _ere then referred to the straight line connecting the middle-

surface points immediately above the supports. Away from the supports,

gages placed in contact with the lower-face sheet showed that no thickness

change occurred in the beam and that the deflection of the upper face
could therefore be taken as the deflection of the middle surface. The

deflections varied linearly with applied load.

The described manner of correcting the deflection for the distortions

above the supports resulted in calculated values of Dy which were

practically independent of the choice of station whose deflection was

used in the calculation. The calculated values of Dy were obtained

from the deflection curve drawn through the corrected deflections at

the gage stations. The following formula, based on the assumption

of a uniform beam subjected to constant moment Pd_ was used:

Dy = (Pd)Ys(S - Ys) (20)
2bws
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where

P load applied at each end of beam, pounds (see
fig. 5(b))

d distance between the load and support, inches (see

fig. 5(b))

Ys distance from left support to any station, inches

w s

L

deflection at station Ys, inches

distance between supports, inches (see fig. 5(b))

b width of beam, inches (1.92 in.)

L L 2

This formula was applied at three stations, Ys = _, _, and _L. The

three values thus obtained differed from one another by no more than

2 percent in any test; the average of the three values was taken as

the true value of Dy.

Evaluation of DQy.- The beam test specimen and span lengths used

in evaluating DQy were the same as those used in evaluating Dy (see

figs. 6(a) and 6(b)). The beam was subjected to several different lateral

loadings, each being of a type to produce transverse shear. These

loadin_s are illustrated schematically in figure 6(a) and the experi-

mental values of DQy obtained from each test are also given. A

photograph of a typical test setup is shown in figure 6(b). Deflections

were measured between the supports at six stations for the shorter span

and at eight stations for the longer span and also immediately above the

supports.

As in the tests for Dy, slight downward displacements of the upper

face were observed immediately above the supports. These displacements

were generally of the order of i to 2 percent of the maximum deflection

at the center of the beam but in two cases were as high as 3 and

5 percent, respectively, at the right support. The measured deflections

were corrected for the distortions above the supports in the manner

described for Dy. The deflections varied linearly with the applied
load.

The corrected measured deflections were used to plot deflection

curves for the beam as a whole, from which values of DQv were computed.

The following formula_ based on the assumption of a uniform beam and a
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uniform runr_ing lateral load, was used to calculate DQy for those

cases in which a number of equally spaced lateral loads were applied
to the beam:

DQy = 2wsb L I

Pny s 12Dy

L - Ys

3 _ ys2(2L _ Ys]

(21)

where

P load applied at each crest or each trough of corrugation,

pounds (see fig. 6(a))

n number of loads P applied to the beam (see fig. 6(a))

Dy bending stiffness per unit width of the beam, inch-pounds

(taken as 221,000 in.-ib when L = 19.05 in. and

224,000 in.-ib when L = 24.56 in.)

The following formula was used for the case of a concentrated central
load:

1 (22)
DQy = 2wsb

i (3L2 4ys 2)
PYs 2_ -

where

P load on the beam_ pounds

The deflections substituted in these formulas were the deflections at

values of Ys of 0.2L 3 0.4L, 0.6L, and 0.8L. Thus_ the formulas

yielded four values for each test. These values differed from one

another at the most by ll percent and their average was taken as the

true value of DQy for the sandwich.

Evaluation of Dxy.- A sandwich panel, 59.84 inches long by

21.11 inches wide_ was twisted to determine Dxy. The faces of the

panel were bent up along the edges to form flanges to which were bolted,

i
on two sides and one end of the panel, three steel plates of R-inch

nominal thickness and 3-inch width. (See figs. 7(a) and 7(b).) A

somewhat wider steel plate was placed at the remaining end and it was,



NACATN 2289 19

in turn_ bolted to a rigid backstop with sufficient clearance to

permit warping of the plate out of its plane. To the steel plate at

the opposite end of the panel was bolted an aluminum-alloy loading plate

(not shown) to which the torque was applied. The steel plates were

bolted to the sides of the panel in order to help achieve a state of

pure twist in the panel. Strain gages were placed back-to-back on the

faces and corrugation legs across the width at the midlength of the

panel in order to determine to what extent a state of pure twist (that

is, constant face shear stress and zero corrugation shear stress) had

been achieved. The dimensions of the panel are shown in figure 7(c).

Loads were applied in increments of 2000 inch-pounds up to a

maximum of i0_000 inch-pounds and removed in the same increments.

Deflections of the panel were measured at seven stations across the

width at each of four stations along the length (see fig. 7(d)), the

stations starting approximately 12 inches from the supported end and

spaced approximately 12 inches apart. The measured deflections varied

linearly both across the width and along the length and were proportional

_2w
to the applied load. From the measured deflections_ the twist

was computed. The twisting stiffness Dxy was then obtained from the
formula;

-

_x _y

1 T'
F_(T - )

_2w

_x _y

(23)

where

b

T

T'

width of panel (21.11 in.)

applied torque, inch-pounds

2
torque required to twist side plates, pound-inches

  ,ooo
(see reference 6, equation (156))
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The linearity of the deflections across the width and along the

length indicated that a state of nearly pure twist was being achieved.

The strain-gage measurements tended to confirm the existence of this

state of pure twist. They showed that, except in the first two cells

near each edge of the panel, the face shear stresses were very nearly

uniform across the width, with only one value departing as much as 8 per-

cent from the average. In the same region_ the corrugation-leg shear

stresses were generally less than I. 5 percent of the face shear stresses.

In order to investigate whether the use of side plates was necessary

to the experimental evaluation of Dxy , the test was repeated with the

side plates removed. The shear-stress distribution across the width

became considerably nonuniform} the deflections were still linear across

the width but departed slightly from linearity along the length. The

test value of Dxy _ based on the twist in the central portion of the

panel, was only about 0.85 as large as the experimental value obtained

with the side plates on. This result indicates that side plates are

desirable in order to minimize edge effects and achieve a state of pure

twist when testing for Dxy.

DISCUSSION

Formulas have been presented for evaluating the elastic constants

of a corrugated-core sandwich plate of either the symmetrical or

unsymmetrical type. The formulas are rather comprehensive and precise,

but reductions to several important special cases have been made and

practical approximations to a number of the formulas have been given.

Tests have been run to verify the formulas for three of the more important

constants and, indirectly, the basic assumptions in their derivations.

The formulas given are limited to plates stressed in the elastic

range and not subject to local buckling. Engineering adaptation of the

results to cases involving plasticity and local buckling can probably

be made; however, attempts at such an adaptation were beyond the scope

of the present study.

Each component of the sandwich (face sheet or core sheet) is

assumed to be composed of homogeneous isotropic material. In actual

construction this assumption may be violated by the presence of

perforations in one sheet to facilitate the driving of rivets in the

other sheet. In evaluating the elastic constants the presence of the

perforations can be accounted for approximately by assuming a homoge-
neous face sheet of reduced modulus.
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Whenvalues of the elastic constants for a given corrugated-core
sandwich plate are substituted in equations (i) to (6) or (i') to (6'),
the resulting equations describe approximately the distortions of an
element of the plate under load. The distortions are described only
approximately, because the actual plate does not behave in quite the
manner assumedfor the idealized plate. In particular, straight
material lines in the thickness direction will not remain straight
under the presence of shear but will tend to warp. In evaluating the
transverse shear stiffness DQx or DQy theoretically, therefore, the
problem arises of choosing an average straight line through the warped
one in order to define a transverse shear strain for the cross section.
Fortunately, for most sandwiches the plausible range for choosing this
straight line is small and causes only a slight ambiguity in extending
the definition of DQx or DQy to an actual plate. For the corrugated-
core sandwich as analyzed in appendixes D and E, the average straight
line was taken as the one passing through corresponding material points
in the middle surfaces of the face sheets. This line has the minimum
deviation from the true warped line (as determined by least squares)
provided the core is ignored and is probably satisfactory whenever the
effective contribution of the core to the total cross-sectional moment
of inertia is small. The tendency of the originally straight lines to
warp introduces a further complication inasmuchas any restraint against
such warping (due to the mutual interference of adjacent parts of the
plate) will tend to increase the transverse shear stiffness. Such
restraint will be small except in the region of concentrated loads.
In the theoretical derivations, the conservative assumption was therefore
madethat there is no restraint at all against warping. Since the
tendency of originally straight lines in the thickness directions to
warp is a function of the type of loading, experimental values of DQx
or DQy, as determined through beamtests, should, in principle, vary
according to the type of spanwise loading distribution used. The
variations observed in the tests to determine DQv, however, (see
fig. 6(a)) seemedto be caused moreby scatter and other factors than
by the type of load distribution.

Since the primary application of the elastic constants will probably
be to sandwich-plate theory, it should be mentioned that the force-
distortion equations (i) to (6) or (i') to (6') represent one component
of such a theory. If to these equations are added the differential
equations of equilibrium of the element shownin figure 2 and equations
relating strains and displacements, the combination of equations will
constitute a complete formulation of a sandwich-plate theory. The
force-distortion equations (i) to (6) have been presented before in
references 2 and 3, but the generalized equations (i') to (6'), which
include coupling terms, are believed to be new. The relative importance
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of the coupling terms for the corrugated-core sandwich has not been
rigorously evaluated; it would dependupon the degree of nonsymmetry
of the cross section and the type of problem under consideration. There
is reason to believe, however_ that in most cases the effect of coupling
will be slight. For a sandwich having faces of the samePoisson's ratio
but different thicknesses and having a core momentof inertia and area
which approach zero, locating the loading planes I, II, and III at the
centroidal plane between the two faces will cause all the coupling
constants to vanish. Since the core of practical corrugated-core
sandwiches will probably contribute only a small part to the total area
of the cross section and a smaller part to the momentof inertia, the
coupling constants will very likely be unimportant for properly chosen
locations of planes I, !I, and III. In such cases and for someproblems
neglecting the coupling terms in equations (i') to (6') maybe
sufficiently accurate.

CONCLUDINGREMARKS

In order to facilitate application of an existing sandwich-plate
theory to the corrugated-core type of sandwich, formulas and charts
have been presented for the evaluation of the necessary elastic constants.
Both the symmetrical and unsymmetrical types of corrugated-core sandwich
have been considered, and the extensions of the existing sandwich-plate
theory required to make it strictly applicable to the unsymmetrical
type are indicated.

The formulas and charts presented are limited to plates stressed
in the elastic range, which are not subject to local buckling. The
formulas are rather comprehensive and precise, but reductions to
several important special cases have been made. Practical approximations
to a numberof the formulas have been investigated numerically and found
to be sufficiently accurate for most practical cases.

The formulas for three of the elastic constants were checked
experimentally and found to give values in close agreement with
experiment.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va. 3 November203 1950
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APPENDIX A

SYMBOLS AND DEFINITIONS

plane I

plane II

plane III

plane in which Nx

parallel to faces

plane in which Ny
parallel to faces

plane in which Nxy

parallel to faces

acts and in which

acts and in which

acts and in which

_x is measured 3

Ey is measured,

7xy is measured_

CxDc

Cxy

C
YY

Cyx

DQx,DQy

General Sandwich Symbols

coupling elastic constant representing curvature in

82w
x-direction produced per unit of Nx applied;

8x 2

also strain in x-direction _x per unit of -Mx3
pound -I

coupling elastic constant representing curvature in

82w

x-direction produced per unit of Ny applied;
8x 2

also strain in y-direction _y per unit of -Mx_
pound -I

coupling elastic constant representing curvature in

y-direction _y2 produced per unit of Ny applied;

also strain in y-dlrection _y,. per unit of -My_
pound -1

coupling elastic constant representing curvature in

y-direction produced per unit of Nx applied_
8y2

also strain in x-direction _x per unit of -My,
pound -1

transverse shear stiffnesses_ per unit width_ of a beam

cut from plate in the x- and y-directions_ respectively_
pounds per inch
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Dx,Dy

Dxy

Ex_Ey

Gxy

Mx_My

Mxy

Nx

Ny

Nxy

Qx,Qy

T

U_V,W

X

Z

7x,7y

bending stiffnesses_ per unit width 3 of a beam cut from

plate in x- and y-directions_ respectively, inch-pounds

twisting stiffness of unit-width and unit-length element

cut from plate; with edges parallel to x- and y-axes,

inch-pounds

extensional stiffnesses of plate in x- and y-directions,

respectively_ pounds per inch

shear stiffness of plate in xy-plane_ pounds per inch

resultant bending-moment intensities in x- and

y-directionsj respectively_ pounds

resultant twisting-moment intensity with regard to x-

and y-directions, pounds

intensity of resultant normal force acting in x-direction

in plane I, pounds per inch

intensity of resultant normal force acting in y-direction

in plane II, pounds per inch

intensity of resultant shear force acting in x- and

y-directions in plane III, pounds per inch

intensities of transverse resultant shear acting on cross

sections parallel to yz-plane and xz-plane, respec-

tively, pounds per inch

82w
coupling elastic constant representing twist _-_ pro-

duced per unit of Nxy applied; also one-half the

shear strain 7xy per unit of Mxy , pound -I

displacements in x-, y-, and z-directions, respectively,
inches

coordinate, measured parallel to corrugation direction,
inches

coordinate_ measured parallel to faces and perpendicular

to corrugation direction, inches

coordinate, measured perpendicular to faces, inches

shear strains associated with Qx and %, respectively
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_xy

_x,_y

_x_by

_'x_'y

shear strain_ with respect to x- and y-directions_ of
plane III

strains of plane I in x-direction and of plane II in
y-direction_ respectively

Poisson's ratios associated with bending in x- and
y-directions; respectively

Poisson's ratios associated with extension in x- and
y-dlrections; respectively

AI

A2

al_a2
b13b2
ci_c2
dl_d2
el_e2
fl;f2
gl_g2
Jl,J2
kl_k 2

RCI_RC2

Ril_Ri 2
_I_2
_i,_2

Corrugated-Core Sandwich Symbols

area per unit width of corrugation cross section parallel
to yz-plane, inches

area_ in width 2p, lying between corrugation center
line and lower-skin center line (see fig. C4 of
appendix C); square inches

area_ in width 2p; lying between corrugation center
line and upper-skin center llne (see fig. C4 of
appendix C), square inches

dimensions of corrugation cross section consisting of
straight lines and circular arcs (see fig. D5 of
appendix D)

b width of test beamor panel; inches
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B3,B4,B6,B 7 nondimensional parameters in formula for S (equa-

tion (DI9)) for a symmetrical corrugated-core sand-

wich, defined by equations (D20)

• C7 nondimensional parameters in formula for S (equa-
tion (D17)) for a corrugated-core sandwich, defined

by equations (D18)

distance between load and support of test beam, inches

EI,E 2 moduli of elasticity for lower and upper faces,

respectively, psi

E C modulus of elasticity of corrugated-core sheet material,

psi

E' C

EA x

stretching modulus of elasticity of corrugated-core

sheet material, used in derivation of DQy, psi

extensional stiffness of corrugated-core sandwich plate

in x-direction (bendi_ng in x-dlrectlon prevented), pounds

per inch (Elt I + EcA C + E2t2)

EAy

EI x

extensional stiffness of corrugated-core sandwich plate

in y-directlon (restraining effect of corrugation

ignored; bending in y-dlrection prevented), pounds per

inch (Elt I + E2t2)

bending stiffness, per unit width, of a beam cut from

corrugated-core sandwich plate in x-direction, inch-

pounds (Ec._ + _itlk_x2 + Ec_(k_ - k_2 +

bending stiffness, per unit width, of a beam cut from

corrugated-core sandwich plate in y-directlon

(restraining effect of corrugation ignored), inch-

GI,G2,G C shear moduli of elasticity of lower-face, upper-face,

and corrugated-core sheet materials, respectively, psi

GA unit shear stiffness of corrugated-core sandwich plate

with respect to x- and y-directions (twist prevented),

Gctc2 2)
pounds per inch Glt I + --_ + G2t

_C
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GJ

h

hEC

KAy,KAz
K I ,KI

y z

KL

KLy,KLz

KLyz

ky,kz

klh,kllh,kll _

kch distance between middle surface of lower face and plane

which cuts corrugation into lobes of equal area (also

shear center of corrugation), inches

torsional stiffness, per unit width, of a beam cut from

corrugated-core sandwich plate in x-direction, inch-

opounds itlkGJ-j2 + AC (kG-_ - kC)2 + G2t2(l- kG-_)

distance between middle surfaces of face sheets_ inches

depth of corrugation, measured vertically from center

line at crest to center line at trough (see fig. D5

of appendix D), inches

core thickness of sandwich plate (see fig. D5 of

appendix D), inches

moment of inertia of width 2p of cross section parallel

to yz-plane, take9 about centroidal axis parallel
to y-axis, inches*

moment of inertia, per unit width, of corrugation cross

section parallel to yz-plane, taken about centroidal

axis of corrugation cross section, inches 3

nondimensional integral parameters in equations for B3,

B4, B6, B7, C1, C2, . C7, functions of corru-

gation cross-section geometry, defined by equations (D15)

for general case and by equations (D21) and (D22) for

corrugation having a cross-sectlonal center line con-

sisting of straight lines and circular arcs

nondlmensional parameters locating origin of y- and

z-coordinates, respectively (see fig. D3 of appendix D)

distances between middle surface of lower face and

planes I, II, and III, respectively (see figs. BI and

C1 of appendixes B and C, respectively), inches
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k_h distance between middle surface of lower face and

centroidal axis of corrugation cross section parallel

to yz-plane, inches

distance between middle surface of lower face and

centroidal axis associated with EIx, inches

k_Ec_ + E2t 2
q

distance between middle surface of lower face and

centroidal axis associated with EL,_ inches
J

kG-_h distance between middle surface of lower face and "zero-

shear plane" associated with GJ 3 inches

kGj - GA

length of one corrugation leg, measured along center

line_ inches

L distance between supports of test beam, inches

2p corrugation pitch (see sketches in figs. 3 and 4), inches

P load applied to test beam, pounds

Q static moment about centroidal axis of cross-hatched

portion of cross section shown in figure EI_ inches 3

nondimensional coefficient in formula for

EC I/tcl 3

D% = Sh(1_  C2]\hcj

D%,

coordinate measured along center line of corrugation

cross sections parallel to yz-plane; see, for example,

figures C2, D3, and E3, inches
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tl,t2,t C

_i,_2,_C

thicknesses of lower-face, upper-face, and corrugated-
core sheets, respectively_ inches

angle between face sheets and straight diagonal portion
of corrugation leg (see sketches in figs. 3 and 4)

Polsson's ratios for lower-face, upper-face, and
corrugation materials, respectively

angle between face sheets and tangent to corrugation
center line (see fig. D3)

approx

Subscript

approximate value
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APPENDIXB

DERIVATIONOFFORFITLASFOR Dx_ Dy, _x_ _y_

'x, _'y_ Cxx, Cxy_ Cyx_ AND Cyy

EX_ Ey_

In the derivation of the formulas for the elastic contants associ-

ated with bending and stretching an element of a corrugated-core sand-

wich plate is considered which is subjected to bending moments of

intensity Mx and My and to horizontal resultant forces of intensity

N x and Ny at arbitrary distances klh and klih , respectively, above

the middle surfaces of the lower face. (See following fig. )

, Plane'ff

h

Figure BI

Equations are derived relating the distortions of this element to the

forces and moments producing them; in these equations terms corresponding

to Dx_ Dy_ _x, _y_ Ex_ Ey, _'x, _'y, Cxx, Cxy' Cyx_ and Cyy

are evident. The general formulas thus obtained are reduced for special

applications.

The moment Mx and force Nx are assumed to be resisted by both

the bending and extensional stiffnesses of the core and the extensional

stiffnesses of the face sheets; the moment My and force Ny are

assumed to be resisted only by the extensional stiffnesses of the face

sheets.
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Vertical lines drawn between middle-surface points in the upper

and lower faces of the undistorted element are assumed to remain perpen-

dicular to the faces and unchanged in length during distortion of the

element. The distortion of the element as a whole will therefore

consist of curvatures _2w and _2w. The middle surfaces of the faces

_x 2 _2

will be strained in the x- and y-directions; it is convenient to imagine

the existence of other horizontal planes in which the strains may be

obtained by linear interpolation between the upper- and lower-face

middle surfaces.

Inasmuch as the moment My and the force Ny are assumed to be

resisted only by the extensional stiffnesses of the face sheets, the

direct stresses in y-direction in the middle surfaces of the lower- and

upper-face sheets oYl and OY2 are statically determinate and are

given, respectively, by

qYl = tl h tl
(B1)

My. + NYkl I
_Y2 = - t2 h t2

(B2)

If, in addition, the middle-surface strains in the x-direction
6x I

and 6x2 in the lower- and upper-face sheets, respectively, were known,

the state of deformation of the element would be completely fixed. These

two strains can be determined from two conditions: namely, that the

thrust intensity in the x-direction is N x and the moment intensity in

the x-direction about plane I is Mx, or

N x = cXltl + Cx2t2 + _xcAC
(B3)

Mx = qXltlkih - ax2t2(1 - kIlh
_x 2

(B4)
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whe re

_Xl direct stress in the x-direction in the middle surface of lower face

qx2 direct stress in the x-direction in the middle surface of upper face

_Xc average direct stress in the x-direction in corrugation (also direct
stress in the x-direction at centroid of corrugation)

The terms qXl , _x2 , _Xc , and 82---Kcan be replaced by the following
8x 2

expressions in terms of _Xl and Ex2:

Ox I = Elex I + _l(_yI

= Elex I i

= E2_x2 +Ox 2 _2_Y2

= E2Ex2 + _2 _ + t 2 /

(B6)

82___w= _x2 " _Xl (B8)

8x2 h

°x C x
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Equations (B3) and (B4) then become

Exl[Eltl + EcAc(I- k_ll + gx2(E2t2 + EcAck_I =

h2 ]

Ex21E2t2(I- kI)- kcEcAc(kI - k_) + ECh_2I] =

Solution for _i and _x2 gives

ExI CxxI --_ - #lCxyI + _XXlNX - _l@XYlNy= -5-

Mx My
_x2 = -_xx2 _ + #2_xY2 T + t;xx2 Nx - P'2"¢'xy2Ny

(B9)

CBIO)

BII)

( B12 )
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where

k_xh2

_XX 1 =
EI x

_x_:¢-(_x-_)(_-_->_
EAx EI x

=-_!_l + (k_x_ kli) k_xh2_xYl E-_x E-Yx +

_Y2

< iIlk°x k xh2kli i - E__x -

i __ __x(_x-_)(__x)_
EI x

1 - k_x)k_xh2

EI x

J

(m3)
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and

E-Ax = Elt I + EcA C + E2t 2

kEl x -

k6EcA C + E2t 2

EA x

_x = ECI C + _Itlk_x2 + EcAc(k _ - kE-Ix)2 + E2t 2 (i - E1

(BI4)

With the strains in the x-direction and the stresses in the

y-dlrection known, the strains in the y-direction _Yl and 6Y2 in the

middle surfaces of the lower and upper faces, respectively, are determined

through the plane-stress relations:

_Yl = El J Yl - _icxl

=(} - _221a_Y2 E2 7 Y2- _2_x2

(B15)

(BI6)

or after elimination of °YI' °Y2' eXl , and Ex2 by means of

equations (B1), (B2), (Bll), and (B12),

¢=1  l XXlMx: -- - T + _lNY - _l_x_iNx (BI7)

_Y2 - CYY2 My + _2¢xx2 Mx: _ T + "¢'Yy2Ny - _2"¢xx2Nx
(BI8)
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where

_yyl = (i- _12) kE--fyh2

Ely
+ _12_XYl

+ t.,u22_xy 2

% J

(%-_,)(,-%),q
_TY + _22_/2

and

EAy = Elt I + E2t 2

E2t2

and _XXl , _xx2 , ,XXl, *xx2, _xYl, _x72' *xYl, and *xy 2

defined in equations (BI3).

(B19)

(_2o)

are
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With the strains EXl, _x2, _YI' and _Y2 knownand the assump-
tion madethat lines normal to the faces remain normal, the distortions
of the element are completely defined. The curvatures can nowbe
written as:

82w 6x2 - 6Xl

8x 2 h

(¢x_2 ¢_0 Mx= _ + + + l xy:j_ +

(_XX 2 -1/XXl)"_- (_2_xy 2 - _l_XYl)_"_ y (B21)

82w _Y2 - _Yl

_2 h

(B22)

The strain in the x-direction in the plane of Nx is

!

_ _ X_
_ X _ _Xl _ kI _ X2

(B23)
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and the strain in the y-direction in the plane of Ny is

Ey = _yl + kii(_y 2 - _y_

Comparison of equations (B21) to (B24) with equations (I') to (4'),

respectively, permits identification of the following expressions for
the elastic constants:

Dy = E-_yll - C22<I

I -EI x

n

Dx = El x

EIy

(B25)

(B26)

_x: _2 + (_I" _2)k_x
(B27)

Dy

_y = _x Yxx (B28)

(B29)
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Cxy =

Cyx=

Cyy = -

Cxx = _

(k_ x - kI)h
m

EI x

- ii)h
EI x

+ (_i- _2)( I - kll) k_'_xh-
El x

_2 (kE-Ix - kl)h

El x

(_y - kII)h

EIy
* _221kE-Iy - kIl)h

EIy

( kE-Ix - klI)h] +

(B33)

(B34)

(B35)

(k_y - kII)k_ 1

_y E-Axh

(B36)

For the usually encountered case in which the Poisson's ratios for

the two face sheets are equal (that is, _2 = _l )' the foregoing

expressions for the elastic constants become appreciably simplified and

are

Dx : E-fx (B25')

Dy = E-ly - _i2 _ix /

( B26' )

_x = _i
(B27')
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Ey +

-1

B'X = _i

i + (kE-ix- kl) 2 _-_xh2Elx-

+

(B28')

(B29')

(B30')

(B31')

(B32')

CXX = -

k_x - ki) h

D

El x

B33')

Cxy =
-

EI x

B34')

Cy x = -_iCxx B35')
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Cyy = -(i - _12)(k_y - kll)h

Ely

- _lCxy (B36')

It is evident from the preceding two sets of formulas that the values

of the constants associated with stretching and also the values of the

coupling constants depend upon the location of planes I and II in which

the stretching forces Nx and Ny, respectively, are applied. Choosing

planes I and II at the centroids of the transformed, cross sections

parallel to the yz- and xz-planes, respectively, Qthat is, let-

ting k I = k_x and klI = k_-_y) results in further simplification of

the formulas and reduces two of the coupling constants to zero. Equations

(B25') to (B36') become

Dx -_E-fx (B25")

= l- -_

Dy _12 EI_]]

(B26")

_x = Ul
B27"

B28"

Ex = EA x

E_

EA x

-1

 ,fhT&-k 2
Elx ]J

B29"

B30"

_' B31"X = _i
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Ey

_'y = _'x Ex
B32")

Cxx= 0 B33")

Cxy =
_(_x-_)_

Elx

B34")

Cyx = 0 B35")

Cyy : -_ICxy B36")



44 NACA TN 2289

APPENDIX C

DERIVATION OF FORMULAS FOR Dxy , Gxy , AND T

In the derivation of the formulas for Dxy , Gxy , and T, an ele-

ment of a corrugated-core sandwich plate is considered which is sub-

Jected to shear flows ql' q23 and qc in the middle surfaces of the

lower-face, upper-face, and core sheet, respectively. (See following

fig.)

m

Trr

Z ,W

Figure Cl

These shear flows may be represented by a resultant horizontal shear

force of average intensity Nxy acting in some arbitrarily chosen plane,

denoted as plane III, and a twisting moment of average intensity Mxy

82w

about this plane. The shear flows induce a twist _-_ in the element

as a whole and shear strains 71 , 72, and 7C in the middle surfaces

of the face and core sheets. By linear interpolation (or extrapolation)

between the middle surfaces of the face sheets, a shear strain for every

horizontal plane can be defined. In this appendix equations are derived

82w

relating the twist _y and the shear strain 7xy of plane III to
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the resultant forces of intensities Mxy and Nxy which produce them.
From these equations general formulas for Dxy, Gxy, and T are
obtained. These general formulas are then reduced to special forms for
particular applications.

The orthogonal x- and y-axes are taken in the as yet undetermined
plane of zero shear strain, as shownin the figure.

Assumptions.- Vertical lines drawn between middle-surface points

in the upper and lower faces before twist are assumed to remain perpen-

dicular to the faces and unchanged in length during twist. The shape of

the corrugation in planes parallel to the yz-plane is assumed to be

rigidly maintained, whereas displacements in x-direction of the corru-

gation between lines of attachment to the faces are freely permitted.

In order to eliminate rigid-body displacements, the corner of the ele-

ment (x = 0, y = 0) is assumed to be fixed in space, and the originally

vertical line at the corner is assumed to remain vertical, that is, in
coincidence with the z-axis. The distortion of the element is main-

tained only through the constant shear flows ql and q2 in the faces

and qc in the corrugation) that is, the face and corrugation sheets

are assumed to be so thin that twisting moments developed in them are
negligible.

_2w

Displacements.- In terms of the twist _ and the height hI

of the xy-plane above the middle surface of the lower face, the hori-
zontal displacements of points in the middle surface of the lower

face uI and vI may be written as

_2w

u i = -hlY _---_y (el)

_2w

vI = -hlX _-_ (C2)

The horizontal displacements of points in the middle surface of the

upper face u2 and v2 are

_2w

u2 : ½y (c3)

_2w

v2 = h2x _ (C4)



46 NACA TN 2289

The displacement in the x-direction of the corrugation middle-surface
crest line mm' is

82w

um = h4p _-_ (C5)

and that of the trough line nn' is

u n : 0 (C6)

Vertical displacements are given by

82w

w = xy_-_-_
(C7)

Shear strains in the faces.- In terms of the foregoing displacements_

the middle-surface shear strains in the faces 71 and 72 can be

written as

_i _Vl _2w

71 = + = -2hl (C8)

;_2 ;_2 82w

72 = _ + x_ : 2h2
(09)

Shear strain in the corrugation.- The shear strain in the corruga-

tion can be determined by considering the portion between a crest and

the adjacent trough as a beam which is being twisted about the x-axis

82w

at a constant rate _-_ with the shape of the corrugation in planes

perpendicular to the x-axis rigidly maintained. (See the following

fig.)
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Figure C2

The constant shear strain 7C in the corrugation must be such that
continuity of displacements in the x-direction is maintained between
the corrugation and the face sheets. With u and v' denoting axial
and tangential displacements_ respectively, of the corrugation middle
surface and s denoting the distance from nn' measuredalong the
corrugation center line 3 the shear strain in the corrugation at any
point P maybe written as

7c

= _ss - r _-_ (CIO)

where r is the perpendicular distance from the axis of twist Ox

the tangent at point P and is considered positive if the tangent

passes below point 0 (as in fig.) and negative if it passes above.

to
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Integration of (CI0) with respect to s between points n and m

gives

Jo J0'ds = 7c ds + _-_ r ds

where Z is the length of one corrugation leg, measured along center

line, or

82w _0 Zum - u n = Z7C + _ r ds
(ell)

The integral in equation (CII) represents twice the net area swept out

by the radius vector 0 in going from n to m, or, as can be seen

from the following figure, it equals twice area I minus twice area II.

Area 1"1"7

_-m_

I \;_,azl ..

Figure C3

With

Area I - Area II=- Z_A (c12)

equation (CII) becomes

82w

um - un = Z_'C + 2 2_-_
(C13)

Continuity between core and faces requires that um - u n as given by

equation (C13) be equal to u m - u n as given by equations (C5) and (C6).

Therefore 3

_2w _2w

Z7C + 2Z_A _-_ = h4P
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or

i _2w

7C = (h4P - 2 ZkA)T

PJ c
(Cl4)

_ ZtC

where A C equals P , the
width.

corrugation cross-sectlonal area per unit

The area ZkA which appears in equation (C14) and is defined by

equation (C12) depends simultaneously on the vertical location h3 of

the axis of twist and on the geometry of the corrugation. Through

purely geometrical considerations, ZkA can be related to two other

areas, one of which ph 3 depends only on the vertical location of the

axis of twist and the other of which depends only on the geometry of

the cross section. The relationship is

ZkA = _ h3P - _ 1 - A2 - P(tl - t2
(C15)

where A I is the area, in width 2p, lying between the corrugation

center line and the lower-skin center line, and A 2 is similarly the

area lying between the corrugation center line and the upper-skin center

line. (See the following fig.)

t2

L__ 'qY_f_

CI 2p -

Figure C4

With ZkA in equation (C14) eliminated through equation (C15),

the equation for 7C becomes

7C = lh2 - hI A21tc _2w (C16)
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Shear flows.- With the shear strains known through equations (C8),
(C9), and (C16), the following expressions may be written for the shear

flows:

_2 w

ql = -2Glhltl _-_ (C17)

_2w

q2 = 2G2h2t2 _-_ (C18)

h Al " A2-)tC2 _2w (cz9)

_2w

These expressions give/the shear\ flows in terms of the twist _x--_ and
the vertical location _hl, h_ of the plane of zero shear strain. In
order to determine the elastic constants, the shear flows must be

_2w

expressed in terms of the twist _-_ and the shear strain 7xy of

plane III. The shear strain of any horizontal plane varies linearly

with the distance from the xy-plane and must be consistent with the

twist; hence,

or

and

hI = kiilh - _ _2w

h2 = h - hI

(020)

= (i - kii_h +- _

i 7x__

2 _2 w
(c2l)
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Using equations (C20) and (C21) to eliminate h I and h 2 from equa-

tions (C17) to (C19) gives the following expressions for the shear
flows:

ql = -2Gltl(kllIh _-_ -__2w 1 7_ (022)

q2 : 2G2t2 - kii I h _ + _ 7 (C23)

Gctc2{_ I - I) + AI 2pA2-__ xy1qC = -_----' 2kII_h + 7 (C24)

The resultants of the shear flows_ namely Nxy and Mxy _ may now be
evaluated.

Evaluation of N .- The shear flows
x7

give a resultant horizontal shear flow of

ql' q2' and qc combine to

Nxy = ql + q2 + _ (C25)

where ql' q2' and qc are given by equations (C22) to (C24).

Evaluation of Mx7.- The average value of Mxy can be determined

by taking moments, in the yz-plane 3 of qi, q2_ and the horizontal

components of qc with respect to plane III. Use is made in this

section of a horizontal plane which cuts the corrugation center line

into lobes of equal area. This plane_ which is shown as plane IV in

the following sketch at a distance kch above the middle surface of the

lower face, is the centroid (or shear center) of the corrugation shear
flows.

Figure C5

N J_.CA
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Taking moments with respect to plane Ill gives

(C26)

where ql' q2' and qc are given by equations (C22) to (C24).

82w
and _--_-.- Sub-

Evaluation of Nxy and Mxy in terms of 7xy ox aF

stitution of equations (C22) to (C24) into equations (C25) and (C26)

A1 - A2

and elimination of 2ph through the purely geometrical relationship

= + (c27)

gives

-- _%
_x_:_x_°_+__ _(_- _i)_ (c28)

where

_
Mxy : 7xyGA(k_- _ - kiii) h + 2 _-_y_ - kii I

(C29)

Gctc 2

GA = Glt I + AC + G2t2 (C30)

GJ =

Gctc2kc

+ G2t 2

kG-j : G--A (C 31 )

tlk_ 2 + Gctc 2/ )_
(C32)
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Solution of equations (C28) and (C29) gives

(kG7- klli)
2GJ

(C33)

kln)h
GJ x + _V _]

(c34)

Comparison of equations (C33) and (C34) with equations (5') and (6')

permits the identification of the following elastic constants:

Dxy = 2GJ (C35)

Gxy=
GA

1 + GA/k__ - kIII ]2h27_-y_oJ

(C36)

Choosing ki11 equal to

kiii)h
2GJ

kG-_ reduces the foregoing equations to

Dxy = 2GJ

Gxy = GA

T=0

(C37)

(c35')

(C36')

(c37')
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APPENDIX D

DERIVATION OF FORMULA FOR D%

In this appendix a formula for the transverse shear stiffness DQy

is derived which is fundamentally the same as that given in reference 4

for the case of interference of flats neglected but extended slightly

to include the effects of stretching of the corrugation and the preven-

tion of anticlastic curvature. The general formula is reduced to

special forms for specific applications.

The element of a corrugated-core sandwich shown in the following

figure has unit width normal to the page and is in equilibrium under a

small transverse shear of unit intensity (Qy = l) and horizontal forces
of magnitude p/h. The corrugation is assumed to be fastened to the

skins through rigid joints at its crests and troughs.

r - t2

* ,

2p ...........

Figure DI

For small Qy the relative distortions of the element are proportional

to Qy. These relative distortions 5y and 5z are shown in the

following figure:

Figure D2

Y
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An average shear strain yy may be taken as _Y - mSz and the transverse
h p

shear stiffness DQy is then given by the ratio of shear intensity to

shear strain 3 or

_ _ 1 (D1)DQy
h p

The sandwich plate element is now analyzed as a statically indeter-

minate structure to determine the displacements 6y and iz" Substitu-

tion in equation (DI) then gives a general expression for the calcula-

tion of DQy in any particular case. In the analysis of the unit-width

element the assumption is made that the element is part of a sandwich

having its width normal to the page equal to infinity. The corrugation
and skin elements are therefore taken as beams in which anticlastic

curvature is completely restrained, which amounts to multiplication of

the beam flexural stiffnesses by factors of the type i In order
i - _2"

to obtain values more consistent with experiments in which relatively

narrow beams are used_ the Poisson's ratios _ may be set equal to zero.

In the following figure are shown free-body diagrams for elements

of the corrugation and skins. These elements are represented only by
their center lines.

z2pZ/I , I_2Z2 p

k.__

(_ z,

---5

xl
z, ®

NACt,

r

[ _('c+',)

Figure D3
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The distortions of the elements, assumedsmall, are shownin the
following figure:

T

®

@

Figure D4

It should be noted that the forces Y on the corrugation elements are

considered as acting in the midplanes of the skins and transmitted to

the corrugation through short rigid projections. Similarly, the

moments MI and M2 are taken about points in these planes and are

not the actual moments in the corrugation sheets at the Joints.

Since the undeformed structure is symmetrical about any plane BE,

all forces and deformations in the two corrugation elements EA and EC

are equal_ as likewise are those in the two skin elements ED and EF

and in the two skin elements BA and BC. Then the skin moments at B,

D, and F are zero, and each skin element is in equilibrium under its

shear ZI or Z2 and its moment Zlp or Z2p at one end.

Since a shear of unity is assumed to act on the sandwich, the

relation between the shear carried by the corrugation X and the shears

carried by the two skins ZI and Z 2 is

X - ZI - Z2 = i (D2)

Static equilibrium of the corrugation elements requires that

M2 - MI +_ -Xp = 0 (n3)
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Equilibrium of moments at Joint E requires that

M I + ZIp + M I + Zip = 0

or

ML = -Zlp (D4)

Similarlyj at an upper joint

M2 = Z2P (D5)

Finally, the internal moment M at any point in the corrugation sheet
is given by

z]M = _2 + (t2 + tc * kzhc)+ - X -_- + y) (D6)

The foregoing five equations are all the static relations needed.

With the rotation of A with respect to the horizontal tangent

at E denoted as ¢, the deformation 5z may be written for the

lower and upper skins, respectively, as

_Z =

ZIp3

(D7)

Z2p3

(D8)

Deformations in the corrugation sheet are due to both bending and

stretching. The three components of the displacement at A or C
with respect to the tangent at E are

EC IC/(i - _C

(D9)
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ECI C/(1 - _C 2) M (t2 + tc + kzhC) + ds +

1 _(Y cos $ + X sin 9)cos I/ ds
E'ctc/(I - _C 2)

(DiO)

1 cos , + x sin *)sin * ds
E'ctc/(1 - 2)

(Dii)

where the integrals are taken over one corrugation leg, as from A to E

or C to E (excluding the short rigid projections), s is the dis-

tance measured along the corrugation center line, and @ is the angle

between the tangent to the corrugation and the horizontal (see fig. D3).

In equations (DlO) and (Dll) E' C denotes the stretching modulus of

elasticity of the core. It has been distinguished from the bending

modulus EC in order to permit identification of the terms representing

the stretching contribution in the derivation. The Poisson's ratios

associated with bending and with stretching of the core have, however,

been assumed equal. In the rest of the derivation, the moments of

inertia per unit width I1, I2, and IC will in most cases be elimi-

nated through the relations

1
Ii = _ t13

i
12 = _-_ t23 (DI2)

I tc 3Ic =

The ten equations (D2) to (DII) contain ten unknowns for which they

may be solved. The equations can first be reduced to the following four

equations:

allX + al2Z 2 + a13 5z + 0 = r[_

a21X + a22Z 2 + a23 5z + 0 r

> (Di3)

a31X + a32Z 2 + a33 5z + 0 = r3I

a41X + a42Z2 + 0 + a44 5y = r
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where

all = i

a21=_ _c% z+ 2 e

i (to12
12 c\%/ .

a41= Ec_ [2\_+_ + kz KAz+ 2 _ KT,+ K_yz

3_2_ _c2kVd

a12 = -i

a22 = -_-- ECI C h_ L +

=_ +ky p
a32 C z 2 h C KL

a42 = - hc 3(Ic Ic_C2) _A,y

3EIII

a13 =- (i- _12)p 3

i
a = m

23 p

=a =r =i
a33 44 i

_It__c z)+ 2\_ +_+ k

+

_(DI4)

J

Equation (DI4) continued on next page
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l 311- C2) l t2tcr 2 : _ ECIc + _\_ + _ + k -_-hc

r3: h tlc %z + 2\_ + _ + _ _Az

K .2_.
2 hc KAy 12 E,c _

r4 = -h- Iy + + _ + k KAY

l/t2 tc I KL_ 1 EC (_)2 K___\_ + _ + k + 12E,c

+

(DI4)
Concluded

The quantities K_, Klz , and so on are nondimensional functions

of the corrugation shape and the origin location. They are defined by

the following integrals taken along one leg of the corrugation center

llne from the crest to the trough_ that is, from m to n in

figure D3:

if

=l S
Kiy z hc 3 yz ds

13 J z2 ds
Kly - hc

_l7KAz 2 y ds

(DI5)

KAY = _2_z as •

Equation (DIS) continued on next page
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ifK_ = _ oos2,ds

1jKLy z : _ sin 9 cos 9 ds

(mS)
Concluded

lj
KLz : _ sin2@ ds

Equations (DI3) may be solved for 8y and 8z" Substitution in

equation (D1) then furnishes the following expression for DQy:

where

S ____

D% --sh __c2/khc/

_Cc7(022cic3) c _(2c2 _Cl)3- F - _ 3 + -

(D16)

12,

(DI7)
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and

lEci1- 221
CI=K L

+ -_ E2(I I._C2)

C2 : KAz + h'P-2 _KL

2_

he

+ 12 ETC\_/ KLz

IEZ ( t___)_( ky p KL) + ky pC 4 : Kiy z + _ + 1 + KAz + 2 _ 2 _ KAy -

C5 = KAy + _ +

Itcl

E1 1 - _c2(tll 3

c7 - _'c1 _12_cj

• (DI8)

Special Cases

S_mmetrical corrugation.- The evaluation of the terms Kly ,

Kiz , . and so on in the formula for DQy depends upon the location

of the origin of coordinatesj that is, on the choice of ky and k z.

For the frequently encountered case in which the corrugation is sym-

metrical, computational advantages are gained by letting ky = k z _ l,

that is, by choosing the origin at the midpoint of the corrugation leg.

As a result the parameters KAy and KAz vanish.
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S_mmetrical sandwich.- For the case of the symmetrical corrugated-

core sandwich, elimination of KAy and KAz by choosing ky = kz = 1

is again advantageous. In addition, however, the numerator and

denominator in equation (D17) for S contain a common factor. Cancel-

lation of this factor yields the following simplified expression for S

to replace equation (D17):

S = (D19)

where

B 3 = KIz +

B4 : Kly z

+l /tc 2
B6

= KIy 12 E'C \hc/ KLy

E1 1 _ kC 21t I h3

B'-r= c7 = ]_c1 _12\Cc,/

(D20)

Corrugation center line consisting of straight lines and circular

arcs.- The center line of a corrugation leg in many cases consists of

three straight-line segments (two flats and one diagonal element)

separated from each other by two circular arcs. The following figure
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.........

hG

_hC
I

' Rc,2
r' Ri2_
I ,

0 -__',\

e

', ', rt I

// /

Rcl--"
L__

Ri I .
NACA

_y

_y

Figure D_
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shows such a corrugation leg with its dimensions. If the integrals in
equations (DI5) are evaluated for this shape, with the origin of x
and y chosen along the straight diagonal portion as shownin the figure,
the results are

:_i2_:i_!2_]

hci _Rc2) 2: T

+

= _I jl kl dl
KIyz 3\h C hc hc -

i

e_+_ +

* _-_ 22 *_L_ #*_

e_+2

_I_ ( _ _

+

(o21 )

1Q_c2/_

g:-_]]+ _" _+

g2 e_l _

Equation (D21) continued on next page
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RCl(eb el e2he _+hc - _+hc

KAy--2\hc hc hc + --_j_ - kz
+

+ - e_+

dl d2 RCI

ELy = 1 + + + cos2O + _ + (e + sin O cos e)

ELy z = + sin @ cos @ + 2\hc + sin2e

KLz = + sin28 + 2\hc + -

(D21)
Con-

cluded

If, in addition to consisting of straight lines and circular arcs,

the corrugation is symmetrical (that is, RC 2 = RC1, b2 = bl, and so on)

and the origin of y and z is chosen at the midpoint of the corruga-

tion leg (that is_ ky = kz = 1), then equations (D21) become
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2 kll2dlKTz=-_\_/ _ + 3_t_) - +

2Jl kl dl _E_'_2
K_yz: 3 he _ _ + 212t,_1

+

2_ L_(e_-+he- +_t_ 2#

2(Jl/2dl 1 fl
KIy: 7t,_l _ + C_ +

__t_ _-+ __- +_ +_

KAz = KAy = 0

dl RCI fl

K, : 2_ +20_---+_

t':l_ dz _:l.
KLy = _ + 2 _ cos2e + ._----(e+ sin e cos e)

dI RC 1

KLy z = 2 _ sin a cos a + _-- sin2e

dl RCl

KLz = 2 _ sin2e + _--(@ - sin 8 cos e)

he

(D22)

The dimensions that have to be inserted in the right-hand sides of

equations (D21) and (D22) can be obtained from a few basic dimensions
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P, hEC, Ril, Ri 2,
of computations:

t c
RCl = Ril + -_

el=(_12+hi2)lj2

a1

aI = arc tan bl

RC 1

61 = arc sin Cl

dl = (Cl 2 - RC12)I/2

e = cu1 + 81 = cu2 + 92

eI = RCI cos e

gl = IRC1
sin e

Jl = al + el

kl = bl - gl

fl_ f2, and tc) through the following sequence

hC = hEc - tc

tC
+Rc2 = Ri2 Y

a2 = kz hC - RC 2
2

=l kb2
c,:(a22+b22)lj2

a2

_2 = arc tan b2

RC 2
_2 = arc sin

c2

d2 = (c22 - RC22)I/2

e2 = RC2 cos a

g2 = RC 2 sin

J2 = a2 + e2

k2 = b2 - g2

(D23)
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These dimensions required in equations (D21) and (D22) can also be
obtained from a different set of basic dimensions (p_ hEC, Ril ,
83 and tc) through the following sequenceof computations:

hC = hEC- t C

t C t C
+RCz = Ril + T RC2 = _i2 7

he
a 2 = k z _- - RC2

eI = RCI cos 8 e 2 = RC2 cos 8

gl sin a= RCI g2 = RC 2 sin 8

Jl = al + el J2 = a2 + e2

kl = Jl cot e k2 = J2 cot e

dl = Jl csc e d2 = J2 csc e

bl = kl + gl b2 = k2 + g2

,2: b2)

Ri 2,

(D24)
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APPENDIX E

DERIVATION OF FORMULA FOR DQx

In the derivation of the transverse shear stiffness DQx , an ele-

ment of corrugated-core sandwich plate of length dx and width 2p

under a transverse shear V is considered. (See following fig.)

Oentroidol axis of faces

and core combination

-- \ y////////, "//// /

!\ //-..... !

Figure E1

The transverse shear is equilibrated by a change in bending moment dM

from one end of the element to the other. From the equation relating

the distortions of this element to the shear V 3 a general formula

for DQx is obtained. A more practicable approximate formula is then

obtained by assuming that the core carries no direct stress.

General derivation.- The direct stresses produced in the element

by the bending moment dM are assumed to vary linearly through the

thickness. Assuming the only flexibility to be that of the corrugation

in shear gives the following picture of the relative distortions of the
element:

i

8x L- ....... dx

Figure E2

h
I

i
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5x

The angle -_- is taken as an average shear strain Yx for the cross

section, and the transverse shear stiffness DQx is then given by

Qx (m)DR : =

An expression is now derived for 5x as a linear function of V for sub-

stitution in equation (El).

Elementary considerations give the shear stress in the corrugation

at a point such as m (see fig. El) as

VQ (E2)
TC = 21tc

where

Q static moment of cross-hatched area about neutral axis, inches 3

moment of inertia of cross section of width 2p about centroidal
axis, inches 4

(If faces and core are not all of the same material, a transformed cross

section should be used in calculating Q and I.) The shear strain in

the corrugation sheet is

Integration of TC
following fig.)

T C

TC = GC

_ VQ
2Gc Itc (E3)

along one corrugation-leg center line (see the

Figure E3
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gives the relative displacement 5x of one face with respect to the
other, or

0Z5 = -_xdsx

Vfo - 2Gcitc Q ds (E4)

Substitution of expression (E4) in (El) gives the following general

expression for DQx_

GcItch

DQx = Z (ES)

P_0 Q ds

Approximation.- If, as is usual, the corrugation carries only a

small portion of the bending moment M, then an accurate approximation

to DQx may be obtained by assuming that the entire bending moment is

resisted by the faces and, therefore, that the corrugation carries no

normal stress. The resulting formula for DQx will be the same as

equation (ES) but with the effect of the corrugation omitted in calcu-

lating I, _0 Z
Q ds, and the centroidal-axis location h ) that is,

2 _i2 2p)t2(l k-- _2h2I _ 2ptlIk_Yxh ) + - Elx/
(E6)

_l E___I lh_Q ds _ (2p)t2(l - k_-_x
(E7a)

or

/0 l k_xQ ds _ 2pt I hZ (ETb) "
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E 2

_ii t2

E2

tl + _II t2

(ES)

Substitution of the approximate expressions (E6), (E7), and (ES) in

equation (ES) gives the following approximation to DQx:

Gctc h2 Gctc2(h] 2

DQx Z _-_ - _ "\P/
(E9)

where the corrugation cross-sectional area per unit width h =
ZtC

P
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TABLE I,- RESULTS OF _J_RICAL SURVEY OF ACCURACY OF APPROX]S_ATE FOI_MUIAS FOR Dy,

Dxy, AND DQx. (kll = k_y)

[El =E2 =Ec] GI =G2 =GC; _i :_2:_; fl : f2; and RCI = RC2 = O.18hC_

Ey_

l Zp "I_,

RcJ

k Dyapprox Eyapprox (DQ0approxRatio Dy Ey DQx

k (dSeg) 60 90 60 90 60 90
t I

t2 -- o.811.4 o.8 1.4 0.8 1.4 o.8 1.4 o.8 _.4 o.811.4 o.8

o.3o o.99 _.99 o.99 0.99 o.98 o.98 o.97 o.98 Z.Ol 1.oo 1.ol 1.oo'2

,lo 1.oo .98 .97 .97 -97 -95 .95 .94 .95 1.ol .97 .97 .9_*:i

1.25 .97 .97 .96 .96 .94 .95 .94 .94 1.Ol .96 .96 .93 1

i. 00

.8o

Dxy) approx

Dxy

6o 9o

1.4 0.8 1.4

(_) (a) (_)

1 1 1

i 1 1

1 1 1

.30 .99 .99 .99 -99 .98 .98 .97 .98 1.00 .99 .98 .98 1 1 1 1

125 1.00 .97 .97 .96 .96 -95 .95 .94 .95 -99 .95 .93 .91 1 i l i

1.25 .97 .96' ,96 .96 .9_ .95 .94 .94 .99 .93 .92 .89 ] 1 1 1

• 30 .99 .99i .991 .99 .98 .98 .97 .98 1.o0 .98 .98 .97 1

40 1.oo .97 .971 .961 .96 .95 .95 .94 .95 .98 .94 .9e .9Ol

1.25 .97 .96 _ .95 .96 .94 .95 .94 .94 .98 .93 .91 .8811

.30 -99 .99 .99 .99 .98 .98 .97 .98 1.Ol Loo 1.ol .99_1 oo
10 1.00 .97 .97 .96 .97 -95 .95 .94 -95 1.01 .97 .96 .941.O0_

1.25 .97 -97 .96 .96 .94 .95 .93 .94 1.01 .96 .95 .92 1.00_

I i i

i i ii

1 i Ii

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 !i.00

.30 .99 -99 .98 .99 .98 .98 .97 .98 1.00 .99 .98 .97 1.OO:l.OO 1.00 1.oo

25 1.oo .97 .97 .96 .96 .95 .95 .94 -95 .99 .94 .93 .9o 1.oo 1.00 1.oo 1.oo

1.25 -97 -96 = .95 .95 .94 .95 .93 .94 .99 .93 .91 .88_1.oo 1.00 1.o0 1.00

.5o

40

• 30 .991 .991 .98 .98 .98 .98 .971 .98 1.00 .98 .97 .96 1.00i1.00 1.00 1.00

mOO -97! .97 .96 .96 .95 .95 .94 .95 .98 .93 .91 .89 L 00il.00 1.00 mOO

1.25 .96' .96i .95 .95 .94 .95 .93 .94 .98 .92 .9O .87 1.0011.00 1.00 1.00

10

.30 .99 .99, .98 .98 .97 .98 .97 .97 hO1 .99 .99 .98 .98 .98 .98 .98

1.00 .96 .96 -95 .96 .94 .95 .94 .95 1.O1 .96 .94 .92 .96 .96 .97 .96

1.25 .96 .96 .95 .95 .94 .94 .93 .9_ 1.O1 .95 .94 .9O .96 .99 .96 .95

.30 .98 .98 .98 .98 .97 .98 .97 .97 1.O0 .98 .97 .96 .981 .98 .99 .98

29 1.00 .96 .96 .95 .99 .94 .95 .9_ .94 .98 .93 .91 .88 .96 .96 .97 .96

L25 .96 -95! .94 .94 .94 .94 -93i .9_ .98 .9d .9O .87 .96 .95 .96 .96

40

.30 .98 .981 .98! .98 .97 .98 .97 .97 .99 .97 .96 -95

1.00 .96 .96-95! .95 .94 .95 .94 .94 .98 .92 .90 .87

1.25 .95 -95 .941 .94 .94 .94 .93 .94 .97 .91 .89 .86

aApproximate and exact values are identical for a symmetrical sandwich

.98 .98 .99 .98

.96 .96 .97 .96

.96 .95 .96 .96
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(a) Symmetrical.

(b) Unsymmetrical.

Figure 1.- Two types of corrugated-core sandwich plate.
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z,w

dx/

Middle surface

___Qx Mxydy

MxdY

Nxydy
dy

dy _:

(a) Symmetrical loading.

Z ,W

Mxdy

Mxydy
Y

dy _-/
/

dx

/

(b) General loading.

Figure 2.- Forces and moments acting on infinitesimal sandwich-plate
element.
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2 .4 .6
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__P
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(a) tc - o.3o.
tl

Figure 3.- Charts for evaluating coefficient S in formula for DQy

for homogeneous symmetrical sandwich with corrugatlon cross section

composed of straight lines and circular arcs (E 2 = EC = El;

P2 = PC = Pl; t2 = tl; f2 = fl; EC 2 = RC 1 = O'18hc)"
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Figure 3.- Continued.
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(a) Dimensions of beam test specimen.
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(b) Loadings and gage locations.

Figure 5.- Specimen and test setup used in experimental determination

of Dy.



( c )  Photograph of typical  t e s t  setup. 

Figure 5 ,  - Concluded, 
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(a) Loadings and resul t ing values of 
D%* 

Figure 6.- Test setups used i n  experimental determination of "%* 
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(b) Photograph of typical test setup, 

Figure 6, - Concluded , 
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L-66801 
(a) Photograph of test specimen and steel side and end plates assembled. 

(b) Photograph of test specimen and steel side and end plates disassembled, 

I 

1 

! -- 
(k+ t,) =0.90 

I 

I (c) Dimensions of twistiog test specimen. 

Figure 7.- Specimen and test setup used in experimental determination 
of D---* 
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(d) Photograph of t e s t  setup, K$@zj7 
Figure 7. - Concluded. L-58058 
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