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TECHNICAL NOTE 2289

ELASTIC CONSTANTS FOR CORRUGATED-CORE
SANDWICH PLATES

By Charles Libove and Ralph E. Hubka
SUMMARY

The sandwich plate consisting of corrugated sheet fastened between
two face sheets is considered. Application of existing theories to the
analysis of such a sandwich plate regquires the knowledge of certain
elastic constants. Formulas and charts are presented for the evaluation
of these constants. The formulas for three of these constants were
checked experimentally and found to give values in close agreement with
the experimental values.

INTRODUCTION

A type of sandwich plate for which practical use has recently been
found in airplane-wing construction consists of a corrugated metal sheet
fastened, at its crests and troughs, to two ordinary metal sheets ( see,
for example, fig. 1). The main advantage of this type of sandwich is
that the corrugated-sheet core not only serves to separate the faces
and, thereby, to achieve high flexural stiffness, but it also carries a
share of any compressive loading applied parallel to the corrugations
and any edgewise shear loading. This type of sandwich has been called
cardboard-box construction (reference 1) and also double-skin construction.
It is referred to herein as corrugated-core sandwich plate.

Plate theories applicable to the symmetrical type of corrugated-core
sandwich, illustrated in figure 1(a), have been developed in reference 2
for flat plates and in reference 3 for curved plates.® These theories
are essentially homogeneous orthotropic-plate theories extended to
include deflections due to transverse shear, which can be significant
for the corrugated-core sandwich plate because of the relatively flexible
core.

8The precedent established in reference 4 of referring to sandwich
plates of the type shown in figure 1(a) as symmetrical is adhered to
herein. The type of corrugation shown in this figure is also called
symmetrical.
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Application of the general sandwich-plate theories of references 2
and 3 to any particular type of sandwich requires a knowledge of certain
elastic constants for that type of sandwich plate. These constants
describe the distortions associated with simple loadings. They include
two transverse shear stiffnesses DQx and DQy’ two bending stiffnesses

Dy and Dy, a twisting stiffness ny, two stretching moduli Ey
and Ey, a shearing modulus Gxy, two Poisson's ratios uny and Hy

associated with bending, and two Poisson's ratios u'y and “'y

associated with stretching.

The purpose of the present paper is to present formulas for
evaluating these elastic constants for the corrugated-core type of
sandwich plate. For the sake of completeness, formulas are also
developed for evaluating the additional elastic constants that would be
needed for a rigorous extension of the sandwich-plate theories to the
unsymmetrical type of sandwich. These additional constants, denoted
by Cxx, Cxy> ny, ny, and T, describe coupling - for example, the

curvatures produced by extensional forces. The derivation and formulas
for the transverse shear stiffness DQy are essentially the same as

those given in reference 4 for the case in which interference between
corrugation flats and face sheets is neglected, but are extended slightly
to include the effects of stretching of the corrugation (in addition to
bending) and the prevention of anticlastic curvature in the elements of
the sandwich plate. The former effect can be important when the sandwich
cross section approaches a truss; the latter, because the length of the
sandwich plate parallel to the corrugation axis is several times the
corrugation pitch. The results obtained for the bending and twisting
stiffnesses Dy, Dy, and ny for the symmetrical sandwich correspond
to the slightly less precise formulas of reference 5. (Transverse shear
stiffness was not evaluated in thils reference. A slight difference in
definition of the symbols Dy and Dy exists between reference 5 and

the present paper.)

Because the formulas developed are generally rather involved, charts
are presented for one of them, the transverse shear stiffness DQy’ and

approximations are given for several of the others, together with the
results of numerical investigations of the accuracy of these approxi-
mations. In calculating the charts and in investigating the accuracy of
approximate formulas, a family of corrugation shapes consisting of
straight lines and circular arcs was considered. The bend radii of the
corrugation, measured to the center line, were generally taken as 0.18
times the corrugation depth hg, but departures from this value were
also consldered, as were departures from symmetry.
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As a check on the formulas, bending and twisting tests were run on
samples of a corrugated-core sandwich plate. Experimental values of
bending stiffness Dy, transverse shear stiffness DQy, and twisting

stiffness ny were obtained and compared with the theoretical values.

The function of the elastic constants in a sandwich-plate theory
is first briefly described. A section follows in which the formulas
for the elastic constants for the corrugated-core sandwich are summarized.
The tests and comparison between theory and experiment are then described,
a discussion section follows, and a section of concluding remarks ends
the body of the paper. The symbols used in the body of the paper are
listed and defined in appendix A. A number of them are also defined in
the text where they first appear. Appendixes B to E contain the
theoretical derivations.

THE FUNCTION OF THE ELASTIC CONSTANTS

IN SANDWICH-PLATE THEORY

The sandwich-plate theories of references 2 and 3 are based on a
structural idealization of the sandwich as a plate of continuous con-
struction with material which is orthotropic with respect to the mutually
perpendicular x-, y~, and z-directions. The modulus of elasticity in
the 2z, or thickness, direction is assumed to be infinite; that is,
local buckling of the faces is not considered and the over-all thickness
is assumed to remain constant. Straight material lines normal to the
middle surface are assumed to remain straight, but not necessarily
normal to the middle surface, during distortion of the plate.

This idealized structure can adequately represent a corrugated-core
sandwich plate of either the symmetrical or unsymmetrical type for many
practical purposes, provided the core has sufficient stiffness to keep
the over-all thickness of the plate essentially constant and provided
the plate width (perpendicular to the corrugation axis, is many times
the corrugation pitch. If the symmetrical type of sandwich (fig. 1(a))
is to be represented, then the elastic properties of the idealized-plate
material may be regarded as varying symmetrically about the middle
surface through the thickness. 1In order to represent the behavior of
the unsymmetrical type of sandwich (fig. 1(b)), the elastic properties
of the idealized-plate material must be thought of as varying nonsym-
metrically with respect to the middle surface.

The behavior of a differential element of the idealized sandwich
plate under load can be described by a set of force-distortion relation-
ships. For an element of the symmetrical type of idealized sandwich
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(fig. 1(a)), subjected to forces and moments as shown in figure 2(a),
these relationships, as developed in references 2 and 3, are

3%w My m 1 94y
=r - -_£ LM 5 Sk 1
3% Dx ’ Dy v Doy 9% ()

QEE = 55 M. - gl + _l_.é%z (2)

Ny '
€ :-———IN (3)
L Ny
€y = —ES:-NX + Ey (%)
2 M oQ 3
85g=ﬂ+lL_X+£_1_a_Q’x (5)
X0y Dyy 2 DQx y 2 DQy X
N
A
‘7 = (6)
XY Gxy
%W d°y .
where ~—, ——, and are the curvatures and twist of the middle
" dy° ox dy

surface and €y, Ey, and Txy are the strains of the mlddle surface. The

quantities Dy, Dy, Mx, and so on which appear in the coefficients of

the loading terms are the elastic constants. Each constant describes a
distortion produced by a simple loading. For example, if all loadings

are zero except My, then; according to equation (1), - ﬁL is the
X

amount of curvature in the x-direction produced per unit of My

The behavior of the unsymmetrical type of sandwich (fig. 1(b))
more complex than that of the symmetrical type. In particular, a certain
amount of coupling among the distortions may be expected; for example,
extensional forces may in general produce curvatures as well as extensions.
The same type of coupling can be expected in a symmetrical sandwich
subjected to unsymmetrical loading. In setting up force-distortion
relationships for an element of the unsymmetrical type of sandwich, the
loading on the element will be generalized as shown in figure 2(b).
The forces Ny, Ny, and ny are no longer assumed to be applied in

the middle plane; each has an arbitrary plane of application, denoted
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by I, II, and III, respectively. The strains €, Gy, and Txy @re
measured in these same respective planes. The force-distortion relation-

ships for the element are then given by the following generalization of
equations (1) to (6):

3% My Hy LT T T T T | 1 0Q
=5 = -5+ 2L My + 1 CxxNg + Cyy Ny + =— 1
3%2 Dy Dy ¥ T rxxIx T xyly; Dq,. % (1)
3w oHx My T s 1 égx .
W BT Ol T O g 2
————————— t NX |J" '
= Ot - Gty g - R Ny 3

% —51 P - 9% +i 2 aQy (5")
0x oy Dyxy L -1 2Dg 9y 2 Dq ox
Yy = | TM, |+ (6')
Xy 1 Y1 G
----- Xy

The boxed terms are the terms that have been added to express the
coupling behavior. The coefficients Cyy, ny, and so on in the boxed

terms are the coupling elastic constants. The presence of each
coupling elastic constant in two equations is a consequence of the

reclprocity theorem for elastic structures. '(Further consequences of the

M M M p!
reciprocity theorem are that XX gng X - Y
Dy Dy Ex Ey

Through a proper choice of locations for planes I, II, and III,
some uncoupling may be effected for any given sandwich. Plane I may be
chosen so that Cxx or Cyx 1is zero, plane II so that ny or ny

is zero, and plane III so that T is zero. Thus, in general, three of
the coupling elastic constants may be made equal to zero. In special
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of planes I, II, and IIT will result
the symmetrical sandwich, of course,
at the middle surface of the plate

causes all the coupling constants to vanish.

THEORETICAL RESULTS

Elastic Constants for Symmetrical Sandwich

In appendixes B to E, derivations are made of formulas for the
elastic constants for the general corrugated-core sandwich plate. The
formulas obtained are now given in reduced form for use in conjunction
with the force-distortion equations (1) to (6) for the symmetrical
sandwich plate. Generally, the subscript C denotes the core, and the
subscripts 1 and 2 denote the lower and upper faces, respectively. In
this section, however, only symmetrical sandwiches are considered and
the subscript 1 is used for both faces. It should be kept in mind,
therefore, that the definitions of many of the terms appearing in the
following formulas for the elastic constants apply only to the symmetrical
type of sandwich.

Bending stiffnesses.- The formulas obtained in appendix B for the

bending stiffnesses Dx and Dy are
Dy, = Ely (7)
E'_I' .
Dy = A (8)
5 EX
1 -2 - =
EIy
where
= o= 1 2
= 1 2
Ely = 3 E t;h
My Poisson's ratio of face sheet material
E, modulus of elasticity of face sheet material, psi

modulus of elasticity of core material, psi
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Io moment of inertia, per unit width, of corrugation cross-

sectional area about middle plane, inches3
ty thickness of each face sheet, inches

h distance between middle surfaces of face sheets, inches

For practical sandwiches, the moment of inertia fb contributed by the

core 1s often small compared with the moment of inertia which the faces
contribute to_cross sections perpendicular to the corrugations. In

EI
such cases, —2 1is very nearly unity, and the following approximation
ETy

to equation (8) may be made
Dy ¥ EI, (8")

This approximation implies a neglect of the restraining effect of the
corrugation on the Poisson expansion or contraction of the face sheets.
Results of a numerical survey of the accuracy of this approximatiofl are

given in table I for the symmetrical sandwich %l = 1.00) of the common
2
type shown at the top of the table. The table gives the ratio of the

approximate value of Dy, as computed from equation (8'), to the exact
value of Dy, as computed from equation (8). The error in the approxi-

mate value is seen to be small over a large part of the range of con-
figurations considered and, in extreme cases, no more than 6 percent.

Poisson's ratios associated with bending.- The formulas obtained
for the Poisson's ratios associated with bending upy and hy are

(see appendix B)

Mx = M1 (9)

EZ (10)
Dx

My = Hx

Extensional stiffnesses.- The formulas obtained in appendix B for
tne extensional stiffnesses Ey and Ey, reduced to the symmetrical

case, are

Ey = EA, : (11)



8 NACA TN 2289

Ey = = (12)
) EAx
l-ul 1 -
Fhy

where
EAy = EghAc + 2E1t)
EAy = 2E ty
Ké area, per unit width, of corrugation cross section

perpendicular to corrugation axis, inches
If, once again, the restraining effect of the corrugation on the Poisson

expansion or contraction of the faces is neglected that is, Zb is

EA
taken as zero and, therefore, EZE as 1), equation (12) gives the following
approximation: p g

E, ~ EAy (12*)

The error in this approximation is somewhat larger than the error
obtained in the approximation to Dy, since the contribution of the

core to EKX is relatively larger than its contribution to Efx. The

error is indicated in table I, where numerical values of the ratio of the
approximate to the exact values are tabulated.

Poisson's ratios associated with extension.- The formulas obtained
(appendix B) for the Poisson's ratios associated with extension n'x

and u'y are

'y = W] (13)

' - “vxgx (lll-)

o
J Ex

Twisting stiffness.- The following formula was obtained in
appendix C for the twisting stiffness ny:

Dyy = 267 (15)



NACA TN 2289 9

where

1 2
G1 shear modulus of elasticity of face sheet material, psi

The stiffness Dyy 1is independent of the properties of the core since

symmetry requires that the shear flow in the corrugated-core sheet be
zZero.

Horizontal shear stiffness.- The horizontal shear stiffness ny
is given (see appendix C) by

Gyy = G (16)
where
2

—  Gcte
GA = — + 2G1t;

Ac
Geo shear modulus of elasticity of core material, psi
te thickness of corrugated-core sheet, inches

Transverse ghear stiffness in planes perpendicular to corrugation
axis.- The transverse shear stiffness in planes perpendicular to the
corrugation axis DQy is given (see appendix D) by the formula

AR R YA
o

where

he depth of corrugation, measured vertically from center
line at crest to center line at trough (see fig. D5 of
appendix D), inches

He Poisson's ratio of core material

S nondimensional ccefficient depending upon shape of

corrugation, relative proportions of sandwich cross
section, and the material properties of the component
parts
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Formulas for evaluating S are derived in appendix D. Because of
the complexity of these formulas, a number of charts were computed which
give S directly for the common type of sandwich with corrugation cross-
sectional shape consisting of straight lines and circular arcs.

The charts of figure 3 are for the case in which the core and faces
have the same material properties. They give S for a wide range of
Re
geometric proportions but are restricted to the value 0.18 for TTL’
C
where RCl 1s the corrugation center-line bend radius. This restriction

was made primarily for computational convenience, but it is generally
consistent with corrugation shapes that have been considered for sandwich
construction. The effect on S of departing from the value 0.18 for

Rcl

— can be estimated from figure 4(a), where a number of curves of S are

he
given for values of Tri of 0.12 and 0.24 as well as 0.18. Cross plots
C

based on the charts of figure 3 would indicate that S becomes rela-

he
tively insensitive to the ratlo T at higher values of this ratio. For

C
t,.\3
that reason (Eg> was not included in the coefficient S 1in equation (17).
C

The effect on S of using a core material of different modulus
than the face material may be estimated from figure 4(b). Curves of S

E

are plotted for values of EE of 0.23 (magnesium core, steel faces) and
1
4.30 (steel core, magnesium faces) along with the basic curves, from
E
figure 3, for Eg = 1.00. The value of S 1s seen to be relatively
1

insensitive to large differences in elastic modulus between the core
and the face sheets.

If both departures from the conditions of figure 3 occur simul-
taneouslyv<Fhat is, Rcl # 0.18hC and Ep # El>, the effect on S may

be obtained approximately by superposing the individual effects as
determined from figures L(a) and 4(b).

For symmetrical configurations not covered by the charts of
figure 3, 4(a), or 4(b), S may be computed from equation (D19) of
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appendix D, used in conjunction with the auxiliary equations (D20) and
(D15), with ky and k, taken as 1. If, besides being symmetrical,

the corrugation center line consists of straight lines and circular

arcs, then equations (D22) and (D23) or (D24) may be used instead of
equations (D15). This system of equations was used to compute the charts
previously described.

Transverse shesar stiffness in planes parallel to corrugation axis.-
A general formula for the transverse shear stiffness in planes parallel
to the corrugation axis DQx’ as derived in appendix E, is

GCItCh

Doy =TT (18)
P Q ds
0

where

I moment of inertia of width 2p of cross section parallel
to yz-plane, taken about centroidal axis parallel to
y-axis, inches

2p corrugation pitch, inches

! length of one corrugation leg measured along the center
line, inches (see fig. E-3)

8 coordinate measured along center line of corrugation leg,

inches (see fig. E-3)

The quantity Q is the static moment about the centroidal axis (middle
plane for symmetrical sandwich) of the cross-hatched area in figure E-1.
If materials having different modulil of elasticity are used for the core
and faces, a transformed cross section should be used in computing I

and Q.

An approximate formula, which is more practicable, is obtained if,
in the derivation, a bending moment My 1s assumed to be resisted only

by the face sheets. The assumption leads to constant shear flow in the
corrugation, and the following approximation is thus obtained:

2 2
Geteh GCtC h\e ‘
Doy 8 —9p7— = i (5) (18")

The results of a numerical investigation of the accuracy of equation (18")
as compared with equation (18) are given in table I.
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Flastic Constants for General Case

The general formulas for the elastic constants derived in appen-
dixes B to E are now to be discussed. These formulas, used in conjunc-
tion with the force-distortion equations (1') to (6'), describe the
distortions of an element of either the symmetrical or unsymmetrical
sandwich plate loaded as shown in figure 2(b). The symbols appearing
in the formulas are defined in appendix A.

Flastic constants associated with flexure and extension.- General

formulas for the constants associated with flexure and extension Dy,
Dy, Hx, Hy, Ex, Ey, W'x, H'y, Cxx, Cxy, Cyx, and Cyy are
glven by equations (B25) to (B36) of appendix B. These formulas apply
to a sandwich with arbitrarily shaped corrugation, in which the upper

and lower face sheets may differ in thickness, modulus of elasticity, and
Polsson's ratic and in which the loading planes I and II are arbitrarily

chosen.

Appreciable simplification of the formulas results from the
practical assumption that the Poisson's ratios of the upper- and lower-
face sheet materials are equal (up = Hq). Equations (B25') to (B36')

then apply.

It is evident from both sets of these equations (B25) to (B36)
and (B25') to (B36') that the values of the constants associated with
extension (Ex, Ey, u'x, u'y) and the coupling constants (Cyy, Cxy»
Cyxs, Cyy) are dependent upon the location of planes I and II in which
the stretching forces N, and Ny, respectively, are applied. If these
forces are applied at the centrcids of the transformed cross sections of
the sandwich (ﬁhat is, ky = kﬁfx and kyp = kﬁf&), then further

simplificaticn of the formulas takes pluace. Eguations (B25') to (B36')
reduce to equations (B25") to (B36").

The approximations to Dy and Ey given for the symmetrical

sandwich by equations (8') and (12') may also be assumed to apply to
the unsymmetrical sandwich when kII = kﬁf& and Ho = K- When these

approximate expressions are used, however, fﬁ& and Eﬂy should be
evaluated from their general formulas as given in appendix A or from
equations (B20) of appendix B. Table I gives the results of a numerical
investigation of the accuracy of the appr%¥imate expressions for Dy

and Ey for the unsymmetrical sandwich = = 0.80 and 0.50). The errors
2
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resulting from use of the approximate expressions are seen to be of
the same order for the unsymmetrical sandwich as for the symmetrical
sandwich.

Elastic constants associated with twisting and horizontal shear.-
Formulas for the constants associated with twisting and horizontal
shear Dyy, Gyy, and T are given by equations (€35), (€36), and (C37)
in appendix C. The values of ny and T depend upon the location of
plane III in which the horizontal shear force is applied. Locating the
horizontal shear force at the shear center of the cross section (that
is, letting kg11 = k7, where kaj is defined by equation (C31) or in
the symbol list of appendix A) causes the coupling constant T +to
vanish and simplifies the expression for Gy,. The formulas for this
case are equations (C35'), (C36'), and (C37¥¥.

As for the constants associated with flexure and extension, a
simplification in the formula for D occurs if the corrugation is
completely neglected. Equation (C35) then gives the following
approximation:

— 2 (G1t1)(Gato)

Dyy = 2GJ % h 19)

The results of a numerical survey of the accuracy of this approximation
are given in table I. The error incurred through the use of the approxi-
mate formula is seen to be generally quite small. For the symmetrical

t

case | - = 1 , no error at all results from neglect of the core since
to

symmetry requires the corrugation shear flow to be zero.

Transverse shear stiffness in planes perpendicular to corrugation
axis.- Bquation (17) which gives the transverse sh2ar stiffness DQy

for the symmetrical sandwich alsc applies to the unsymmetrical sandwich
provided the coefficient S 1is obtained from formulas or charts which
apply specifically to the unsymmetrical sandwich. TFigure 3 gives
extensive charts for evaluating S for a symmetrical sandwich with
fauces and core of the same material and with the corrugation center line
consisting of straight lines and circular arcs, the latter having a
radius of curvature of 0.18hs. Figure 4(a) shows the effect of using a
radius of curvature other than 0.18hc, and figure 4(b), the cffect of
using core material different from that of the faces. The rest of
figure b4 is devoted to showing separately the effects on S of two
departures from symmetry for a sandwich that is otherwise the same us
that considered in figure 3. Figure L(c) is for a case in which the
nonsymmetry is due to the core and consists in the lower and upper flats
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being of unequal width; figure 4(d) applies when the core is symmetrical
but the faces are of unequal thickness. No chart is given for the case
in which the core is symmetrical and the face thicknesses equal but in
which the nonsymmetry arises from the use of a different material for the
lower face than for the upper face. However, for nonsymmetry of this
type, S can generally be cbtained quite accurately by assuming, first,
that both faces are of the upper-face material and, next, that both

faces are of the lower-face material and averaging the two values Sj

and So thus obtalned in the following manner:

L _ i 1
s3  2\g;3 8,3

or
1.26 5150
3813 + 823

In general, when the upper face 1is different from the lower face, either

in thickness or material or both, S can be determined approximately by
averaging in the previously described manner the two values obtained by
first assuming that both faces are the same as the upper face and next that
both faces are the same as the lower face. The error in such an approxima-
tion will generally be less than 3 percent.

For an unsymmetrical sandwich not covered by the charts, S may be
evaluated from equation (D17) used in conjunction with the auxiliary
equations (D18) and (D15); if the corrugation itself is symmetrical,
then some simplification results from taking ky =k; =1 in the

auxiliary equations.

If the corrugation center line consists of straight lines and
circular arcs, then equations (D21) and (D23) or (D24) may be used
instead of equations (D15). 1If, in addition, the corrugation is
symmetrical and if k, and k, are taken as 1 in equations (p18),

then equations (D22) may replace equations (D21).

Transverse shear stiffneas in planes parallel to corrugation axis.-
Equations (18) and (18') for the evaluation of the transverse shear
stiffness DQx for a symmetrical sandwich also apply to the unsymmetrical

sandwich. The error of the approximate formula (equation (18')) when
applied to the unsymmetrical sandwich is indicated in table I.
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EXPERIMENTAIL EVALUATION OF D

Xy

y» Doy AND D

General Summary

The elastic-constant formulas that were thought to need experi-
mental verification were those which depended to a large extent in their
derivation upon the assumption that the thickness of the core remains
essentlially constant or that the corrugation cross section is undistorted.
Among these, the formulas for Dy, DQy’ and ny were selected for

checking because these constants could be experimentally evaluated
through simple bending and twisting tests on sandwich beams and panels
as described schematically in appendix A of reference 2.

The test sandwich was of the symmetrical type. The core consisted
of a readily available Alclad 245-T36 aluminum-alloy standard circularly
corrugated sheet having a nominal thickness of (0.032 inch and a nominal
over-all depth of 3/4 inch. The faces were of 245-T3 aluminum-alloy
sheet having a nominal thickness of 0.064 inch. Two test specimens
were used: A beam for the evaluation of Dy and DQy and a panel for

the evaluation of ny. Although blind riveting was necessary only on

one side of the panel, it was used on both sides in order to maintain
symmetry. On the beam driven rivets were used in both faces since the
beam was relatively narrow.

The results of the tests and comparisons with theory ard® summarized
in the following table. 1In computing the theoretical values the following
properties were assumed: E; = E, = 10,500,000 pounds pir square inch,

E¢c = 10,300,000 pounds per square inch, and H; = Hp = g.

Dy P, Dxy
(in.-1b) (1b/in.) | (in.-1b)

Range of 221,000 4010
experimental 182,000
values 224,000 k310

Theoretical a
value 220,000 4300 177,000

aComputed with py = uwp = po = 0 because the

beam tested was relatively narrow and Poisson
curvatures were therefore assumed to be unrestrained.
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Test and Analysis

Evaluation of Dy.— The dimensions of the test beam are shown in

figure 5(a). The beam was supported on two knife edges as shown in
figures 5(b) and 5(c) and loaded near the ends so as to obtain a region
of pure bending moment between supports. The supports were placed
19.05 inches apart for one test (the test which yielded the value of
221,000 in.-1b for Dy) and loads P were applied in increments of

5 pounds up to a maximum of 25 pounds and then removed in the same
increments; in a second test (which yielded the value of 224,000 in.-1b
for Dy), the supports were placed 24.56 inches apart and loads P were
applied in increments of 5 pounds up to a maximum load of 30 pounds and
removed in the same increments. Deflections of the beam were measured
at the locations shown in figure 5(b) with gages having a sensitivity
of 0.0001 inch.

Despite the fact that spacer blocks were inserted in the sandwich
at the supports to prevent local distortion, downward displacements of
the upper face were observed immediately above the supports. These
displacements, on the order of 2 to 4 percent of the maximum deflections
at the center of the beam, were probably caused primarily by thickness
change of the beam, since gages placed directly on the supports showed
no support displacements. 1In correcting for the upper-face sheet
displacements above the supports, the vertical displacement of the
"middle surface' of the sandwich at each support was taken as one-half
of the face-sheet displacement. The deflections at points away from the
supports gere then referred to the straight line connecting the middle-
surface points immediately above the supports. Away from the supports,
gages placed in contact with the lower-face sheet showed that no thickness
change occurred in the beam and that the deflection of the upper face
could therefore be taken as the deflection of the middle surface. The
deflections varied linearly with applied load.

The described manner of correcting the deflection for the distortions
above the supports resulted in calculated values of Dy which were

practically independent of the cholce of station whose deflection was
used in the calculation. The calculated values of Dy were obtained

from the deflection curve drawn through the corrected deflections at
the gage stations. The following formula, based on the assumption
of a uniform beam subjected to constant moment P4, was used:

_ (Pd)yg(L - ys)
Dy - ygbws = (20)
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where
P load applied at each end of beam, pounds (see
fig. 5(b))
d distance between the load and support, inches (see
fig. 5(b))
¥s distance from left support to any station, inches
Wg deflection at station yg, inches
L distance between supports, inches (see fig. 5(b))
b width of beam, inches (1.92 in.)

This formula was applied at three stations, yg = %, %, and %L. The

three values thus obtained differed from one another by no more than
2 percent in any test; the average of the three values was taken as
the true value of Dy.

Evaluation of DQy" The beam test specimen and span lengths used

in evaluating DQy were the same as those used in evaluating Dy (see

figs. 6(a) and 6(b)). The beam was subjected to several different lateral
loadings, each being of a type to produce transverse shear. These
loadings are illustrated schematically in figure 6(a) and the experi-
mental values of DQy obtalned from each test are also given. A

photograph of a typical test setup is shown in figure 6(b). Deflections
were measured between the supports at six stations for the shorter span
and at eight stations for the longer span and alsc immediately above the

supports.

As in the tests for Dy, slight downward displacements of the upper
face were observed immediately above the supports. These displacements
were generally of the order of 1 to 2 percent of the maximum deflection
at the center of the beam but in two cases were as high as 3 and
5 percent, respectively, at the right support. The measured deflections
were corrected for the distortions above the supports in the manner
described for Dy. The deflections varied linearly with the applied

load.

The corrected measured deflections were used to plot deflection
curves for the beam as a whole, from which values of DQy were computed.

The following formula, based on the assumption of a uniform beam and a
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uniform running lateral load, was used to calculate DQy for those

cases in which a number of equally spaced lateral loads were applied
to the beam:

L -¥s
Doy = zwbL 1 S - (21)
5 - L° - yg=(2L - yéﬂ
nyg 12Dy

where
P load applied at each crest or each trough of corrugation,

pounds (see fig. 6(a))
n number of loads P applied to the beam (see fig. 6(a))
Dy bending stiffness per unit width of the beam, inch-pounds

(taken as 221,000 in.-1b when L = 19.05 in. and
224,000 in.-1b when L = 24.56 in.)

The following formula was used for the case of a concentrated central
load:

DQY i 2wgb 1 l 2 2 (=2
Bya - EE); <3L - )"'YS>
where
P load on the beam, pounds

The deflections substituted in these formulas were the de%lections at
values of yg of 0.2L, 0.4L, 0.6L, and 0.8L. Thus, the formulas

yielded four wvalues for each test. These values differed from one
another at the most by 11 percent and their average was taken as the
true value of DQy for the sandwich.

Evaluation of Dyy.- A sandwich panel, 59.84 inches long by
21.11 inches wide, was twisted to determine ny. The faces of the

panel were bent up along the edges to form flanges to which were bolted,

1
on two sides and one end of the panel, three steel plates of g—inch

nominal thickness and 3-inch width. (See figs. 7(a) and 7(b).) A
somewhat wider steel plate was placed at the remaining end and it was,
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in turn, bolted to a rigid backstcp with sufficient clearance to

permit warping of the plate out of its plane. To the steel plate at

the opposite end of the panel was bolted an aluminum-alloy loading plate
(not shown) to which the torque was applied. The steel plates were
bolted to the sides of the panel in order to help achieve a state of
pure twist in the panel. Strain gages were placed back-to-back on the
faces and corrugation legs across the width at the midlength of the
panel in order to determine to what extent a state of pure twist (that
is, constant face shear stress and zero corrugation shear stress) had
been achieved. The dimensions of the panel are shown in figure 7(c).

Loads were applied in increments of 2000 inch-pounds up to a
maximum of 10,000 inch-pounds and removed in the same Increments.
Deflections of the panel were measured at seven stations across the
width at each of four stations along the length (see fig. 7(d)), the
stations starting approximately 12 inches from the supported end and
spaced approximately 12 inches apart. The measured deflections varied
linearly both acrocss the width and along the length and were proportional

2
to the applied load. From the measured deflections, the twist 5%—%;
was computed. The twisting stiffness ny was then obtained from the
formula.

M
D = X
o %
dx oy
1
—- T
32w (23)
ox dy
where
b width of panel (21.11 in.)
T applied torque, inch-pounds
T torque required to twist side plates, pound—inches2

- 3 3w _ 07w
(?[? (3)(5) (11,000,000ﬂ ox dy 43,000 ox 9y

(see reference 6, equation (156))
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The linearity of the deflections across the width and along the
length indicated that a state of nearly pure twist was being achieved.
The strain-gage measurements tended to confirm the existence of this
state of pure twist. They showed that, except in the first two cells
near each edge of the panel, the face shear stresses were very nearly
uniform across the width, with only one value departing as much as 8 per-
cent from the average. In the same region, the corrugation-leg shear
stresses were generally less than 1.5 percent of the face shear stresses.

In order to investigate whether the use of side plates was necessary
to the experimental evaluation of ny, the test was repeated with the

side plates removed. The shear-stress distribution across the width
became considerably nonuniform; the deflections were still linear across
the width but departed slightly from linearity along the length. The
test value of ny, based on the twist in the central portion of the
panel, was only about 0.85 as large as the experimental value obtained
with the side plates on. This result indicates that side plates are
desirable in order to minimize edge effects and achieve a state of pure
twist when testing for Dxy-

DISCUSSION

Formulas have been presented for evaluating the elastic constants
of a corrugated-core sandwich plate of either the symmetrical or
unsymmetrical type. The formulas are rather comprehensive and precise,
but reductions to several important special cases have been made and
practical approximations to a number of the formulas have been given.
Tests have been run to verify the formulas for three of the more important
constants and, indirectly, the basic assumptions in their derivations.

The formulas given are limited to plates stressed in the elastic
range and not subject to local buckling. Engineering adaptation of the
results to cases involving plasticity and local buckling can probably
be made; however, attempts at such an adaptation were beyond the scope
of the present study.

Each component of the sandwich (face sheet or core sheet) is
assumed to be composed of homogeneous isotropic material. In actual
construction this assumption may be violated by the presence of
perforations in one sheet to facilitate the driving of rivets in the
other sheet. In evaluating the elastic constants the presence of the
perforations can be accounted for approximately by assuming a homoge-
neous face sheet of reduced modulus.
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When values of the elastic constants for a given corrugated-core
sandwich plate are substituted in equations (1) to (6) or (1') to (6'),
the resulting equations describe approximately the distortions of an
element of the plate under locad. The distortlons are described only
approximately, because the actual plate does not behave in quite the
manner assumed for the idealized plate. In particular, straight
material lines in the thickness direction will not remain straight
under the presence of shear but will tend to warp. 1In evaluating the
transverse shear stiffness DQx or DQy theoretically, therefore, the

problem arises of choosing an average straight line through the warped
one in order to define a transverse shear strain for the cross section.
Fortunately, for most sandwiches the plausible range for choosing this
straight line is small and causes only a slight ambiguity in extending
the definition of DQX or DQy to an actual plate. For the corrugated-

core sandwich as analyzed in appendixes D and E, the average straight
line was taken as the one passing through corresponding material points
in the middle surfaces of the face sheets. This line has the minimum
deviation from the true warped line (as determined by least squares)
provided the core is ignored and is probably satisfactory whenever the
effective contribution of the core to the total cross-sectional moment
of inertia is small. The tendency of the originally straight lines to
warp introduces a further complication inasmuch as any restraint against
such warping (due to the mutual interference of adjacent parts of the
plate) will tend to increase the transverse shear stiffness. Such
restraint will be small except in the region of concentrated loads.

In the theoretical derivations, the conservative assumption was therefore
made that there is no restraint at all against warping. Since the
tendency of originally straight lines in the thickness directions to
warp 1s a function of the type of loadlng, experimental values of DQy

or DQy’ as determined through beam tests, should, in principle, vary

according to the type of spanwise loading distribution used. The
variations observed in the tests to determine DQy’ however, (see

fig. 6(a)) seemed to be caused more by scatter and other factors than
by the type of load distribution.

Since the primary application of the elastic constants will probably
be to sandwich-plate theory, it should be mentioned that the force-
distortion equations (1) to (6) or {(1') to (6') represent one component
of such a theory. If to these equations are added the differential
equations of equilibrium of the element shown in figure 2 and equations
relating strains and displacements, the combination of equations will
constitute a complete formulation of a sandwich-plate theory. The
force-distortion equations (1) to (6) have been presented before in
references 2 and 3, but the generalized equations (1') to (6'), which
include coupling terms, are believed to be new. The relative importance
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of the coupling terms for the corrugated-core sandwich has not been
rigorously evaluated; it would depend upon the degree of nonsymmetry

of the cross sectlon and the type of problem under consideration. There
is reason to believe, however, that in most cases the effect of coupling
will be slight. For a sandwich having faces of the same Poisson's ratio
but different thicknesses and having a core moment of inertia and area
which apprcach zero, lccating the lcading planes I, II, and III at the
centroidal plane between the two faces will cause all the coupling
constants to vanish. Since the core of practical corrugated-core
sandwiches will probably contribute only a small part to the total area
of the cross section and a smaller part to the moment of inertia, the
coupling constants will very likely be unimportant for properly chosen
locations of planes I, II, and III. In such cases and for some problems
neglecting the coupling terms in equations (1') to (6') may be
sufficiently accurate.

CONCLUDING REMARKS

In order to facilitate application of an existing sandwich-plate
theory to the corrugated-core type of sandwich, formulas and charts
have been presented for the evaluation of the necessary elastic constants.
Both the symmetrical and unsymmetrical types of corrugated-core sandwich
have been considered, and the extensions of the existing sandwich-plate
theory required to make it strictly applicable to the unsymmetrical
type are indicated.

The formulas and charts presented are limited to plates stressed
in the elastic range, which are not subject to local buckling. The
formulas are rather comprehensive and precise, but reductions to
several important special cases have been made. Practical approximations
to a number of the formulas have been investigated numerically and found
to be sufficiently accurate for most practical cases.

The formulas for three of the elastic constants were checked
experimentally and found to give values in close agreement with
exXperiment.

Langley Aercnautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 20, 1950
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plane I

plane II

plane III

Xy

yX

DQy > DQy
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APPENDIX A

SYMBOLS AND DEFINITIONS

plane in which Nx acts and in which ¢x 1is measured,

parallel to faces

plane in which Ny
parallel to faces

acts and in which €y 1s measured,

plane in which ny
parallel to faces

acts and in which Yxy is measured,

General Sandwich Symbols

coupling elastic constant representing curvature in
2
x-direction S—g produced per unit of Ny applied;
X
also strain In x-direction ¢, per unit of -My,
pound”

coupling elastic constant representing curvature in

2

X-direction é—g produced per unit of Ny applied,;

X
also strain in y-direction €y Dper unit of -M,,
pound”

coupling elastic constant representing curvature in

y-direction éé! produced per unit of Ny

applied;
2 b4
Ay

also strain in y-direction
pound”

€y . per unit of -My,

coupling elastic constant representing curvature in

y-direction ggg produced per unit of Ny applied;
Y
also strain in x-direction €, per unit of -M,,
-1 Y
pound

transverse shear stiffnesses, per unit width, of a beam
cut from plate in the x- and y-directions, respectively,
pounds per inch
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X2y

Xy

7X}7y
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bending stiffnesses, per unit width, of a beam cut from
plate in x- and y-directions, respectively, inch-pounds

twisting stiffness of unit-width and unit-length element
cut from plate, with edges parallel to x- and y-axes,
inch-pounds

extensional stiffnesses of plate in x- and y-directions,
respectively, pounds per inch

shear stiffness of plate in xy-plane, pounds per inch

resultant bending-moment intensities in x- and
y-directions, respectively, pounds

resultant twisting-moment intensity with regard to X~
and y-directions, pounds

intensity of resultant normal force acting in x-direction
in plane I, pounds per inch

intensity of resultant normal force acting in y-direction
in plane II, pounds per inch

intensity of resultant shear force acting in x- and
y-directions in plane III, pounds per inch

intensities of transverse resgsultant shear acting on cross
sections parallel to yz-plane and xz-plane, respec-
tively, pounds per inch

2
coupling elastic constant representing twist 55—%; pro-

duced per unit of ny applied; also one-half the
shear strain Txy Per unit of Mxy’ pound"l

displacements in x-, y-, and z-directions, respectively,
inches

coordinate, measured parallel to corrugaticn direction,
inches

coordinate, measured parallel to faces and perpendicular
to corrugation direction, inches

coordinate, measured perpendicular to faces, inches

shear strains associated with Q, and Qy’ respectively
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a1,8p
by,bp
€1,C2
dy,do
€1,%2
f';L:f2
g£1:82
dysdo &
Ky ,kp
RCl:R02

Q1,9

Bl)BQ
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shear strain, with respect to x- and y-directions, of
plane III

strains of plane I in x-direction and of plane II in
y-direction, respectively

Poisson's ratios associated with bending in x- and
y-directions, respectively

Poisson's ratios associated with extension in x- and
y-directions, respectively

Corrugated-Core Sandwich Symbols

area per unit width of corrugation cross section parallel
to yz-plane, inches

area, in width 2p, lying between corrugation center
line and lower-skin center line (see fig. Ck of
appendix C), square inches

area, in width 2p, lying between corrugation center
line and upper-skin center line (see fig. Ch of
appendix C), square inches

dimensions of corrugation cross section consisting of
straight lines and circular arcs (see fig. D5 of
appendix D)

width of test beam or panel, inches
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C1,Cps - - - Cq

Gy,G0,Gg
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nondimensional parameters in formula for S (equa-
tion (D19)) for a symmetrical corrugated-core sand-

wich, defined by equations (D20)

nondimensional parameters in formula for S (equa-
tion (D17)) for a corrugated-core sandwich, defined
by equations (D18)

distance between load and support of test beam, inches

modull of elasticity for lower and upper faces,
respectively, psi

modulus of elasticity of corrugated-core sheet materlal,
psi

stretching modulus of elasticity of corrugated-core
sheet material, used in derivation of DQy’ psi

extensional stiffness of corrugated-core sandwich plate
in x-direction (bendlng in x-direction prevented), pounds
per inch (Eqt] + EcAp + Epto)

extensional stiffness of corrugated-core sandwich plate
in y-direction (restraining effect of corrugation

ignored; bending in y-direction prevented), pounds per

bending stiffness, per unit width, of a beam cut from
corrugated-core sandwich plate in x-direction, inch-

pounds <ECTC + [%ltlkﬁi 24 Ecxé(ke - kﬁig)z +
X
— \2{1,2
Eots <1 - kEIx):Ih>
bending stiffness, per unit width, of a beam cut from

corrugated-core sandwich plate in y-direction
(restraining effect of corrugation ignored), inch-

pounds (EltlkE—I-ye + Eoto (l - kE_Iy)ﬂh2>
shear moduli of elasticity of lower-face, upper-face,
and corrugated-core sheet materials, respectively, psi

unit shear stiffness of corrugated-core sandwich plate
with respect to x- and y-directions (twist prevented),

Gote?

pounds per inch (Gltl +
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GI

I

kph

kc=-:2L—<l+
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torsional stiffness, per unit width, of & beam cut from
corrugated-core sandwich plate in x-direction, inch-
2
Gpt
2 C*C f___ 2 __)2

distance between middle surfaces of face sheets, inches

pounds

depth of corrugation, measured vertically from center
line at crest to center line at trough (see fig. D5
of appendix D), inches

core thickness of sandwich plate (see fig. D5 of
appendix D), inches

moment of inertia of width 2p of cross section parallel
to yz-plane, takeﬂ about centrolidal axis parallel
to y-axis, inches

moment of inertia, per unit width, of corrugation cross
section parallel to yz-plane, taken about centroidal
axis of corrugation cross section, inches3

nondimensional integral parameters in equations for Bg3,
By, Bg, By, C1, Cop, . C7, functions of corru-

gation cross-section geometry, defined by equations (D15)
for general case and by equations (D21) and (D22) for
corrugation having a cross-sectional center line con-
sisting of straight lines and circular arcs

nondimensional parameters locating origin of y- and
z-coordinates, respectively (see fig. D3 of appendix D)

k h,kIIh,kIIIh distances between middle surface of lower face and

planes I, II, and III, respectively (see figs. Bl and
Cl of appendixes B and C, respectively), inches

distance between middle surface of lower face and plane
which cuts corrugation into lobes of equal area (also
shear center of corrugation), inches

g
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kgh

kgT,
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distance between middle surface of lower face and
centroidal axis of corrugation cross section parallel
to yz-plane, inches

distance between middle surface of lower face and
centroidal axis associated with EI,, inches

Eoto

_ kgEchc +
kEIx - EKX

kg h distance between middle surface of lower face and
J centroidal axis assoclated with EIy, inches
El, = §5
Yy EAy
kgFh distance between middle surface of lower face and "zero-
shear plane" associated with GJ, inches
Ggte
ZC kC + G2t2
ka=s = —
GJ CGA
1) length of one corrugation leg, measured along center
line, inches
L distance between supports of test beam, inches
2p corrugation pitch (see sketches in figs. 3 and 4), inches
P load applied to test beam, pounds
Q static moment about centroidal axis of cross-hatched
portion of cross section shown in figure El, inches
S

nondimensional coefficient in formula for DQy’

Ee \/tc)’
qu = Sh — 5
1 - e C
coordinate measured along center line of corrugation

cross sections parallel to yz-plane; see, for example,
figures C2, D3, and E3, inches
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t1,to,tg

H1,H2sHC

approx
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thicknesses of lower-face, upper-face, and corrugated-
core sheets, respectively, inches

angle between face sheets and straight diagonal portion
of corrugation leg (see sketches in figs. 3 and 4)

Poisson's ratios for lower-face, upper-face, and
corrugation materials, respectively

angle between face sheets and tangent to corrugation
center line (see fig. D3)
Subscript

approximate wvalue
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APPENDIX B

DERIVATION OF FORMULAS FOR Dx, Dy, wux, Hy, Ex, Ey,

H'yx, H'y, Cxx, Cxy, Cyx, AND Cyy

In the derivation of the formulas for the elastic contants associ-
ated with bending and stretching an element of a corrugated-core sand-
wich plate is considered which is subjected to bending moments of
intensity My and My and to horizontal resultant forces of intensity
Ny and Ny at arbitrary distances kih and krth, respectively, above
the middle surfaces of the lower face. (See following fig.)

—— Y
x’///[_ |— Planel
W

, 1 ‘
My X kgh
/
- NaCa,

Figure Bl

Equations are derived relating the distortions of this element to the
forces and moments producing them; in these equations terms corresponding
to Dy, Dy’ Hys Hys Ey, Ey’ My u'y, Cxxr ny, ny, and ny
are evident. The general formulas thus obtained are reduced for special
applications.

The moment My and force Nx are assumed to be resisted by both
the bending and extensional stiffnesses of the core and the extensional
stiffnesses of the face sheets; the moment My and force Ny are

assumed to be resisted only by the extensional stiffnesses of the face
sheets.
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Vertical lines drawn between middle-surface points in the upper
and lower faces of the undistorted element are assumed to remain perpen-
dicular to the faces and unchanged in length during distortion of the
element. The distortion of the element as a whole will therefore

consist of curvatures QEE and ng_ The middle surfaces of the faces
6x2 ByQ

will be strained in the x- and y-d&irections; it is convenient to imagine

the existence of other horizontal planes in which the strains may be

obtained by linear interpolation between the upper- and lower-face

middle surfaces.

Inasmuch as the moment My and the force Ny are assumed to be
resisted only by the extensional stiffnesses of the face sheets, the
direct stresses in y-direction in the middle surfaces of the lower- and

upper-face sheets Gyl and Uy2 are statically determinate and are

given, respectively, by

M N
Oy. = —X + _1<1 -k ) Bl

g ':.-ﬂ-{.&k

Y2 toh  tp 1L

If, in addition, the middle-surface strains in the x-direction €xq
and €xp in the lower- and upper-face sheets, respectively, were known,

the state of deformation of the element would be completely fixed. These
two strains can be determined from two conditions: namely, that the

thrust intensity in the x-direction is Nx and the moment intensity in

the x-direction about plane I is My, or



32 NACA TN 2289

where

0xy direct stress in the x-direction in the middle surface of lower face

9xs direct stress in the x-direction in the middle surface of upper face
EXC average direct stress in the x-direction in corrugation (also direct
stress in the x-direction at centroid of corrugation)
- 2
The terms o, , 0y , 0Oy , and Fw can be replaced by the following
1 2 C dx2

expressions in terms of €x1 and €xn:

cxl = Elexl + j.llUyl

N,{1l - k *
y( Ilﬂ
= E+€ + + (B
1"x) " M1¥n ] J 5)
o = Ere + HnO
N,k
My voIT
= E2€x + Ho <" t—gh- + 't2 ) (B6)
axc"EC%x *'kéGXg -inﬂ (BT)
agw €X2 le (BB)
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Equations (B3) and (B4) then become
Exl[Eltl + ECAC(l - kaﬂ ey <E2t2 + ECACk-) =

Hy = Hg) + NX - Ny[ul(l - kII> + HgkIﬂ (B9)
Eq tqk 1 - k= \E AA(k k= Eclg
fxp 10151 * - f¢)*ctc I'c+h2 -

- -\, Ecle| _
Gxg[Egte (1 - kI) - kcEcAc(kI - kc) * _—C‘] -

Mx
- ghz[*@ +<“1 - '-‘2) kI:I * Ny{' “1(1 - kII>kI * “21‘11(1 - kI)}

(B10)
Solution for e and € ives
Xy x, &
Me My
€xq = ¢xxl - - Hl¢xyl 5 ‘Vxxle - Hl‘l’xley (B11)

My M
x2 '¢x_x2 T + “‘2¢xy2 —EX + wXXQNX - “QnygNy (Bl2)
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where
’ KETh?
xxl - ﬁx
Ql - k57 )h2
X
¢XXQ = E—I
X
¢ _ kﬁixh2 1 H2 (1 - kﬁix)kﬁith 1
Y1 EI, Ky Ely EA,
1 - kET, )h® 1 - KET.)kET.h°
EIx K1 EIx/XEIx 1
¢XYQ = — +(— -1 — - =
EI, Ho ET, EA,
— 42
¥, =— + (ki -k
XXq — ( Ely I) —
EA, EI,
1l - k&5 )h
1 _ ( EIx)
Yexy = — - (kEIx - kI) —
EAy El,
k7= h
EI
Vv, = —2 + (k“ -k ) X 4
Y1 T Ely II w7,
k <l “2) <l } kEEx)kﬁixh 1
I\ ~ U o7 T
MY EIy EA,
L N 1 - kff )h
Yeyp = — - (kEIx - kII) — -
BAy EI,
1 - ki= k&= h°
K1 ( - EIx) EIx 1
l - kII — - —— I——
Mo EI, EAy

NACA TN 2289

> (B13)
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and
\
BA, = Bty + EGA, + Eptp
EIlx EAy }(Blh)
T T — 2 T (- —\2 —\2{,2
By = B I, + [EltlkEIx + ECAC<kC - kEIx) + Eptp (1 - kEIx):lh

/

With the strains in the x-direction and the stresses in the
y-direction known, the strains in the y-direction Gyl and Gy2 in the

middle surfaces of the lower and upper faces, respectively, are determined
through the plane-stress relations:

l-p.le

€ = ag
y1 y
E, 1

- p,lE xl (Bls)

l-H22
€ =| ——— |0

- € B16
Yo Eo, yo T HeTxo (B16)

or after elimination of Uyl, UY2’ €x77 and GXE by means of
equations (Bl), (B2), (Bll), and (B12),

My
¢yyl T “l¢xxl o

Gyl = + ¥ Ny = ¥y Ny (B17)

Yy 1

M My

- ¢yy2 7% + “2¢xx2 = 7 llr(yyeNy - “2¢xx2Nx (B18)
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where
2 )
k¥ h
ET
= {1 - u,2 + u-2
<1 - ka7 )h
ET
_ Y. 2
=1 -4 % — +
Prve ( 2 EI "2 ¢XY2
y
- ) > (B19)
v = 1_u2> 1 +(kEIy—kII>kEth .ty
w1 A En BT, 1y
_ —\,2
<kEI - kn)(l - kg1 )h
v =<l-u22)l— + 2y
Vo E_Ay i 2 TXYD
y
and
Eot2
= = B2

defined in equations (B13).
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With the strains ¢ €., and ¢ known and the assump-

X)? X2 Y2
tion made that lines normal to the faces remain normal, the distortions
of the element are completely defined. The curvatures can now be

written as:

Pw  fxp - €x]
dx° h

= ‘(¢xx2 + ¢xxl)% + (“2¢xy2 + “l¢xyl)}lM% +

Nx Ny
(Wxxe - \llxxl>—h- - (Hg“’xyg - “lwxy])? (B21)

Ry Vo~ v

5y2 h

Ui+ $ ) b o

(wyyz - ﬂ’yyl)% - (“z‘hxxg = M Vxx %E - (m2)

The strain in the x-direction in the plane of Ny is

m
I

= exl + k1 <€x2 - Gx])

= Wxxl + kI<\Vxx2 - Wxxl):l Nx - “1nyl + kI<“2ny2 - “lwxylﬂ Ny +

~¢xxl - kg <¢xx2 + ¢xxl>] -}:15 - ul¢xyl - kI(“2¢xy2 + u1¢xyl> I:ll—y

L L.

(B23)
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and the strain in the y-direction in the plane of Ny is

m
]

y Gyl'*kII&yg -eyﬁ

—~

.
= wyyl + kII("’ny - Wyylj}Ny - “lwxxl + kII(“éwxxg - “IWqu) Ny +

L

-

Eézyl - kII<¢yy2 + ¢NYj) %% - ul¢xxl - kII<“2¢xx2 + “l¢xxl)
L
~ (B2k)

Comparison of equations (B21) to (B2L4) with equations (1') to (L4'),
respectively, permits identification of the following expressions for
the elastic constants:

S
h

D, = EIL, (B25)
ET EI
— o) y 2) y
Dy =BT, {1 - {1 - =—|-(n w2 x — )
y y 2 EL, ( 1 2 )\"Ely I E1,
_ . -1
2 Ely Ely
(“1 - “2) (l - kﬁx)k‘E_Ix = -— > (B26)
EI, EAMD
b = Hy + (“1 - u2> kE—Ix (B27)
Dy
My = Bx By (B28)
21 -1

— 2
Ey = BEAg |1 + (kﬁx - kI) = (B29)
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- = X
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Toyl X8 g1y - *18) 4 (o - Tn) « LTy - ¥1) (T - Mt + T
A*va 2aXvg
X X
VE IZ X
(otdq) w.<|m - nhlﬁ 14 AxHI - Hv HHMAHHM - men - an
= o i
Hl
X X
T fx X via
+ Ty —= Am.mx - HXHHx - MEV =
Ve vd
Lra (&g . A 2. T 15 (%
- ——\ & - X - If-HAmi-mi,f T u
D gt = gt vd
QJ
(V]
= X £
& i I3 £
- + — H1+Aﬁn-ﬂv — AHHM- Hlmxv+H Ayg = 4
S Ly |2 c ye =
> ulvy g
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Cxx = - (kﬁf%i- kI)h (B33)
X
w2 (KT, - k1r)h KFT,h -
ny = ﬁx + (I—ll - He)(l - kII) ﬁx B3L)
Cyx = “Q(kE_.I_’_‘ k)" + (11 - ) E—Al - (e, ;IkI) g (B35)
X

—_—+ — — - — -
EAyh EIy EAyh EIy

2 Al 1 (kﬁfy - kII)kﬁTyh 1 (kﬁix - kII)kETxh
(2 - ) -

1 - k“‘k)k‘" h

( EIy/%EIy 1
— - (B36)
EI, EAh

(“1 - “2) Ho + (“1 - “e)kII

For the usually encountered case in which the Poisson's ratios for
the two face sheets are equal (that 1is, Hp = ul), the foregoing

expressions for the elastic constants become appreciably simplified and
are

D, = EI (B25')
!
. EI,
D, = EL |1 - u1°[1 - = (B26')
y y =
EI,
Hy = M (B27"')
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Hy = Hy % (B28')
-1
o EA h2
_ . N '
EX = EAX 1 + (kEIx - kI> E—-I- (B29 )
X
EAvh? (A
— ¥y o y
By = BAy gt * (kEI - kII> = ( -1 ) ! Es +
y
-1
2 EAyh® (B30")
(kEI - kII) ==
IX
. EA_h?
1+ (kg1 - kI><kEI - kIﬁ "x
EI,
o> EALN
1+ (k -k —
( BT, I) Fix
L ]
ary = e (332")
X
(r— -k)h
BT I
Cxx = - = (B33')
EI,
Hl(kﬁi - kII)h
X 1
Cxy = (B34")

Cyx = -H1Cxx (B35")
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kg1, - kr7)h

Cov = (1 -
yy ( Hy
EI

y

It is evident from the precedlng two sets of formulas that the values
of the constants associated with stretching and also the values of the
coupling constants depend upon the location of planes I and II in which
the stretching forces Ny and Ny, respectively, are applied. Choosing

planes I and II at the centroids of the transformed cross sections
parallel to the yz- and xz-planes, respectively, (that is, let-
ting k1 = kﬁfx and k1T = kﬁfy results in further simplification of

the formulas and reduces two of the coupling constants to zero. Equations
(B25') to (B36') become

D, = EIy (B25")
-1
- ET
Dy = EL{1 - n?[1 - =X (B26")
BT,
My = My (B27")
D
_ -y "
Ey = EAy (B29")
-1
£ = &A, {1 2 EAy k— \° Bayh® (B30")
= - K - — - — - k= —
y = By 1 T (kEIx E1y> B,

H'x = M1 (B3l”>
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L3

(B32")

(B33")

(B34")

(B35")

(B36")
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APPENDIX C
DERIVATION OF FORMULAS FOR ny, ny, AND T
In the derivation of the formulas for ny, ny, and T, an ele-

ment of a corrugated-core sandwich plate is considered which is sub-
Jected to shear flows 45 9o and 9 in the middle surfaces of the

lower-face, upper-face, and core sheet, respectively. (See following
fig.)

v/fml
—— =
ﬂf -<§ XU
V4 N\ i
s
i | My ./ T
_
. l—lf—>7—,——>‘,’-—~>l~}———>—>—>w—>/ny}//
i i V2
h } ./ /
2 | ! \ ?( //
h l h4 1/// |
—~ ¥ ¥ ~—Plane I
yv | b4 07/
ho ha /
I
L A= 7/
e
! /
e — 2p >
v | NACA. -
zZw
Figure C1

These shear flows may be represented by a resultant horizontal shear
force of average intensity ny acting in some arbitrarily chosen plane,
denoted as plane III, and a twisting moment of average intensity Mxy

2

about this plane. The shear flows induce a twist 2 Y in the element
as a whole and shear strains 715 7p, and 7C in the middle surfaces
of the face and core sheets. By linear interpolation (or extrapolation)
between the middle surfaces of the face sheets, a shear strain for every
horizontal plane can be defined. 1In this appendix equations are derived

2

oW
relating the twist §§_§§ and the shear strain 7xy of plane III to
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the resultant forces of intensities MXy and ny which produce them.
From these equations general formulas for ny, ny, and T are

obtained. These general formulas are then reduced to special forms for
particular applications.

The orthogonal x- and y-axes are taken in the as yet undetermined
plane of zerc shear strain, as shown in the figure.

Assumptions.- Vertical lines drawn between middle-surface points
in the upper and lower faces before twist are assumed to remain perpen-
dicular to the faces and unchanged in length during twist. The shape of
the corrugation in planes parallel to the yz-plane is assumed to be
rigidly maintained, whereas displacements in x-direction of the corru-
gation between lines of attachment to the faces are freely permitted.
In order to eliminate rigid-body displacements, the corner of the ele-
ment (x = 0, y =0) 1is assumed to be fixed in space, and the originally
vertical line at the corner is assumed to remain vertical, that is, in
coincidence with the z-axis. The distortion of the element is main-
tained only through the constant shear flows qQq and q, 1in the faces

and in the corrugation; that is, the face and corrugation sheets
are assumed to be so thin that twisting moments developed in them are
negligible.
Bew
Displacements.- In terms of the twist = oy and the height hj

of the xy-plane above the middle surface of the lower face, the hori-
zontal displacements of points in the middle surface of the lower
face u; and Vv, may be written as

2

u; = -hyy 3§_§§ (c1)
82w
v, = -hx 37 (c2)

The horizontal displacements of points in the middle surface of the
upper face u, and Vo are

up = hoy S5y (c3)

Vg = hQX m (Ch)
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The displacement in the x-direction of the corrugation middle-surface
crest line mm! is

2
o w
i = P 5Ty (€2)
and that of the trough line nn' is

u, = 0 (c6)

Vertical displacements are given by
2

v = xy 3—5—2 s (c7)

Shear strains in the faces.- In terms of the foregoing displacements,
the middle-surface shear strains in the faces 71 and 7, can be

written as

du ov 2
1 1 o)
71 = &" + rx = -2hl g—x gw (08)
du v, 2
_ U2 2 _ oW
et T e gy (c9)

Shear strain in the corrugation.- The shear strain in the corruga-
tion can be determined by considering the portion between a crest and
the adjacent trough as a beam which 1s being twisted about the x-axis

2
at a constant rate J wy, with the shape of the corrugation in planes

X

perpendicular to the x-axis rigidly maintained. (See the following
fig.)
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Figure C2

The constant shear strain Yc 1n the corrugation must be such that
continuity of displacements in the x-direction is maintained between
the corrugation and the face sheets. With u and v' denoting axial
and tangential displacements, respectively, of the corrugation middle
surface and s denoting the distance from nn' measured along the

corrugation center line, the shear strain in the corrugation at any
point P may be written as

- 5§§§§ (c10)

where 1T 1s the perpendicular distance from the axlis of twist Ox to
the tangent at point P and 1s considered positive if the tangent
passes below point O (as in fig.) and negative if it passes above.

N

Yo =

N
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Integration of (Cl0) with respect to s between points n and m

gives
1 Qu ¥ aew l
H/()$(3.5=')'CL/O ds+mv/‘ords

where 1 1is the length of one corrugation leg, measured along center
line, or

o 1
um-un=l’7c+£—%§f r ds (c11)
0

The integral in equation (Cll) represents twice the net area swept out
by the radius vector e 1in going from n to m, or, as can be seen
from the following figure, it equals twice area I minus twice area II.

Figure C3
With
Area I - Area II= AA (c12)
equation (Cll) becomes
ng
u, - u, = lyg + 2 0A =5 (c13)

Continuity between core and faces requires that wup - u, as given by
equation (C1l3) be equal to uy - u, as given by equations (C5) and (C6).
Therefore,

Ly o+ 2 AA 3w - n 3w

’c ox Jy v? 3x oy
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or
7o = (e - QAA)%B%%?
- (h -2 45939 o (c1k)
b p/ & Ox dy

— A
where A, equals —59, the corrugation cross-sectional area per unit

width.

The area AA which appears in equation (Clk) and is defined by
equation (Cl2) depends simultaneously on the vertical location h3 of

the axis of twist and on the geometry of the corrugation. Through
purely geometrical considerations, AA can be relagted to two other
areas, one of” which ph3 depends only on the vertical location of the
axis of twist and the other of which depends only on the geometry of
the cross section. The relationship is

AA = % h3p - %[%1 - A, - p(tl - té{] (c15)

where A} 1s the area, in width 2p, lying between the corrugation
center line and the lower-skin center line, and Ao 1s similarly the
area lying between the corrugation center line and the upper-skin center
line. (See the following fig.)

Figure Ch

With AA 1in equation (Cl4) eliminated through equation (C15),
the equation for Yo becomes

A - A\t oy
7c = <h2 - bt =55 )E S Oy (C16)
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Shear flows.- With the shear strains known through equations (C8),
(C9), and iClgi, the following expressions may be written for the shear
flows:

2
Ow
Y = Fhh 55 (€17)
2
1, = 26,05t 5% (c18)
B - AT 2,
9% = GC(h2 =By 2p )HKE ox Jdy (c19)

2
These expressions give the shear flows in terms of the twist 52—35 and

the vertical location (hl, h2> of the plane of zero shear strain. In

order to determine the elastic constants, the shear flows must be
2

expressed In terms of the twist 5%—%; and the shear strain Txy of

plane ITI. The shear strain of any horizontal plane varies linearly
with the distance from the xy-plane and must be consistent with the
twist; hence,

2
7xy = (krrh - By) (2 %%;)

or

1 'x

(ca1)

t
H
i
-
-
H
-
oy
+
el
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Using equations (C20) and (C21) to eliminate h] and hp from equa-
tions (C17) to (Cl9) gives the following expressions for the shear
flows:

2
oW 1
4 = 'eGltl(?IIIh x oy T 2 7x) (cee)

= 26.t, {1 - k.o )b R L (c23)
I = Hptp ( - III) x5y T2 xy

2
Gete A - Al 2y

The resultants of the shear flows, namely ny and Mxy’ may now be
evaluated.

Evaluation of ny.— The shear flows 95 9 and 9% combine to

give a resultant horizontal shear flow of

ny = q + 45 + 40 (ce5)

where q;, q,, and 4 are given by equations (C22) to (C2Lk).

Evaluation of Mxy-- The average value of Mxy can be determined
by taking moments, in the yz-plane, of q;, gp, and the horizontal

components of 9 with respect to plane III. Use is made in this

section of a horizontal plane which cuts the corrugation center line
into lobes of equal area. This plane, which is shown as plane IV in
the following sketch at a distance kch  above the middle surface of the

lower face, is the centroid (or shear center) of the corrugation shear
flows.,

m

q B e R et

’q T TR TN :

2 f/ G- N |

: K ‘h l\ / Plonefﬂ \\

c \ ‘

} kmh _/(, s 4 \ 1
¢y g me= N N

;‘ o p NACA
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Taking moments with respect to plane III gives

M = -apkppph 4 q2(1 - kIII)h + qC<kC - kIII)h (C26)

where q,, q,, and q, are given by equations (ce2) to (Cc2k4).
Evaluation of N d in terms of d ol Sub-
aluation xy an Mxy rms 7xy an 52—55'-
stitution of equations (C22) to (C24) into equations (C25) and (C26)

Ao - A

~oph through the purely geometrical relationship

and elimination of

A -
o = 3+ T (e21)
gives
— 3w —
Ney = 7xy0h + 2 > oy GAGQET - kIII)h (c28)

— 2 2
MXy = 7xyGA(k63 - kIII)h + 2 TR GJ + GA(kGE - kIII) h:] (c29)

where
_ Gete
GA = Gyt + Kb + Goty (c30)
Gctcgkc o
k(}_j: = GX (C31)
2
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Solution of equations (C28) and (C29) gives

Fw_ My (Wﬁ"%ﬁﬂh
= - N — C33
x 3y agr 0V oGT (€33)

- kyrp)h ~7 = kyr7)°h®
Yy = My (ke - 111) - éf , (ka3 63III) (C34)

Comparison of equations (C33) and (C34) with equations (5') and (6')
permits the identification of the following elastic constants:

Dyy = 2GJ (c35)
Gy = ——— (c36)
GA 2.2
— - k h
KEGJ m)
T =- — (C37)
2GJ
Choosing kIII equal to kﬁj reduces the foregoing equations to
ny = 2GJ (C35)
- CA '
Gyy = GA (c36')

T=0 (c37")
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APPENDIX D
DERIVATION OF FORMULA FOR DQy

In this appendix a formula for the transverse shear stiffness qu

is derived which is fundamentally the same as that given in reference kL
for the case of interference of flats neglected but extended slightly
to include the effects of stretching of the corrugation and the preven-
tion of anticlastic curvature. The general formula is reduced to
special forms for specific applications.

The element of a corrugated-core sandwich shown in the following
figure has unit width normal to the page and is in equilibrium under a
small transverse shear of unit intensity (Qy = 1) and horizontal forces
of magnitude p/h. The corrugation is assumed to be fastened to the
skins through rigid joints at its crests and troughs.

Figure D1

For small Qy the relative distortions of the element are proportional
to Qy. These relative distortions By and 52 are shown in the

following figure:

igure D2

Y
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&
An average shear strain Yy may be taken as —Y - —Z% and the transverse
P
shear stiffness DQy is then given by the ratio of shear intensity to

shear strain, or

1 1
Qy Ty 8 j 5,
h P

The sandwich plate element is now analyzed as a statically indeter-

minate structure to determine the displacements 6y and %,. Substitu-

tion in equation (D1l) then gives a general expression for the calcula-
tion of DQy in any particular case. In the analysis of the unit-width

element the assumption is made that the element is part of a sandwich
having its width normal to the page equal to infinity. The corrugation
and skin elements are therefore taken as beams in which anticlastic
curvature is completely restrained, which amounts to multiplication of

the beam flexural stiffnesses by factors of the type ——;;——. In order

2
l-n
to obtain values more consistent with experiments in which relatively
narrow beams are used, the Poisson's ratios u may be set equal to zero.

In the following figure are shown free-body diagrams for elements
of the corrugation and skins. These elements are represented only by
their center lines.

M N T
s A L Z L st
! ZIPA> <J\z,p r '

NACA
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The distortions of the elements, assumed small, are shown in the
following figure:

¢;L:ﬂ 5, ¢
@ -"-__ﬁ._ az —_— —’-‘—-‘;8’—- ©
® fiéi_fiﬁ&
1 R S v

4

/
/
N\ Voo

S SNSRI mont S

© ~—p - ® b2 ©

__4./_/._; 8:

by NaCA
Figure D&

It should be noted that the forces Y on the corrugation elements are
considered as acting in the midplanes of the skins and transmitted to
the corrugation through short rigid projections. Similarly, the
moments M; and My, are taken about points in these planes and are

not the actual moments in the corrugation sheets at the joints.

Since the undeformed structure i1s symmetrical about any plane BE,
all forces and deformations in the two corrugation elements EA and EC
are equal, as likewise are those in the two skin elements ED and EF
and in the two skin elements BA and BC. Then the skin moments at B,
D, and F are zero, and each skin element is in equilibrium under its
shear Z; or Z, and its moment le or ng at one end.

Since a shear of unity is assumed to act on the sandwich, the
relation between the shear carried by the corrugation X and the shears
carried by the two skins 27 and Z, 1is

X -2Z) -2, =1 (D2)

Static equilibrium of the corrugation elements requires that

M, -M; +Yh -Xp =0 (D3)
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Equilibrium of moments at joint E requires that
Ml + le + Ml + le =0
or
Ml = -le (D4)
Similarly, at an upper joint
M, = Z,p (D5)

Finally, the internal moment M at any point in the corrugation sheet
1s given by

M=M2+Y|:%(t2+tc+kzhc) +z]-X(-¥+y> (D6)

The foregoing five equations are all the static relations needed.

With the rotation of A with respect to the horizontal tangent
at E denoted as @, the deformation b, may be written for the
lower and upper skins, respectively, as

7D
62 = L ) (D7)
3E111/(1 - K1 )
3
Zop
82 = ) + P¢ (D8)
3E212/(1 - Hp )

Deformations in the corrugation sheet are due to both bending and
stretching. The three components of the displacement at A or C
with respect to the tangent at E are

ey e B (D”
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_ 1 1
By = ECIC/«l i uce)k/qM[;(tg + to + kzhc) + %}ds +
1 \/P(Y cos ¥ + X sin ¥)cos ¥ ds (D10)
E'ctc/(l - uc?)
5 = L \/PM<EXE + y) ds -
’ ECQ:/@-' “ce) :
1 JF(Y cos ¥V + X sin W)sin ¥V ds (p11)
E'ctc/(l - ug?)

where the Integrals are taken over one corrugation leg, as from A to E
or C to E (excluding the short rigid projections), s 1is the dis-
tance measured along the corrugation center line, and ¢ 1is the angle
between the tangent to the corrugation and the horizontal (see fig. D3).
In equations (D10) and (D1l) E'p denotes the stretching modulus of
elasticity of the core. It has been distinguished from the bending
modulus Eg 1in order to permit identification of the terms representing
the stretching contribution in the derivation. The Poisson's ratios
associated with bending and with stretching of the core have, however,
been assumed equal. In the rest of the derivation, the moments of
inertia per unit width I, I,, and Iy will in most cases be elimi-

nated through the relations

1 ™
Il = I§ tl3
JL 3 ,
Ip = 75 t2 (p12)
1 .3
IC = i§ tC

/

The ten equations (D2) to (D1l) contain ten unknowns for which they
may be solved. The equations can first be reduced to the following four
equations:

a11X + a12Zo + a13 87 + O ri\

1]

ang + 8.2222 + 8.23 Sz + 0 o
. (D13)
a3lX + 8.3222 + 8,33 Og + 0 = I‘3 e

aulX + ahQZQ + 0 + ayy 5y rg}
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where
ﬂ
all=l
3 e
1 be (l - Mg ) >
"2l T hy T Eglg @Az*g%‘&
3 2\~ 2 2 )
hg (1 - Mg ) 1 Ec [t
8.3]_: EcIC KIZ‘Fk,y‘h%‘KAz"‘ %% KL+ﬁth Lz_J
nc3(1 - ucg)—i te |t ky p
8.)+l= ECIC Eh_g 'h;"'kz KAz+2hCKL +KIyZ+
b p o .1 ()
2 hg Ay T 12 E'q\hg/ “Lyz
a1p = -1
1 hc3(1 - “02)(‘ 1 E 1 - up® (g3 >(DLl4)
8pp = - L - (IL) £
he Ec1o L_ 3Bs 1 - p2\t2/ \be/| B¢
3 2
h¢ (l - UC ) k
e - F R R
he3(1 - ug? 1te t¢\_©
8'11-2::_ (ECIC >KAy —%‘F'h—C'FkZKL'hEC
3E1T;
a = =
13 (1 j “12)P3
_1
823 7 3
a33 = aM‘L = rl =1 ‘J

Equation (D14) continued on next page
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rp = %I %3(20%“02)%% + %(;0—2 + :Ch% + kZ>K;]-hl;-
o)y ey,
T, - 25 nafk
ne ng3(1 - ue?) t2  I¢
RS/ AN
b BT e

The quantities KIy, KIZ,

of the corrugation shape and the origin location.

NACA TN 2289

\
k
(D1k)
Concluded
/

and so on are nondimensional functions

They are defined by

the following integrals taken along one leg of the corrugation center

line from the crest to the trough; that is, from
figure D3:

1 A
KIZ=Efy2dS
KIyz = ——§1/Fyz ds
R T

Y he

1
KAZ-_-?fde

1
Ky, = —= d

Ay hce Z ds

m to n in

(p15)

y,
Equation (D15) continued on next page
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~
= _l_.f
he
%fcosewjr ds
\ (D15)
K 1 in v va Concluded
= = o
Lyz hg sin cos s
1 . 2
K, = ——\/P51n ¥ ds
z hC J

Equations (D13) may be solved for d, and 8,. Substitution in

y
equation (D1) then furnishes the following expression for DQy:
3
E t
C C
D = Sh — (D16)
QY <1 - p.C2><hC>
where
2 ogleg? - exeq) - o3+ oo - £ 1)
S =

s - ey - o]« R0 - o) + (R e - )

[ e - -
.

(D17)

rz %E!;-(clcu - 0205) - (cgm+ - C3C5H + %%CYEh (clcl+ - 20205) ]

N
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and
2 ™
1Ec(1'“2)tc3_p_
Cl—KL+-§ ) E-é- hc
(1 - uc”)
C2—KAZ+§-}PIC_KL
Er {ta)2
) 2 ) . L Eo
C3 X1 +kth<KAZ+<kahCKL>+12E'ChC KLZ
C) = L sf1+2)CHy cBeg) 2R -
L Iyz * 2|z to/ng|\ Az T 2 hg L 2 hg Ay
2
1_E_c_(3<z> Kz,
12 E! z
e > (D18)
Ce =Ky, + 3]k, + [1 + te EQ K
A to/he| L
toyte 1 2\ tC
C6-KLY+EZ+(1+%>hC KAy+T+'|}Z+<l+tC)%:]KI}
2
R oy
12 E'ci\he Ly
2
]
T Eq, “lztc )
Special Cases
Symmetrical corrugation.- The evaluation of the terms KIy,
KIZ, . . . and so on in the formula for DQy depends upon the location

of the origin of coordinates, that is, on the choice of ky and k,.

For the frequently encountered case in which the corrugation is sym-
metrical, computational advantages are gained by letting ky =k, = 1,

that is, by choosing the origin at the midpoint of the corrugation leg.
As a result the parameters KAy and KAz vanish.
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Symmetrical sandwich.- For the case of the symmetrical corrugated-
core sandwich, elimination of KAy and KAz by choosing ky = kz =1
is again advantageous. In addition, however, the numerator and
denominator in equation (D17) for S contain a common factor. Cancel-
lation of this factor yilelds the following simplified expression for S
to replace equation (D17):

6 E;— B3B, + (_h%f

5 = (D19)
2 he 3
P -~ 2 h p
(@) m o Flee(mne - w7« (R) 5 v
where
) N
By = K + jL EC EQ K;
37 %M, T1I2E\hg/ "Lz
2
_ 1 Ec (%
B = KIyz T 12 E'c(hc> s
. r (D20)
1 Ec [t¢
B6 = K1y + 12 E'C<HE> L,
B -, oal- “02<t1>3
T TR 1 - L e\Eg
7

Corrugation center line consisting of straight lines and circular
arcs.- The center line of a corrugation leg in many cases consists of
three straight-line segments (two flats and one diagonal element)
separated from each other by two circular arcs. The following figure
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shows

equations (D15) are evaluated for this shape, with the origin of x

65

such a corrugation leg with its dimensions. If the integrals in

and y chosen along the straight diagonal portion as shown in the figure,
the results are

KIZ =

S TEN - FR [

~

kg\ d2 %[ &)3(L>3 (%)3

f bg\] {E =l

o

(NI
w l/ﬁ“\l
S
DU g
n
c?lﬁ‘

sv?ﬂ?

=
|2 | =]
5’|§ c?l
& &
Fled
L2,

N+

H
&S
l(D

L2
é?

l\.)

r——J‘ST\
r\D
nS"
c?“

l\)
AFrQ
t_\_/__l

IS SR I

Equation (D21) continued on next page
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e -, (RCl RCE‘) ;(ﬂ+f_2>
L 6 TR TR B/ T2\ TR

K == a8, 9, 22) o204 L1, R02 (6 + sin 6 cos 6)
Ly ~ 2\ac * he hchc 2\nc " ko

KLyz (g(l: hi)sin 8 cos & + 5@% + 1;(%—) sin29
Ky, = (g-cl- + %—g—)sinee + —(Zl Ze) - sin 6 cos 6)

NACA TN 2289

\ (D21)
Con-
cluded

/

If, in addition to consisting of straight lines and circular arcs,

the corrugatlon is symmetrical (that is, Rcp = RCy,

and the origin of y and 2z

bo = by, and so on)
is chosen at the midpoint of the corruga-

tion leg (that is =k, = 1), then equations (D21) become
) z )
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&ﬂ(ﬁ g1\ 1 (9012 g1 e{l L (D22)
2*‘0{%9*‘0+2¥>*5E%‘) R B

KA =K =
Z
R
d1 1 f1
K, = 2 — + 20 — + —
he © TR kg
f a )
1 1 D 1
K =~ 4+ 2 — cos“6 + ——(0 + sin O cos O
Ly =B * 2 i hg cos 6)
a
Kiyz = 2 E% sin 6 cos @ + EEl singe
d Re
KL, = 2 B% sino + HEl(e - sin 8 cos 8)

J

The dimensions that have to be inserted in the right-hand sides of
equations (D21) and (D22) can be obtained from a few basic dimensions
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(P; hga Ril: RiQ:

of computations:

tc
By =Ry * 2 fep
_ kz)
aj = (l - —2‘" - RCl ap
k. 1
b _z) o
bl 1 2 2 b2
1/2
Cl = (&12 + ble) / CQ
8
= arc¢ tan — a
“ by 2
R
B, = arc sin Jil B
1 =) 2
1/2
2 2
4 = (Cl - Bey ) da
9=ap + B =+ B
el = RC cos @ e2
g. =R sin 6 g
1770 2
Jp=8te Jo
k) =P -8 k,

NACA TN 2289

fy, fo, and tc> through the following sequence

\

> (D23)
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These dimensions required in equations (D21) and (D22) can also be
obtained from a different set of basic dimensions (p, hge, Ril, Rig’

6, and tC) through the following sequence of computations:

bg = bpe - ¢
te tc
RCl = Ril + - ch = R12 + =
a1=<l'£22‘)hC'Rcl f2 = ihéC"Rce
e] = RCl cos @ ey = RC2 cos 0
g = RCl sin 6 8y = RC2 sin 6 g (ph)
Jl =8y + e iy = &, + e,
kl = Jl cot 6 k2 = 32 cot 6
dl = Jl csc 6 d2 = J2 csc 6
by =k + g by = Ky + &
fl = Q[K - Ez)p - bé} f2 = 2(;; p - bg)}
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APPENDIX E
DERIVATION OF FORMULA FOR DQx

In the derivation of the transverse shear stiffness DQx’ an ele-

ment of corrugated-core sandwich plate of length dx and width 2p
under a transverse shear V 1is considered. (See following fig.)

Centroidal axis of faces

and core c:ombinmionT

dM \4
h |
v I | ; g
) k i
v Fh
4 ¥
IV | AR
Figure El

The transverse shear is equilibrated by a change in bending moment dM
from one end of the element to the other. From the equation relating
the distortions of this element to the shear V, a general formula

for DQx is obtained. A more practicable approximate formula is then

obtained by assuming that the core carries no direct stress.

General derivation.- The direct stresses produced in the element
by the bending moment dM are assumed to vary linearly through the
thickness. Assuming the only flexibility to be that of the corrugation
in shear gives the following picture of the relative distortions of the
element:

P
— g
h
!
e
i SINACA, -
P PV 2

Figure E2
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The angle

&)

1s taken as an average shear strain 7x for the cross

section, and the transverse shear stiffness DQ is then given by
X

P " 7 " Bu/h .

An expression is now derived for &y as a linear function of V for sub-
stitution in equation (El1).

Elementary consideratiohs give the shear stress in the corrugation
at a point such as m (see fig. El) as

¢ = Ty (E2)
where
Q static moment of cross-hatched area about neutral axis, inches3
I moment of inertia of cross section of width 2p about centroidal

axis, inches

(If faces and core are not all of the same material, a transformed cross
section should be used in calculating Q and I.) The shear strain in
the corrugation sheet is

va
Dolty (E3)

Integration of vy along one corrugation-leg center line (see the
following fig.)

Figure E3
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gives the relative displacement &y of one face with respect to the

other, or
[4
szfo 7, ds

v 1
= EGETEEL/; Q ds (EY)

Substitution of expression (E4) in (El) gives the following general
expression for DQ :
x

- e (E5)

Approximation.- If, as is usual, the corrugation carries only a
small portion of the bending moment M, then an accurate approximation
to DQx may be obtained by assuming that the entire bending moment is
resisted by the faces and, therefore, that the corrugation carries no
normal stress. The resulting formula for DQx will be the same as

equation (E5) but with the effect of the corrugation omitted in calcu-

l .
lating I, JF Q ds, and the centroidal—axis location éqfflo; that is,
0 x

=

Iz 2ptl(kE—Ixh)2 + 1%(21))1@(1 - xgp, )0 (E6)

JCZ Q ds = [;%(Ep)te(l - kﬁf&)%]l (ETa)

or

1
f Q ds x 2ptlkﬁxhl (ETo) °
0
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E
2
E, 2

kE— x — (E8)

2
tl + = tg
Ey

Substitution of the approximate expressions (E6), (E7), and (E8) in
equation (E5) gives the following approximation to DQX;

(E9)

2 2 2
® "~ pr KC \p

ZtC

where the corrugation cross-sectional area per unit width KC = —Era
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TABLE I.- RESULTS OF NUMFRICAL SURVEY OF ACCURACY OF APPROXIMATE FORMULAS FOR D, E,,
D AND Dy . (ki1 = ki7
xy? Qy ( 11 Ely)
Eh': Bp = Bgs Gy = 0p =G5 wy =wp = 35 1 = fp; and Ko = Rg_ = O.lBhé]
« 2p Y
= A
f2] \\ 8 /)
h Eg“ X To>/Re, 2
he vy 2N
| _ — '__1
e —
R
Gy
D
Ratio Dyapprox Eyapprox ( Qx)approx (ny)approx
Dy Ey Qx Xy
2
t (deg) 60 30 60 90 60 90 60 90
t, |Be
to| t¢ 0.8] 1.4} 0.8] 1.4[ 0.8} 1.4] 0.8 1.4f 0.8] 1.4] 0.8] 1.4} 0.8] 1.4 0.8] 1.}
to ()] (a)f (a) | (u)
0.30 [0.991(0.99(0.99{0.99]0.98(0.9810.9710.98]1.01 {1.00{1.01{1.00/1 1 1 1
10] 1.00 L9811 .97 .97l -97{ .95| .95f .9k| .95|1.01]| .97 97| 94|12 1 1 1
1.25 .97] .97] .96 .96 .94 .95| .ok} .9k|1.01 .96f .96 .93]|1 1 1 1
.30 .99| .991 .99| .99} .98{ .98 .97 .98]|1.00] .99] .98 .98]1 1 1 1
1.00{25| 1.00 97 .97) 2961 .96] .95 .95 94| .95| .99 .95] .93 .91|1 1 1 1
1.25 7| .96) L9671 .961 .okt (95| Lok .olf .99 .93] .92 .83]1 1 1 1
.30 99| .99) .99| .99] .98| .98 .97] .98|1.00| .98} .98( .97|1 1 1 1
40| 1.00 97| .97l .96] .96] .95 .95] .94 .95! .98 .9k} .92| .90|1 1 1 1
1.25 .97] .961 .95 .96 .94 .95) .9u| .o4] .98 .93| .91| .88|1 1 1 1
.30 991 .99] .99| .99] .98} .98 .97] .98[1.01]1.00}1.01( .99{1.00|1.00(1.00|1.00
10| 1.00 97| .97l .961 97! .951 .95] .okt .95]1.01| .97] .96 .9k[1.00{1.00(1.001.00
1.25 971 .97] .96 .96] .94l .95| .93| .9k{1.01] .96 .95| .92[1.00{1.00|1.00({1.00
.30 .99 .991 .98] .99| .98% .98| .97 .9811.00| .99 .98 .97{1.00{1.00{1,00]1.00
.80{25| 1.00 971 .97] L9686 L96] 951 .95 .okl .95) .99| .94| .93] .90|1.00]1.00|1.00]1.00
1.25 97| .961 .95| .95| .94} .95] .93 .94| .99 .93| .91 .88{1.00{1.00{1.00|1.00
.30 .99 .991 .98| .98] .98} .98| .97} .98]1.00| .98 .97| .96{1.00{1.00|1.00 |1.00
40 [ 1.00 971 .97] .96| 96| .95} .95| .94 | .95 .98 .93| .91| .89{1.00{1.00|1.00 |1.00
1.25 961 .96] .95 .95] .9u| .95} .93 | .94| .98 .92| .90| .87/1.00{1.00]1.00[1.00
.30 .99 .99} .98 .98 .97} .98] .97 .97|1.01{ .99] .99 | .98 .98 .98 .98} .98
10 | 1.00 .96 1 .961 .95] .96 .9kl .95] .94 .95|1.01] .96} .9k | .92} .96 .96] .9T] .96
1.25 L9611 .96 .951 951 .94 .94 .93 | .ou1.00 | .95 .94 ] .90| .96] .95 .96] .95
.30 .981 .98 .981 .98 .97} .98] .97| .97|1.00| .98] .97} .96| .98] .98] .99} .98
L5025 | 1.00 .96 .96 .95] .95{ 94| .95| .9k | .9k .98 .93] .91 .88| .96]| .96] .97} .96
1.25 .96 | .95 .ok | .ou| .ou] .ouf .93 ] .94| .98 .91 .90 .87| .96 .95] .96| .96
.30 .98 .981 .98 .98 .97} .98 .97 .97} .99 .97} .96} .95| .98 .98] .99} .98
L0 | 1.00 961 2961 .95 .95 .okl .95] .ok .9h| .98 .92} .90 .BT7| .96| .96[ .97) .96
1.25 L95| .95 .ol .ok .okl .94} .93 .94| .97 .91] .89 .86 .95 .96} .96

8ppproximate and exact values are identical for a symmetrical sandwich

™
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N/ N\ / \
N\ _/

N/ N\

(a) Symmetrical.

S

() Unsymmetrical.

Figure l.- Two types of corrugated-core sandwich plate.
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y il /
x’
W
dx Myydx
My dx
Nydx
Nyydx
My dy Y Jayd
//;M.dy
Middie surface /i nydy -
Qydy
N,dy
(a) Symmetrical loading.
y ol 7
X
zw
dx ’
Maydx
My dx , ’
i
/Y
M,d NX dx Nydx
X% 7
Myydy ,/Q,dx
Plane I Nxdy } ) ’
jil
o m “'ir“*vd! SR
Qudy
\W

(v) General loeding.

f

Figure 2.- Forces and moments acting on infinitesimal sandwich-plate

element.
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Figure 3.- Charts for evaluating coefficient S in formula for qu

for homogeneous symmetrical sandwich with corrugation cross section
composed of straight lines and circular arcs (E2 = EC = El;

Mo = Bg = 15 B = 113 fp = f1; RC2 = RC]_ = O'IShC)'
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure 3.- Continued.
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Figure L4.- Concluded.
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(b) Loadings and gage locations.

Figure 5.- Specimen and test setup used in experimental determination

of Dy.
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(c) Photograph of typical test setup.

Figure 5.~ Concluded.
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Figure 6.~ Test setups used in experimental determination of DQy'






15  NACA TN 2289 | 101

(b) Photograph of typical test setup.

Figure 6.~ Concluded,
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L-66801
(a) Photograph of test specimen and steel side and end plates assembled.

L““6680231
(b) Photograph of test specimen and steel side and end plates disassembled.
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(c) Dimensions of twisting test specimen.

Figure 7.~ Specimen and test setup used in experimental determination
of D....
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(d) Photograph of test setup.

Figure T.- Concluded. L"’58058
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