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Expressions are presented for the load distribution on a represent-
ative group of plan forms in sideslip at supersonic speeds. These
expressions were obtained by the application of lifting-surface theories
based on the linearized equation for compressible flow. Sketches of the
load distributions are included.

IN!l130DUCTION

In three recent reports (references 1, 2, and 3) the variations of
rolling moment, of yawing moment, and of lift and pitching moment with
sideslip have been investigated for a group of wing plan forms for super-.
sonic speeds. The pressure distributions required to compute these
forces end moments were calculated using linearized compressible–flow
theory for thin airfoils. Since the reports referred to were concerned
with the detailed expressions of moments and forces for the various plan
i’orms,it was decided that the reference value of the pressure distribu-
tions, their possible utility in stress enal.ysisand design, and the
desirability of including some pictorial representations justified the
treatment af these distributions as the subject of a separate repart.

By virtue of the many approximations involved in its derivation,
the linearized theory applied constitutes one of the most simplified
analytical approaches to coqressible—flow problems. Furthermore, in
addition to the factors approximated in the line~ization of the poten-
tial theory, the analysis employed does not account for the lack of
complete rigidity of a wing nor the effects of viscosity in the flow.
These are two important factors that may have considerable effect on
the actual distribution of the pressure on a wing. Thus, it is not
expected that these pressure distributions will conform precisely to
those obtained in the actual physical flow. It is expected, however,
that these theoretical solutions will be good first approxinfationsfor
the plan forms and conditions considered herein and they should provide
satisfactory indications of the pressure+ifference contours in general
if not in detail.
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2 , NACA TN 2007

The investigation covers the following configurations: (See figs.
1 and 2.) (1) Triangular plan forms with subsonic leading edges or with
supersonic leading edges; (2) trapezoidal.pl~ forms with all possible
combinations of raked-in, raked+ut, subsonic, or supersonic tips; (3)
rectangular plan.forms; and (4) two swept+ack @.n forms with super-
sonic trailing edges develo~d from the triangular wings. Illustrations
are included in order to provide a convenient visual correlation between
the expressions for the pressure distributions end for the moments and
forces that~re calculated from them (references 1, 2, and 3). The
arremgement of the appendixes was based on the.desire to present a syste-
matic and convenient compilation of expressions and illustrations for the
load distributions for the various plan forms considered.
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SYMBOLS, COEFFICIENTS, AliTJAXES

aspect ratio
()

bz
T

span of wing meas~d normal to plsne of symmetry

Mach number parameter
(J=)

ratio of tangent of right tip angle to tangent of Mach

()

mcone angle —
tan p

chord of wing in plane of symmetry

incomplete-ellipticintegral of the second kind with

complete elliptic integral of the second kind with modulus k

incomplete elliptic integral of the first kind with modulus k

/ P~ d% \

complete elliptic integral of the first kind with modulus k’
r 1

lF‘~’k)~
over-all longitudinal length ofiswept+ack wing

slope of right wing tip measured in plane of wing (positive
for raked+ut tip, negative for raked-in tip)
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AP

s

u

v

w

X,yj z

A,B,...V

free-stream llachnumber

slopes of p--form edges relative to wind axes

pressure differential across wing surface, positive upwsrd

loading coefficient

free-stream dynamic pressure
()

9P
2

area of wing

perturbation velocity parallel to positive x axis

free-stream velocity

perturbation velocity parallel to z axis (positive upward)

rectangulsx coordinates of wind axes (fig. 3)

sngle of attack, radians

sideslip angle (positive when sideslipping to right), degrees

Mach angle
(t+)

rectangular coordinates of stability ~es (fig. 3)

rectangular coordinates of body axes (fig. 3)

air density in the free stream

perturbation velocity potential

Subscripts

expressions given in Appendix B

The body axes are generally a right+anded system of three orthog-
onal sxes as shown in fi~e 3 with the longitudinal sxis g’ lying @
the plane of the wigg. The stability axes are, in effect, the body axes
rotated about the lateral axis q’ (though -a) until the longitudinal
axis is in the horizontal plane containing the free-stream vector; a
subsequent rotation about the vertical axis ~ (through P) would bring
the longitudinal axis in line with the free-stream vector and the sxes
would now be coincident with the wind axes.

—
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It should be mentioned that the orientation of these axes as shown
in figure 3 is convenient for the calculations_requiredto determine
the pressure distributions snd the resulting forces and moments. In the
application of these results to the calculation of the motion and dynamic
stability ofian airplane, however, the axes are usually rotated so that
the positive direction of the longitudinal axis is into the free stream
and the positive direction of’the vertical axis Ls downward, that 1s,
toward the undercarriage of the airplane.

METHOD OF ANALYSIS

The development of the expressions for the pressure (i.e., load)
distributions on wing plan forms in sideslip was merely an application
of supersonicwing theory. In this report, only the pat of the theory
relating to the flat-plate or so+alled “additional” loading, which is
the loading resulting from a change in angle 05attac~ will be consid-
ered. The loadings due to csmber and twist sre usually assessed inde-
pendently, and the sum ofithese two loadings is often referred to as the
“basic” load distribution.

By linearization of the partial differential equation for compres-
sible flow it is possible to develop a simplified lifting-surface theory
for thin airfoils. The linearization is made possible by the assumption
that, for thin airfoils, the perturbation velocities induced by the air-
foil are small relative to the free-stream velocity. If the free-stream
velocity vector is parallel to and in the direction of the positive x
sxis and if Q denotes the perturbation velocity potential for isen-
tropic flow, the linearized partial differential equation for steady-
state conditions at supersonicvelocities is

where Ml is the Mach nuder of the free stream. There have been a
number of-methods developed that provide means of fitting solutions of
this equation to the boundary conditions of thin+irfoil theory (e.g.,
references 4 through 9). The results to be given herein were determined
through the general use of source-sink and doublet distributions (refer-
ences 4,,5, 6, and 9). In particular, the method of-reference 6 was
applied to cases where a subsonic tip occurs in conjumctfon with a
supersonic leading edge or tip; whereas the load distributions for all
other edge end Mach cone arrangements were calculated by application of
the methods summarized in reference 9.

The first step in the analysis is the establishment of the boundary
conditions. For thin airfoils the boundsry conditions are USUEL1lY
restricted to the z=O plane. Thus, if the local angles of attack at
various spanwise stations of the wing are specified and it is assumed

w

A

u



NACA TN 2007

.

5

that the wing is coincident with the z=O plane, he boundary conditions
&ere set. Next, the expressions for the loading ~ and the angle of

attack .a are formulated in terms of parroters &at can be related to
the potential solutions of the differential equation and to the boundary
conditions. For linearized theory these relationships sre

–=&uAX’ —(if u is for the upyer surface)
qv

where

and

where

a w=--
v

Th;s the problem is reduced to determining CP in such a manner that
-v is equal to the specified local angle of attack at every spsnwise
station of the wing.

The general problem of specifying the ale of attack and of solv–
ing for the resulting velocity ~tential is one that usually requires
the solution of an titegral equation. (See reference 9.) For cases
where the edges of the plan form are supersonic, however, the lack of
interactionbetween the upper and lower-surfaces of the wing permits the
problem tobe solvedby a distribution of sources in accordance with the
local slopes of the plan form and a straightforward integration of their
potentials. The triangular and trapezoidal plan forms with supersonic
edges were treated in this manneq. Likewise, wherever a mibsonic edge
is h conjunction with a supersonic leading edge or tip a straightforward
titegratioD canbe employed. Tor this case reference 6 protides a uthod,
based on the consideration of the upwash between the sfisonic edge and the
Mach cone, whereby the usual operations involved in the solution of the
integral equation me eliminated. In general, however, it is necessary
to go through rather involved procedures to csl.culatethe load distribu-
tion when the camber, twist, and sngle of attack of the plan form are
specified. These procedures me discussed in reference 9 wherein, for
conical-flow conditions, a loading element is used to set up the inte-
gral equation and then the usual integral+quation techniques are

d
—

emplo~-d to solve it.

A It should be mentioned also that,
sonic, an additional stipulationbased

when the trailing edge is sub-
on some physical concept for the
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flow, such as the Kutta condition which Is applied herein, is needed in
order to eliminate all but one of an infinite ntmiberof potential solu-
tions that will satisfy the boundary conditions:

PRESENTATION OI?RESULTS

All the plan forms ~d conditions investigated in references 1, 2,
and 3 were made up using the five following combinations of straight
edges:

1. A supersonic leading edge in conjunction tith a subsonic
leading edge

2. A supersonic leading edge in conjunction with a subsonic
trailing edge

3. Two subsonic leading edges

4-. A subsonic leading edge in conjunction with a subsonic
trailing edge

5. Two supersonic leading edges

The expressions for the load distributions on these five conibina-
tions are given in Appendix A in terms of-the wind+es notation.

In order to provide an easy correlation between the load distribu-
tions and the aerodynamic characteristics of the plm forms presented
in references 1, 2, and 3, Appendix B contains the expressions for the
load distributions on various sectors of the plsn forms in terms of the
plan-form parameters and the body-axes notation. Since the plan forms
sre restricted to the z=O plane for the purpose of analysis by the
thin-airfoil theory, the body-axes notation, in a sense, refers to coor-
dinates on the projection of the plan form onto the z=O plane, which
corresponds to giving the coordinates ingterms of the stability+xes
notation. This slight smibiguitybetween the body axes andth stability
axes, caused by the assumptions employed in thin-airfoil theory, should
not be allowed to cause any dotit about the direction of the normal
force. This force acts perpendicular to the plate and in a direction
parallel to the [’ axis, not the ~ axis.

The order of presentation of the plan-form sectors in Appendix B
of’this report is a duplicate-f the arrange~nt~ ‘ofthe Appendixes B
of references 1, 2, and 3. A sketch of the load distribution is pre-
sented for each sector in Appendix B in order to provide a convenient
visual interpretation of the load distribution.

.

b-

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif., Oct. 10, 1949.
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APEENDIX A
*

SUMMARY 03’EXPRESSIONS FCIRU)AD DISTRIBUTION ON WING “
EHMENTS IN TERMS OF WIND+XES NOTATION

Expressions Apply to Crosshatched Plan+?orml!reas

1.
edge:

7

Supersonic leading edge in conjunction with a stisonic

Y

Y-=-
x ;
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leading
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x no I
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2. Supersonic

8

3 Two

Y ‘1-=--
x B

AP—=
q

subsonic

edge in conjunction with a

‘m

/
/

/
/

/
/

/

~’y= ‘1

NACA TN 2007

trailing edge:

/
/

/

Y-=
x

N 2a1 2G—=—
qE B(nl~)

●

w
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9
where

E is the complete elliptic integral of the second kind with modulus

J-

l-B2nl~- /( l-=n~’) (1~=~’)
G=

B(nl~)

4. Subsonic leading edge in conjunction witha subsonic trailing edge:

/
/

/
/

/
/

Y ‘1-=--
x B

when no = O

\ Y~-=
x 13

when nl = ~
B

P1
r

2=-—
Yt 14hlfJ

when w > O; nlc~
B

.

4/
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where
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B(nl+~)

G143M
kt=—

k=

9=

5. Two superso~ic leading

K =F($k)

E =E($k)

Y
/

//

\

~

>\ 2\\”~/=y-=nl

/
x

Y%-=
x \

“/ \
Y-=-
x ix E=;

x

()Al?—Q.=&
*f
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APPEliDIXB *

EXPRESSIONS FOR tiAD DISTR~UTION ti
TERMS Ol?BODY4XES NOTATION

I@ressions

l.. lmf=u@arwings:

A.

apply to crosshatched and
shaded plan-fodm areas

heavily

I L#+&3rl13

where

E is the complete elliptic integral of the second kind with mdulus
J

J=
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B.

~= (l-m’tan’B) +B2(m2-tan213) _

~m( l+tm2~)

J’[(l+u tan13)2~2(m+ tan p)’1[ (l+m tan 13)2-32(* tan P)’]
2Bm(l+ ten213)

when tan ~ = m

r GIBm
PI=: —

E (1-m?)

l+13m
wheIltmp=—

B+m

,

-.

h



b

.

NACA TN 2007

when m <tan ~

13

< larl

B+III

P. =
[B(m+ tan p)+=(l+m tan p)](l+m tan S)

where

~, (l+n2 ten213)+B2(m2-ta22P)=

2B(l+m?) tan p

/[(l+m tan 13)2*2(*tan B)211(1+u tan P)2=2(m+tan P)21

2B(l+m2) teaj3

Gl(l+m tan j3)&(*ten p)

K =F(~,k); E =E(;,k)

c.

Lty “--““
/’ E?!?&
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.

‘AP()6-C2=
&x(m+tan P)

B2(m+tan 13)2-(1+ t~ @)2 P)

2m[(l+6 ta?l P)- (B+*=@)1 ~.

“-1=
D.

/’
/////

EF?-z.m:,EzzzI,.:-,lz.. . ... .._l

#

.
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E.
Bin-l

tap <—
B+m

/

*

()AP k(m-tm p)— =

q El J B2(mAa P12<~+m tan p)=

(~AP k(nl+tanp)=
i-2

2(m+ts.n~)=+la tan $)2
L

B~m+tan B)(4 + tan P)-(1+ tan 9)(1- $ 1tanj3)s~-1 +B(*;)(l+ts.n=?)
k(m-tan 6)

B(m+ @( l+tan=fl) J
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~-1 (See footnote a.)E*. ta3113=—
B+m

a =---’–-----=: – --- --- ..:

“&i&19i#

. . .... ... ... .. .... ..
%---- .~+i&&i

(~g 4u(m?+2rlB-1)

[

?t

q F+
2(&’+M3-1)2--(B+2MO!%)

B2(m2+2niB-1)[(niB-1)+$ (B+m)]-(B+-) [(B+m)- fi (B*l) ]
sin~

1

+

B(K $) [(B+m)2+(*l)2]

alkft leading edge hits Mach cone from apex.

●
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L

r+
?’

(B-tan ~)+(l+B tan 13) 1

2.

H.

/r& ~ B=tm2p

Swept-~ack wihg components:

.

.

(f)’=”(:)A
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J. Bm4tan p <—
B+m

(?),=(?),

●

d
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J*. tam P
= ~ (see footnote b.)

NACA TN 2007

/ *

‘\
\ /m= ILL

\ Elt
\

\
\

/ +1 P-P

(-5..=W!.*=

()42=
q K2

()

d?

FK=
s

()&q E2

G1

.

bLeft leading edge hits Mach cone from apex.
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K*. tan ~ = ~~ (See footnote

21

/

36 Trapezoidal wing ccqcments.

L.

P+- -

bLeft leading edge hits Mach cone from apex
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L

4a(wtan p)

B)2-(l+m tan j3)2
.

B2(m+tan

[

YI-- sin-l
2

M.

/
/

m+

IIN 2007

B2(m-tsn 13)(~ + tan f3)+(l+mtm P)(1- ~ tan P)

B(m+ ~) (1+ tan2p)

●

+

(m+n P)(B+tan B)

m+
B(m-tan P)+(l+m tan 9)

b-

.

.

●
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#

4cL(nl+tallp)

l-c~B2(m+tan j3)2-(1~ tan ~)2

R.

-t
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(1mwhere ~’ in — should be replaced by qr + (~ - ~r)
q

()

& b
?’~q should be replaced by qc - (~ - ~r)

R*.

.

.

.

~ -- ..._=-.=. .-:.: =–. _. . .1
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(:)..**=(F)!
(SR,W=(:)L+(9Q- ($9.

where q? fi

()

AP
Z-L

should be rep~ced by qt + (g - MCr)

()

N?
n’h~ should be replaced by qr

- (: - MC;)
Q

,n t

/
/

(:~z==(?)+(5 -(5
M Q R

()where q‘ in &
q

should be replaced by q‘ + (~ - ~r)

M

()
~’tif should be replaced by qr - (~ - IUCr)

Q
.
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~H* ,

/v’ q’<b/2)

/

/

/ 2*
/ x\

()& ehould be replaced by TI‘+(~-~r)where v‘ in
qN

()

Al? ehoul.dbe replaced by q‘ - (~ - lQCr)
9’ ~

FQ

/
/

/
/ ‘4 E2=R-a. -‘x ~--
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N

/

()where q’ in ~ ahouldbe replaced by q’ + (~–=r)

N

()
~’~f should be replaced by q’ - {~ - ~r)
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‘$’

(8, ‘*

/
/

v
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($2.*=(-$2
(?),,,=(3.‘(30-(?-),
()4!?

b
where q1 h should be replaced bY ~r + P

‘N

()AE b
n’ ~ should be replaced by q’ -~

$10

fyi .
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where q’ in
()
& should be replaced by q’ + ~

‘N

()

g
n’~q should be replaced by q~ - ~
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“ 1-P
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J?T..:...................—-....-.--------—-. .
,:F ~ ‘:---?+%w, ~=?, .-?-*U. ----+- :. d

.w.-
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()g= 4u(m+tan P)
q

v A/B2(m+tan 13)2--(l-m ta B)2
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Figure /.- The triungulor, trupezoidd, and rectongdar plan-

form types investigated.
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Figure 2.- Swept-bock plan forms ond Mach cone

configurations investigofed
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x)~~ rectangular coordinates of wind oxes
~ ~, [ recfangulor coordinufes of stobilify uxes
t;~;~’ rectongulor coordinates of body oxes

f’igur e 3. -Coordinate uxes systems used in onulysis.
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