Characterization of Iron Oxide Deposits Formed at Comanche Peak Steam Electric Station

Use of this thesis is restricted to the UNT Community. Off-campus users must log in to read.

Description

The presence of deposits leading to corrosion of the steam generator (SG) systems is a major contributor to operation and maintenance cost of pressurized water reactor (PWR) plants. Formation and transport of corrosion products formed due to the presence of impurities, metallic oxides and cations in the secondary side of the SG units result in formation of deposits. This research deals with the characterization of deposit samples collected from the two SG units (unit 1 and unit 2) at Comanche Peak Steam Electric Station (CPSES). X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), and energy dispersive ... continued below

Creation Information

Namduri, Haritha May 2003.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 406 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Namduri, Haritha

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

The presence of deposits leading to corrosion of the steam generator (SG) systems is a major contributor to operation and maintenance cost of pressurized water reactor (PWR) plants. Formation and transport of corrosion products formed due to the presence of impurities, metallic oxides and cations in the secondary side of the SG units result in formation of deposits. This research deals with the characterization of deposit samples collected from the two SG units (unit 1 and unit 2) at Comanche Peak Steam Electric Station (CPSES). X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) techniques have been used for studying the compositional and structural properties of iron oxides formed in the secondary side of unit 1 and unit 2. Magnetite (Fe3O4) was found to be predominant in samples from unit 1 and maghemite (g-Fe2O3) was found to be the dominant phase in case of unit 2. An attempt has been made to customize FTIR technique for analyzing different iron oxide phases present in the deposits of PWR-SG systems.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2003

Added to The UNT Digital Library

  • May 14, 2008, 8:21 p.m.

Description Last Updated

  • June 30, 2015, 4:12 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 406

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Namduri, Haritha. Characterization of Iron Oxide Deposits Formed at Comanche Peak Steam Electric Station, thesis, May 2003; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc5521/: accessed July 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .