

NATIONAL ADVISORY COMMITTEE POR ARRONATUTICS

TECHNICAL NOTE NO. 1076

A SIMPIIFIRD MTHHOD FOR DETERMINING FROM FIIGHT DATA
 THE RATE OF GEANGE OF YAVIMG-NOMENT COEFHIOIENT

WITH SIDESIIP
By Robert C. Bishop and Harvard Lomax

SUMMARY

A method is presented by which the directional stability derivative $C_{n \beta}$, the rate of change of yawing-moment coefficient with sideslip angle, can be evaluated for a conventional airplane from flight records of a lateral or directional oscillation. For the method shown, the calculetion of C_{n} for a particular high-speed-filght condition reduces to the determination of only the moment of inertia about the Z-axis and the period of a sideslipping, yewing or rolling oscillation.

When applied to conventional airplanes flying at low to modera.te lift coefficients, the assumptions involved in this simplified method produce negligible error. A comparison of \qquad $C_{n_{\beta}}$ as determined in flight and in the wind tunnel shows good agreement for the four conventional airplenes considered.

INTRODUCTION

During preliminary flight tests of experimental pursuittype airplanes an accurate estimation of maximum sideslip angles attainable in roliing pullouts or other dynamic conditions may be required before such critical tests are undertaken. Existing theoretical methods for calculating the maximum sideslip anfle of an airplane in dynamic flight require an accurate knowledge of Cnb. Methods now used for computation of $C_{n \beta}$, when wind-tunnel data are unavailable, involve estimates of tail effèctiveness which, because of fuselage interference, are subject to considerable efror. Therefore a
method has been developed for measuring in flight values of $C_{n \beta}$ which may be used to verify or correct the design computations.

The derivation and application of equations and the correlation of flight results with wind-tunnel data for the four airplanes shown in figure lare presentedin this report.

CORFPIOIENTS AND SYMBOIS

Coefficients and symbols defined herein are referred to the wind system of coordinates in which the origin is fixed at the center of gravity of the airplane, the Z-axis is in the plane of symmetry and perpendicular to the relative air stream, the X-axis is in the plane of symetry and parallel to the relative air stream, and the Y-axis is perpendicular to the Z and X-axes.
b wing span, feet
S wing area, square feet
m mass of airplane, slugs
2 distence from center of gravity to rudder hinge line, feet
g acceleration due to gravity, feet per second per second
IX moment of inertia about X-axis, slug-feet square
I_{Z} moment of inertia about Z-axis, slug-feet square
=ir density, slugs per cubic foot
V Velocity of airplane along figght path, feet per second free-stream dynamic pressure ($\frac{1}{2} V Z$), pounds per square foot
operator
λ_{1} root of the stability quartic
β angle of sideslip (positive when right wing is forward), radians
$\beta^{0} \quad 180 \beta / \pi$, degrees
P period of oscillation, seconds
p rate of roll, radians per second
r rate of yaw, radians per second
∇ component of flight velocity along the Y-axis, feet per second

Y force along Y-exis, pounds
I moment about X-axis, foot-pounds
N moment about Z-axis, foot-pounds
CY lateral-force coefficient ($Y / q S$)
C_{q} roliing-moment coefficient (I/qSb)
On yawing-moment coefficient (N/qSb)
$C_{Y_{\beta}} \quad\left(\partial C_{Y} / \partial \bar{\beta}\right)$
$c_{i_{\beta}}\left(\partial c_{l} / \partial \beta\right)$
$c_{n_{\beta}}\left(\partial c_{n} / \partial \beta\right)$
$c_{q_{r}}\left[\partial C_{q / \partial}(r b / 2 V)\right]$
$C_{n_{r}} \quad\left[\partial C_{n} / \partial(r b / \partial V)\right]$
$c_{q_{p}}\left[\partial c_{q} / \partial(p b / \partial V)\right]$
$\theta_{n_{p}} \quad\left[\partial c_{n} / \partial(p b / 2 \nabla)\right]$
$Y_{V} \quad(q S / m \nabla) \sigma_{Y_{\beta}}$
$I_{\beta} \quad\left(q S b / I_{X}\right) C_{q_{\beta}}$
$N_{\beta} \quad\left(q S b / I_{Z}\right) O_{n_{\beta}}$
$N_{p} \quad\left(a S b / I_{Z}\right)(b / 2 V) C_{n_{p}}$
$\mathbb{N}_{r} \quad(q S b / I Z)(b / 2 V) C_{n_{r}}$
$I_{p} \quad(q S b / I X)(b / 2 V) I_{q_{p}}$
$I_{r} \quad\left(q S b / I_{X}\right)(b / 2 V) I_{I_{r}}$

THEORY

The stability quartic arising from the consideration of small lateral disturbances from steady horizontal flight can be written (reference 1)

$$
s^{4}+A_{3} s^{3}+A_{2} s^{2}+A_{1} \dot{s}+A_{0}=0
$$

where \qquad
$A_{3}=-I_{p}-Y_{V}-N_{r}$
$A_{z}=I_{p}\left(Y_{V}+N_{r}\right)+N_{r} Y_{V}+N_{\beta}-I_{r} N_{p}$
$A_{1}=-\Psi_{V}\left(\mathbb{N}_{r} L_{p}-I_{r} N_{p}\right)-L_{p} N_{\beta}+I_{\beta}\left[\mathbb{N}_{p}-(g / \nabla)\right]$
$A_{0}=(g / \nabla)\left(I_{\beta} N_{r}-I_{r} N_{\beta}\right)$
The real roots and the real parts of the complex roots of the preceding quartic determine the dapping or divergence of the airplane motion, and the imaginary parts determine the period of oscillation, Normally one of the real roots is small enough so that it can be approximated by neglecting terms in the quartic of higher order that the first. Denoting this root by λ_{1}, it follows that

$$
\lambda_{1} \approx-\left(A_{0} / A_{1}\right)
$$

By factoring this root out of the quartic the following cubic is obtained:

$$
\begin{aligned}
& s^{3}+\left(A_{3}+\lambda_{1}\right) s^{2}+\left(A_{8}+A_{3} \lambda_{1}+\lambda_{1}^{2}\right) s \\
+ & \left(A_{1}+A_{z} \lambda_{1}+A_{3} \lambda_{1}{ }^{2}+\lambda_{1}{ }^{3}\right)=0
\end{aligned}
$$

For conventional airplenes traveling at relatively high speeds, the values of $\lambda_{1}, N_{p}, \frac{I}{4}\left(Y_{\nabla}-N_{r}\right)$, and g / ∇ are
small enough to be neglected in comparison with the terms I_{p} and \mathbb{N}_{β}. By these assumptions the cubic may be factored छiving
$\left(s-I_{p}\right) \quad\left[s-\frac{1}{2}\left(Y_{V}+N_{r}\right)-\sqrt{-N_{\beta}}\right]\left[s-\frac{1}{2}\left(Y_{V}+N_{r}\right)+\sqrt{\left.-N_{\beta}\right]}=0\right.$ \qquad
Since \mathbb{N}_{6} is positive, $\sqrt{\mathbb{N}_{\beta}}$ is the magnitude of the fmaginary part of the complex roots end therefore the frequency of oscillation. It follows that the period of oscillation of the laterally or directionally disturbed airplane is given by the formula

$$
P=\frac{2 \pi}{\sqrt{N \beta}}
$$

Hence

$$
C_{n_{\beta}} 0=\frac{4 \pi z I Z}{5.7 .3 q S b P^{2}}=0.688 \frac{I Z}{q S b P z}
$$

The magnitude of the error in the period introduced by the assumption that the period of oscillation equals 2π divided by $\sqrt{N_{\beta}}$ depends upon both the relative and the absolute magnitude of the neglected stebility derivatives of the airplane. Therefore, caution should be used when the assumption is applied to an unconventional design, such as a tailless eirplane, where the relative magnitudea of the derivatives may differ considerably from those of the airplanes of this report.

In order to illustrate the accuracy of the approximation $P=2 \pi / \sqrt{N \beta}$, the variations with indicated airspeed of the period as computed by three methods are shown in figure 2 for a representative modern airplane. The three metinods used are: (I) the method of reference lin which (within the limitations of the inftial assumptions) the theoretically true period is given as 2π divided by the magnitude of the complex part of an imaginary root of the stability quartic, (2) the method of the present report in which the period is equal to $2 \pi / \sqrt{\sqrt{H}}$, and (3) the method of reference 2 in which an alternative simplification and factorization of the quartic gives a period equal to

$$
2 \pi / \sqrt{\frac{I_{B}\left(N_{p}-g / V\right)}{-N_{r}}-I_{p}}
$$

The comparisons of figure 2 indicate that, for the airplane considered, the approximation of this report (method (2)) gives results that agree within 5 percent with those obtained using the theoretically true method (method (1)), and are closer than those of method (3). At low speeds (and high lift coefficients), where the neglected stability derivatives assume larger values relative to $\mathrm{C}_{\mathrm{n} \beta}$, the approximation presented herein tends to become less reliable and others should be used.

FIIGHT PROCEDURE

The period of motion necessary for calculation of $C_{n \beta}$ may be obtained by placing the airplane in a steady sideslip while trimmed for stroight and zero-sidesilp filght, then abruptiy returning the control to trim and recording the resulting motion. A typical time history of the yawing and rolling oscillation that follows such a disturbance is shown in figure 3. From records similaf to those shown in sigure 3 the period of the oscillations may be determined and inserted in the equation given for $C_{n \beta}$. However, itis nct assential in the evaluation of $C_{n_{\beta}}$ to obtain time histories of the airplane motions; any accurate means of measuring the period alone would be sufficient.

The value of $\mathrm{C}_{\mathrm{n} \beta}$ obtained by this method actually represents an average value for the range of sideslip angles covered. If it is desired to establish a curve of $\mathrm{C}_{\mathrm{n}_{\beta}}$ against β, runs can be made with varying amounts of applied disturbence or with different initial trim positions.

The procedure miny be used for either a control-fixed or a control-free configuretion. In the interpretation cf control-free results consideration should be given to the contrcl-system friction, which is sometimes sufficient to holi the ruater fixed in a rudder-free maneuver.

PRECISION

The eccurfoy with which C_{n} con be eveluated from flight tests depends larjely on the precision with which the neriod can be messured pnd the moment of inertie I_{Z} can be estimated. If ε represents the error in the filght-measured
period, the percent error in C_{n} resulting from the error ε is given by

$$
\text { Percent error in } C_{n_{\beta}}= \pm 100 \times 2 \varepsilon / P
$$

It is estimated on the basis of available filght data that the value of ϵ is of the order of 0.10 second. In order to reduce the percentage error from this source to less than 6 percent in any given reading, a period greater than about 3.5 seconds would be required. Since the period is inversely proportional to the speed, the experimental error is reduced for lower speeds. The error likely to be incurred in the computation of I_{Z} is greatly dependent upon the method used for its determination and with care may be held within 1 percent.

The gain in experimental accuracy at lower speeds tends to be offaet by the decreased accuracy in the theory due to the apiroximations. It is expected that the greatest over-all accurecy will be obteined between 200 and 300 miles per hour.

CONPARISON OF FIIGET DATA WITH WIND-TUTYEI DATA
To check the validity of the simplified method developed in this report a comparison has been made of the values of C_{n} obtained from wind-tunnel and flight tests. Four airplanes were chosen (fig. l) which exhibited a wide range of directional stability and for which there existed the neceseary wind-tunnel and flight data.

The value of $C_{n \beta}$ was obtained from flight data using

$$
\because 10 \quad c_{n_{\beta} 0}=0.688 \frac{I_{Z}}{q S \frac{D^{z}}{}}
$$

The moments of inertia were obtained from reports of the Langley Spin Tunnel, and the values of P were determined from directional oscillations where the amplitude of the sidesifp oscillations was $\pm 5^{\circ}$. The flight and wind-tunnel results in the form of C_{n} against β are compared in figure 4. Since no values of intercept can be assigned to this curve, the filight curves were arbitrarily placed so that zero intercepte coincided with those of the wind-tunnel data. Good agreement between wind-tunnel and flight-test results for all. four airplanes indicates that results at least as accurate as
those obtainable in a wind tunnel may be anticipated if the approximate method of this report is used．

CONCLUDING REMARKS

The simplified method for the determination of $C_{n_{\beta}}$ by flight test requires the measurement of only the period of oscillation of the airplane when disturbed laterally or directionally．For conventional airplanes flying at low to moderete lift coefficients，the assumptions involved in this simplified method produce negligible error；hence the method gives results which are more accurate than those obtained using the approximate method of reference 2 and which are in good agreement with wind－tunnel results．For unconventional airplanes（such as tailless）or for airplanes fiying at high lift coefficients the error mey become appreciable and the method should be used with ceution．

Ames Aeronautical Laboratory，
National Adrisory Committee for Aeronautics， Moffett Field，Calif．，March 1946.

Bコ IコR卫NCES

I．Jones，Robert T．：A Simplified Anplication of the Method of Operators to the Calculation of Disturbed Motions of an Airplane．NicA Rep．No．560， 1936.

2．Zimmermen，Gharles H．An Analysis of Laterel Stability in Power－Off Flight with Charts for Use in Design． NACA Rep．No．589，1937．

Figure 1.- Two-view drawings and pertinent specifications of the airplanes tested in flight.

NACA TN No. 1076
Fig. 2

Figure 2.- Comparison of the true and approximate methods for determining the theoretical period of a representative airplane. Stability derivatives were computed for a lift coefficient of 0.132.

Figure 3.- Time history of a typioal rudder-fixed lateral oscillation from which a value of C_{n} may be determined.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 4:- Comparison of flight and wind-tunnel values of rate of change of yawing-moment coefficient with sideslip angle for four airplanes.

