NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No 1655

THERMODYNAMIC CHARTS FOR THE COMPUTATION OF FUEL QUANTITY REQUIRED FOR CONSTANT-PRESSURE COMBUSTION WITH DILUENTS

By Donald Bogart, David Okrent, and L. Richard Turner

Flight Propulsion Research Laboratory
Cleveland, Ohio

Washington
July 1948
ERRATA

NACA TN No 1655

THERMODYNAMIC CHARTS FOR THE COMPUTATION OF FUEL QUANTITY
REQUIRED FOR CONSTANT-PRESSURE COMBUSTION WITH DILUENTS
By Donald Bogart, David Okrent, and L Richard Turner
July 1948

The page-size version of figure 6 was incorrectly prepared for
reproduction, the corresponding large-size chart enclosed in the back
of the report was, however, prepared correctly.

The ordinate label of figure 13 was incorrectly listed nitrogen-air
ratio instead of oxygen-air ratio.
Figure 6 - Fuel-air ratio increment Δf for addition to fuel-air mixture of water-alcohol mixtures containing more than 75-percent water by weight $\Delta f = k_w k_f (f_a + \delta_2 f^a + \delta_3 f^a + \delta_4 f^a)$
THERMODYNAMIC CHARTS FOR THE COMPUTATION OF FUEL QUANTITY REQUIRED FOR CONSTANT-PRESSURE COMBUSTION WITH DILUENTS

By Donald Bogart, David Okrent and L. Richard Turner

SUMMARY

Charts are presented for the calculation of the quantity of hydrocarbon fuel required in order to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or their mixtures are added to air as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also considered. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant. A chart is also included to permit the calculation of the stoichiometric ratio of hydrocarbon fuel to air with diluent addition. The use of the charts is illustrated by numerical examples.

INTRODUCTION

Accurate computation of the quantity of hydrocarbon fuel required to attain a specified combustion temperature with various diluents or refrigerants added to air is complicated by the variation in composition and thermal properties of the fluid imposed by the use of the diluent. A need for such calculation arises, for example, in performance analysis of aircraft gas-turbine engines when diluents or refrigerants are used to augment the thrust or power of the engine.

Graphical methods of computing ideal constant-pressure mixture temperatures for the combustion products of air and hydrocarbon fuels or for computing the fuel quantity ideally required to attain a given combustion temperature are presented in reference 1.
This report presents charts that supplement those of reference 1 and permit the calculation of the quantity of a hydrocarbon fuel required to attain a specified combustion temperature when water, alcohol, water-alcohol mixtures, liquid ammonia, liquid carbon dioxide, liquid nitrogen, liquid oxygen, or combinations of these liquids are used as diluents or refrigerants. The ideal combustion process and combustion with incomplete heat release from the primary fuel and from combustible diluents are considered. The use of the charts is illustrated by numerical examples.

The effect of preheating the mixture of air and diluents and the effect of an initial water-vapor content in the combustion air on the required fuel quantity are also considered. The charts are applicable only to processes in which the final mixture is leaner than stoichiometric and at temperatures where dissociation is unimportant.

A graphical method of determining the stoichiometric fuel-air ratio with diluent addition is also presented.

PRINCIPLES OF CHARTS

The charts presented herein for diluent addition apply to processes in which the final mixture is leaner than stoichiometric and are accurate below those temperatures at which dissociation becomes important, for most calculations, dissociation may be neglected at all temperatures below about 3200°F.

The specific-heat data for the gases were taken from references 1 to 9. The thermodynamic properties of the various liquid diluents were taken from references 10 to 12.

The use of complicated subscripts has been partly avoided by the use of the notation \(x^2_y \) from reference 1 to mean the value of \(x \) at \(z \) minus the value of \(x \) at \(y \).

The symbols are defined when first used. For the convenience of the reader, symbols used more than once are listed in appendix A.

Ideal combustion. - The lower enthalpy of combustion at constant pressure of a liquid fuel \(h_{c,f} \) or of a liquid diluent \(h_{c,d} \) is defined as the amount of heat \(-h_c \) removed during the combustion at constant pressure of the fuel or diluent in oxygen when the initial
and final temperatures are equal and the products of combustion are all in the gaseous phase. Because of this convention, enthalpies of combustion will appear in this report as negative quantities.

The first law of thermodynamics applied to an ideal constant-pressure combustion of a mixture of air, a hydrocarbon fuel, and a diluent for leaner-than-stoichiometric mixtures leads to the following equation

\[
\left[\frac{h_a}{T_a}\right] - f h_{c,f} + (1+d') \left(\frac{W_C}{J}\right) + d \left[\frac{h_d}{T_d} - h_{c,d}\right] = (1+f+d) \left[\frac{h_b}{T_b}\right]
\]

(1)

where

- \(d\) total diluent-air ratio, (lb/lb air)
- \(d'\) weight of diluent injected into air stream prior to compression of mixture, (lb/lb air)
- \(f\) total fuel-air ratio, (lb/lb air)
- \(h_a\) enthalpy of dry air, (Btu/lb air)
- \(h_b\) enthalpy of final burned mixture, (Btu/lb mixture)
- \(h_d\) enthalpy of liquid diluent, (Btu/lb diluent)
- \(h_{c,d}\) lower enthalpy of combustion of liquid diluent at 540\(^\circ\) R, (Btu/lb diluent)
- \(h_{c,f}\) lower enthalpy of combustion of liquid fuel at 540\(^\circ\) R, (Btu/lb fuel)
- \(J\) mechanical equivalent of heat, (778 ft-lb/Btu)
- \(T_a\) initial total-air temperature, (\(^\circ\)R)
- \(T_b\) total combustion temperature, (\(^\circ\)R)
- \(T_d\) temperature of diluent as liquid immediately before injection, (\(^\circ\)R)
- \(T_r\) reference temperature, 540\(^\circ\) R
- \(W_C\) work of compression on mixture entering compressor, (ft-lb/lb mixture)
The effects of preheating the fuel have been neglected in equation (1) for simplicity of notation. The correction to \(-h_{c,f}\) for the liquid fuel introduced to the system at a temperature other than the reference temperature of 540° R is small (approximately 0.5 Btu/(lb)(°R) for fuel in liquid phase). Under ordinary circumstances, partly vaporized fuel would not be used, hence, no portion of the fuel is considered to be vaporized.

A term for energy addition to the mixture or preheating of the mixture by any means \((1+d') W_c/J\) is included in equation (1), the preheating is usually, although not necessarily, accomplished by work of compression on the mixture and is referred to in this manner.

For leaner-than-stoichiometric mixtures, the term \((1+f+d)h_b\) is given by

\[
(1+f+d)h_b = h_a+f(F_{CO_2}H_{CO_2} + F_{H_2O}H_{H_2O} + F_{O_2}H_{O_2})
+ d(D_{CO_2}H_{CO_2} + D_{H_2O}H_{H_2O} + D_{O_2}H_{O_2} + D_{N_2}H_{N_2}) \tag{2}
\]

where

- \(D_y\) increase per pound of diluent in number of moles of \(y\) in ultimate burned gas mixture due to addition and combustion of diluent, (lb mole/lb diluent)
- \(F_y\) increase per pound of fuel in number of moles of \(y\) in ultimate burned gas mixture due to addition and combustion of fuel, (lb mole/lb fuel)
- \(H_y\) molal enthalpy of \(y\), (Btu/lb mole)
- \(y\) variety of gas, specifically \(CO_2, H_2O, O_2,\) and \(N_2\)

The term \(f(F_{CO_2}H_{CO_2} + F_{H_2O}H_{H_2O} + F_{O_2}H_{O_2})\) is equivalent to the term used in reference 1 and 2

\[
f \frac{Am+B}{m+1}
\]
where

\[A = \frac{H_{H_2O} - \frac{1}{2}H_{O_2}}{2.016} \]

\[B = \frac{H_{CO_2} - H_{O_2}}{12.010} \]

\(m \) hydrogen-carbon ratio of fuel

Recent values of atomic weights were used.

The term \(\frac{Am+B}{m+1} \) accounts for the difference between the enthalpy of carbon dioxide and water vapor in the burned mixture and the enthalpy of oxygen removed from the air by their formation.

The term \(d(D_{CO_2}H_{CO_2} + D_{H_2O}H_{H_2O} + D_{O_2}H_{O_2} + D_{N_2}H_{N_2}) \) represents the increase in enthalpy of the molecular products resulting from the addition and the combustion of the diluent. The values of \(F_{O_2}H_{O_2} \) and of \(D_{O_2}H_{O_2} \) generally are negative.

If equation (2) is substituted in equation (1)

\[
\frac{h_a}{T_a} - f \frac{h_{c,f}}{J} + \frac{(1+d')W_C}{J} + d \left(\frac{h_d}{T_r} - \frac{h_{c,d}}{T_r} \right) = \frac{h_a}{T_r} + f \frac{Am+B}{m+1} \frac{T_b}{T_r}
\]

\[+ d \left(D_{CO_2}H_{CO_2} + D_{H_2O}H_{H_2O} + D_{O_2}H_{O_2} + D_{N_2}H_{N_2} \right) \frac{T_b}{T_r} \]

Upon collection of terms equation (3) becomes

\[
\frac{h_a}{T_b} + \phi
\]

\[f = \frac{-h_{c,f} - \frac{Am+B}{m+1}}{T_a} \frac{T_b}{T_r} \]

(4)
\[
\Phi = - (1 + d') \left[\frac{W_c}{J} - d \left(\frac{h_d}{T_r} - h_c, d \right) \right] - \left(D_{CO_2} CO_2 + D_{H_2O} H_2O + D_{O_2} O_2 + D_{N_2} N_2 \right) \left[\frac{T_b}{T_r} \right] \]

(5)

The term \(\Phi \) considers all the effects of diluent addition and compressor work on the magnitude of the fuel-air ratio ideally required to attain the specified combustion temperature, \(\Phi \) is a function of the kind and amount of diluent used, the initial temperature and state of the diluent, the compressor work, and the combustion temperature.

The denominator of equation (4) contains all the factors that depend on the nature of the fuel. The effect of variation of fuel characteristics can be computed by correction factors that depend only on this denominator. For convenience of chart representation, a standard hydrocarbon fuel having a hydrogen-carbon ratio of 0.175 and a lower enthalpy of combustion of -18,700 Btu per pound was used. Correction factors \(K_m \) and \(K_h \) permit the calculation of the required fuel-air ratio for other hydrocarbon fuels. The value of the product \(K_m K_h \) is given by

\[
K_m K_h = \frac{18,700 - 0.175 A + B}{1.175} \left[\frac{T_b}{T_r} \right] - \left(h_c, f - \frac{A + B}{m + 1} \right) \left[\frac{T_b}{T_r} \right]
\]

(6)

A correction factor \(K_w \), which permits the calculation of the fuel-air ratio required to attain a given combustion temperature when the air at the initial temperature contains water vapor, is defined by the relation

\[
K_w = \frac{h_m, a}{h_a} \left[\frac{T_b}{T_a} \right]
\]

(7)
where $h_{m,a}$ is the enthalpy of moist air in Btu per pound of moist air. The value of K_w is found to be practically independent of the initial temperature T_a and therefore can be represented as a function only of water-vapor-to-air ratio and of T_b. The working values of K_w have been based on a value of T_a of 900° R.

In terms of equations (4), (6), and (7), the total fuel-air ratio ideally required to attain a desired temperature by combustion of a mixture of air, hydrocarbon fuel, and diluents is given by

$$f = \frac{K_mK_h\left(\frac{K_w}{h_a}\right)_{T_a} + \phi}{T_b}$$

$$= \frac{18,700 - 0.175 A+B}{1.175}$$

$$= K_mK_hK_wf' + \Delta f$$ \hspace{1cm} (9)

where the fuel-air ratio f' for the standard fuel without diluent addition is given by

$$f' = \frac{\left[\frac{T_b}{h_a}\right]_{T_a}}{T_b}$$

$$= \frac{18,700 - 0.175 A+B}{1.175}$$ \hspace{1cm} (10)

and the increment in fuel-air ratio Δf due to diluent addition is equal to K_mK_hf'' for any hydrocarbon fuel where the increase in fuel-air ratio f'' for the standard fuel is

$$f'' = \frac{\phi}{T_b}$$

$$= \frac{18,700 - 0.175 A+B}{1.175}$$ \hspace{1cm} (11)
Specific expressions for increase in chart fuel-air ratio \(f'' \) due to addition of various diluents are presented in appendix B.

When the factor \(K_w \) is used in the form defined by equation (7), all fuel-air ratios and diluent-air ratios must be expressed in units of pounds per pound of moist air. Only water occurring as vapor at the initial temperature and pressure of the air is considered in computing \(K_w \), fuel-air ratio, and diluent-air ratio. If the air initially contains liquid water, the unevaporated portion of the water must be separately treated in the same manner as a diluent or refrigerant.

A liquid-to-dry-air ratio may be computed by multiplying a liquid-to-moist-air ratio by the ratio of mass of moist air to mass of dry air \(\left(1 + \frac{\text{grains water vapor/ib dry air}}{7000} \right) \).

Combustion with incomplete heat release. - In actual combustion processes of gas-turbine engines, the heat of combustion of fuel and of combustible diluents is never fully released. In turbine engines when combustible diluents are injected at the compressor inlet, the diluent is distributed throughout the combustion air, as a result of this mixing and because only a small part of the total air passes through the flame zone, much of the diluent vapor never reaches a sufficiently high temperature to promote efficient combustion.

In order to discuss incomplete heat release quantitatively, a basis must be established for an estimate of the enthalpy of the products of incomplete combustion. The difference between the enthalpy of several possible residual molecules plus the oxygen required to burn them and the enthalpy of the corresponding masses of molecules of products \(\text{CO}_2, \text{H}_2\text{O}, \), and \(\text{N}_2 \) is later shown to be small as compared with the enthalpy of combustion of the assumed residual molecules. The enthalpy of the products of incomplete combustion has accordingly been assumed to be equal to that of the completely burned mixture at the actual temperature of the incompletely burned mixture.

A heat-release ratio \(\eta_f \) is defined for the hydrocarbon fuel by the heat-balance equation

\[
f_a \left(-h_c, f''f - \frac{Am+B}{m+1} \right) \frac{T_b}{T_a} = h_a \frac{T_b}{T_a} + \phi \tag{12}
\]
where T_b is the actual combustion temperature and f_a is the actual total fuel-air ratio for the incompletely burned mixture.

The heat-balance equation for the ideal combustion process is

$$f_1 \left(- h_{c,f} - \frac{Am+B}{m+1} \right)_{T_b} = h_a + \Phi$$

(13)

where f_1 is the ideal fuel-air ratio.

The ratio of fuel actually required to fuel ideally required r_f from equations (12) and (13) is then

$$r_f = \frac{f_a}{f_1} = \frac{\left[-h_{c,f} - \frac{Am+B}{m+1} \right]_{T_b}}{\left[-\eta_f h_{c,f} - \frac{Am+B}{m+1} \right]_{T_r}}$$

(14)

The ratio r_f depends only on η_f, the composition of the fuel, and the combustion temperature, the ratio is independent of h_a and Φ.

The value of r_f is found to be practically independent of $h_{c,f}$ and m when η_f is greater than 0.7, for the lower values of η_f (to about 0.5), the quantity r_f varies a maximum of 1 percent for the range of liquid hydrocarbon fuels. The working values of r_f have therefore been based on the standard fuel.

Liquid combustible diluents whether burned or not will usually be completely vaporized. A heat-release ratio for combustible diluents η_d is then defined as the fraction of the lower heat of combustion of the vaporized diluent $-h_{c,d}$ actually released

$$\eta_d = \frac{\text{actual heat released by vaporized diluent}}{\text{heating value of vaporized diluent supplied}}$$

Any defect in heat release must be compensated for by an increase in primary fuel rate. For any hydrocarbon fuel, the ideal
increment in fuel-air ratio \(\Delta f \) is given by \(K_m K_h f'' \eta \) where the increase in fuel-air ratio for the standard fuel \(f'' \eta \) is

\[
f'' \eta = \frac{d(1-\eta_d)(-h_m \hat{d}')}{{T_b} \left[18,700 - \frac{0.175 A+B}{1 + 0.175} \right] {T_r}}
\]

(15)

Specific equations for \(f'' \eta \) for water-alcohol mixtures and ammonia are given in appendix C.

The total fuel-air ratio actually required to attain a desired temperature by combustion of a mixture of air, hydrocarbon fuel, and diluents with incomplete heat release considered is given by

\[
f = r_f (K_m K_h K_w f' + \Delta f)
\]

(16)

COMBUSTION CHARTS

Two combustion charts, which are based on equation (4) with \(\Phi \) equal to zero, are presented as figures 1 and 2. These two charts permit the determination for dry air of the ideal fuel-air ratio \(f' \) as a function of the initial temperature and the combustion temperature, respectively, for a single hydrocarbon fuel having a lower enthalpy of combustion of -18,700 Btu per pound and a hydrogen-carbon ratio of 0.175. The ideal fuel-air ratio \(f' \) for this standard fuel is called the chart fuel-air ratio.

The fuel correction factors \(K_m \) and \(K_h \) and the water-vapor correction factor \(K_w \) are included as inserts on figures 1 and 2. These correction factors permit the calculation of the ideal fuel-air ratio for hydrocarbon fuels other than the standard fuel and for combustion air that initially contains water vapor.

The relation between the heat-release ratio \(\eta_f \) and the ratio of actual fuel-air ratio to ideal fuel-air ratio \(r_f \) is shown in figure 3. This relation may be used in conjunction with figures 1 and 2 to compute the required fuel-air ratio for an assigned combustion temperature and heat-release ratio or to determine the heat-release ratio from known values of combustion temperature, actual fuel-air ratio, and ideal fuel-air ratio.
Combustion charts for the determination of the increase in chart fuel-air ratio due to diluent addition \(f'' \) have been prepared from equation (11) for the following diluents:

1. water, ethyl alcohol, methyl alcohol, isopropyl alcohol, and water-alcohol mixtures
2. liquid ammonia
3. liquid carbon dioxide
4. liquid nitrogen
5. liquid oxygen

The increase in fuel-air ratio due to incomplete heat release of the combustible diluents is determined by separate charts for water-alcohol mixtures and for ammonia.

Equations from which the increment in fuel-air ratio \(\Delta f \) due to diluent addition or to incompleteness of diluent combustion is computed are included on each chart.

Alcohols and Water as Diluents

The alcohols and water form a convenient group because of formal chemical similarity and because they are generally used as mixtures of alcohols or of water with one or more alcohols. The three alcohols commercially available in large quantities are methyl alcohol, ethyl alcohol, and isopropyl alcohol. They may be grouped with water by the following formal scheme:

- Isopropyl alcohol \((\text{CH}_2)_3\text{H}_2\text{O}\)
- Ethyl alcohol \((\text{CH}_2)_2\text{H}_2\text{O}\)
- Methyl alcohol \(\text{CH}_2\text{H}_2\text{O}\)
- Water \(\text{H}_2\text{O}\)

The various alcohols, water, and water-alcohol mixtures only differ in the amount of \(\text{CH}_2 \) radical, thus a mixture of water and alcohols can be presented by the average chemical formula \((\text{CH}_2)_x\text{H}_2\text{O}\). The value of the formula weight \(M_m \) of the water-alcohol mixture may
be expressed either as a function of the mixture characteristic x

or in terms of the fractions by weight of the mixture constituents. In terms of x

$$M_m = M_{H_2O} + x M_{CH_2}$$

where

M_{H_2O} molecular weight of water

M_{CH_2} molecular weight of CH_2 radical

When the sum of the weights of constituents of the mixture is taken as unity by definition, the reciprocal formula weight of the mixture is given by

$$\frac{1}{M_m} = \frac{1}{M_0} + \left(\frac{1}{M_1} - \frac{1}{M_0} \right) W_1 + \left(\frac{1}{M_2} - \frac{1}{M_0} \right) W_2 + \left(\frac{1}{M_3} - \frac{1}{M_0} \right) W_3$$

where

W the fraction by weight of each constituent

M the molecular weight of each constituent

and subscripts 0, 1, 2, and 3 refer to water, methyl alcohol, ethyl alcohol, and isopropyl alcohol, respectively.

The quantity $1/M_m$ serves as a parameter of a given mixture and may be computed from equation (18) or determined with the aid of figure 4, which is a graphical representation of equation (18). The determination of $1/M_m$ for a mixture containing equal parts of water and of each of the three alcohols (0.25 lb/lb diluent mixture) is illustrated in figure 4 ($1/M_m = 0.0313$).

Ideal combustion. - The increment in fuel-air ratio Δf required to attain a specified combustion temperature T_b with water-alcohol addition to the fuel-air mixture may be calculated by the use of figure 5. The water-alcohol mixture is assumed to be completely burned. The equations on which figure 5 are based are discussed in appendix B. The increase in chart fuel-air ratio f' required by water-alcohol addition is proportional to the diluent-air ratio d expressed in pounds per pound of air and is principally a function of the mixture parameter $1/M_m$, the initial temperature and state of the water-alcohol mixture, and the combustion temperature. The diluent-air ratio d is expressed as pounds...
of diluent per pound of air, which may be initially either dry or moist. The principal chart is exactly correct for mixtures of water and methyl alcohol at an initial liquid temperature of 540° R, small additive corrections to \(f'' \) must be applied for water-alcohol mixtures containing ethyl or isopropyl alcohols. (See appendix B.) When the mixture contains ethyl alcohol or isopropyl alcohol, the required corrections are \(\delta_2 f'' \) and \(\delta_3 f'' \), respectively, and may be found by means of the right insert on figure 5. If both ethyl and isopropyl alcohols are present, corrections for each alcohol are added successively.

If the diluent mixture is initially injected as a liquid at a temperature other than 540° R, an additional correction \(\delta_h f'' \) is required. This correction depends on the difference between the enthalpy of the diluent at injection temperature and the enthalpy of the diluent in the liquid phase at 540° R. A sufficiently accurate value of this enthalpy for liquid diluents is obtained by the assumption that the specific heat of the three alcohols is 0.60 and the specific heat of water is 1.00 Btu per pound per °R. Hence

\[
\left. h_d \right|_{T_d} = (0.40 W_0 + 0.60) (T_d - 540) \tag{19}
\]

where \(W_0 \) is the fraction by weight of the water in the mixture of diluents.

The correction \(\delta_h f'' \) may be obtained from a known value of

\[
\left. h_d \right|_{T_d} \quad \text{with the aid of the left insert on figure 5.}
\]

The increase in chart fuel-air ratio required for water-alcohol mixture addition for the standard hydrocarbon fuel is

\[
(f'' + \delta_2 f'' + \delta_3 f'' + \delta_h f'')
\]

and the increment in fuel-air ratio \(\Delta f \) for other hydrocarbon fuels is

\[
K_m K_h (f'' + \delta_2 f'' + \delta_3 f'' + \delta_h f'')
\]

An example illustrating the use of figure 5 is given in a subsequent section.
The use of figure 5 for values of \(1/M_m\) corresponding to mixtures that are composed mostly of water is subject to some inaccuracy because of the small angles with which the slant lines used in the determination of \(f''\) intersect the multiplier scale. An enlargement of part of figure 5 in the range of \(1/M_m\) from 0.0480 to 0.0555 (water-alcohol mixtures containing 75 percent or more of water) is presented in figure 6 to improve the accuracy in this region. Problems of the addition of water-alcohol mixtures containing mostly water, and which ideally require little or no additional fuel to maintain a given combustion temperature, are more readily handled by figure 6, which is used in precisely the same manner as figure 5.

Combustion with incomplete heat release. - The increment in fuel-air ratio \(\Delta f\) due to incomplete combustion of the water-alcohol mixture may be determined from figures 7 and 8 and is given by \(K_{mK_f} f''\). Figure 7 applies to any water-alcohol mixture and is used in conjunction with figure 5, figure 8 applies to water-alcohol mixtures containing 75-percent water or more and is used in conjunction with figure 6.

The increase in chart fuel-air ratio \(\Delta f''\) over the fuel-air ratio ideally required for water-alcohol mixture addition is a function of mixture parameter \(1/M_m\), diluent-air ratio \(d\), heat-release ratio \(\eta_d\), and combustion temperature \(T_b\) (appendix C). The small corrections for mixtures of water and alcohol containing fractions of ethyl or isopropyl alcohols and the effect of combustion temperature are incorporated in the top of the chart. The use of figure 7 is later illustrated by an example.

Liquid Ammonia as Diluent

Ideal combustion. - When dry liquid ammonia is used as a diluent, the increase in chart fuel-air ratio \(f''\) is proportional to the weight of added ammonia in pounds per pound of air \(d\), the fuel-air ratio is a function of the combustion temperature \(T_b\) and is substantially independent of initial temperature \(T_d\) (appendix B). The increment in fuel-air ratio \(\Delta f\), which is negative for ammonia, may be computed by figure 9 and is given by \(K_{mK_f} f''\).

Combustion with incomplete heat release. - The increment in fuel-air ratio \(\Delta f\) due to incomplete combustion of ammonia vapor may be calculated by the use of figure 10 and is given by \(K_{mK_f} f''\). The increase in chart fuel-air ratio \(f''\) over that ideally required
for ammonia addition is a function of combustion temperature T_b, diluent-air ratio d, and heat-release ratio η_d (appendix C). An example that illustrates the use of figure 10 is given later.

Liquid Carbon Dioxide as Diluent

The increment in fuel-air ratio Δf resulting from the use of liquid carbon dioxide as a diluent may be computed with the aid of figure 11. Carbon dioxide exists as a liquid at pressures in excess of 5 atmospheres and at temperatures in the range from 391° to 548° R. The carbon dioxide is presumed to be stored as a saturated or subcooled liquid under pressure at a temperature T_d and injected into the combustion-air stream as a liquid, although the chart is based on saturated liquid carbon dioxide, it may be used with accuracy for the subcooled liquid except in the vicinity of the critical temperature (548° R). For convenience, a scale of saturation pressure is included in figure 11. Use of nonsaturated mixtures of liquid and vapor were considered impractical because of the difficulty of controlling rate of discharge and economy of storage space.

For carbon dioxide, f'' is always positive, is a function of T_d and T_b, and is proportional to the weight of carbon dioxide in pounds per pound of air d (appendix B). The fuel-air-ratio increments Δf for liquid carbon dioxide addition is K_mK_{hf}''. The use of figure 11 is illustrated later by an example.

Liquid Nitrogen as Diluent

The increment in fuel-air ratio Δf caused by the use of liquid nitrogen as a diluent may be computed by using figure 12. For liquid nitrogen, f'' is always positive, is a function of the combustion temperature T_b, is proportional to the weight of liquid nitrogen in pounds per pound of air d, and is independent of initial temperature T_d (appendix B). The fuel-air-ratio increment Δf for liquid nitrogen addition is K_mK_{hf}''.

Liquid Oxygen as Diluent

The increment in fuel-air ratio Δf caused by the use of liquid oxygen as a diluent may be computed by figure 13. For liquid oxygen, f'' is a function of T_b, is proportional to the weight of liquid oxygen in pounds per pound of air d, and is
independent of initial temperature T_d (appendix B). For liquid oxygen, f'' is always positive in the range of fuel-air ratio less than stoichiometric. The fuel-air-ratio increment Af for liquid oxygen addition is K_mK_nf''.

Effect of Compressor Work or Preheating of Diluents

In the case of turbine engines, a part of the diluent frequently is added to the air stream ahead of the compressor to reduce the air temperature and to increase the compressor pressure ratio. The addition of the diluent before compression of the working fluid increases the compressor-work term of equation (1) and thus increases the enthalpy of the working fluid. The effect of compressor work on the negative increment in fuel-air ratio Af may be computed by means of figure 14, which includes the work done by the compressor on both air and diluent. The increase in chart fuel-air ratio f'' is a function of the compressor work per pound of compressed mixture W_c, the combustion temperature T_b, and the weight of diluent per pound of air added before compression d (appendix B). When this correction is applied, the air temperature to be used in computing f'' by means of figure 1 is the temperature at a point immediately ahead of the diluent injection. The fuel-air-ratio increment Af for compressor work addition is K_mK_nf''. The use of figure 14 is illustrated later by an example.

Use of More than One Diluent

When more than one diluent is used or when work of compression is done on the air after diluent addition, all the previous fuel-air-ratio increments Af corresponding to each of the diluents or to work addition as indicated by figures 5 to 14 are algebraically added. The total fuel-air ratio f is then the algebraic sum of $K_mK_nK_wf'$ and of all the increments Af multiplied by the ratio r_f. The equation for f is given by

$$f = r_f(K_mK_nK_wf' + \sum Af)$$ \hspace{1cm} (20)

Calculation of Stoichiometric Fuel-Air Ratio with Diluent Addition

The use of a mixture of diluents containing a combustible diluent or an oxidant changes the value of the stoichiometric fuel-air ratio. The stoichiometric fuel-air ratio of the mixture as a
function of the various pertinent diluent-air ratios is presented in figure 15. (See appendix D for details.) The upper-right part of figure 15 is used for evaluation of the stoichiometric fuel-air ratio when water-alcohol mixtures are used. The entire figure is used in cases where liquid ammonia and liquid oxygen are separately used, used together, or used in combination with water-alcohol mixtures. The use of the figure is illustrated later by examples.

USE OF COMBUSTION CHARTS WITH DILUENT ADDITION

The use of the combustion charts with diluent addition is illustrated by the following examples. The fuel employed in the examples has a hydrogen-carbon ratio \(m \) of 0.100 and a lower enthalpy of combustion \(h_C, f \) of -18,300 Btu per pound.

The total fuel-air ratio required to attain a desired combustion temperature is given by the following equation:

\[
f = r_f (K_m K_h f' + \sum \Delta f) \quad \text{(20)}
\]

Example 1 - Ideal combustion with dry air, no diluent addition

The amount of fuel necessary to produce a combustion temperature \(T_b \) of 2000° R when burned with 1 pound of dry air at an initial temperature of 600° R is to be determined. Because the combustion air is dry, \(K_w \) is unity, because combustion is ideal, \(r_f \) is unity, and because no diluents are added, \(\sum \Delta f \) equals zero.

For a temperature rise \(\Delta T \) of 1400° R and \(T_b \) of 2000° R, a chart fuel-air ratio \(f' \) of 0.0203 is obtained from figure 2.

From the inserts on figure 2 at a \(T_b \) of 2000° R, the correction factors \(K_m \) and \(K_h \) are obtained and the total fuel-air ratio is calculated from equation (20). For a value of \(m \) of 0.100, \(K_m \) is 0.9885, for a value of \(h_C, f \) of -18,300 Btu per pound, \(K_h \) is 1.023.

\[
f = K_m K_h f' = (0.9885) (1.023) (0.0203) = 0.0205 \text{ pound per pound dry air}
\]

Example 2 - Ideal combustion with moist air, no diluent addition.

If the combustion air of the preceding example contains water vapor in the amount of 70 grains per pound of dry air, additional fuel is required to achieve a \(T_b \) of 2000° R.
From the insert on figure 2, correction factor \(K_w \) corresponding to 70 grains of water vapor per pound of dry air and a combustion temperature of 2000° F is 1.0095. The ideal total fuel-air ratio is then calculated.

\[
K_w = 1.0095
\]

\[
f' = K_m K_h K_w f' = (0.9885)(1.023)(1.0095)(0.0203) = 0.0207 \text{ pound per pound moist air}
\]

Example 3 — Calculation of heat-release ratio for incomplete combustion. - If a fuel-air ratio of 0.0225 were experimentally required to produce a combustion temperature of 2000° R for the conditions of the previous example, the ratio of actual fuel-air ratio to ideal fuel-air ratio \(r_f \) is 0.0225/0.0207 or 1.0870. For the combustion temperature of 2000° R, the heat-release ratio \(\eta_f \) is found from figure 3 to be 0.9240.

Example 4 — Ideal combustion with water-alcohol mixture addition. - The addition of 0.08 pound of water-alcohol mixture per pound of moist air at a temperature \(T_d \) of 500° R to the combustion process of example 2 is now considered, both hydrocarbon fuel and diluent are assumed to be completely burned. The diluent mixture is composed of the following fractions by weight:

- Water, \(W_0 = 0.50 \)
- Methyl alcohol, \(W_1 = 0.25 \)
- Ethyl alcohol, \(W_2 = 0.25 \)

The total fuel-air ratio necessary to obtain a combustion temperature of 2000° R is to be determined.

The value of the mixture parameter \(1/M_m \) is 0.0410, as shown in figure 4. On figure 5, drop vertically from \(T_b \) of 2000° R and \(1/M_m \) of 0.0410 to the base line (line of \(T_b \) of 1000° R). From this point, draw a line through the point corresponding to a value of \(d \) of 0.08 to the \(f'' \) scale, from which \(f'' \) has a value of -0.0176. From the right insert on figure 5 for 0.25 fraction by weight of ethyl alcohol and \(T_b \) of 2000° R, move to the right to a value of \(d \) of 0.08, correction \(\delta_3 f'' \) is equal to 0.0008. Because no isopropyl alcohol is added, \(\delta_3 f'' \) is zero.

Correction for the water-alcohol mixture introduced at a temperature other than 540° R is made from equation (19) and the left insert on figure 5.
\[\begin{align*}
\frac{T_d}{h_d} &= (0.40 W_0 + 0.60) (T_d - 540) \\
&= (0.20 + 0.60) (500 - 540) = -32 \text{ Btu per pound} \quad (19)
\end{align*} \]

From the left insert on figure 5, for \(h_d \) of -32 Btu per pound, \(T_b \) of 2000\(^\circ\) R, and \(d \) of 0.08, \(\delta_h f'' \) is 0.0002. The required increment in fuel-air ratio is

\[\Delta f = K_m K_h (f'' + \delta_2 f'' + \delta_1 f'') \]

\[= (0.9885) (1.023) (-0.0176 + 0.0008 + 0.0002) \]

\[= -0.0168 \text{ pound per pound moist air} \]

The total fuel-air ratio is from equation (20)

\[f = K_m K_h f' + \Delta f \]

\[= 0.0207 - 0.0168 \]

\[= 0.0039 \text{ pound per pound moist air} \]

Example 5 - Effect of incomplete heat release for water-alcohol-mixture addition. - Consider example 4 with a heat-release ratio for the hydrocarbon fuel \(\eta_f \) of 0.900 and a heat-release ratio for the diluent \(\eta_d \) of 0.500 The total fuel-air ratio for the combustion process is to be determined.

The fuel-air ratio ideally required for combustion with no diluent addition is 0.0207 from example 2. The required increment in fuel-air ratio \(\Delta f \) for the ideal combustion of the water-alcohol mixture added is -0.0168 from example 4. Additional increments in fuel-air ratio that must be determined are due to the incompletely burned fuel and the incompletely burned water-alcohol mixture.

For a value of \((1-\eta_f)\) of 0.10 and a \(T_b \) of 2000\(^\circ\) R, the value of \(r_f \) is 1.1175, as found in figure 3.

For the same water-alcohol mixture used in the previous example, in figure 7, for a value of \(1/M_m \) of 0.041, move down parallel to the slant lines to a fraction by weight of ethyl alcohol \(W_2 \) of 0.25. Inasmuch as no isopropyl alcohol is present in this mixture, move
directly down to the base line corresponding to a T_b value of 3000° R. (If isopropyl alcohol is present in the mixture, the slant lines for isopropyl alcohol are used in the same manner as those for ethyl alcohol.) From here, locate the pertinent combustion temperature, in this example a T_b of 2000° R, by following the curved guide lines and drop to the base line corresponding to a T_b of 1000° R. From this point, draw a line through the pertinent value of $d(1-\eta_d)$, in this example with a d value of 0.080 pound per pound of moist air and a diluent heat-release ratio η_d of 0.50, $d(1-\eta_f)$ has a value of 0.040. The required increase in chart fuel-air ratio f''_η is then 0.0118. The required increment in fuel-air ratio due to incomplete combustion of the water-alcohol mixture is

$$\Delta f = K_mK_hf''_\eta$$

$$= (0.09885) (1.023) (0.0118)$$

$$= 0.0119 \text{ pound per pound moist air}$$

The total fuel-air ratio is from equation (20):

$$f = r_f (K_mK_hK_wf'' + \sum \Delta f)$$

$$= 1.1179 \left[(0.9885)(1.023)(1.0095)(0.0203) - 0.0166 + 0.0119 \right]$$

$$= 0.0119 \text{ pound per pound moist air} \quad (20)$$

Example 6 - Effect of incomplete heat release for liquid ammonia and liquid carbon dioxide added at compressor inlet. - A mixture of 1 pound of liquid carbon dioxide stored at a temperature of 460° R and 0.05 pound of liquid ammonia is added to 1 pound of moist air at the compressor inlet of a turbojet engine. The inlet air is at 560° R and contains 140 grains of water vapor per pound of dry air. The compressor increases the enthalpy of the diluent-air mixture at the rate of 100 Btu per pound of fluid. The fuel-air ratio necessary to produce a combustion temperature of 2360° R when the heat-release ratio for the fuel η_f is 0.950 and the heat-release ratio for the ammonia η_d is 0.50 is to be determined.

The necessary corrections to the ideal chart fuel-air ratio f'' are K_m, K_h, K_w, and r_f. Four values of fuel-air-ratio increments Δf are required for the liquid-ammonia addition with complete combustion, the incomplete combustion of ammonia, the liquid carbon dioxide addition, and the compressor work input.
From figure 1 for a temperature rise ΔT of $1800^\circ R$ and an initial temperature of $560^\circ R$, a chart fuel-air ratio f' of 0.0270 is obtained. The factors K_m of 0.9885 and K_h of 1.023 are the same as before because the same fuel is used in all the examples.

From the insert on figure 1, the correction factor K_w, corresponding to 140 grains of water vapor per pound of dry air and T_b of $2360^\circ R$, is 1.0195

For a value of $(1-\eta_f)$ of 0.050 and T_b of $2360^\circ R$, r_f has a value of 1.056 in figure 3.

For an ammonia addition d of 0.05 pound per pound of air and T_b of $2360^\circ R$, f'' is equal to -0.0177 pound per pound of air in figure 9. The required increment in fuel-air ratio for complete combustion of ammonia is

$$\Delta f = K_mK_hf'' = (0.9885)(1.023)(-0.0177)$$
$$= -0.0179$$ pound per pound moist air

For a value of $(1-\eta_d)$ of 0.50, T_b of $2360^\circ R$, and d of 0.05, f''_η has a value of 0.0115 as found in figure 10. The required increment in fuel-air ratio due to incomplete combustion of ammonia is

$$\Delta f = K_mK_hf''_\eta = (0.9885)(1.023)(0.0115)$$
$$= 0.0116$$ pound per pound moist air

For a saturated liquid carbon-dioxide temperature of $460^\circ R$, T_b of $2360^\circ R$, and d of 1.00 pound per pound of air, f'' is equal to 0.0370 as found in figure 11. The required increment in fuel-air ratio is

$$\Delta f = K_mK_hf'' = (0.9885)(1.023)(0.0370)$$
$$= 0.0374$$ pound per pound moist air

For a compressor work input W_c/J of 100 Btu per pound of fluid, T_b of $2360^\circ R$, and a mass of diluent added at the compressor inlet d' of 1.05 pounds per pound of air, the value of f'' is equal to -0.0118 pound per pound of air as found in figure 14. The required increment in fuel-air ratio is

$$\Delta f = K_mK_hf'' = (0.9885)(1.023)(-0.118)$$
$$= -0.0119$$ pound per pound moist air
The total fuel-air ratio required is then

\[f = r_f (K_M K_H K_W f' + \sum \Delta f) \]

\[= 1.0565 \left[(0.9885)(1.023)(1.0195)(0.0270) - 0.0179 + 0.0116 + 0.0374 \right. \]
\[\left. -0.0119 \right] = 0.0498 \text{ pound per pound of moist air} \quad (20) \]

The effects of the addition of liquid ammonia and liquid carbon dioxide on the required fuel-air ratio are independent but are combined in this example to illustrate conveniently the use of the charts. The addition of liquid oxygen and liquid nitrogen as diluents is handled in the same manner as liquid ammonia in the present example.

Determination of stoichiometric fuel-air ratio with diluent addition - The stoichiometric fuel-air ratio for a mixture of air, hydrocarbon fuel, and diluents may be determined by means of figure 15.

For example, the determination of the stoichiometric fuel-air ratio for 0.08 pound of water-alcohol mixture having a mixture parameter \(1/M_m \) of 0.0410 added to each pound of air for combustion with a fuel of hydrogen-carbon ratio \(m \) of 0.100 is shown in the upper-right part of figure 15, the stoichiometric fuel-air ratio is 0.0510.

If the diluents ammonia and liquid oxygen are individually added or added in combination with a water-alcohol mixture, the stoichiometric fuel-air ratio is found by the entire figure. For example, the determination of the stoichiometric fuel-air ratio for a water-alcohol-to-air ratio \(d \) of 0.08, a mixture parameter \(1/M_m \) of 0.0410, and ammonia-air ratio \(d \) of 0.05, a liquid oxygen-air ratio \(d \) of 0.10, and a hydrogen-carbon ratio \(m \) of 0.100 is shown; the stoichiometric fuel-air ratio is 0.060.

Flight Propulsion Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio, March 31, 1948.
APPENDIX A
SYMBOLS

The following symbols are used in this report:

\[A = \frac{H_2O - \frac{1}{2} H_2O}{2.016} \]

\[B = \frac{CO_2 - H_2O}{12010} \]

\[D_y \text{ increase per pound of diluent in number of moles of } y \]

\[d \text{ total diluent-air ratio, lb/lb air} \]

\[d' \text{ weight of diluent injected into air stream prior to} \]
\[\text{compression of mixture, lb/lb air} \]

\[f \text{ total fuel-air ratio, lb/lb air} \]

\[\Delta f \text{ fuel-air ratio increment due to diluent addition to} \]
\[\text{fuel-air mixture, lb/lb air} \]

\[f' \text{ chart fuel-air ratio, function of } T_a \text{ and } T_b \text{ only,} \]
\[\text{lb/lb air} \]

\[f'' \text{ increase in chart fuel-air ratio due to diluent addition,} \]
\[\text{function of specific diluent mixture, lb/lb air} \]

\[f''_\eta \text{ increase in chart fuel-air ratio due to incomplete com-} \]
\[\text{bustion of diluent, lb/lb air} \]

\[\varepsilon_2 f'' \text{ correction to } f'' \text{ with use of ethyl alcohol, lb/lb air} \]

\[\varepsilon_3 f'' \text{ correction to } f'' \text{ with use of isopropyl alcohol,} \]
\[\text{lb/lb air} \]

\[\varepsilon_\eta f'' \text{ correction to } f'' \text{ due to injection of water-alcohol} \]
\[\text{mixture at a temperature other than 540^\circ F, lb/lb air} \]

\[H_y \text{ molal enthalpy of } y, \text{ Btu/lb mole} \]

\[h_a \text{ enthalpy of dry air, Btu/lb air} \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_b</td>
<td>enthalpy of final burned mixture, Btu/lb mixture</td>
</tr>
<tr>
<td>$h_{o,d}$</td>
<td>lower enthalpy of combustion of liquid diluent at 540° R, Btu/lb diluent</td>
</tr>
<tr>
<td>$h_{c,f}$</td>
<td>lower enthalpy of combustion of liquid fuel at 540° R, Btu/lb fuel</td>
</tr>
<tr>
<td>h_d</td>
<td>enthalpy of liquid diluent, Btu/lb diluent</td>
</tr>
<tr>
<td>J</td>
<td>mechanical equivalent of heat, 778 ft-lb/Btu</td>
</tr>
<tr>
<td>K_h</td>
<td>correction factor to f or f'' for change in lower enthalpy of combustion of fuel from value of 18,700 Btu/lb fuel</td>
</tr>
<tr>
<td>K_m</td>
<td>correction factor to f' or f'' for change in hydrogen-carbon ratio of fuel from value of 0.175</td>
</tr>
<tr>
<td>K_w</td>
<td>correction factor to f' due to water vapor in combustion air</td>
</tr>
<tr>
<td>M_m</td>
<td>molecular weight of water-alcohol mixture, lb/(lb) (mole)</td>
</tr>
<tr>
<td>m</td>
<td>hydrogen-carbon ratio of fuel</td>
</tr>
<tr>
<td>r_f</td>
<td>ratio of actual fuel-air ratio to ideal fuel-air ratio</td>
</tr>
<tr>
<td>T_a</td>
<td>initial total-air temperature, °R</td>
</tr>
<tr>
<td>T_b</td>
<td>total combustion temperature, °R</td>
</tr>
<tr>
<td>T_d</td>
<td>temperature of diluent as liquid immediately before injection, °R</td>
</tr>
<tr>
<td>T_r</td>
<td>reference temperature, 540° R</td>
</tr>
<tr>
<td>ΔT</td>
<td>temperature rise in combustion process, °R</td>
</tr>
<tr>
<td>W</td>
<td>fraction by weight of components of water-alcohol mixtures</td>
</tr>
<tr>
<td>W_c</td>
<td>work of compression of mixture entering compressor, ft-lb/lb mixture</td>
</tr>
<tr>
<td>x</td>
<td>water-alcohol mixture characteristic</td>
</tr>
<tr>
<td>y</td>
<td>variety of gas, specifically CO₂, H₂O, O₂, and N₂</td>
</tr>
</tbody>
</table>
\(\Phi \) factor accounting for effects of diluent addition and compressor work on ideal fuel-air ratio

\(\eta_f \) heat-release ratio for hydrocarbon fuel

\(\eta_d \) heat-release ratio for combustible diluent

Subscripts 0, 1, 2, and 3 refer to water, methyl alcohol, ethyl alcohol, and isopropyl alcohol, respectively.

The atomic weights used are

- Carbon: 12.010
- Hydrogen: 1.008
- Oxygen: 16.000
- Nitrogen: 14.008
APPENDIX B

EXPRESSIONS FOR INCREASE IN CHART FUEL-AIR RATIO

DUE TO DILUENT ADDITION

Water-Alcohol Mixtures as Diluent

The molal lower enthalpies of combustion for the liquid phase -Q of water and of the three alcohols considered are given in the following table, the values cited are for a pressure of 1 atmosphere and have been evaluated at the reference temperature of 540° R.

<table>
<thead>
<tr>
<th>Diluent</th>
<th>Equivalent Molecular formula</th>
<th>Molecular weight</th>
<th>-Q (Btu/(lb) (mole))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>H_2O</td>
<td>18.016</td>
<td>-18,870</td>
<td>10</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>$(\text{CH}_2)\text{H}_2\text{O}$</td>
<td>32.042</td>
<td>274,700</td>
<td>10</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>$(\text{CH}_2)_2\text{H}_2\text{O}$</td>
<td>46.068</td>
<td>531,300</td>
<td>10</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>$(\text{CH}_2)_3\text{H}_2\text{O}$</td>
<td>60.094</td>
<td>786,300</td>
<td>11</td>
</tr>
</tbody>
</table>

The general mixture may be represented by the average formula $(\text{CH}_2)_x\text{H}_2\text{O}$. A quantity -Q' is arbitrarily chosen as a linear function of the diluent-mixture characteristic x such that it is exactly equal to -Q for mixtures of water and methyl alcohol

\[-Q' = 293,570 x -18,870 \quad (21)\]

Because -Q does not vary linearly with x, small corrections are required when ethyl or isopropyl alcohols are used.

The gravimetric lower enthalpy of combustion of the mixture may be written as a function of $1/M_m$ from equations (17) and (21)

\[-h_{c,d} = \frac{293,570 x -18,870}{M_m} \]

\[-h_{c,d} = 20,930 - \frac{395,950}{M_m} \text{ Btu/lb} \quad (22)\]
The net increase in enthalpy of the combustion gases due to diluent addition and compressor work is from equation (5):

$$\Phi = -(1+d') \frac{W_c}{J} - d \left[h_d \bigg|_{T_d} - h_{c,d} - (D_{CO_2} H_{CO_2} + D_{H_2O} H_{H_2O} + D_{O_2} H_{O_2} + D_{N_2} H_{N_2}) \bigg|_{T_{b}} \right] \right] \right] \right] (5)$$

The term accounting for compressor work $(1+d') \frac{W_c}{J}$ is considered later in this appendix. The term $\left(h_d \bigg|_{T_d} - h_{c,d} \right)$ reduces to $-h_{c,d}$ when the water-alcohol mixture is introduced to the system as a liquid at a temperature T_d equal to the base temperature T_r of $540^\circ R$, for those cases in which the diluent is introduced as a liquid at a temperature other than $540^\circ R$, a correction is to be applied.

The remaining term of equation (5) is evaluated by consideration of the combustion reaction

$$(CH_2)_x H_2O + \frac{3}{2} xO_2 \rightarrow xCO_2 + (1+x) H_2O$$

The increase per pound of diluent in the enthalpy of the various species in the ultimate gas mixture due to the addition of diluent is then

$$\left(D_{CO_2} H_{CO_2} + D_{H_2O} H_{H_2O} + D_{O_2} H_{O_2} + D_{N_2} H_{N_2} \right) \bigg|_{T_{b}} = \frac{1}{M_m} \left[xH_{CO_2} + (1+x) H_{H_2O} - \frac{3}{2} xH_{O_2} + 0 \right] \right] \right] \right] (23)$$

$$\left\{ \left(\frac{1}{14.026} - \frac{1.28447}{M_m} \right) H_{CO_2} + \left(\frac{1}{14.026} - \frac{0.28447}{M_m} \right) H_{H_2O} - \frac{3}{2} \left(\frac{1}{14.026} - \frac{1.28447}{M_m} \right) H_{O_2} \right\} \bigg|_{T_{r}}$$
The quantity $D_N^2 H_{N_2}$ is zero because the nitrogen content of the ultimate gas mixture is not increased as a result of the water-alcohol-mixture addition.

The relation for Φ (equation (5)) may therefore be expressed only as a function of d, M_m, and T_b for diluents of mixtures of water and alcohol.

From equations (5), (11), (22), and (23)

$$f'' = d \left\{ \begin{array}{c}
-20,930 + \frac{395,950}{M_m} + \left[\frac{1}{14,026} - \frac{1}{M_m} \right] H_{CO_2} + \left[\frac{1}{14,026} - \frac{0.28447}{M_m} \right] H_{H_2O} - \frac{3}{2} \left(\frac{1}{14,026} - \frac{1}{M_m} \right) H_{O_2} \\
18,700 - \frac{0.175 A + B}{1,75}
\end{array} \right\}_{T_b}^{T_r} \right. $$

(24)

The small corrections required when ethyl and isopropyl alcohols are used are accounted for by additive terms $5_2 f''$ and $5_3 f''$, respectively. For pure ethyl alcohol, equation (21) yields a value of $-Q'$ of 568,270 Btu per pound mole. The discrepancy between this value and the actual value of $-Q$ is 36,970 Btu per pound mole. For pure isopropyl alcohol, the discrepancy between the value of $-Q'$ from equation (21) and the actual value is 75,540 Btu per pound mole.

The corrections are therefore given by
\[
\delta_2 f'' = \frac{d}{46.068} \frac{W_2}{36,970} \left[\frac{18,700 - 0.175 A+B}{1.175} \right]_{T_b}^{T_r}
\]

\[
\delta_3 f'' = \frac{d}{60.094} \frac{W_3}{75,540} \left[\frac{18,700 - 0.175 A+B}{1.175} \right]_{T_b}^{T_r}
\]

The numerators proportion the error introduced by the use of the linear expression for \(-Q\) (equation (21)) in accordance with the fraction by weight of either ethyl or isopropyl alcohols in the mixture of diluents.

Liquid Ammonia as Diluent

The enthalpy of combustion of liquid ammonia is evaluated to be 7500 Btu per pound at a pressure of 1 atmosphere and a temperature of 540° R (reference 10). The combustion reaction and the assumption that all the ammonia burns to nitrogen and water yields

\[4\text{NH}_3 + 3\text{O}_2 \rightarrow 2\text{N}_2 + 6\text{H}_2\text{O}\]

The increase per pound of diluent in the enthalpy of the various species in the ultimate gas mixture due to the addition of diluent is then

\[
\left(\frac{D_{H_2O}}{D_{H_2O}} + \frac{D_{O_2}}{D_{H_2O}} + \frac{D_{N_2}}{D_{H_2O}} + \frac{D_{H_2O}}{D_{H_2O}}\right)_{T_r}^{T_b} = \frac{1}{17.032} \left[\frac{3}{2} \frac{H_{H_2O}}{H_{H_2O}} - \frac{3}{4} \frac{H_{O_2}}{H_{O_2}} + \frac{1}{2} \frac{H_{N_2}}{H_{N_2}} \right]_{T_r}^{T_b}
\]

(27)

The expression for \(\Phi\) from equation (5) becomes

\[
\Phi = d \left[-7500 + \frac{1}{17.032} \left(\frac{3}{2} \frac{H_{H_2O}}{H_{H_2O}} - \frac{3}{4} \frac{H_{O_2}}{H_{O_2}} + \frac{1}{2} \frac{H_{N_2}}{H_{N_2}} \right) \right]_{T_r}^{T_b}
\]

(28)
Therefore f'' may be written from equation (10) as a function of d and T_b

$$f'' = \frac{d}{17.032 \left(\frac{3}{2} H_{H_2O} - \frac{3}{4} H_{O_2} + \frac{1}{2} H_{N_2} \right)} \left[T_b \right]$$

$$18,700 - \frac{0.175 A+B}{1.175} \left[T_r \right]$$

Ammonia may be stored either as a liquid under elevated pressures or as a chilled liquid at atmospheric pressure. In either case, the variation of the enthalpy of combustion of liquid ammonia with storage temperature is small. Hence, addition of liquid ammonia as diluent at a temperature other than $540^\circ R$ introduces a negligible error in the expression for f''.

Liquid Carbon Dioxide as Diluent

The enthalpy of liquid carbon dioxide relative to the vapor at $540^\circ R$ and 1 atmosphere pressure for various conditions is taken from a temperature-entropy diagram for carbon dioxide appearing in reference 12. The value of $h_d \left[T_d \right]$ is then a function of the diluent temperature immediately before injection. Because the most feasible arrangement is to store and to inject the carbon dioxide as a liquid in the completely saturated state, $h_d \left[T_d \right]$ becomes a function of the saturation temperature or its concomitant saturation pressure.

The expression for f'' is then

$$f'' = \frac{d \left(h_d \left[T_d \right] + \frac{E_{CO_2}}{44.01} \right)}{18,700 - \frac{0.175 A+B}{1.175} \left[T_r \right]}$$

(30)
and is a function of \(T_b\), \(d\), and \(T_d\) or saturation pressure.

Equation (30) accurately applies for use of the liquid carbon dioxide in the subcooled state except in the vicinity of the critical temperature (548° R).

Liquid Nitrogen and Liquid Oxygen as Diluents

Enthalpies for liquid nitrogen and liquid oxygen are evaluated relative to the vapor at 540° R and 1 atmosphere pressure as the sum of the enthalpy of vaporization and the enthalpy difference of the diluent vapor at the liquid temperature and 540° F. Enthalpies of vaporization for both liquids are taken from reference 10. The liquids are generally stored in containers vented to the atmosphere. Hence, variations in enthalpy in the liquid phase may be neglected because of the small temperature range in which the diluents exist as liquids at atmospheric pressure.

The enthalpy relative to the vapor at the reference condition

\[
\frac{h_d}{T_d}\]

is 186 Btu per pound for liquid nitrogen and 175 Btu per pound for liquid oxygen.

The expression for \(f''\) for nitrogen is then

\[
f'' = \frac{d \left(\frac{H_N}{T_r} \right) \left(186 + \frac{H_N}{28.016} \right)}{18,700 - \frac{0.175 A+B}{1.175} T_r} \tag{31}
\]

for oxygen

\[
f'' = \frac{d \left(\frac{H_O}{T_r} \right) \left(175 + \frac{H_O}{32.000} \right)}{18,700 - \frac{0.175 A+B}{1.175} T_r} \tag{32}
\]
Therefore \(f'' \) is a function of \(d \) and \(T_b \).

Effect of Compressor Work or Preheating of Diluents

The decrease in fuel-air ratio \(f'' \) associated with the work done in any compressor through which 1 pound of air plus \(d' \) pounds of diluent pass before combustion is given by the following expression

\[
f'' = \frac{-(1+d') W_c/J}{T_b}
\]

\[
18,700 - \frac{0.175 A+B}{1.175 T_r}
\]

Therefore \(f'' \) is a function of \(d' \), \(W_c \), and \(T_b \).
APPENDIX C

COMBUSTION WITH INCOMPLETE HEAT RELEASE

Justification of the assumption that the enthalpy of the actual burned products is negligibly different from that of the completely burned products for any given fuel-diluent-air mixture and given combustion temperature requires a measure of this enthalpy difference.

For each of the likely products, the difference between the enthalpy of the gas having the incompletely burned reactant and the enthalpy of the gas at the same temperature but having a composition corresponding to complete combustion is small compared with the defect in heat release resulting from the presence of the reactant.

If, for example, normal octane vapor is considered to be present in the burned mixture, there will be oxygen present that would not exist if the combustion were complete according to the relation

\[C_8H_{18} + \frac{25}{2} O_2 \rightarrow 8CO_2 + 9H_2O \]

At 2700\(^\circ\) R, the enthalpy of the left side is 463,130 Btu per mole of octane, the enthalpy of the right side is 469,650 Btu per mole of octane. The enthalpy of the left side is 13,480 Btu per mole greater than the right side. The molecular weight of octane is 114.224, the enthalpy of the products is thus decreased 118 Btu per pound of unburned octane as contrasted with a defect in heat release of 19,110 Btu per pound of unburned octane.

The enthalpy of the products minus the enthalpy of the reactants expressed as a percentage of the lower heat of combustion of the reactant is presented in figure 16 as a function of combustion temperature for a number of likely reactants, curves are given for methane, normal octane, ethyl alcohol, formaldehyde, ethylene, ammonia, carbon monoxide, and hydrogen. Data for the hydrocarbons were taken from reference 13, data for ethyl alcohol, formaldehyde, and ammonia were taken from references 14, 15, and 16, respectively.

Except for hydrogen, the enthalpy difference generally is about 1 percent of the lower heat of combustion, which corresponds to an error in the calculated value of heat-release ratio of only 0.1 percent at an \(\eta_f \) of 0.90. Appreciable concentrations of hydrogen will probably not be present so that enthalpy differences of 4 to 5 percent of the lower heat of combustion of hydrogen at the higher temperature will not affect the general validity of the assumption.
Water-alcohol mixtures. The molal lower heats of combustion for the vapor phase, \(q \), for water and for the three alcohols considered are given in the following list for a pressure of 1 atmosphere and a temperature of 540° R:

\[
\begin{align*}
\text{Water} & : -20,744 \text{ cal/mole} \\
\text{Methyl alcohol} & : -290,950 \text{ cal/mole} \\
\text{Ethyl alcohol} & : -549,710 \text{ cal/mole} \\
\text{Isopropyl alcohol} & : -806,330 \text{ cal/mole}
\end{align*}
\]

As in appendix B, \(q \) is expressed as a linear function of the mixture parameter \(1/M_a \) thus it is exact for mixtures of water and methyl alcohol. Inasmuch as \(q \) does not vary linearly with \(1/M_a \), small corrections are required when ethyl or isopropyl alcohols are used.

The gravimetric lower enthalpy of combustion of the vapor mixture \(-h_{c,d} \) may then be written as

\[
-h_{c,d} = \frac{20,744}{M_a} - \frac{373,717}{M_a} - 699W_a - 1107W_g
\]

From equation (10), the increase in fuel-air ratio for the standard hydrocarbon fuel is due to a defect in heat release is

\[
\Delta \phi = \frac{d(1-\eta)}{0.175 + 0.175 -1.175} = \frac{d(1-\eta)}{0.175 + 0.175 -1.175}
\]

Ammonia. The lower heat of combustion of gaseous ammonia \(-h_{c,d} \) is evaluated to be 8000 Btu per pound at a pressure of 1 atmosphere and a temperature of 540° R.

From equation (15), the increase in fuel-air ratio for the standard hydrocarbon fuel is due to a defect in heat release is
\[r''_{\eta} = \frac{8000 \, d(1-\eta_a)}{T_b} \]
\[18700 - \frac{0.175 \, A+B}{1.175} \, T_r \]
APPENDIX D

STOICHIOMETRIC FUEL-AIR RATIO WITH DILUENT ADDITION

The stoichiometric fuel-air ratio of a mixture containing combustible diluents is found by determining the net amount of oxygen available to the hydrocarbon fuel after complete oxidation of the combustible diluents.

The gross amount of oxygen available in the air is 0.23186 pound per pound of air.

The oxygen consumed by combustion of the alcohol in the water-alcohol mixture is

\[
\frac{48 \: d}{M_m} \: \text{lb/lb air}
\]

Oxygen required for combustion of ammonia is

\[
\frac{24 \: d}{17.032} \: \text{lb/lb air}
\]

The addition of oxygen itself supplies

\[d\] \: \text{lb/lb air}

The oxygen required for combustion of the hydrocarbon fuel is

\[
\frac{f}{1 + m} \left(\frac{16 \: m}{2.016} + \frac{32}{12.01} \right) \: \text{lb/lb air}
\]

The net amount of oxygen available to the hydrocarbon fuel after diluent combustion determines the magnitude of the stoichiometric fuel-air ratio, inasmuch as the mass of oxygen required for stoichiometric combustion is equal to the mass of oxygen available
REFERENCES

Figure 1. - Fuel-air ratio f for ideal constant-pressure combustion as function of initial temperature. \(f = K_m K_n K_w f' \).

(A 15- by 20-in. print of this figure is attached.)
Figure 2. - Fuel-air ratio \(f \) for ideal constant-pressure combustion as function of combustion temperature. \(f = K_m K_H K_w f' \).

(A 15- by 20-in. print of this figure is attached.)
Figure 3. - Ratio of actual to ideal fuel-air ratio for incomplete combustion of hydrocarbon fuel as a function of heat-release ratio η_f.

Combustion temperature T_b ($\circ R$)
Figure 4 - Water-alcohol mixture parameter as function of mixture composition by weight
(An 11-by 17-in print of this figure is attached)
Figure 5 - Fuel-air ratio increment Δf for addition of water-alcohol mixture to fuel-air mixture

$\Delta f = K_{\text{w}} N_e (\delta_1^w + \delta_2^w + \delta_3^w + \delta_4^w)$

(A 11- by 13-in print of this figure is attached)
Figure 6 - Fuel-air ratio increment f for addition of fuel-air mixture of water-alcohol mixtures containing more than 75-percent water by weight $\Delta f = \delta f_{W} + \delta f_{A} + \delta f_{h}^{m} + \delta f_{h}^{n}$ (An 11 by 13-in. print of this figure is attached.)
Figure 7 - Fuel-air-ratio increment Δf due to incomplete combustion of water-alcohol mixtures $\Delta f = E_\text{fl} f'' \eta$ (An 11- by 13-in print of this figure is attached.)
Figure 8 - Fuel-air-ratio increment Δf due to incomplete combustion of alcohol-water mixtures containing 75-percent water by weight or more $\Delta f = K_w K_A f^\eta$ (A 11- by 13-in print of this figure is attached)
Figure 9. Fuel-air-ratio increment \(\Delta f \) for addition of liquid ammonia to fuel-air mixture. \(\Delta f = k_f \Delta \theta \).
Figure 10. - Fuel-air-ratio increment Δf due to incomplete combustion of ammonia. $\Delta f = K_mK_n f^* \eta$.

Liquid ammonia-air ratio, d
Figure 11 – Fuel-air-ratio increment Δf for addition of saturated liquid carbon dioxide to fuel-air mixture. $\Delta f = K_mK_f\Delta f'$.
Figure 12. - Fuel-air-ratio increment Δf for addition of liquid nitrogen to fuel-air mixture. $\Delta f = K_m K_n f''$.
Figure 13. - Fuel-air-ratio increment Δf for addition of liquid oxygen to fuel-air mixture $\Delta f = \frac{K}{n} f''$.
Figure 14. - Fuel-air-ratio increment Δf for work addition by compressor to diluent-air mixture. $\Delta f = K_f K_{f^*}$.
Figure 15 - Stoichiometric fuel-air ratio for hydrocarbon fuel-air mixture with diluent addition (A 11-by 17-in print of this figure is attached)
Figure 16. - Enthalpy difference between products and reactants as percentage of lower heat of combustion.