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CRITICAL JXCAL-C~SIVESTRESSOFACCRVRDRECTANCIULAR 

By S. B. Batdorf and Murry Schildcrout 

The theoretical critical stress is derived for a simply supported 
curved rectangulsr panel in ax&l compression having a central chord- 
wise stiffener offering no torsional restraint. The result8 are 
presented in the form of computed CLWV~S and a table. 

Because a panel of moderate or.large.curvature buckles in come 
pression at a stress considerably below the theoretical value, a 
method is suggested to aid in determining the critical stress for use 
in design. 

IXLRODUCTION 

A simplified method was recently developed for detztining tha 
theoretical buckling stresses of unstiffened cylindrical shells undkr 
various loading conditions (references 1 and 2). En the present paper 
the theory is extended to include stiffened shells (appendix.B), scud 
the particulsr case of curved rectangular panels in axial comprtission, 
reinforced by a centrally located chordwise stiffener of zero torsional 
stiffness, is treated in detail (appendix C). Numericsl results-for 
this case are given in figurge and. a table. Because ttists show that 
unstiffened curved panels in compression buckle at a load considerably 
below the theoretical (se e reference 3), a procedure is suggested to 
permit the estimation of the actual critical stress of a rectangular 
panel with a central chordwise stiffener. 

RESULTS AND DISCUSSION 

Theor&ical critical stress.- The effect of a centrtFL chordwise 
stiffener on-the critical sxisl stress of a curved rectangular panel 
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is to increase the buckling stress. The increase is very small or 
zero for P 5 0.7 (p is th e ratio of the circumferential dimension 
to the axial dtiension) or when Z (curvature parameter, see appendix A) 
is greater than the values given in the following table: 

P I Z 

0.83 20.0 

1.0 14.0 

1.2 Ill.2 

1.5 9.3 

2.0 7.6 

3.0 6.3 

. 

Only when p > 0.7 and Z is lees than the corresponding value 
given in this table,is the bucHLng stress for the panel with a 
central chordwise stiffener appreciably greater than the buckling 
stress for the we1 tithout a stiffener. The percentage increase 
that can be expected is shown for a number of cases in table 1. 

. 

I 

The critica stress for a curved plate tith a central chordwise 
stiffener Is conveniently computed by the use of the standard buckling 
equation for a curved @ate (see equation in fig. 1) with the buckling 
coefficient kx for the unstiffened plate increased by an amount q 
due to the presence of the stiffener. The critical%tress coefficient- k, 
for an unatiffemed curved late 
from figure 1. Figure l(a P 

of various aspect ratios may be obtained 
gives the vexiation of G with aspect 

ratio for a flat plate (Z = 0); whereas figure l(b) gives k, for 
curved plates. The increase in critical-axial-stress coefficient Luc, 
due to the presence of the stiffener ia given in figure 2. The 
curves in figure 2(a) give the maxirmrm. possible increase in critical 
stress and apply when a stiffener is used for which the stiffness is 
equal to or-greater thsn the critical stiffness, that is, the value of 
stiffness beyond which a further increase does not cause any increase 
in the buckling stress. Figure 2(b) cam be used to find the increase 
in critical stress when the stiffne-ss is below the criticsl value. 

- 

In order to find the theoretical critical--etress coefficient-for 
a given curved plate-with a central chordwise stiffener (kx + Akx), 
first calculate the values of Z and 7 for this plate-stiffener 
combination (where 7 is twice the ratio of stiffener stiffness to 
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Then find the critical--stress coefficient for 
the unstiffened plate/ k, from figure 1. Next find the maximum possible 
increase of critical-stress coefficient + due to the presence of 
a stiffener frcmfigure 2(a) and the critical stiffness corres 
to this maximum possible increase from the curve in figure 2(b P 

onding 
. If 

the given stiffener has a stiffness equal to or qeater then the critical 
stiffness, add together the stress coefficient k, for the unstiffened 
plate snd the increase Akx just found frcmfigure 2(a); the sum is the 
stress coefficient for the plate-etiffener ccanbination. E the given 
stiffener has a stiffness less than the crftical stiffness, add together 
the stress coefficient k, for the unstiffened plate and the increase Bx 
found from figure 2(b). 

The curves of figure 2 apply to plat4atiffener ccrmbinatfons buckling 
in one wave in either direction. As the curvature of a panel increases, 
the axial wave length tends to Uminish. In order to show why the use 
of a central stiffener dues not increase appreciably the critical COD+ 
pressive stress of the unstiffened plate when the values of Z ere 
greater than those given inthe preceding table, the curves of figure 3 
have been drawn for j3 = 1 to include consideration of cases of more 
than one hslf wave fn the axial direction. These curves show that for 
two half waves (node at the stiffener, 14 < Z < 23) no increase in 
stress due to a stiffener occurs and that for three half waves (23 < Z < 381, 
only a slight increase in stress >a passible and even this slight increase 
requires a stiffener of high stiffness. only if the unstiffened panel 
buckles into one half wave in the axial direction, does it appesr worth- 
while to use a single chordwise stiffener. Computations csrried out for 
curved plates with the circumferential dimension 1.5 and 2 times the 
axial dimension showed the same results. Ih all of these cases the 
minFmum load was found when there was one wave in the circumferential 
direction. 

Estimation of design critical stresses.- Panels having moderate 
and large values of Z buckle at compressive stresses considerably 
lower thsn the stresses predicted on the basis of the small+Ieflection 
theory. ti the absence of experimental data on the compressive 
buckling stress of psnela with a stiffener having a flexural stiffness 
less than the critical stiffness, the fraction of the total poesible 
increase in expertintal critical stress, actuslly achieved by use of 
the stiffener, may be assumed to be equal to the fraction predicted by 
the theoretical solution (obtainable from figs. 1 and 2). This 
assumption permits an estimate to be made for the compressive stress 
of such a panel when tha stresses for the limitirg cases of an unstiffened 
panel snd for a panel with a stiffener having a flexursl stiffness 
equal to or greater than tha critical stiffness sre known. According 

. 

, 
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to tht! aforementioned assumption the critical stress 
stiffened pan& is givan by 

a,,(r) for thu 

(1) 

where 

R= 
ak,w 
+(Ycr) 

The increase in the theoretical critical-stress coefficients &x 
needed to calculate R for panel8 having a wide range ofratios of 
circumferential dimension to axial dimension is obtained from figure 2. 

The stresses uexp (0 > and deq ( Tcr ',;oye ~~de~r;;i~ 
critical stresses of-stiffened panels: 8 8 
stress of the original panel with no stiffener and CJexp(T'cr) 1s the 
critical stress of a panel having the radius, thickness, an3 circa 
ferential dimension but half the axial dimension of the original panel. 
Because adequate design data on the buckling stresses of curved 
rectangular pans16 in axial compression are not available, some method 
of approximating these stresses must-be used. !l%rea.lower limits may 
be given for the bucklingof a curved panel; they sre the buckling 
stress of the corresponding flat panel which may be obtained from 
figure l(a), the buckling stress of the complete cylinder which may 
be obtained from figure 4 adapted from reference 4,-and the buckling 
stress of the long curved strip, of which the curved panel may ba COIF 
sidered a part, which may be obtained from figure 5 adapted from 
reference 3. The highest--of these three lower limits represents a 
conservative approximation to the actual buckling stress of the: panel. 
By use of values for ueyq("), cexp(ycr), and R,. determined in 
the manners just described, the design buckling stress a,,(r) may 
be determined from equation (1). 

". 

. 

CONCLUSIONS 

The theoretical analysis shows that for certain curvatures and 
aspect ratios designated inthis paper, a curved rectangular panel can 
be appreciably strengthened to resist additional axial compression 
without buckling by the use of a central chordwise stiffen*r. The 
strengthening effect decreases as the curvature incr4asesand as i;hr, 
ratio of the circumferential dimension to the axial dim;lnsion &crTastis. 

. 
- 

; 
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With the aFd of the setieqirical -results contained herein, the sxisl- 
compressive buckling strength of a CLIIT~ rectsngiLsx panel with a 
central chordtisa stiffener can be estimated. 

Ia.nglt?y Meznorial Aermautical Laboratory 
Nationsl Aiivisory Comdttee for Aeronautics 

Langley Field, Va., March U, 1948 
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APPEl'IDIXA 

. 

a 

b 

m, n, 
P., 9 I 
r 

t 

L 

U 

v 

W 

x 

Y 

D 

E 

F 

I 

z 

axial or circumferenticJ_ dimension of panel, whichever 
is lsrger 

axial or cticumferential dimension of panel, whichever 
is smeller 

integers - 

radius of curvature-of panel 

thictiess of panel 

length of cylinder 

displacement in axial (x-> direction of-point-in 
median surface of panel L 

.displacement-in circumferential (y-) direction of ' - 
point-In median surface of panel - , 

displacemen-l-in radial direction of point- in 
median surface of panel; positive outward 

axial coordinate of panel . 

circumferential coordinate of panel 

flexural stiffnees of panel per-unit length 

YoungVs modulus of elasticity 

Airy's stress function for medi an+urface stresses 
produced by buckle deformation 

a2F axial direction; - 
ax" 

I. . 
' \ s . 

.I 

. 
moment of inertia of stiffener 

curvature parameter for panels or .A . 
. * 

. 
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deflection coefficients in trigonometric series 

critical+3xial-compressive+tress coefficient 
%PD appearing in the formula ax = - 

b2t 
for panels 

or - - for cylinders 

L 
P latersl pressure 

Y ratio of flexural stiffness of stiffener to h&f 
flexural stiffness of plate in ssme direction 

7cr lowest value of 7 fok which a buckle node occurs 
at stiffener location 

CL Poisson's ratio 

I- shear stress in shell 

=X axial-ccmpressive stress 
s I 

=s circumferential-cmpressive-stress 

a=3 experimental axial buck%ng stress 

& operator defined in appendix C 

r Dfrac 6 function defined in appendix B 

Mpq = (p2 + qq32)2 + 12 
z2p4p4 

x4 (p2 + q2p2)2 - kxp2p2 

I . NPs = Gs 2p2 + q2)2 + 12 22p4P8 
Jr4 (P2P2 + s') 

2 - kxPkp2 

. 

. 
v4 = 

a4 a4 a4 
)* 
1 2 +2 a2 a? '2 

. 

&+ . inverse of V4 defined by V4(V4w) Z-W 
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APF'ERDIXB 

. 

EQUATION OF EQUILIBRIUM OF CXLIXDRICAL SE3LLWl'FE S'I'lFFENERS 

The equation of equilibrium of 
of shear, both direct stresses, snd 

Dv4~~+Et+h+t 
r2 3x4 

a cylindrical shell under the acticm 
lateral pressure is (reference 2): I 

-I- 27 -eL + 
ax as 

+p=o (31) 

In this equation each term is a force per unit sxea or pressure. The 
first term is the restoring pressure due to the'bending stiffness of'the 
shell, the second is the restoring pressure due to the stretching 
s&ffness of the shell, the third is the (negative) restoring pressura 
dueto compressive stress in the axial direction, and so forth. 

The equation describing all the effects of a stiffener riveted to- _. _L 
thti shell is quite complex, since even when all cyoss-sectionsl deforma- 
tions me assumed zero any real stiffensr has two principal bending 
stiffnesses, a torsional stiffness, a bendi~torsion stiffness, and a 
stretching stiffness. In3mm.y problems it is sufficient to idealize ‘ 
the stiffener by considering it to be located along a line on the shell 
and to have only the bending stiffness that restraihs radial defoma- 
tions of the shell. This idealization is equivalent to considering the . 
stiffener to be without torsional stiffness and attached to the plate 
by a frictionless bond which maintains contact but-allows the plate to 
slide freely under the stiffener. 

If the force per unit length exerted by the stiffener on the 
panel is q and this force is applied uniformly over the width of 
the stiffener G, the pressure becomes q/E. A term must therefore 
be added to equation (Bl) which has the magnitude q/c under the 
stiffener and is zerasverywhere else. As E approaches zero this 
term bacumes simply qS where 6 is the Dirac delta function (refm- 
ence 5 >, defined by the properties 

- 

6C-t -to) = 0 
whsn 
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and 

. 

so that 

s t2 
igt - to) dt = I 

t1 

s t2 
f(t) 6(t -to) dt = f(t,) 

t1 

when to is within the interval (tl, t2) and f(t) is a continuous 
function in the neighborhood of to. The effect of a stiffener located 
at. x = x. would be represented by the term q 6(x - xo) added to 
equation (Bl) and of a stiffener at y = y. would be represented by 
the addition of this term q 6(y - yo). 

If the stiffener runs axially, the beam theory gives 
. 

ah a% 
9==sfpz 

If the stiffener runs circumferentially, the beam theory gives 

4 a% q=EI~<+P- 
dY a$ 

(32 ) 

03) 

where EC is the stiffness of snd P the compressive force in the 
stiffener and w is the deflection of the plate at the stiffener. k 
the problem of the present paper the stiffener is located at x = & , 
P is zero, and only axial stress is applied to the shell so that the 
equation of equilibrium becomes 1 

04) 
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APPENDIX c 

TEEORE!l?ICAL SOiXJTION FOB CRITICAG 

Equation of equilibrium.- The critical axi&L4mmpressive stresses 
of curved ~rectmgular panels having a central chordwise stiffener of 
zero torsional and stretching stiffness placed at x = 8 may be found 

the equation of equilibrimn, equation (B4). Division of ' 
&) by D followed by appropriate substitutions gives 

(Cl) 

The equation of equilibrium may be represented by 

Q(w) = 0 

where Q is the operator-defined by 

@a 

(c3) 

Method of solution.- Equation (C2) may be solved by the Calerkin 
method as outlined in references %! and 6. As suggested in reference 2 
for sim@y supported rectangular peels, the folloting series expansion 
is used for w 

w.= 79 ~sin~sin~ 
m=l n=l 

(The coordinate sp&m used is ahawn in fig. 6(a).) The coefficients &mn . 
a,re then chosen to satisfy the equations \ 

sin 7 sin y Q(W) dx dy = 0 

, 

(c5) 
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When the operations indicated in equation (C5) me performed, a set of 
homogeneous linear algebraic equations In &pq is obtained with kx 
appeszing as a parameter. The solut&on for the critical~ial-stress 
coefficient k, is then found to be the m.Inimum value of kx for 
which the algebraic equations have a nonvanishing solution for "pq, 
that is, for which the plate is in equilibrium in a deflected state. 

The boundary conditions implied by the method of solution sre 
zero radial deflection and end moment at each edge, zero displacement 
along each edge, asd free displacement normal to each edge in the 
median surface of the pasel (see reference 1); that is, 

W(O,Y) = w(b,y) = 0 w(x,O) = w(x,a) = 0 

a2w 
2 (O,Y) = 3s b,Y) = 0 h2W 
3X 

af?z (x,0) F 
w 

- (x,a) = 0 
w 

* 

. dO,Y) = v(b,y) = 0 u(x,~) = u(x,a) = 0 

a$ (p,s) = a$ thy) = 0 as (x,0) = as (x,a) = 0 

> 

(~6) 

Solution for circumferential dimension -eater than axial dimension.- 
Substitution of the~expressions for Q snd w given by equations (C3) 
and ((34) into equation (C5) leads to the following set of algebraic 
equations: 

a-p9 
[ 
02P2 + q92 + IL2 22p4P8 

- +-&+P’ 
;;r;- (p2p2 + q2)2 , I 

+2m4 Psc 
Eqsin2 

kfl akq sin F’= 0 

where p = 1,2, . . . aud q = 1,2, . . . 

(c7) 
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which may be written in two sets of equations as follows: 

where p = 1,3, . . . and q = 1,2, .., 

and 

?Ps%s =,O 

. 

. 

(~81 

(c9) 

where p = 2,4, . . . and q = 1,2, . . . 

For buckling across the stiffeners there must be an odd number of 
half waves in the axiLl direction; hence, the set of equations (~8) 

, 
I 

applies. Dividing through the set of equations by Npq gives * ' 

%q + rs4 q 
NPq 

(-1) 9 akq(-lF+ = 0 
&I,3 n 

where p = 1,3, . . . and q = 1,2, . . . Multiplication of each equation I 
p-1 

by t-1) 2 and smming with respect to p gives 

> 

l-1 
&ps(-l)? + yq4 7 & >z akq(-l)F = 0 (ClO) . * 

P=l,3 p=l,3 - J 



. 
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where q = 1,2, . . . Eqmtion (ClO) reduces to 

l+yq4 > .L=o 
y=l,3 Nps 

or 

(cm 

where q = 1,2, . . . 

. It is tiown that at low values of the curvature parameter Z one 
halfwave (q= 1) gives the minimum buckling load 

m-2) 

Equation (C12) gives the minimum value of .7 for which the plate- 
stiffener co-&bin&ion is in equilibrium in a deflected state at a given 
value of G. Figures 2 and 3 present results obtained from equation ((32). 

The solution to equations (Cg) corresponds to no buckling across 
stiffeners and is given by 

Npq = 0 

where p = 2,4, . . . and q = 1,2, . . . The lowest roots of these 
equations sre the values of k x given in column (b) of table 1 for 
va~~ious panel shapes and stiffener stiffness. 

Solution for sxial dimension greater thm circumfe'rential dimension.- 
When the sxisl dimension is greater than the circuuxferential dimension, 
interchanging a and b in equation (a) is convenient in order to 
retain b as the shorter dimension 

M.3) 
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The coordinate system used is shown in figure 
coordinates involves a slight modification of 
as the stiffener is now placed at x = g. The 

j(b). The'use of these 
the equation of equilibrium‘. - 

. * 
modified equation is now 

and 

. 

cr&Lo x ax? 

+%*.a2 - -m 
b2 ax2 

m41, 

m5> 
. * 

This problem is solved in a manner similsr to that in the previous 
problem by.a substitution of the expressions for Q and w given by 
equations (C13) and.(C15) into equation (C5) (also modified by inter- 
changing a and b). The following set of sJ.gebraic equations results 

. 

+ q2P2)2 + l2 22p4P4. 
z (P2 + q3w2 

- kxP2p 

+2EI 34 Db P Q- sl2-L (~16) ‘. 

where p=1,2,... and q=1,2,... 

As in the'previous problem for buckling across the stiffener, an 
odd number of half waves in the axial direction is necessary and for 
no buckling across the stiffener an even nmber is necessary. For this ' 
case again at low values of Z one half wave in the circumferential I . 
direction gives the minimm critical stress to cause the buckU.mg of 
the stiffener. An equation similar to equation (Cll) results, in wh-lch 
Npq is replaced by I - 

'Mpq = (p2 + qw2 + % 
z~p4p4 

'II (p2 + q2p2)2. 
- kxp2p' 

. 



. 
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and the y is replaced by Yj33. For low values of Z, q = 1 and 

y=- '1 
(c17) 

p3 > 1 

x=1,3 Mpl 

Equati& fCl7) gives the minimum value of y for which the plate- 
stiffener combination is in equilibrium in a deflected state at a 
given value of .kx. Few result5 are shown for this case as a panel 

. . having the axial lepgth equal to or greater than about 1.5 times the 
circumferential length would not be significarntly strengthened by 
addition of a central chordwise stiffener of zero torsional and 
stretching stiffness. (See table 1.) 

The solution irhich cotiesponds to no bucklfng across the stiffener . 
is given by 

, ’ 

Mps = O 
1 where p = 2,4,6 . . . and 'q = 1,2,3 . . . The lamest root5 of these 

equations are the values of k, given in colmm (b) of table 1. 

. 

. 

, 
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kx = 
& 

a 
b Z =$bT (a) Da? (b) 

Peroentage inorea8e 

BuokliIlg titbout ?70 buokliIlg aoroas 
stiffener stiffensr 

L?d+., 
a 

1 ; 4.00 6.25 

10 ;*z 
g.2 

30 2l:1 2212 

f 

5 
loo 70.3 70.3 0 

1ooo 703. 703 l 0 

1.5 0 136 

; 

2.09 :-z 

2.15 3.56 
7.42 ‘7% 

13. 56 
10 
30 21.1 u:6 

0 
2 

100 70.3 70.3 0 

2 0 

1. 

"1*g kg 190 

5 3:53 $20 7; 
10 7.08 -7.z 2 
30 21.1 21.1 0 

3-33 a 2 ‘_b =-T 

7-L 

+a+ 

1.5 ; 4.34 ;:ii 0 
5.04 0 

10 7.17 7.17 0 
30 !a.2 21.2 0 

100 70.2 70.2 0 
1000 704. 704. 0 

2 0 ",-ii 4.00 0 
10 

7o:3 707:? 
0 

100 0 - 
1000 704. 704. 0 

. 
‘+,N,C.p- 
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(a) Flat panels. 

0 2 4 6 8 IO 12 14 16 
z 

(b) Curved panels. 

Figure l.- Critical Axial-compressive-stress coefficient for rectangular panels. 

’ . 
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(a) Maximum possible increase. 

1.6 2.4 3.2 4.0 4.8 5.6 6.4 ‘: 
r/a’ 

(b) Increase for given stiffness. 

Figure 2.- Increase in critical-axial-compressive-stress coefficient due to the presence 
of a central chordwise stiffener over the value for the unstiffened panel. 
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I A “Critical stiffness” curve 
I II 

I Left of “critic01 stiffness” curve- 
buckling of sheet and 

Right of “critical stiffness” curve- 
bucklina of sheet alone 

. - 

- 
. 

Y 

Figure 3.9 Effect of central chordwise stiffener upon critical-axial- 
compressive-stress coefficients for simply supported curved 

- 1 

rectangular panels of- += 1. 



IO 

-/- 
/ 

I E 

3 / 
I I IIIIIj 

I IO I 

Theoretical 
curves 

\ 

I I I11111 

z+&F 
I 
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-Simply supported edges 
--Clomped edges 
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Figure 4.- Critical-axial-compressive-stress coefficients for simply supported cylinders. 
(Figure adapted from reference 4.) 



Sknply supported edges 

---Clamped edges 

Figure 5.- Critical-axial-compressive-stress coefficients for asimply supported infinitely 
long strip with transverse curvature. (Figure adapted from reference 3.) 
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(a) Panels with the circumferential 
dimension larger than the axial 
dimension. 

. 

b 

l-l! 

(b) Panels with the axial dimension 
larger than the circumferential 
dimension. 

Figure 6.- Coordinate systems used in theoretical analysis. 


