EFFECT OF THE SURFACE CONDITION OF A WING ON THE AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE

By S. J. DeFrance
Langley Memorial Aeronautical Laboratory

Washington
April 1934
EFFECT OF THE SURFACE CONDITION OF A WING ON THE
AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE

By S. J. DeFrance

SUMMARY

In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

INTRODUCTION

With the speed of military and commercial airplanes increasing rapidly, many of the problems of racing airplanes are being encountered in service types, among these problems is the one of surface condition of the wings. As large increases in speed have been claimed for racing airplanes as a result of polishing the surfaces, and also because it has been thought that polishing the surfaces affected the maximum lift, tests were conducted to determine the effect of polishing the wing surfaces upon the aerodynamic characteristics of a small monoplane. The tests were conducted first with the surface of the wing in normal condition and later with the surface highly polished.
the same for both conditions and, since there is practically no correction between 80 and 100 miles per hour, it is probable that the difference in minimum drag coefficient is applicable at the speed of 200 miles per hour.

If a given airplane be assumed to have a top speed of 200 miles per hour and a minimum drag coefficient of 0.025 with a wing surface similar to that of the original wing on the Fairchild F-22, polishing the wing to the same smoothness used for these tests would increase the top speed only 2.9 miles per hour. This is a small increase in speed, but if the top speed of the airplane were to remain the same, the power would be reduced by 4 percent.

CONCLUSIONS

The conclusions to be drawn from the investigation are that: Polishing the wing had a negligible effect upon the lift characteristics but reduced the minimum drag coefficient of the airplane by 0.001. If this reduction in drag were applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025, the speed would be increased only 2.9 miles per hour, but at the same speed it would permit a reduction in power of 4 percent.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 5, 1934.

REFERENCE

Fig. 1 - Three-view drawing of the Fairchild P-28 airplane.
Figure 2.—Photomicrograph of original surface of wing (10X)

Figure 3.—Photomicrograph of polished surface of wing (10X)

Figure 4.—Fairchild F-22 airplane mounted in full-scale tunnel.
Figure 5. — Lift and drag characteristics of Fairchild F-22 airplane with original and polished wing surfaces.

Propeller, stabilizer, and elevator off
Wing incidence = 3.6°
Wing area = 171 sq. ft.

Results corrected for tunnel effects.
Test velocity = approx. 58 m.p.h.

Angle of attack of thrust axis, α_T, degrees
Propeller, stabilizer, and elevator off
Wing incidence = 2.6° Wing area = 171 sq. ft.

Results corrected for wind-tunnel effects

Figure 5.—Scale effect on $C_{D_{\text{min}}}$ for Fairchild F-22 with original and polished wing surfaces.