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CHAPTER 1

A BRIEF INTRODUCTION TO QUANTUM MECHANICS

The focus of this project is to solve the one-dimensional, time independent Schrödinger

equation for particles under different potentials. The Schrödinger equation is

(1) Hψ = eψ

where H, the Hamiltonian operator is given by

Hψ = −ψ” + qψ,

q is a real valued function that describes the potential and e is a positive number. The

theory discussed in this paper deals with the case where q is non-negative and continuous

on an interval.

Throughout this paper X will be the domain of H, where X is all members of C2[a, b]

so that u(a) = u(b) = 0 and for u, v ∈ X the inner product of u and v is
∫ b

a
uv. This

implies that for u ∈ X, ‖u‖2 =
∫ b

a
u2. The co domain of H, denoted by Y , will be the space

consisting of the continuous functions on [a,b] with the same inner product and norm. The

eigenfunctions of equation (1) will be the wave functions which describe the position and

momentum of the particle. The eigenvalues of equation (1) will be the energy levels of the

particle. The energy levels increase as the particle reaches higher quantum states. Now we

give a brief discussion comparing and contrasting classical physics and quantum mechanics.

Classical physics states that a particle in motion follows a trajectory. This implies that

at any given time the position and momentum of a particle can be found simultaneously.

So particles are treated as discrete objects that follow certain paths. In the late 19th and

early 20th century through a combination of experiments and theory, Plank, Einstein, Born,

Heisenberg, and others showed that Newtonian Mechanics did not describe particles at the

quantum level. Among their results were the following:
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• Momentum and position of a particle in motion cannot both be known to a great

degree of accuracy. Specifically ∆x∆p = h, where h is Plank’s constant and ∆x, ∆p

are uncertainties in position and momentum. Hence, as ∆x decreases, ∆p increases

and vice versa.

• Particles, in particular electrons, behave like waves in that if a beam of electrons is

passed through a diffraction grating, it is possible to obtain a wavelength for the

beam of electrons. This implies that electrons display the same wave behavior as

light.

• Einstein showed that light behaves as if it consisted of discrete units called quanta

each with energy hν, where ν = c
λ
, λ is the wavelength of light, and c is the speed

of light.

Further information regarding these findings can be found in most quantum mechanics

books, for example [5].

To account for the wave-particle duality of matter, a new theory was called for. This

theory would use probability to describe the position of matter just as intensity is used to

predict the probability of finding a photon in a region, but still take into account that light

and matter behave like particles during emission and absorption of energy. In 1926 Erwin

Schrödinger proposed equation (1). His equation uses the idea that the total energy of a

particle, as described in classical physics, is the sum of its kinetic and potential energies. In

the definition of H, −ψ” represents the kinetic energy of the particle and qψ represents the

potential energy of the particle.

Unlike classical mechanics, the wave function does not predict exactly where the particle

will be at a given time. Instead, from the wave function one can find the probability of

finding the particle in a given region. This is known as Born’s interpretation of the wave

function. Born postulated that just as the probable position of a photon is given by the

square of the amplitude of the electromagnetic wave, the probability of finding an electron

in a region R is given by
∫
R
ψ∗ψ where ψ∗ψ = ψ2 if ψ is real valued [2].
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CHAPTER 2

COMPACT OPERATORS AND THE SCHRÖDINGER EQUATION

In this chapter we discuss the development of compact operators which, as we will see,

play a key role in finding eigenvalues and eigenvectors of H. H : X → Y will be given by

Hu = −u” + qu, where q is continuous on [a, b]. We will specify when q is non-negative.

This section consists of a discussion showing that the Hamiltonian operator with zero

boundary conditions has a compact, symmetric, positive, and continuous inverse T with

domain all of Y .

2.1. Compact Operators

To show that H has an inverse consider the following

Definition 2.1. Let n be a positive integer. Define L(<n) to be the space of linear trans-

formations from <n → <n.

Lemma 2.2. Let Q : [a, b] → L(<n) be continuous. There exists M : [a, b] → L(<n) so that

M ′ = −MQ and M−1(t) exists for all t ∈ [a, b].

Proof. Let

Q(t) =


a1,1(t) . . . a1,n(t)

...
...

an,1(t) . . . an,n(t)

 and define M(t) =


b1,1(t) . . . b1,n(t)

...
...

bn,1(t) . . . bn,n(t)

 .

bi,j(t) will be determined shortly . Then

M(t)Q(t) =


∑n

i=1 b1,i(t)ai,1(t) . . .
∑n

i=1 b1,i(t)ai,n(t)

...
...∑n

i=1 bn,i(t)ai,1(t) . . .
∑n

i=1 bn,i(t)ai,n(t)


3



Consider the equation


b′i,1(t)

...

b′i,n(t)

 = −QT (t)


bi,1(t)

...

bi,n(t)


Write this system as B′

i(t) = −QT (t)Bi(t) and choose C1 6= 0 ∈ <n. By the fun-

damental existence theorem, there is a unique solution B1(t) so that B1(a) = C1 and

B′
1(t) = −QT (t)B1(t). Suppose C2, . . . Cn have been chosen so that {C1, . . . Cn} is linearly

independent. Then B′
i(t) = −QT (t)Bi(t) has a unique solution satisfying Bi(a) = Ci for all

i with 1 ≤ i ≤ n. Hence one can inductively solve for the rows of M and obtain the desired

matrix. Furthermore since the rows of M(a) were picked to be linearly independent, M(a)

has an inverse. In addition, it is a fact that if M(c)−1 exists for some c ∈ [a, b], then M(t)

has an inverse for all t ∈ [a, b]. It also follows from the fundamental existence theorem that

the entries in M are continuous. See chapters 1 and 3 of [1]. �

Lemma 2.3. Suppose q is continuous and non-negative. Then H, the Hamiltonian is positive

and injective.

Proof.

〈Hu, u〉

=

∫ b

a

uHu

= −u(b)u′(b) + u(a)u′(a) +

∫ b

a

(u′2 + qu2)

Using the boundary conditions u(a) = u(b) = 0, we get

〈Hu, u〉 ≥ 0

for all u ∈ X and

〈Hu, u〉 = 0

iff u = 0. �
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Theorem 2.4. Let q be a non-negative and continuous function on [a, b]. Suppose g is a

continuous function on [a, b] and there is u ∈ X so that Hu = g. Then there is a continuous

function k from [a, b]2 to < so that

u(t) =

∫ b

a

k(s, t)g(s)ds

Proof. Let

A =

 1 0

0 0

 and B =

 0 0

1 0


Then if

~u =

u

u′



(2) A~u(a) +B~u(b) = ~0.

Also let

Q =

 0 1

q 0


and

~g =

 0

−g


Then

(3) ~u ′ = Q~u+ ~g

By lemma (2.2) there is a matrix M so that M ′ = −MQ and M(t)−1 exists for all

t ∈ [a, b]. By multiplying both sides of equation (3) by M we get
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M~u ′ = MQ~u+M~g

M~u ′ +M ′~u = M~g

(M~u)′ = M~g

Thus,
∫ t

a
(M~u)′ =

∫ t

a
M~g.

Integrating and solving for ~u(t) gives

(4) ~u(t) = M(t)−1(M(a)~u(a) +

∫ t

a

M~g)

Let t = b and we get

~u(b) = M(b)−1(M(a)~u(a) +

∫ b

a

M~g)

Now equation (2) becomes

A~u(a) +BM(b)−1(M(a)~u(a) +

∫ b

a

M~g) = ~0

which can be written as

(5) (A+BM(b)−1M(a))~u(a) = −BM(b)−1

∫ b

a

M~g

Let Γ = A + BM(b)−1M(a). Suppose Γv = 0 and let γ(t) = M(t)−1M(a)v. Then

Aγ(a) + Bγ(b) = ~0 and γ′ = Qγ. But since H is injective γ(t) must be the zero function.

Thus v = ~0. This implies that the linear operator Γ is injective and has an inverse. Thus we

can solve for ~u(a).

Now rewrite equation (4) as

~u(t) = M(t)−1(−M(a)(A+BM(b)−1M(a))−1BM(b)−1

∫ b

a

M~g +

∫ t

a

M~g)

Which simplifies to
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~u(t) =

∫ t

a

M(t)−1D−1AM(a)−1M(s)~g(s)ds −
∫ b

t

M(t)−1D−1BM(b)−1M(s)~g(s)ds

where D = AM(a)−1 +BM(b)−1.

Let

K1(s, t) = M(t)−1D−1AM(a)−1M(s) if a ≤ s ≤ t

K2(s, t) = −M(t)−1D−1BM(b)−1M(s) if t ≤ s ≤ b

Note K1(t, t)−K2(t, t) is the identity. Define k(s, t) to be the upper right entry of K1(s, t)

for all s ∈ [a, t] and k(s, t) to be the upper right entry of K2(s, t) for all s ∈ [t, b]. Observe

that k is well defined and continuous at s = t. Also the entries in M(t) are continuous, thus

all the entries in K1 and K2 are continuous, so k is continuous.

�

Now for g ∈ Y define

(Tg)(t) =

∫ b

a

k(s, t)g(s)ds,

where k is the function from Theorem 2.4.

Proposition 2.5. k from Theorem 2.4 is unique, and T is H−1.

Proof. For g ∈ Y , let u(t) =
∫ b

a
k(s, t)g(s)ds, if we work backwards in the proof of theorem

2.4 we see, u ∈ X and −u” + qu = g. Thus for each g ∈ Y , Tg ∈ X and H(Tg) = g.

Suppose there is a continuous functions j : [a, b] → < that satisfies the same properties as k,

for x ∈ [a, b] let gx(s) = k(s, x)− j(s, x), and vx(t) =
∫ b

a
j(s, t)gx(s)ds. Then Hvx = H(Tgx)

so vx = Tgx. This implies 0 =
∫ b

a
(k(s, t) − j(s, t))(k(s, x) − j(s, x))ds for all t ∈ [a, b], thus

if we let x = t then k(s, x) − j(s, x) = 0 for all s ∈ [a, b]. Because x was arbitrary then

k(s, t) = j(s, t) for all s, t ∈ [a, b].

Thus T has domain all of Y and for g ∈ Y,H(Tg) = g. For u ∈ X,Hu ∈ Y , let

û =
∫ b

a
k(s, t)Hu(s)ds, then Hû = Hu, û = u, and T (Hu) = u. �
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From now on T with domain all of Y will denote H inverse. To show that T is compact

consider the following

Definition 2.6. Let W ∈ L(F,K), where F and K are inner product spaces. W is compact

if whenever {xn}n≥1 ⊆ F is bounded then {Wxn}n≥1 has a convergent subsequence in K.

Definition 2.7. D ⊆ C[a, b] (with sup norm) is equicontinuous at x ∈ [a, b] if for all

ε > 0 there exists δ > 0 so that if |x− y| < δ then |f(x)− f(y)| < ε for all f ∈ D. D is

equicontinuous if it is equicontinuous at every point of [a, b].

Proposition 2.8. If {gn}n≥1 ⊆ Y is bounded, then {Tgn}n≥1 ⊆ X is an equicontinuous

and bounded subset of C[a, b].

Proof. Since k is continuous on [a, b]2, k is bounded on [a, b]2. Say |k(s, t)| ≤ C on [a, b]2,

so if g ∈ Y

supt∈[a,b]|
∫ b

a

k(s, t)g(s)ds| ≤

supt∈[a,b]

∫ b

a

|k(s, t)||g(s)|ds ≤

C

∫ b

a

|g(s)|ds

Suppose ‖gn‖Y =
∫ b

a
g2
n ≤ Ĉ for all n ≥ 1 then by the Cauchy-Schwarz inequality for

inner product spaces

∫ b

a

|gn| ≤ (

∫ b

a

g2
n

∫ b

a

1)1/2 ≤ ((b− a)Ĉ)1/2

Now,

supt∈[a,b]|Tgn(t)| ≤ C(Ĉ(b− a))1/2

Thus, one has {Tgn}n≥1 is a subset of C[a, b] that is bounded in the sup norm. But since
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‖Tgn‖X =

∫ b

a

(Tgn)
2 ≤ C2Ĉ(b− a)2

{Tgn}n≥1 is bounded in X also. Note the above implies that T is continuous, since if

‖g‖Y ≤ 1 then ‖Tg‖X ≤ C2(b− a).

To show {Tgn}n≥1 is equicontinuous, let x ∈ < and ε > 0, 0 < ε < ε

((b−a) bC)1/2
. Choose

δ > 0 so that if

|s− x| < δ then |k(s, t)− k(x, t)| < ε.

Then

|Tgn(s)− Tgn(x)| =∣∣∣∣∫ b

a

(k(s, t)− k(x, t))gn(t)dt

∣∣∣∣ ≤∫ b

a

|k(s, t)− k(x, t)||gn(t)|dt ≤

ε

∫ b

a

|gn| ≤

ε((b− a)Ĉ)1/2 < ε

�

By the following (Arzela-Ascolli Theorem), T is compact. See page 5 of [1].

Theorem 2.9. Every bounded equicontinuous subset of C[a,b] has a limit point.

Also if supt∈[a,b]|f(t) − Tgn(t)| → 0, then
∫ b

a
(f − Tgn)

2 → 0. Thus f is the limit of

{Tgn}n≥1 in X if it is the limit of {Tgn}n≥1 in C[a, b].

To show that T is symmetric, we will show H is symmetric. Since H is bijective this will

imply that T is symmetric. Let u and v be in the domain of H. Then

〈Hu, v〉 − 〈Hv, u〉 =
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∫ b

a

(−u” + qu)v − (−v” + qv)u =∫ b

a

−u”v + v”u

An integration by parts gives that this equals

−(vu′)(b) + (vu′)(a) + (uv′)(b)− (uv′)(a)

With zero boundary condition on u and v, the above equation is zero. So 〈Hu, v〉 = 〈Hv, u〉.

Finally to show that T is positive, suppose g ∈ Y and Tg = u. Then g = Hu and so

〈Tg, g〉 = 〈u,Hu〉 ≥ 0.

To show that H has an eigenvalue, note that if

Tu = λu

then

Hu =
1

λ
u.

λ is real as T is positive, and λ 6= 0 since T is injective.

Thus, to show H has an eigenvalue it suffices to show T has an eigenvalue.

Theorem 2.10. Suppose F is an inner product space and W is a compact, symmetric, and

non-negative member of L(F, F ). Then |W | is an eigenvalue of W.

Proof. Since W is bounded, one can define

|W | = lub {‖Wx‖ : x ∈ F, ‖x‖ = 1}

It is known that

|W | = sup {〈Wx, x〉 : x ∈ F and ‖x‖ = 1}.

For each n ≥ 1 choose xn ∈ F so that ‖xn‖ = 1 and
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|W | − 〈Wxn, xn〉 <
1

n

Then since {xn}n≥1 is bounded, {Wxn}n≥1 has a convergent subsequence {Wxni
}i≥1.

Let x be the limit of this subsequence. Then

lim
i→∞

‖Wxni
− |W |xni

‖2 =

lim
i→∞

〈Wxni
− |W |xni

,Wxni
− |W |xni

〉 =

lim
i→∞

‖Wxni
‖2 − 2|W |〈Wxni

, xni
〉+ ‖xni

‖2|W |2 ≤

lim
i→∞

2|W |2 − 2|W |〈Wxni
, xni

〉 = 0

since lim
i→∞

〈Wxni
, xni

〉 = |W |.

Thus x = lim
i→∞

|W |xni
and

Wx = W lim
i→∞

|W |xni
=

|W | lim
i→∞

Wxni
=

|W |x

�

Let λ1 = |T | and let ψ1 be an eigenvector for λ1. Then T restricted to the orthogo-

nal complement of ψ1, ψ
p
1, is a compact, symmetric, non-negative, and continuous linear

transformation. So T |ψp
1

has an eigenvlaue λ2 = |T |ψp
1
| and a corresponding eigenvector ψ2.

λ2 ≤ λ1 as

|T |F | = sup {〈Tx, x〉 : x ∈ F and ‖x‖ = 1}.

Where F = ψp1. By continuing this process we can generate more eigenfunctions and

eigenvalues. Because the dimension of the eigenspace of λ1 is finite, we must generate a new

eigenvalue after a finite number of runs through the above process. Hence we can generate

a countable set of eigenfunctions that span X.
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CHAPTER 3

NUMERICAL SCHEME

3.1. Numeric Scheme

The numerical scheme makes use of the Rayleigh quotient to find the eigenvectors and

eigenvalues. See pages 172-178 of [3]. Here is a brief description of the algorithm.

Let n be a positive integer and divide [a, b] into n + 1 equal sections. Let Hn be the

matrix
α+ v1 β 0 . . . 0

β α+ v2 β . . . 0

. . .

0 . . . −1 α+ vn


where
v1

...

vn


is the discrete version of v, the potential, on [a+ 1/(n+ 1), b− 1/(n+ 1)], α = 2(n+ 1)2,

and β = −(n+ 1)2.

Hn is the discrete version of the Hamiltonian with zero boundary conditions. For v non-

negative, the determinant of this matrix will be greater that or equal to ( β
α+c

)n, where c is

an upper bound to v on [a, b]. Thus Hn is invertible if v is non-negative, hence we can define

Tn to be H−1
n . Also since Hn is symmetric, Hn is diagnolizable. So let P be an orthonormal

basis of eigenvectors of Hn for <n.

For the remainder of this section 〈., .〉 and ‖.‖ will denote the standard norm and inner

product on <n.

Choose x0 6= 0 ∈ <n and Define xk as

xk = qkTnxk−1

12



qk =
‖xk−1‖2

〈Tnxk−1, xk−1〉

Proposition 3.1. Let xk be defined as above then

1) limk→∞ qk = |Tn| if 〈Tnx0, x0〉 6= 0

2) x = limk→∞ xk exists

3) Tnx = |Tn|x

Proof. To show 1) note that

qk =
(q1 . . . qk−1)

2‖T k−1
n x0‖2

(q1 . . . qk−1)2〈T knx0, T k−1
n x0〉

=

‖PDk−1C‖2

〈PDkC,PDk−1C〉
=

‖Dk−1C‖2

〈DkC,Dk−1C〉

where P−1x0 = C.

So if C =
c1
...

cn


and the diagonal entries of D are d1, . . . dn then

(6) lim
k→∞

qk = lim
k→∞

d2k
1 c

2
1 + . . . d2k

n c
2
n

d2k+1
1 c21 + . . . d2k+1

n c2n

Let |Tn| = d1 and assume di ≥ di+1. By dividing top and bottom of (6) by d1 and taking

the limit on k one gets that (6) equals |Tn|−1.

To show 2) start by writing xk as

(
k∏
i=1

qi)T
kx0 =

(
k∏
i=1

qi)PD
kC =

13



P (
k∏
i=1

qiD)C

Then

‖xk − xl‖2 =

‖(
k∏
i=1

(qiD)−
l∏

i=1

(qiD))C‖2 ≤

(
n∑
j=1

(
k∏
i=1

(qidj)−
l∏

i=1

(qidj))
2)cM

where cM is max(c21, . . . c
2
n).

qi+1d1 =
c21 + . . . α2i

n c
2
n

c21 + . . . α2i+1
n c2n

where αi = di

d1
≤ 1 and αi ≥ αi+1. Also qid1 ≥ 1 so 1 ≤

∏k
i=1(qid1) for all k and

{
∏k

i=1(qid1)}k≥1 is increasing. To show this sequence is bounded will show {
∑k

i=1(qid1 −

1)}k≥1 is bounded (see following proposition for explanation).

qi+1d1 − 1 =

c21 + . . . α2i
n c

2
n

c21 + . . . α2i+1
n c2n

− 1 =

c21 + . . . α2i
n c

2
n − (c21 + . . . α2i+1

n c2n)

c21 + . . . α2i+1
n c2n

≤

cM
α2i

2 (1− α2) + . . . α2i
n (1− αn)

c21 + . . . α2i+1
n c2n

≤

cM(n− 1)α2i
2 (1− αn)

c21
= Mβi

where M = cM (n−1)(1−αn)

c21
and βi = α2i

2 .∑k
i=1Mβi is bounded for all k, hence {

∏k
i=1(qid1)}k≥1 converges and as k, l → ∞,∏k

i=1(qid1) →
∏l

i=1(qid1).

Now dj = d1(dj/d1) so
k∏
i=1

qidj = (dj/d1)
k

k∏
i=1

qid1 → 0

14



as k → ∞. So one has ‖xk − xl‖ → 0 as k and l go to infinity , which makes {xk}k≥1 a

cauchy sequence in <n. So it is converges.

To show 3), note that

|T |x =

lim
n→∞

1

qn−1

lim
n→∞

xn−1 =

lim
n→∞

1

qn−1

xn−1 = lim
n→∞

1

qn−1

qn−1Txn−2 =

lim
n→∞

Txn = T lim
n→∞

xn = Tx.

�

Proposition 3.2. If {
∑k

i=1 ai}k≥1 is bounded, then {
∏k

i=1(1 + ai)}k≥1 is bounded .

Proof.

ln(1 + ai) ≤ ai so

k∑
i=1

ln(1 + ai) ≤
k∑
i=1

ai

�

3.2. Numerical Results

Numerical results were obtained for four different potentials. In three of the four cases the

potential q was non-negative and continuous on an interval symmetric about the origin. So

the theory discussed in the section regarding compact operators applies to these potentials.

In the fourth example, the potential was positive on an interval symmetric about the origin,

but unbounded.

The particle in a box is the case where q = 0. This describes the situation where a

particle is confined to a box of finite length. Within these walls there is no force imposed

on the particle but at the walls the potential rises to infinity. The harmonic oscillator is the

case where q(x) = x2. This potential describes the situation where the particle undergoes a

restoring force proportional to its displacement which keeps the particle in the equilibrium
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position. The double well is given by q(x) = 25(x−1)2(x+1)2 and q(x) = 50(x−1)2(x+1)2.

This potential describes a particle confined to a region where there is a dip in the potential

in a region to the left of the origin and in a symmetric region to the right of the origin, but

there is a barrier at the origin. These describe the positive and continuous potentials. The

coulomb potential describes the behavior of an electron around the nucleus. This potential is

given by q(x) = |x|−1. On a symmetric interval about the origin this potential is unbounded

but positive. So the theory above does not cover this case.

Now a brief discussion of each of the potential and the solutions obtained.

3.2.1. Particle in the Box

The problem of the particle in the box can be solved explicitly. The solutions with the

imposed zero boundary conditions are

ψn(x) = c sin
nπx

L

where L is the length of the box and c is usually the normalization constant. From this

one gets that the energies or eigenvalues are (nπL−1)2. Note that the difference in energy

between the n and n + 1st level is (2n + 1)πL−1. So the energy levels rise as the square of

the integers. If one examines the wave functions, one observes that the number of nodes

increases as the particle reaches higher quantum states (a node represents a position where

there is no electron density). This suggests that the wavelength of the particle is decreasing.

Einstein’s equation of light states that energy is inversely proportional to wavelength so

this suggests that the kinetic energy of the particle increases as it reaches higher states.

This is consistent with the increasing eigenvalues. The energy levels start at n = 1. This

implies that the ground state energy of the particle is positive. One explanation of this is the

uncertainty principle. Since one knows the particle is confined to within a box of length 2L,

one can use that ∆p∆x = h to estimate the momentum of the particle which is nonzero. One

then uses the relationship between kinetic energy and momentum to conclude that since the

momentum of the particle is non-zero then the lowest possible energy must be positive[5].

Another way of looking at this is that since the Hamiltonian is injective for non-negative
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potentials, then Hu = 0 only has the trivial solution which can not be an eigenvector. See

figures 3.1 and 3.2.

Figure 3.1. Particle in Box Energy Levels

Figure 3.2. Particle in Box Eigenfunctions

3.2.2. Harmonic Oscillator

The problem of the harmonic oscillator can also be solved for explicit solutions. The wave

functions are the product of a constant (usually the normalization constant) the exponential
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function

f(x) = e−
x2

2

and a hermite polynomial. The first few hermite polynomials are are

1

2x

4x2 − 2

8x3 − 12x

16x4 − 48x2 + 12

32x5 − 160x3 + 120x

These solutions can be obtained by supposing that a solution of the form

e−
x2

2 f(x)

exists and plugging such a solution into the Schrödinger equation. The energy levels of the

harmonic oscillator are given by

(2n+ 1)~ω
2

where ω =

√
k

m
and k is the force constant, n is a positive integer

One notes that the differences in energy levels are ~ω so the energy levels increase at a

constant rate. Furthermore, the harmonic oscillator has positive ground state energy. This

can again be explained by the uncertainty principle or by the Hamiltonian being injective.

It is also worth noting that if the force constant is small or the particle is massive, then the

first few energy levels of the harmonic oscillator are negligible. In the case of atoms however

the energy levels become important [2]. See figures 3.3 and 3.4.
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Figure 3.3. Harmonic Oscillator Energy Levels

Figure 3.4. Harmonic Oscillator Eigenfunctions

3.2.3. Double Well and Coulomb Potentials

The numerical results obtained for the double well were probably the most interesting.

If one examines the energy level, it is apparent that the energy levels are close to being

pairwise degenerate before the particle has sufficient energy to overcome the barrier at the

origin. But after the barrier is overcome, the energy levels of the particle rise almost linearly
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in a similar manner as the harmonic oscillator. This was the case when the barrier at the

origin was 25 and 50.

The eigenfunctions of a particle under this potential also displayed different behaviors

before and after the particle had sufficient energy to escape the barrier. Before the energy

barrier is overcome, there is a dip at the origin in the nth eigenfunctions where n is odd. This

corresponds to a lower probability of finding the particle there. After the energy barrier is

overcome, the eigenfunctions resemble those of the harmonic oscillator. See figures 3.5 to

3.8.

For the Coulomb potential a cut off value of 1016 was used at the origin. The numer-

ical results obtained for the Coulomb potential indicate that the first ten eigenvalues are

pairwise degenerate. The overall rise in the energy levels does not seem to be linear. The

eigenfunctions indicate that the probability of finding the particle at a region, R, about the

origin goes to zero as the diameter of R goes to zero. Away from the origin, the results

indicates that the particles is equaly likely to be on the left or the right. This is what one

would expect as the potential is symmetric. See figures 3.9 and 3.10.

For this potential the eigenfunctions obtained from the code did not have a first or second

derivative at the origin. As mentioned before, the theory discussed in this paper does not

deal with this situation. The reference below discusses how to deal with this situation. The

suggestion is to divide up the problem of solving the Hamiltonian on the interval [−a, a]

into a two interval problem. So seek solutions on the interval [−a, 0] and [0, a]. Then form

the direct product of the spaces L2[−a, 0] and L2[0, a] and obtain an operator on this new

space from the direct sum of the operators on each of L2[−a, 0] and L2[0, a]. For a detailed

explanation see chapter 13 of [4]. For the problem of the singularity at the origin see part 4

of [4].
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Figure 3.5. Double Well Energy Levels with Barrier of 25

Figure 3.6. Double Well Eigenfunctions with Barrier of 25
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Double Well Energy Levels Barrier 50
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Figure 3.7. Double Well Energy Levels with Barrier of 50

Double Well Energy Levels Barrier 50
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Figure 3.8. Double Well Eigenfunctions with Barrier of 50
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Figure 3.9. Coulomb Potential Energy Levels

Figure 3.10. Coulomb Potential Eigenfunctions
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CHAPTER 4

CONCLUSIONS

In this paper the goal of solving the one-dimensional time independent Schrödinger equa-

tion was accomplished completely in the case where the potential acting on the particle is

non-negative and continuous. The theory on compact operators in a Hilbert space showed

the existence of a discrete set of solution to Hψ = λψ and the code found the solutions.

One of the potential that was used in the code, the coulomb potential, was positive but

not bounded on a symmetric interval about the origin. Although numerical solutions were

obtained, the eigenfunctions did not have a second derivative everywhere. The theory about

compact operators does not directly apply to this case to show that solutions must exist.

Even so the solutions obtained seem to give meaningful information about a particle under

this potential. As a follow up to this paper one might be interested in looking at topics such

as:

• If compact operators in a Hilbert space can be extended to include operators with

unbounded potentials.

• How the problem of singularity at the origin can be interpreted. Reference [4] gives

a description of this.

• If Hilbert space theory applies when one replaces the one-dimensional time indepen-

dent Schrödinger equation with the three dimensional time dependent Schrödinger

equation.

It is probably also worth noting that all the theory developed in this paper used the incom-

plete C[a, b] as a subset of L2[a, b]. So completeness of a Hilbert space was not needed or

used anywhere in this paper.

24



BIBLIOGRAPHY

[1] Coddington and Levinson, Theory of ordinary differential equations, McGraw-Hill Book

Company, 1955.

[2] Peter Atkins, Physical chemistry, 6 ed., W. H. Freeman and Company, 1998.

[3] J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, 1965.

[4] Anton Zettl, Strum-Liouville theory, American Mathematical Society, 2005.

[5] Klaus Zoick, Basic quantum mechanics, John Wiley and Sons, Inc. 1969.

25


