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STABILITY OF STRUCTURAL MEMBERS UNDER AXIAL LOAD

By Eugene E. Imundquist
SUMMARY

The principles of the Oross method of moment distri-
bution are used to check the stability of structural mem=
bers under axial load. A brief theoretical treatment of
the subjoct, together with an illustrative problem, is in-
cluded as well as a discussion of the reduced modulus at
high stresses and a set of tables to aid in the solutlon »
of practical wroblems. - - -

INTRODUGTION _ N

Onoc of the problems in the design of structures is to
make certain that the compression members are stable un-
der tho loads %o be carried. For example, it is assumed
that the usual column formulas give the critical stress &t
which a compression member becomes unstable in bending.
In order %o use these formulas, however, the value of the
restraint coefficient ¢ must be known. -

For a structure built with the members joined to each
other by frictionless pins at each end, ¢ = 1, For a-
structure bullt with the members continuous at the Joints,
however, the valuc of & for any compression member is de~
pondent upon the size of all members 1lu the structure and
the axial loads in them. The design of the compresdion
members for a structure continuous at the Jointe is there-
fore a problom in trial-and-error calculation. The pro- -
cedure recommended for desigh is, first, to proportion the
compression members on the basis of assumed restraint co-
efficients and, second, to check the stability of the sys—
tem of members by a simple calculation. If the system of
mombers ig found to be unstable, new values of the re- i
straint coefficient must be assumcd, new sizes for the -
menbers selectod, and another check of the stability made.
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The suggestions and comment éf Dr. William R. Osgood
of the Fatlonal Bureauw of Standards on the subject mattor
of this report are greatly appreciated, particularly his
suggestliong regarding the evaluation of the effective
modulus at stresses above the elastlc range.

DEFINITIONS AND SYMBOLS

The following definitiong of stiffness and carry-over
factor narallel those given in referenccs 1l and 2 with
sore changes in wording:

Stiffnegg.- If a member is on unyielding supports at
each end, the moment at one end necessary to produce a
rotation of 1/4 radian of that ®ad is called the "stiff-
ness," The stiffness of a member will depend upon the
anount of restraint at the far end. In the derivation of
the criterion for stability, three types of restraint at
the far end are considered. The symbols used to designate
the stiffness for the different types of restraint are

S, far end fixed.
S', far end elastically restrained.
S", far end pinned.

Caorry-over factor.- If a member is on unylelding sup-
rorts at each end and a moment is applied at the near ond,
the ratio of the noment developed at the far end to the
moment applied at the near end is called the "carry-~ovaer
factors" As in the casc ofstiffnésgs, the carry-over fac-
tor will depend upon the-degree of .restraint at the far
end of the member. The symbols used to designate the
carry~over factor for the different types of restraint
considered in this report are .

C, far end fixecd.
6!, far end elastically restrained.

¢% = 0, far end pinncd, e -
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The stiffness of a member computed nccording to the
foregoing definition is 1/4 thnt computed according to the
definition given in references 1 and 2. In the Cross
method the relative stiffness of the members 1s of inpor-
tance and not the absoclute value. The foregoing defini-
tion was selscted so theat the stiffuness of a member of
constant cross section with no axial load and fixed at Ehe
far end would be EI/L instead of 4EBI/L. -

Sizn convention.- The sign convention used in this
report is the same ns that used by James in reference 2.

A clockwise nmonent ncting on the end of =~ member is posi-
tive. &4 counterclockwlise moment acting on a jolnt is pos-
itive. An external noment applied at a Joint is consld—
ered to act on the joint.

Symbols.-
%, sunnation.
E, nodulus of elasticity.
T, effective modulus of elasticity.

I, mnoment of inertia of cross section about a
centroidal axis normal to the plane of bendinge.

L, 1length of nenber.
P, axial load (absolute value).
A, area of cross section.

c, restraint coefficient in the usual column for=—
nula. ’ :

, Tradius of gyration
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Effective values of o and B are:obtained by subatitu-
tion of (L/j)eff for L/J.

CRITERION FOR STABILITY

The joints of the structure are assgumed to be held
rigidly in space but are free to rotate under the elastlc
restraint of the interconnecting membere. Thlsg assump-
tion 1s alsc basic in the Cross nethod of noment dlstri~
bution (referemce 1),

o
ar’
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The method used to check the stability of the struc—
ture is based upon the principles of moment distridbution.
In this nmethod either of two criterions may be used.

Stiffness criterion for stability.- From a structure
of many nembers consider the section conmprising one Jjoint

shown in figure 1, Apply a2 unit external moment a¥ joint
.b L] . ’

C2

Q§§7 . 41, external moment
cy B .

Figure 1,

By the Cross method, the moment of -1 added to balance
Joint b is divided betweean members be in proportion to
thelr stiffnesses. Because there are other members beyond
Joints ¢, the far end of members be will be elastical~
ly restrained as indicated in figure 1 by coiled springs
at ¢3, ez, and ez. It is possible, theoretically, to cal-
culete the restraint at joints ¢ and the stiffness of
menbers be when they are elastically restrained at their
far ends. Thus, if the stiffnesses of memberg be are
determined with the far ends ¢ elastically restrained,
the moment of =1 added to balance joint b 1is distributed
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S’bsl The moments carried over to the
- TEY to member far ends of members be are
: be be,
St St o!
be b
- =5 to member - b;;‘ 21 4o far end of
Z8%pe bes *~ "be member e,
etc. 5'heaC'oe
- -2, 2 to far end of
LS8 Tye member Dbcg
stc.

Tne moments carried over to the far ends of members be
will be absorbed by all the members beyond jolints c.
Thus, the moment at each end of every member in the struc~
ture will be some quantity divided by 2S8'y,.

Before the structure is loaded, the stiffness of each
member of the structure is positive (no axial load in the
members) making IS',, positive, As the structure is

loaded, the effects of axlal tension and compression will
cause the stiffness of some members tv increase and the
gstiffness of other members to decrease. For stablility,
the moment at each end of every member must be finite.
Therefore, the stiffness criterion for stability is

T Sty, >0 (1)

It is desirable to emphasize that, if the stiffness
criterion for stability is satisfied, not only is the sta—
bility of members be in figure 1 chocked but the stabil~
ity of every member in the structure is proved.

The condition of neutral stability gives the criticael
buckling load for the structure and is obtained by settling
the stiffness stability factor XS'y, equal to zero, or

Zsr'bc = O i - (2)

Series criterion for stpbility.- From g structure of
many members consider the section comprising two joints
shown in figure 2. Apply a unit external moment =at joint
b. By the Cross meéthod, the moment of -1 added to balance
joint b is divided between member be and members ba
in proportion to their stiffnesses: Because there are
other members to the left of joints a, the left end of
each nember ba will be elastically restrained as indi-
cated in figure 2 by a coiled spring at a;, az, and azs
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a1

\3+1 , 8Xxternal moment

dg
Y
i :
8.3 d_s
al gl
an 5
1 '
_ zsba _ Spe -
Sbc+zsl‘)a sbc+ Esfaa
_ Sug o _ Sbe Cbe
SbetZSha ShctEShe, :
i
She Cbe Seb |{Sve Coe 8.4 )
SbctZShs, ScbtZSed iSuctIShe ScvtEScq
Spe Cve Scb Ceb Spe Obe  EScq C’llcd
! i
SpetShe SebtESeq SpetiSpa ScvtISca

Figure 2
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The stiffness of span be 1is calculated on the assumption
that joint ¢ 1is fixed. Thus, if- Sp, 1s the stiffness

of member be fixed at ¢ and ZS'ba is the sum of the

stiffnesses of members %ba clastically restrained at—
Joints a, the moment of- «1 added to balance tho external
moment of +1 at joint b is distridbutad:

S'b'c ! S Pl
+ ZS'ba

Sbc

to memaber e, and

a
sbc + Zsrba

!
Zs b

—

to members Dba. These moments, together with the moments
carried oever %to Joint ¢ and joints a, are set down in
the table of figure 2. o - o

Because the stiffness and carty-over factor for moem-
bers ba take proper account of the elastic restraint at
joints o, the nmoments carriesd over te joints a aroc ab-
sorbed by those portions of the structure to the left of
these Joints. Thus, %There is no unbalanced nmoment at any
joint a.

It was assumed that joint ¢ was fixed when in reali-
ty it was elastically restrained. The noment

She Cve .
She + Z87pq

—

carried over to this joint has therefore caused it to be
out of balance. Accordingly, joint ¢ is balanced and

the proper mnoments are. carried over to joint b and joints
d. * (Sece table of fig. 2.) Because the stiffness and carry-

over factor for members cd take proper account of the
elegtic restraint at Jointg d, +the moments carried over
to Joints d are absorbed by those portions of the struc—
ture to the right of these Joints. ~Hence, the only un-~
balanced joint is b and the unbalanced moment at thils
joint is r where - S :

r = Sbc Cbc, Spb Gcb ;_ o (3)
Sbc + ZS'ba Scp + z:Srcd.

Iy
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Joint b was the starting point with an unbalanced _
monent of unity. Therefore, if the present unbalanced
monent of r at joint b is digtridbuted in the manner
described for the 1nitial unbalanced moment of unity, an-
other get of entrieg for the table of figure 2 will be oh—
tained that are exactly r +times those already made. It
will then be found that the unbalanced noment at joint Db

is r 2 Distribution of this unbalanced moment will give
a third set of entries in the table of figure 2 that are

r2 times the first set. Thus the nth set of entries in

the table of figure 2 will be r™~"* +times the first set
of entries.

According to the Cross method, the noment at the end
of any member is obtained by the addition of the entries
in the corresponding column of the table of figure 2. For
any menber, this moment is some quantity times the infil-
nite seriles

L+ 72+ 228 + 23+ 4 ¢ o 4 W

For stability, the moment at the end of each member nush
‘be finite. Thus, for stability, the sun of the infinite
series nust be finite, This condition is satisfied when
the value of r lies between -1 and +1.

It will now be provedthat =r cannot have a value be-
tween —1 and O without first having a value greater Ehan_
+1., The product of stiffness and carry-over factor for
any nember is positive for any condition of ‘restraint at
the far end, Therefore r can be negative only if the
denominater on the right side of .equation (3) is negative.
Before the structure is loaded, the stiffness of each mem-=
ber of the structure is positive (no axial load in the
menbers), naking the denominator positive. As the struc-
ture is loaded, the effects of axial tension and conpres-
sion cause the stiffness of some members to increase and
the stiffness of other members to decrease. Thus, as the
load on the siructure is increased, the dencmlnator on the
right side of equation (3) cannot be negatlve without pase-’
ing through zero. When ‘the denonminator is zero, r is in-
finite, which meang that the structure is unstable. There-
fore, the criterion for stability is

0<r< 1l _ (4)

If the sgeries criterion forlstability is satisfied,
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not only is the stability of member be in figure 2
checlted but the stability of every member in the structure
is proved. If the cross section and axinl load vary along
the length of any nenmber, the effect of these variations
is inecluded in the evaluation of the stiffnoss and carry-
over factor for thnt nember regardless of which criterion
for stability is used., If dcsired, the effwct of shear
can also be included. '

The condition of neutral stability gives the critical
buckling load for the structure and is obtained by setting
the series stability factor =r equal to unity, or

S. . ¢ S . ¢
b b
r o= c b?_ _ ch . c’ -1 (5)
Spe + L8ty Sep * ISTgg

CARRY-OVER FACTOR AND STIFFNESS

In order to calculate the critical buckling load in
actuel problens, it-1s necessary to have sultable expres—
sions for the stiffness and carry-~over factor. Beforse
these expressions are sunnarigzed, however, equations will
firgst be derived for the carry-over factor and stiffness
of a menber elasticelly restrained at its far end.

Congider the member 1j shown in figure 3, simply
supported at 1 and elastically restrained at J Dby mon-
bers Jjlk. The members Jjk are also elastically rostrained
at their far ends k. Apply on external momont ~M at |
.support i. The moment of +M added to balance this Joint
is all distribujed to member ij. On the assumptlon that
joint J - 1s fixed, the moment carried over to the for end
J isa. HCs 3« The moment ~MC; 3 added to balance Joint J

is then diegtridbuted between member - ji and nenbers Jjk

in proportion to their stiffnegses aos shown in the table

of figure 3% ' _
S”ji

-MC, :
1
J Styy + ISty

to member Jji, and

ZE'sy

jit I8Nk

"Mcij g



N.A.C.A, Technical Note No., 617 11

-
~-M
external i

moment

kg
kq
ko
M
] 1
MC SJl MC Zsjk
B s B it % ey ;
55'1*'2531: S(,ji*'zs,jk
st ¢!
~M0; gk 4k
"
+
S‘i ZSjk

Filgure 3
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to members Jk. Because the stiffness S"ji of span Jjil

takes proper account of the pin end at i, no moment is
carried over to 1. The stiffness and carry-over factor
for members Jjlk taeke proper account of the elastic re-—
straint at Jjoints XkX. Thersfore the moments carrled over
to joints Xk will be abgorbed by the structure to the
right of these joints and the moment distridbution analysis
is complete so far as moments in member 1j are concerned.
Thug the noments at the ends of-ménmber 1J are:

At end 1, M

At end j, MOs5 o

By definition, the carry-over factor C'ij for member i1}
elastically restrained at j is the ratio of the moment

-S'ij 5 _Slij G'ij
\ External
External moment
moment

S'ij Sri'j C,i‘j

Figure 4

1
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at end J to the moment at end 1, or
Zs'jk

s 2 = O, (6)
1
J i SU;y + ISty

¢t

In order to derive an equation for the stiffness
S! ij of member ij elastically restrained at the far end

j, assune that -M (fig. 3) has the value -S'35+ Then

member 1 will have the end moments shown in the table

of figure 4 and the tangent at 1 will have been rotated
through 1/4 redian. Now consider a duplicate of memher i}
pinned at each end (fig. 5). Apply an external moment L
"S"ij at 1. The noment of +S"ij added to balance this

Joint is distributed to member ij. If the far end J 1is
assuned to be pinned, the tangent at 1 will have been ro~
tated through 1/4 radian. At this stage apply ar external
nonent of “S'ij G'ij at J. The-moment of +8'33 Ctsij

Vi
‘S"ij i r _Slij C'ij
External External
momen & moment
i J

S“ij S'ij Clij

Slij Ctijcji

Figure 5.
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added to balance this joint is distridbuted t¢ memder Jl.
On the asgsumption that the far end 1 1s fixed, the monent
carried over to jolnt 1 ig +Sli'j c'ij Gji' In thig con-
dition the moment at j and the rotation of the tangent
at 1 are the same for the original member 1ij (fig. 4)
and the duplicate member _ij (fig. 5). It therofore fol-
lows that the momentw at 1 in the original and duplicate
nenber nust also be equal. Therefors

H = " H t
Sty = 815 7 8%y Clyy Oy
from which . . o . L
SH, .
1
Sty = J S e = (7)

1~ Gg4 C'yj

Substitution of .the value of C'ij as given by cquation
(6) gives for the stiffness of a nembor 1J elastically
restrained at—the far end J by other members Jjk, also
elastically regtralned at thelr far ends,

S"i'

3 .
St.. = : s . 8)
- 1 c c 25 Lk - f
Ji lJ S"ji +_Es!jk
Tor member ij, the limiting values of the carry-

over factor and stiffness given by equations (6) and (8),
respectively, are obtaiuwd as follows. When the far end J
is pinned, there is mo elastic restraint at Jj and ZStyy=
0. TFor this limiting condition, the carry-over factor

C'ij = C"ij = 0 and the stiffness. S'ij = S"j--j. When the
far end j 1is fixed, there is complete restraint at J

and ZS'jk = w., For this limiting condition, the carry-
over factor O'iy = C3; end the stiffness S'yy = 5;j
where . -

an, .
Si5 = . GiJ = _ (9)
= Y31 oMij
Up to this point, all the equations in this report on
stability are general. In nearly all cases encountered in
practice, however, the cross section and axial load do not
vary along the length of each member. Far this special case,
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15
_ 1 - — -
Gij = Gji' S'ij = s"jif .Sij = Sji' and the carry=-over
factor of any member ij, fixed at the far ond, 1is (see
reference 2)
s
ij
s = 1
Cij 284 5 | - (10)
also, the stiffness of any such member ij 1is:
Far end J pinned (see reference 2)
sy = 2 2] (11)
L 148y,
For end § elastically restrained by members jk,
Sy, .
Sty = ij (12)
PMCIR N
1 - @@ Jk
ij s"ij + bs’jk
Far end § fixed,
su
i
Sy = i (25)
.
iB. -
1~ (2553)
#P1j

When the cross section and axial load do not vary
throughout the length of each menber,

_ the sories stadbility
factor zs glven by eguation (5) becomes (sce fig. 2)

2
) . <Sbcvcbc)
r =

1 1 : - (15)
(Spo + T51,,) (Sye * zs Cd)

The values of the quantities thai appear in this expres-

sion arec obtained by the use of equetions (10) through
(14).

;t is nmore convenient, however, to tabulate certein
of these gquantities as has been done 'in tables I and II.
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THE EFPFECTIVE MODULUS

If equations (10) to (14), inclusive, aro to be appli-~
cable in the short-coluumn range, gn effoctive modulus E
must be substituted for Young's madulus E. This substitu-
tion requires thalb an effoctive value of L/j be used to
evaluate o and B in all-equations of this report, whero

O NENG - an
of £f— i

Ag noted in the list of symbols, the formulas used in the
evaluation of o and B differ for tension and compreg-
sion menbers.

For compression members in the elasti¢c or Buler rangs,
E = B, For the short-column range, & < E. In order that
the calculated critical load for a structure shall be con=-
sistent with the usual column formulas based upon tests,
it is recommended that B for compression members be de~
termined in the following manner:

ly Solve for the effective slendernesgs ratio

L/p.,/c in the accepted colunn formula for the mate-
rial under consideration.

2. Substitute thie value of L/ps/ ¢ in the
equation : .

2z ( (17)

kn

The result will be an equation that gives E 2s e
function of—the stress P/A in the member.

3. If desired, this value of E may be correcte
ed for small differences caused by changes in theo
crosg=sectional. shape from that used in the tests on
which the column formula is based; but this correction
ig uswally neglected.

If it is inconveniont to solve for IL/p./c in the ac-
cepted column formula, the procedure outlined 1ln reference
3 can be used and a curve of ¥ against P/A Ybe drawn,

il
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The variation of E with stress for tension members
can be established, theoreticelly, by the use of the
double~modulus theory of bending and of the stress—-strain
curve for the nmaterial, (See references 4, 5, and 6.)

For such calculations, however, the stress—~strain curve
must be accurately drawn to a sultable scale. In the ab-
sence of a known or calculated variation of B with stress,
the following approximate method can be used to establish
E for tension members:

l, When the stress is less than the maxinum al-
lowed for a column of the same material, use the
sans values of E for tenslon as for compression at
the same stress.

2. When the stress is greater than the maxinunm
allowed for a column of the same material, assune
that E = O,

The values of E for tension members obtained by
this method will be conservative. Whether or not they are
too conservative is a matter to be settled by tests. Cer-—

tainly in the regionsg of yield point and of maximum ten-
sile strength the flatness of the stress-strain curve will
cause E to approach zero. Because the maximum stress
allowed in columns is closely associated with the yield
point, this method offers a convenlent solution of E for
tension menbvers.

Axial load in pounds; T, tension; C, compression

Zero 9940 G 8610 T 9940 C 8610 T 9940 C Zero .
}l\ /l\ 75 7~ AN AN /’\ /;\
y z a b - c a ' -] £
l, 60" | 5 at 50" = 250" L 60" \l
) () = = - B Lo s o
Figure 6.
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PROBLEM

Design a continuous member of 1025 steel to carry the
loads shown in figure 6. TFor simplicity, the same cross
section will be used in all spans; even though only three
of the gpans are under axial compression.

The usual column formulas for 1l025-steel tubes are:

For Z< 124, - ’
P _
P 1 /LY
2 - as000 - 127 2 (2]
: 36,000 1,17 = \5 (18)
L . . . .
" For E>3124,' - . _— _
P 276 x 10° _
R R T A = i . : 19
i : (19)

It is desired that I/p be less than 124. Therefores,
equation (18) is used and, on the assumption that ¢ = 2,
a tube of the following dimensions is selected as & trial
fesign for compression menbers za, bc, and de.

Digmeter, 4 . . . . . . . . . 1,625 in,

Wall thickness, t .+ « + . . 0.065 in.
Area, A . . . . . . + < . . . 0.3186 gq. in.
ioment of inertia, I ... . . . 0,09707 in,*

According to the problem, this tube i1s used as a continu-
ous menber from y %o .f (fig. 6).

In order to check the stabllity of the tube selected
in the trial dessign, the critical buckling load will be
calculeted and compared with the loads given in flgure 6.
It is agsumed that—the axial load #in the tension apans is
always 8610/9940 or 0.866 timesg the axial load in the con-
pression spane. This assumption conforms to the condition
that the forces in all nembers increase in the same ratio
as the load on the structure.

Both the dinmensions and loading of the menmber shown

LHL

t
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gurs 6 are symmetricel adbout span be. It is theroc-—
convenisnt to determine the critical buckling load

e of the series criterion for stability. Imagine the
external nonrent to be applied at joint ©b. Then the

s stability factor is given by equation (15) with the

sunnation signs omitted. If the symmetry about epan be

ig co

where

In th

¥ an

buckl

ngidered, the serlies stability factor becomes
2
(Spe Ope) -
r = 5 - -(20)
(Sbc * S'cd)
. _ S"cd. _
cd ~ s
1~ ¢° de
cd
5%:a * S'ae
1
St _ S de -
de 'Su
1 c? of : T
- de gu + gn
de ef . : o

e equation for S8!'3, it is assumed that the ends at

d £ =are pinned.

The detailed procedure of calculating the critical
ing load is as follows:

le Assume a series of values for the axial load
in one of the members. In order that reasonable
loads will be assumed, a compression member should
alwayse be selected and the axial loads for this nen—
ber computed fronm the column fornula using a series
of values of e¢. In this problenm, compression nenber
?c )ls selected and the column fornmula is equation

18

2. TFor each assumed axlael load in the selected
nenber, calculate the corresponding axial load in ev-—
ery other rnenber. In this problen the axial load in
2ll compression members i1s the same and the axial
load in the tension menmbers is 0.866 times the axial
load in the compression menbers.

3« For_each load in each of the nenbers, calcu-
late P/A, E, and (L/3)ggp+ In this problem, E
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is obtained from equations (17) and (18), as previ-
ously ountlined, or

36000f—_§

e et

1.172

= . P
E = — =} —
' e A

4, PFor each load in each of-the nembers, deter-
nine the value of the terms reguired to evaluate egua-
tion (20), using tables I and II.

5. The assumed load that gives r = 1 1is the
critical buckling load.

The resultw of-this procedure ag applied to the prob-

lem of figure & are given in table III. The values of ¢

in the first column of table III are given for reference
onlye. As stated in paragraph 1 of the foregelng procedure,
these values were assumed so that a series of reasonable
values for the.sxial load P in the compression member be
could be obhtained. In the last column of _table III are
given the values of . r corresvonding to the assumed val-
ues of co It will be noted that, as the value of ¢ 1n-
creasges from 1.4 to 2.6, the value of r increaseg from
0.133 to le63. If the data of table III are plotted in
curve form, it ig found that when "r = 1 the lowest crit-
ical buckling loads for the trial design are

za, ©be, and de . . . 10,260 compression
b and ecd . . . . . 8,890 tension

These critical loads are greater than the loads to which
the respective members ars subjected. (See fig. 6.) The
tube selected for the trial design i1s therefore stable and
the margin of gafety for the system is

[lQéé_Q - 1] - [gggg ~1] = 0.03

9940 8610 .

This margin of—=safety is obtained regardlesgs of which mem-
ber is used for its calculation. The reason for a single
margin of safety for the whole 'system ie that, when the
critical load is reached, all members deflect. Some mem-
bers deflect more than others,. however, with the result
that ultimate fallure is concentrated in one or more mem-
bersge

Al
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) It will be noted in table III that, as the loads P
increase, the stability factor r 1increasses to a value
greater than 1, then falls to a value less than 1, and fi-
nally again rises to a value greater than 1. The reason
for this result is that, theoretically, more than one tyve
of instability is possible. TFor each type of instadbility
there is a corresponding critical load. In design, however,
the lowest critical load is the only one of interest.

Therefore, when the stability of the trial design is checked,

.the lowest critical load should be calculated and compared
with the loads given in the problem.

It will be further noted in table III that, between
¢ = 44 and 1,5, the value of Sl changes from posi-

tive to negative. According to the stiffness criterion
for stability, this change of sign meang that members de
and ef, considered alone, have changed from stable to
unstable. It is also noted that S',45 changes from posi-

tive to negative between ¢ = 2,6 and 2.7, which neans
that memberg c¢d, de, ‘and ef, considered alone, have
changed fromn stable to unstable but ot a much higher load.
As previously discussed, the change from stable to unsta~

ble for all mémbers occurs between ¢ = 2.5 and 2.6 where

r = l.

Many short cuts can be made in the solution of spe-
cial problems. Much can also be said concerning the ap-
pllcatlon of the method to the best advantage in & given
problem. These points, as well as other points relatling
to the practical application of the method, are beyond the
scope of this report. ' '

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 1, 1937,
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TABLE I

Functions for Compression Members of Constant Cross Section

L _sn_ S s ¢
G| * 1® | ® | 7 | &

J eff L L .

o) 0.5000 0.7500 1.000 0.2500 0.2500
.1 «5002 . 7495 .9997 .2502 «2501
2 «5010 + 7480 . 9987 .2510 «2503
3 «5023 . 7455 9970 .2523 » 2508
.4 . 5040 . 7420 .994%7 . 2541 «2513
.5 15083 L7374 «9916 «.2564 .2521
«6 .5092 L7318 9879 .2593 . 2530
o7 «5126 . 7251 . 9836 . 2627 .2542
.8 »91686 L7174 .9785 « 2668 .25655
«9 .5211 .7085 .9727 27186 .2570

1.0 .5264 .6985 .9662 2771 . 2587

1.1 +5323 .6873 .9590 .2833 « 2606

1,2 5389 .86748 .9511 . 2904 .2627

1.3 .5463 .6611 .9424 .2985 2651

l.4 « 55486 .6480 .9329 « 3076 « 2677

1.5 .5637 . 6295 .9227 . 3178 . 2705

1.6 «5739 .6114 .9116 .3293 . 2737

147 .5851 .5918 . 8998 3423 . 2771

l.8 .5974 .5704 - .8871 . 3569 . 2809

1.9 .6111 .5473 .8735 « 3735 «2850

2,0 .6263 .5221 . 8580 . 3922 . 2894

2.1 » 6430 4948 . 8436 +4135 , 2943

2e2 «6616 L4651 . 8273 SABTT . 2996

2.3 .6823 L4329 .8099 . 4655 . 3053

2o «7053 «3978 . 7915 4974 « 31186

2.5 . 7310 . 3595 . 7720 5343 .3184

246 «7598 «3176 7513 «5773 . 3259

27 « 7923, « 2715 27295 .6277 . 3340

248 «8291 . 2208 . 7064 .6874 3429

2.9 « 8709 .164%7 +6819 . 75685 » 3527

3.0 .9189 .1021 .6560 . 8444 « 36 34

3.1 . 9744 .03183 .6287 . 9494 . 3752
us 1.000 0 .6169 1,000 « 38056

3.2 1.039 -.04765 5997 1.080 » 3883

3.3 1,115 ~.1385 «5691 1,243 4027

3.4 1.206 -.2436 «5366 1,454 »4186

3.5 l.316 -+ 3670 5021 1.731 «4364

3e6 1.451 -.5147 «4655 2.106 4562

3e7 1,622 —~+.6953 . 2265 2.630 » 4784

3.8 l.843 ~.9227 « 3850 3,397 «5035
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TABLE I (cont.)

Functions for Compression Members of Constant Cross Section

gh S §2 o2
D | ®I®| | @&
I er s . : L L \ L
3.9 2,140 ~1,220 0.3407 4.582 0.5317
4,0 2,560 -1.629 « 2933 6.556 .5639
4,1 3,197 -2,235 , 2424 10,22 L6007
4,2 4,271 3,237 .1878 18,24 . 6430
4,3 6,461 —~5.246 .1287 41,75 L6919
4,31 6.812 ~5.566 .1226 46,41 L6972
4,32 7¢204 -5,922 .1164 51,89 . 7026
4.33 7,645 ~8.322 .1101 58.42 .7081
4,34 8,140 -6.773 .1038 66,26 L7137
4,35 8.706 ~7.287 .09742 75 .79 L7194
4,36 9,357 -7.877 .09100 87 .55 .7251
4,37 | 10,11 ~8.562 ,08453 | 102.3 , 7310
4.38 | 11,00 ~9,368 .07801 | 121.1 7369
4,39 | 12.07 -10.33 .07143 | 145.6 . 7429
4,40 | 13,36 -11.50 .06480 | 178.4 . 7491
4,41 | 14,96 ~12.94 .05811 | 223.,7 .755%
4,42 | 16,99 ~-14.78 ,05136 | 288,7 . 7616
4,43 | 19.67 ~17.19 .04455 | 386.9 ,7681
4,44 | 23,35 -20,52 ,03769 | 545.3 <7746
4,45 | 28,73 -25, 36 .03077 | 825.4 .7813
4.46 | 37,33 -33,11 .02378 | 1393.0 + 7880
4,47 | 53,27 47,48 .01674 | 2838.0 . 7949
4,48 | 93,00 -83,27 .009629(-8648.0 .8019
4,49 | 365,8 ~329.0 .002459{23380.0 .8090
4,50 188,7 - | 170.5 ~,004788|35600.0 .8I83
4,51 | =75,17 68,20 -~.01207 | 5650.0 .8237
4,52 | 46,90 42,74 ~,01944 | 2200.0 .8312
4,53 | 34,08 31l.19 ~.02687 | 1162.0 .8388
4,54 | 26,77 24,60 -,03437 | 716,6 . 8466
4,55 | ~22,04 20, 33 ~,04194 | 485,8 .8545
4,56 | =18,73 17,35 ~,04958 | 350.9 .8625
4,57 | 16,29 15,14 ~,05729 { 265.3 +8707
4,58 | -14,41 13,44 ~.06507 | 207.6 . 8790
4,59 | -12,92 12,10 ~.07293 | 166,9 .8875
~4,60 | -11,71 11,00 -, 08086 137.1- ,8961
4,61 | ~10,70 10,09 -,08887 | 114,6 .9049
4,62 | -9.861 9,330 ~.09695 97.2% .9139
4,63 | -9,140 8,676 -,1C51 83,55 .9230
4,64 | -8.518 8.112 ~.1134 72.56 .9323
4,65 | =7¢976 7.619 -.1217 63.62 .9418
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TABLE I (cont.)

Functions for Gompreésion Members of Constant Cross Section

S" 5 3302
2) c (EI\ (E5> 62 (
“Jerr + L
4,66 ~7.499 7.184 -0,1301 56.23 0.,9515
4,67 -7.0786 6.799 -.1386 50.07 ,9613
4,68 -6,698 6.454 -,1471 44,86 ,9713
4,69 -6,35¢ 6.144 -.1558 40.44 .9816
4,70 -6,053 5.864 -.1645 36.64 .9920
4.8 -4,093 4,052 " -,2b72 16.75 1,108
4,9 -3.102 3.110 -,3607 9.622 1.252°
5.0 ~-2.507 2.521 -, 4772 6.283 1.431
5.1 -2.112 2.110 -.6099 4,459 1,659
5.2 -1.833 1.799 -.7629 3.358 1,954
5.3 -1.626 1.560 -.9422 2,645 2.348
5.4 -1.470 1,341 -1.156 2.160 2.888
5,5 -1,348 1,159 -1.418 1.817 3,655
5.6 -1.253 . 9949 -1.748 1.5669 4,795
5,7 -1.,177 8426 -2.180 1.386 6,591
5.9 -1.073 .5b66 -3.668 . 1.152 15,49
6.0 -1.040 .4163 -5.159 1.081 28,77
6.1 -1.017 2742 -8.234 1.033 70.05
6.2 -1.003 L1275 ~-18.59 1.007 | 348.0
21 -1.000 0 . - 1.000 2]
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Cross Section

st s 2 ¢8

G) G F 7RI c? (EL)®

oxs (5 (% 5
0 0.5000 0.7500 1,000 0.2500 0.2500

.1 ,4998 . 7505 1,000 . 2498 .2499

.2 L4990 .7520 1.001 . 2490 , 2497

.3 L4978 . 7545 1.003 L2478 .2493

.4 . 4960 . 7580 1,005 . 2460 . 2487

.5 ,4938 . 7624 1,008 L2439 L2479

.6 .4912 .7678 1,012 .2412 L2470

.7 .4881 L7742 1,016 .2382 . 2460

.8 . 4845 .7814 1,021 . 2348 . 2448

.9 , 4806 .7896 1,027 .2310 . 2435
1,0 LATE2 .7986 1,033 .2268 L2420
1.1 CA716 . 8085 1,040 .2224 . 2404
1.2 .4665 .8192 1,047 . 2177 27286
1,3 4612 .8307 1.055 L2127 .2368
1.4 LA556 . 8429 1,064 . 2075 ,2348
1,5 L4497 ., 8559 1,073 .2022 . 2328
1,6 L 4436 . 8696 1,083 .1968 . 2306
1.7 L4373 . 8839 1,093 .1912 .2284
1,8 . 4308 .8989 1.104 ,1856 . 2261
1.9 L4242 .9144 1,115 .1799 2237
2,0 L4174 . 9306 1.127 1742 L2213
2,1 .4105 .9472 1,139 .1685 .2188
2,2 L4036 . 9644 1,152 .1629 .2162
2,3 . 3966 .9820 1,165 L1573 .2136
2.4 . 3896 1,000 1,179 L1518 .2110
2.5 . 3825 1,019 1,193 {14673 . 2084
2,6 . 3755 1,038 1.208 L1410 2057
2,7 ., 3685 1.05% 1,223 L1358 . 2030
2,8 . 3615 1,076 1,238 L1307 . 2004
2.9 . 3546 1,096 1,254 .1257 1977
3,0 . 34A7Y 1,117 1,270 .1209 .1950
3,1 . 3409 1,137 1,287 (1162 .1924
3,2 . 3341 1,158 1,304 L1117 ,1897
3,3 . 3275 1,179 1,321 .1073 .1871
3,4 ., 3210 1,200 1,338 .1030 .1845
3.5 . 3146 1,222 1,356 .09895 .1820
Z.6 . 3083 1,244 1,374 .09502 .1794
3.7 . %021 1,265 1,393 .09124 L1769
3.8 . 2960 1,288 1.411 .08761 .1745
3.9 . 2900 1.210 1.430 .08412 L1720
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Functions for Tension Members of Constant Cross Section

I s . 52 ¢?
(3) ( ) =)
eff . L/ L
4.0 | 0.2842 1.332 1.449 0.08078 0.15897
5.0 2231 1.562 1.552 .05435 .1483
6.0 1940 1,800 1,870 L03785 ,1317
7.0 .1645 2.042 2,098 .02707 .1192
8.0 .1421 2.286 2.333 .02019 ,1099
9,0 .1l247 2,531 2,571 .01556 .1028
10,0 L1110 2,778 2,812 ,01232 .09747
11,0 L 09996 3, 3,056 .009993 .09329
12,0 .09090 3.273 3. 300 .008262 .08997
13,0 .08333 3,521 3.545 . 006944 .08728
14,0 .07692 3,769 3,792 .005917 ,08507
15,0 .07143 4, 4,038 .005102 .08321
16.0 .036867 4,267 4,205 .004444 .08163
17.0 . 06250 4,516 4,533 .003906 .08028
18.0 .05e82 4,765 4,781 . 003460 .07910
19,0 .05556 5. 5,029 .003086 .07807
20,0 .05263 5.263 5,278 .002770 07716
25,0 L 04167 6. 6,522 . 001736 .07384
30.0 ,03448 7.759 7.768 .001189 L07175
55,0 .02941 9, 9,015 .0008651 .07031
40,0 ,02564 | 10,26 10,26 . 0006575 .06925
45,0 .02273 | 11.51 11,51 .0005165 .06845
50,0 .02041 | 12. 12.76 .0004165 .08782
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TABLE III

Calculated Results for Solution of Problgg"

Members be and de Member cd
P - g P _ L
c| F A E (J )eff P A B ( . )eff
(1ta) | (1bo/sqw 1n.) (lbg/qu in.) (1tn) [ (1be/sqe in.) (lb&/Bq; in.)

1.4] 9280 29130 17.30 x 10° 3.72 | &ouo 25230 2%3.49 x 108 2.97
1.2 9430 29590 16.39 3.85 | 8170 25620 22.98 3.03
1. 9550 29990 15.59 3.97 | 8270 2”870 22.52 3.08
1.7} 9670 30340 14,84 1,10 83£8 26270 22.09 3.12
1.8 9770 30660 14,16 h.22 | 8l 26550 21.69 3.17
1.9| 9860 30940 13.52 u.ai 8RLO 26790 21.32 %.21
2.0] 994 31190 12.98 L. 8610 27010 20.99 3.25
2.1 10010 31420 12,44 L.55 | 8670 27210 20,68 3.29
2.2 10080 31630 11.96 4.66 | 8730 27390 20.38 ’ 3.32
2.3 | 10140 31820 11.49 u.7é 8780 27560 20.12 3.35
2.4 10190 319390 11.10 4,8 8820 27700 19.89 3.38
2.51 102 32150 10.71 4,96 | 2870 27840 19,63 3.4
2.6 10290 32300 10.34 5.06 | 8910 27970 19.41 3.4
2.7 10340 32440 9.99 5.16 | &950 28090 19.21 - 3.46
2481 10380 32570 9.66 5.26 | 8990 28210 18.99 3.49
2.9 10410 32680 9.38 5.33 9020 28300 18.85 . 3.51
3.0 | 10450 32790 9.10 5.54 | gpK0 28400 18.66 3.53

‘YO'YV'HR

}?:‘qmé.ﬂLFor member ef, P = O,

A

[8T . =3.397 x 10% lb.—in.::]

£ =0, E =28 x 10° 1v. per sq. in,,

L —
(:E-)eff =

LT9 "OF 930§ TBOTUUOe]

8g




TABLE IXI (Cont'd.)

Calculated Results for Solution of Problem

s o,

E Member bec Member cd Member de
a a - w’ Xl N r
Sbe S be ¢ be o2 Sm—cd o Sﬂ:da e S'Lcd
cd de

(1b.-in.) (13- ind) (1be~ing) | Ab.~in,) { (1b.~in.) I (1b.~in.) A |

A hY ";E .-, A Y )r -/ s 4 A} I AY s P
1.4 | 1.hob-X 10% .45 X 10%(0,122k|5.07 X 10%| 2.783| -2.h9 X 10°| 2643 51010 | 0.133 o
1.5 | 1.155 a2 .1197(5.01 3.989 | -3.41 -32.69| 50100 .138 L
1.6 .930 3.07 L1174 {4.95 5.960 | ~L.56 -2476 49200 118
1.7 .599 .99 1151|490 10.22 | -£.IL 5189 48320 ,163 o
1.8 gl L.94 .11301{4.85 22.94 |-10.01 ~7833 W7U60 ,181 &
1.9 .P89 .88 L1112(4.80 - RE.Up |~16.59 ~10340 o560 | .200 B
2.0 .095 4.92 1096 {4.,76 15453 [-51.71 ~13140 15680 .226 a
2.1 | -.101 .99 L1077 4. 72" 4g5.8 | U9.12 ~16150 WT00 .261 A
2.2 | -.302 5.13 .106% {4, 68 K6.2% | 16.68 ~19530 Yhsn | .31b .
e.i ~.512 .34 .1051 [4.65 p2.72 1 10.25 -22020 42470 .383 o
2. ~.688 55U L1040 [4.62 12.47 | 71.51 -26050 ko700 sl &
2.5 | -.896 5.88 .1026 (1,58 7.619| 5.73 ~31210 37540 .720 »
2.6 |-1.118 6.33 L1014 [4.56 5.189 | u4,57 ~37610 30870 | 1.63 o
2.7 |-1.361 6.91 1006 |4, 53 3.798 1 3.73 ~46050 - -8750 | 1.38 ’
2.8 '[-1.633 7.71 .0994 (4,50 2.930 | 3.095 -58070 80560 187 o
2.9 |=1.911 .69 .0986 |4, 2.402 | 2.6%% ~74590 59480 .53% ~1
3,0 |-2.227 9.96 .0978 .5 2.023 | 2.239 102200 53820 | 1.00
Y e C L i, B30k T

Note.~ For member of, P=0, =0, E =2§ X 10° 1b. per sq. in., (%)eff =0,

S\Iferz ___}.,.3-9.7 X. 104 1b~in.
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