EGOMPICAL MOTES
hatiomit ajvisory comminge mor abronaucics

No. 483

```
CHAFES FOR DETERMINING TAE FITOLING MCMDIT OF
    TAPERED WINGS WITE STETE:JNCK AND TNIST
    Sy Faymond F. Anderson
    Lancley Memorial Aeronautical Laboratory
```

FILE COP
1"thertintind to
the filer of tie Naikimal Adviswy Comminitet
for Aerthathes
Wishmetor, U, C.

NATIONAL ADVISORY COMLITTEE FOR AEROMAUTICS

TECHICAL NOTE NO. 483

CHARTS FOR DETRRNINING THE PITCEING DOMENT OF
TAPRRED WIIGG WITE STEEPBACK AND TWIST
By Raymond F. Anderson

SUMMARY

This report presents a convenient method for calculating the pitching-moment characteristics of tepored wings with swerobacl and twist. The method is based on the fact that the pitching-inoment characteristics of a wing nay be specified by eiving the value of the pitching moment at zero lift and the location of the axis about which the moment is constant. Date For calcalating these characteristics are presented by curves which apoly to wings having a linear distribution of twist along the span and which cover a lare renee o aspoct ratios. The carves are given for wines havine straight taper and distorted elliptical plan fors. Mie characteristics of wings of other shapes may be detemined by internolation.

INTRODUCTION

The use of tapered wings on airplanes has led to the development of methods of calculating the characteristics or such wings from the known charecteristics of the sections. Two methods for calculating the pitching monent of tapered wings are given in references 1 and 2. In referenco l, formulas are given which apply to wings without twist and which have a lift distribution closely approaching an ellipse. Factors for use in the formulas are giver for a few plan forms and a fem variations of section pitching moment across the span. In reference 2 , formulas are given for straight-taper wings witi twist and with constant section monemt across the span. Pectors for use in the formulas are tabulated for a fem espect ratios and taper ratios. The information eivon in refereace lis liaited in scope, and that of reference 2 is presented in such form that it cannot be roadily appliod by airplane dosimnors.

The purpose of this report is to present a method by Which airplane designers may readily calculate the pitch-ing-moment characteristics of tapered wings with swoopback and twist. Formulas are given for calculating the pitcining-moment charnctoristics and frctors for use in tho formulas are presented on charts. The data on the charts are piven for a large range of aspect ratios and apply to wins having a linear distribution of twist alone the sran. Virves for wings having straight tapor and distorted elliotical plan forms are presented in a form winch facilitates the deterrination of the characteristics of wings of other shapes.

MATHOD OF DEGPRETNING THE FITCSIEG-MOMENT GYARACTERISTISS

In the metnod used in this report for the determination of the pitchin-moment characteristics of winxs, tine wings are conceivet to consist of a series of wing sections each of which has a constant pitchinz moment about a point called the aerodynamic conter (approximately tho quarterchord point) and a lift force acting through that point. Tho locus of the acrodynamic contors of the wing soctions is tho wing axis. For the wings considered in this poper the axis of each half wing is.strainllt (figs. $1(a), I(E)$, and $1(c)$). The ancle botween the wing axis and the leteral aris is the angle of smeepback (β) of the wing. (Seefif. 1(a).) The plan form is obtained by superposing on tho wing axis any desired distribution of chord lengths across the span. Two basic chord distributions are usfd in tinis report. one is linear and results in a straight.taper wing, minch is shown in figure l(a). The teper of the wing is defined by the ratio c_{t} / c_{c}. The other distribution is elliptical and results in a distorted ellipticol wing, which is shown by figure $1(0)$. The distorted elliptical wing is obtained from an ellipse by displacing each chord in the line of its original position until the wing axjs is straisht, A tinird chord distribution, for which partial dato are piven, is the straight-taper wing modified to have rounded tips (fis. l(c)). The trailing edge of the tip of this wine is formed by a radius with center on the wing axis and the leading edge is determined by the condition that the wing axis remains straight to the tip. (See $\ddagger \mathrm{ig}$. l(c).)

The angle of attack of esch section is the ancro through waich the soction has boen rotated fromits atti-
tude of zero lift. The twist of the wing is the variation in angle of attack along the span and is considered positive when the angle of attack increases from the center to the tip. In this paper the distribution of twist along the span is considered to be linear and tho anglo of twist from contar to tip is ϵ.

The method of determining the pitching-moment characteristics is given only in outline here; a detailed explanation of the method including the derivation of the formulas will be found in the appendix.

The aorodynamic propertios of a wing with swoapback and twist that contribute to the pitching moment may be regarded as the pitching moments of the sections and the lift forces distriguted along the wing axis. To be strictly ac. curate, the drag should be considered as woll as the lift. However, as the monent contributed by the drag is sinall compared to the moment contributed by the lift, sufficient accuracy may be obtained by considering only tho lift. The moment contributod ber the sections dopends on tho distribution of tho ciord and tin section momont across the span. It in dosignatod $H_{\text {S }}$ and is oxpressod as a coofficiont basod on the mean chord in the form

$$
\sigma_{\mathrm{m}_{\mathrm{S}}}=\frac{1 \mathrm{~S}}{\mathrm{a} \overline{\mathrm{c}}}, \text { whero } \overline{\mathrm{c}}=\frac{\mathrm{S}}{b}
$$

To dotermine $C_{m_{S}}, M_{S}$ is found by integrating across the soan. When the soction moment cocficient $C_{m_{c} / 4}$ has a liaear variation from $O_{\mathrm{L}} \mathrm{c}$ at the center to $\mathrm{C}_{\mathrm{m}_{t}}$ at the tip, $C_{m_{S}}$ may be expressed in the form

$$
\mathrm{C}_{\mathrm{m}_{\mathrm{S}}}=\mathrm{E} \mathrm{C}_{\mathrm{m}}+\mathrm{F}\left(\mathrm{C}_{\mathrm{r}} \mathrm{t}-\mathrm{C}_{\mathrm{m}_{\mathrm{c}}}\right)
$$

The factors and F depend on the plan form and are. given in a chart (fig. 2) for wings having various plan forms. As the pitching-moment coefficient of the indiviaual seetions is considered independent of tho angle of at-. tach, ${ }^{G}$ mg is indepondent or the ancle of attack and is not affected by twist or swoopback.

The effect oi the ? i et forces distributed along the axis of a wing with sweepback and twist may be explained
by considering the lift distribition as consistang of two distinct parts. One part is the inttial distribution that the wher tias at whe atetitudo ofero lift. If the trist of the fing"inngative, as is asuil, the forces near the tibs vill be directod downward ard the moar tre centor will be directed upward. The sioponfitnis distribution is dependent primarily on the tyist and is the same for all anglos of attack. The forces comeostar thes distrijution produce a pitching roment that does not chande with anglo of ättack. This monent is designated: "M", tho momont dace to twist.

We momont depends on the anele of twist \in, the aṇle of sweepback B, the aspoct ratio A, ond the plan form ard is oxpressod as a coefficient om_{m} based:on the mean chord in the fomm

$$
C_{\mathrm{ia}}^{\mathrm{T}}, \sigma_{0} A \tan \beta
$$

Where ao is the lift curve slopo for irfinite aspoct ratio and the factor G, Which is givon by charts (figs. U and 4), teles into account tho offects of 010 f form and asooct ratio on the shape of the lift distribution.

Tho second part of the lift.estribution is produced when the angle of attecs is incroased from the attitude of zero lift. This distribution is proportional to the ansle of attack buthas a fixed centroid. The, net"liet of the wing may be regarded as acting at this certroid, whinh is therefore called the aerodynamic ceater of the wing by andory with the tern for an airfoil section. Its location is -iven by its distance d behind the aerodynmic center of the central section. This distanco depends on the ancle of swoepback, the aspect ratio, and tie plan form but in indopondont of tho twist and tho airfoil soction. The location of the aerodynamic center is expressed as a fraction of tie mean chord in the form

$$
\frac{d}{\bar{c}}=\pi A \tan \beta
$$

Where the factor \quad, which.is fiven by a chart (fig. 5), taises into account the effects of pion form and aspect ratio on the shape of the lift distribution.

The total moment cosfficient of a wing may be found as the surn

$$
o_{\mathrm{mac}}=\mathrm{c}_{\mathrm{ru}} \mathrm{~S}+\mathrm{c}_{\mathrm{m}_{\mathrm{T}}}
$$

where C_{n} is constent about an axis tinrough the aerodynamic contor. Tine pitching-moment charactoristics of a wing may accortingly be spocifiod by the location of the aerodynanic certer and tie constant value of the pitching woment about an axis through that point.

COMSTRUCTION OF THE CHARTS

Tie values of $O_{\text {ra }}, O_{m}$, and $\frac{d}{D}$ are oasily found for any wing whon the factors E, F, G, and F are lnown. The factors have been calculated and plotted for the plan forms previously described. For use in the formula $\mathrm{Cm}_{\mathrm{S}}=$ $E C_{m_{c}}+F\left(C_{m_{t}}-C_{m_{c}}\right)$ valuas of E axd F, as calculatod for tho straight-tapor wing for tho completo range of taper ratios, are plotted on figure 2 against taper ratio. Values of Ξ as determined for the wing with rounded tips for the cases of 2:1 taper and the rectangular wing are al so plotter on figure 2 for aspect ratios of 3,3 , and 9 . In addition the value of \geqq for an elliptical wing is plotted on the sne curve to aid in finding E for wings lying betmeen the straight-taper and tine elliotical plan forms.

The values of G in the formula $C_{a r}=-G \in a_{0} A \tan \beta$ as calculated for the straight-taper wing for certain asvect ratios and taper ratios, are plotted against taper ratio on figure 3 , togother with internodiato values found fron a cross-plot against aspect ratio. The values of G for the straight-taper wing are also siven for various aspect ratios in figure 4 , together with values computed for the distorted elliptical wing. This chart permits interpolation to find G for a wing lying between the straighttaper and the distorted elliptical plan forms.

For usc in the formila $-\frac{d}{c}=\sharp A$ tan β valucs of H ss detorminod for the wing with straight tapor of aspoct ratios $3,3,9$ and 20 aro plotted asainst taper ratio on
figurc 5. Tho velue for the distorted cllipticel wing of any aspoct ratio is also shown.

SE OT THE CHARTS

The totnl pitching-momont cooficiont $\sigma_{\text {mac }}$ of 0 wing as determined from the equation previously given

$$
\cdot o_{\mathrm{mac}}=c_{\mathrm{m}}+o_{\mathrm{mp}}
$$

 values of $C_{m_{t}}$ and O_{m} may bo detormined from wind-tunnel data. If reliable test data are not available the gitchincmoment coefficient may be estimated from raference 5 minch gives onc/4 for a large naber of relatod airfoil socions. The valuas or Z and for tho particnis. plan forr are give: in figuro 2.
 Tha value of mo mey be doterminod from a wint-tunnel test of the airfoil or meju be estimated romerefence 3 if test dat: are not available. Hen a_{0} fries alono the span its averace value should be user. Thefactor G for the particular plan form mat be obtoinod fron figure 3 or figurs 4.

The Iccation of tho acodynamic contor is detorminod from the relation

$$
\frac{d}{c}=H A \tan \beta
$$

in :hich H for the particilar glan form is given in firare 5 .

A few notes on caloulatine the characteristics of wiros having plan.forms not given on the charts may be useiul. For any wing having a rounded tip an aproximate value of $c t / c_{c}$ may be fount by determinine ot for the tip extended, as shown br the dottad lines in inarel(c). The angle of twist ϵ and the moment cogficient $o_{\text {m }}$ of a wing

With a rounded tip maty be ioun! vy extrapolation from valus of tox st and monent coefficient determinet near the tip. If the axig oi a wno is curved, a stroizht line may bo drawn throuniz the axis to estimate the angle of sueepbocr. Wien finiing twe factors from the charts for a wing \#ith rommec tivs it is convenicat to regard the winf, as intamodiat: botwoon tho straisint-trper wing and tho distortod olliptical ving maich may be considered as one havine un oxtromo form of romadod tip.
in example of one or the amy ises of the charts is tae solution oz the problem of detormining how a cange of the smoppack of a twistod wins affects tio pitchins-momont cancactoristics. Tho ofiact on tho location of tho aerodyramic center ana the value of the ritching monent mat be fonad as followa. Mie curve of pitching-moment coefficiont 'mace based on tho wean chord ond roferred to tho acrodyramic contor of tho wing, is detorninod irom wind-tanrol deta. Tho coefficient for fow the wing is tion calculated and subtractod from the curve of tmac to obtain tho
 new swe epback and alded to the curve of \hat{r}_{m} to obtain the curte of $\sigma_{\text {anc }}$ for the new sweepbaci. Tho determination of tho charactoristios of the altored rixig is conoloted by findine d / \bar{c} for tio now swoopbact.

Irangoy Momorial Acronauticel Jaboratory,
National Anvisory Comnittoofor Aoronatics, Langloy Field, Va, Zovember lio, 1933.

```
                                    APPENDIK
    List of Symbols
    c, chord at any point along the span.
    cc, chord at the center.
    ct, shord at the tip.
    r, span.
    `, area.
    `, mean chord = S
    A, aspect ratio = ba/s.
    \beta, argle of sweevback (positive for sweepinco).
    \epsilon, angle of tirist from the center to the tip of the
        wing (positive when the nngle of attack increases
        from the center to the tin).
    i, pitching moment (a stallins momont is positive).
    Com}=\frac{-}{q}\frac{|}{S
Cm/4
        quarter-chord point.
    O
    zat, Omc/: at tho tip.
    0
        sections.
    Omp, pitchine-moment coefeicient of a wing due to the
        t:girt.
```

```
Omac, pitching-morent coefficiont of a wing about an axis
    through the aerodynamic center.
    \alpha, angle of attack at ony point along the span.
    x
    measured from the attitude of zero lift for the
    sections.
    a
        aspect ratio.
    m, induced volocity.
    K, circulation.
    E, F, G, H, factors presented on the charts.
    d, the distance from the aerodynamic center of the
        central section to the aorodynamic conter of the
        wing measured along the chord of the central son-
        tion.
```


Derivation of Formulas

The methot used for ottaining the formulas is substantially the same as the method used by Glauert (reference 2), but because of a different viowpoint and difforont cocfficients the derivation of the required formulas is given.

As stated previously, the aerodynamic properties that contribute to the pitching moment of a wing may be regarded as the pitching moments of the sections and the lift forcos distributed along the wing axis. The contribution of these propertios to the pitching momont will be considered separatoly.

The Pitching Moment Ire to the Sections

The pitching moment of a wing element of width dy of any $\forall i n g$ is

$$
\mathrm{d} \mathrm{~B}_{\mathrm{S}}=0_{\mathrm{d} / 4} \quad \mathrm{a} \mathrm{c} \mathrm{~d} \mathrm{~S}=\mathrm{C}_{\mathrm{m}_{\mathrm{c} / 4}} \mathrm{q} \mathrm{c}=\mathrm{d} y
$$

Din total moment of the wing due to the sections is then given by

$$
\begin{equation*}
a_{\mathrm{S}}=2 q{\underset{0}{2} o_{1 a} c /=c^{2} d y}_{d} \tag{1}
\end{equation*}
$$

Fore Ora and c are functions of y in general. Fie moment m_{S} due to the sections may be expressed as a coefiicient based on the mean chord by

$$
\begin{equation*}
c_{a_{S}}=\frac{\operatorname{m}_{S}}{q \cdot s}=-\frac{2}{s} \frac{\frac{b}{b}}{\frac{b}{b}} o_{r_{c}} c_{4} c^{\exists} d y \tag{2}
\end{equation*}
$$

wars $\bar{e}=\frac{5}{0}$
The coceficiont $J_{\text {ma }}$ nay be obtained from (a) by in-
 an integrating. For tine straigit-taper wing (using the right half) C_{m} ch was expressed as a linear function of $y=b y$

$$
\mathrm{C}_{\mathrm{n}} \mathrm{c} / 4=\mathrm{C}_{\mathrm{a}}+\frac{\gamma}{\mathrm{b} / 2}\left(\mathrm{o}_{\mathrm{n}_{\mathrm{t}}}-\mathrm{o}_{\mathrm{n}_{\mathrm{c}}}\right) \text { and } c \text { was ex- }
$$

- proser

$$
c=c c\left(1-\frac{y}{b / 2} r\right) \quad \text { where } \quad \frac{c_{t}}{c_{c}}=1-r . \quad c_{n_{S}}
$$

Tans obtained in the form

$$
\sigma_{n_{S}}=I \sigma_{r_{0}}+2\left(\sigma_{a_{t}}-\sigma_{a_{0}}\right)
$$

Where $E=\frac{1-r+\frac{r^{2}}{3}}{1-r+\frac{r^{2}}{4}}, \quad F=\frac{\frac{1}{2}-\frac{2}{3} r+\frac{r^{2}}{4}}{1-r+\frac{r}{4}^{2}}$
For the wing with rounded tips and the distorted elliptical wing, $C_{m_{c} / s}$ was considered constant across the span and $C_{\mathrm{ra}_{\mathrm{S}}}$ was obtained in the form $\mathrm{C}_{\mathrm{m}_{\mathrm{S}}}=\mathbb{E} \mathrm{C}_{\mathrm{m} / 4}$.

The Pitching Moment Froduced by the Lift Forces

In the following calculation of the pitching mowent produced by the lift forces for a wing having a straight \#ing axis a familiarity with wing theory is assumed. From the theory the lift produced by a ving section of width dy: may be expressed $d I=\rho V K d y$ where K is the circulation around the section. The lift acts at the aerodynamic center of the section (rhich is assumed to be the quarterchord point) and roferring to figure l(a), will produce a moment about the latoral axis of

$$
d H_{ \pm}=y(\tan \beta) \rho V K d y
$$

The moment of the entire wing may be found from the integral

$$
\begin{equation*}
M_{L}=2 \rho V \tan \beta \int_{-\frac{b}{z}}^{0} K y d y \tag{4}
\end{equation*}
$$

By use of the method of reference 4 (p. 138) the coordirate y is replaced by the angle θ by the relation

$$
\begin{equation*}
y=-\frac{\dot{\partial}}{2} \cos \theta \tag{5}
\end{equation*}
$$

so that θ varies from 0 to Π from left to right across the span of the wing. Also the circulation is represented by the Fourier series

$$
\begin{equation*}
K=2 b V \sum_{n=1}^{n=\infty} A_{n} \sin n \theta \tag{5}
\end{equation*}
$$

where n has only odd intecral values. Eouation (4) may
now be expressed in terms of θ, using the values for y and K given by (5) and (6).

$$
M_{L}=-2 b^{3} \frac{\rho V^{2}}{2} \tan \beta \int_{0}^{\frac{\pi}{2}} A_{n} \sin n \theta \sin \theta \cos \theta d \theta
$$

After integrating, $M_{I_{l}}$ is found to be

$$
\dot{v}_{L}=-2 b^{3} \frac{\rho}{2} \tan B^{2}\left(\frac{A_{1}}{3}+\frac{A_{3}}{5}-\frac{A_{5}}{21}+\frac{A_{1}}{45}-\cdots\right)
$$

The moment produced by the lift forces is expressed as a coefficient $C_{I_{I}}=\frac{M_{L}}{Q_{\mathrm{L}} \bar{C}}$, as in the case of the moment de to the sections. Then in terns of the aspect ratio A, the pitching-toment coefficient of the lift forces about the lateral axis becomes

$$
\begin{equation*}
\therefore C_{D_{L}}=-2 A^{2} \text { ian } \beta\left(\frac{A_{1}}{3}+\frac{A_{3}}{5}-\frac{A_{5}}{21}+\frac{A_{7}}{45}-\cdot \cdot\right) \tag{7}
\end{equation*}
$$

For any wing the coefficients A_{n} may be expressed in the fora $A_{11}=B_{n} \alpha_{c}+C_{n} \epsilon$, as will be shown later. The angle x_{c} is the angle of attack of the central section of the wing and e is the increase in angle of attack from the center to the tip. The coefficients B_{n} and C_{n} are functions of the plan form and of A / σ_{0}. The coefficients may also be expressed in terms of the lint coefficient of the wing from the relation $C_{I}=\pi A A_{I}=\pi A\left(B_{I} \sigma_{c}+C_{I} \in\right)$ (reference 4). Then

$$
\alpha_{c}=\frac{1}{B_{1}}\left(\frac{c_{I}}{T A}-\sigma_{1} \epsilon\right)
$$

and finally

$$
A_{n}=\frac{B_{n}}{D_{1}}\left(\frac{\sigma_{1}}{\pi}-o_{1} \varepsilon\right)+\sigma_{n}
$$

By introducing this value of A_{12} in (7) and rearranging the terms, the pitching-monent coarficient of any wing about the lateral axis may be expressed
$C_{D_{I}}=-\frac{2 A \tan \beta}{\pi B_{1}} \cdot\left[\frac{B_{1}}{3}+\frac{B_{3}}{5}-\frac{B_{5}}{21}+\frac{B_{7}}{45}-\cdots \cdot\right] \cdot C_{L}$
$-2 \alpha^{2} \tan \beta\left[\left(\frac{C_{3}}{5}-\frac{C_{5}}{21}+\frac{C_{7}}{45}-\cdots\right)-\frac{C_{1}}{B_{1}}\left(\frac{B_{3}}{5}-\frac{3_{5}}{21}+\frac{B_{7}}{45}-\cdots\right)\right] \epsilon$
From the form of the above equation it is apparent that $C_{r i L}$ consists of a part which is proportional to the lift coefficient of the wing C_{I}, and a part which is proportional to the twist ϵ. The lift may be regarded as acting at a point in the plane of the central section of the wint. This foint is named "the aerodynamic center of tho wing," and is locatod by its distance d behind the aerodynmic center of the central section. (Seefig. l(a).) Then the onat of tho C_{m} that is proportional to the lift cocfficient is equal to $-\frac{d}{c} C_{L}$. The part that is proportional to the twist is the moment coefficient about the latoral axis rhen the net lift is zero, as may bo seen oy putting $C_{L}=0$ in (8). The distribution or lift forces that produce this moment coefficient depends primarily on the tyist hence it is designated "C m_{T} ", the moment coefficiont duc to twist. Then $C_{m_{I}}$ may be writton

$$
\begin{equation*}
c_{m_{L}}=-\frac{d}{\bar{c}} c_{L}+c_{m_{T}} \tag{9}
\end{equation*}
$$

From (8) and (9) $\frac{d}{\bar{c}}$ and $\sigma_{m_{P}}$ may bo expressed in tho forms

$$
\begin{equation*}
-\frac{d}{c}=H A \tan \beta \tag{10}
\end{equation*}
$$

whore

$$
H=\frac{2}{\pi} B_{1}\left(\frac{B_{1}}{3}+\frac{B_{3}}{5}-\frac{B_{5}}{21}+\frac{B_{7}}{45}-. . .\right)
$$

and

$$
\begin{equation*}
a_{\ln \mathrm{I}}=-\hat{G} \in a_{0} A \tan \beta \tag{1.1}
\end{equation*}
$$

Where
$G=\frac{2 A}{a_{0}}\left[\left(\frac{C_{3}}{5}-\frac{C_{E}}{21}+\frac{C_{7}}{45}-\cdots\right)-\frac{C_{1}}{B_{1}}\left(\frac{B_{3}}{5}-\frac{B_{5}}{21}+\frac{B_{7}}{45}-\ldots\right)\right]$

Reference to the foregoing entations shows that the loartion of the aerodynamic center of a wing is independent of the twist. Also, as the lift acts at the aerodynamic center, C_{m} is constant abont an axis through that point, Then the total morent coofficient of the wing is

$$
o_{m_{a c}}=c_{\mathrm{m}_{\mathrm{S}}}+o_{m_{\mathrm{I}}} \text { winere } c_{\mathrm{mac}} \text { is the }
$$

momont coofficient about an axis through the aorodynamic centor. The pitching-moment characteristics of any wing may accordingly be specified by giving tho location of the aorodynamic contor and the value of the pitching moment about an axis through that point. The location of the aerodynamic certer and the pitching-moment cosfficient due to tarist are found for any wing having a straight wing axis from (10) and (ll), by the substitution of the valizes of the coorficiont B_{n} and C_{n} of the wine.

Dot rmination of tho cogficionts.- The coofficients for any ving may be found from the following ecuation (rifervice $=$ p. 139):

$$
\begin{equation*}
a=\Sigma A_{n} \sin n\left(\frac{4 b}{a_{0} c}+\frac{n}{\sin 6}\right) \tag{12}
\end{equation*}
$$

Tine an lo of attaci at any point alorg the span α may be exnressed as a function of by

$$
\begin{equation*}
\alpha=\alpha_{\mathrm{c}}+f(0) e \tag{18}
\end{equation*}
$$

Where x_{c} is the angle of attack at the center of the ring, and G is the increase in angle of attack from the ceator to tho tip. In dotormining the coofficients A_{n} from (I?) oniy values of between 0 and $\pi / 3$ need be considoret, as the curve of lift distribution is symutrical about tie midpoint. Any namber of tho coofficients $A_{\text {a }}$ may bo ob-tained by putting the corresponding nunber of values of 5 succescively in (12) to obtain a serjes of equations. Then tho value of $\frac{4 b}{a}$ for the particular wing is substituted and the ecuations are solved simultaneously (expressing a by (13)), tho coofficients A_{11} aro obtainod in the form $A_{n}=B_{r} x_{c}+S_{\mathrm{r}} \in$.

Ting with streicht taper an linear twist. Wien the twist ans a linear variation alose the spon the angle of attack at any point oi the left half of the wing may be mriten

$$
\alpha=x_{c}+\varepsilon \cos \hat{\theta}
$$

followint the form given by (13). The chord at any point of the loft half of the ving may be expressed

$$
c=a_{0}\left(1+\frac{y}{b / 3} r\right) \text {, wher } c_{t} / c_{c}=1-r .
$$

Thon in torms of \bar{y}

$$
\begin{equation*}
c=c_{c}(1-r \cos) \tag{14}
\end{equation*}
$$

Also $\bar{b}=A \bar{c}$ and expressing \bar{c} in torms of c_{c} and r, b breames

$$
b=A \frac{c^{c}}{2}(\dot{b}-r)
$$

Thon

$$
\frac{\Delta b}{a_{0} c}=\frac{2 A(2-r)}{a_{0}\left(1-\frac{1}{r} \cos \right)}
$$

The slope of the lit curve ao does not vary greatly for tine wind sections in comon use and may therefore bo considorod constant. The viluo usod will bo 5.79 per radian, winch is the value for a good wing section as determined from tests in the variabledeasity wind tunnel. Then, substituting tho above values of a and $\frac{4 b}{a c}$ in (12) the oquation for dotermining the coefticienfs A_{n} for a wing with straight tapor and linear twist may be written
$x_{c}+\cos \theta=3 A_{n} \sin n \theta\left[\frac{2 A(2-r)}{5.79(1-r \cos \theta)}+\frac{n}{\sin \theta}\right](15)$
From this equation four values of the cocfficiont A_{r} Fore detormined by putting $E=22-1 / 2^{\circ}, 45^{\circ}, 67-1 / 2^{\circ}$, and 90° successively to obtain four equations. These equations vere tan solved simultaneously, using several values of A ant r. Tho valuos of A and r ard tho corrosponding values of B_{n} and O_{n} are given in table I. The values $0 t^{h}$ and G were then calculatad by substituting the valuas of the coofficionts in tho formulas under (10) and (11).

Distortod ollintic:llon: with lingar tyist.- The location of the norodynemic contor and tho momont duo to twist
for tie distorted elliptical wing may bo found by a simpler method than that asod for tho straicht-taper wing. As stated previously, the location of the aerodynamic center is independent of twist. When tho wing is without twist
$(e=0), \quad C_{H_{1}}=0$, and $\operatorname{Iron}(9) \quad \sigma_{L}=-\frac{d}{C} C_{L}$.
Also, wien the wing is without twist the lift distribution is in the form of a half ellipse and all the coefficients in tho series for the circulation are zero except A_{1}. (See reference 4, p. lib.) Then fromegation (V) we may write

$$
c_{m_{T}}=-\frac{2}{3} A_{1} A^{3} \tan \beta=--\frac{d}{2} C_{I}
$$

$\operatorname{bat} A_{1}=\frac{\sigma_{I}}{\pi A}$, rance

$$
-\frac{d}{\bar{e}}=\frac{a}{3 \pi} A \tan \beta
$$

Refuring to equation (10) it will bo scorn that for tho distorted elifetical wine I has the constant value

$$
E=\frac{2}{3: T}
$$

The coefficient of moment due to twist, $C_{\text {am }}$, is equal to o_{n-} Then $c_{y}=0$, as bay be sech by reforming to agnation (). Then $\sigma_{I}=0, A_{1}=0$; thoreforo, using (7) we may write

$$
\begin{equation*}
O_{n_{I}}:=-2 A=\tan \beta \frac{A}{5}-\frac{A}{2 I}+\frac{A_{7}}{A_{5}}-. . \tag{1.6}
\end{equation*}
$$

To cobeficionts A_{r} may bofoma from (le) as before. Che chord in terns of i's

$$
c=c_{c} \sqrt{1}-\cos ^{2} b=c_{c} \sin \theta
$$

Also

$$
b=A \bar{c}
$$

and

$$
z=\frac{S}{2}=\frac{1}{4} c
$$

then

$$
0=\frac{10}{9}
$$

and

$$
\frac{4 b}{a_{0} c}=\frac{-\pi A}{a_{0} \sin E}
$$

This wing was considered to have a linear distribution of tifist, as in the case of the wing with straight tapor. Substituting the valuc of α for linear twist and the abovo valuo of $\cdot \frac{4 b}{a b}$ in (12)

$$
\begin{equation*}
\alpha_{c}+\epsilon \cos \theta=\frac{\sum A_{n} \sin n}{\sin \theta}\left(\frac{1 A}{a_{0}}+n\right) \tag{17}
\end{equation*}
$$

The coefficients A_{n} which occur in equation (16) for C_{m} could be obtained from the above equation by the method used in the detormination of the coofficients for the wing: with straight taper, that is, by solving a set of simultaneous equations for each value of A. However, owing to the simpler form of the equation for the distorted elliptical wing (17), Gmp may be expressed in terms of A and a nem series of coefricjonts which may be found by the solution of only one set of simultancous equations as follows:
Equation (17) is oxpanded and roduced to tho forni
$\cos 6=k_{3}\left(1+\frac{\sin 3 \theta}{\sin \theta}\right)-i\left(1-\frac{\sin 5 \theta}{\sin }\right)+k_{7}\left(1+\frac{\sin 7 \theta^{2}}{\sin }\right)(18)$

The coofficionts $A_{i i}$ aro obtained in the form

$$
A_{n}=\frac{k_{n} \varepsilon}{\frac{A}{a_{0}}+n}
$$

and (10) may therefore be written

$$
c_{n_{\mathrm{M}}}=-2 A^{2} \tan \beta\left[\frac{k_{3} \epsilon}{5\left(\frac{\pi A}{a_{0}}+3\right)}-\frac{k_{0} \epsilon}{21\left(\frac{\pi A}{a_{0}}+5\right)}+\frac{x_{0} \epsilon}{45\left(\frac{\pi A}{a_{0}}+7\right)}-\cdots\right]
$$

and using the form given by (11), iे oecones
$G=\frac{21_{3}}{5 \pi\left(1+\frac{3}{\pi A}\right)}-\frac{2 k_{5}}{21 \pi\left(1+\frac{5 a_{0}}{\pi A}\right)}+\frac{2 k_{7}}{45 \pi\left(1+\frac{7}{14 A}\right)}-\cdot$.
In the calculation of the values of G for the distorted ellipticel wing giren in figac 4 , threo valucs of k_{n} were used. They were deternino? by solvine simultancously tho tiree equations obtainod oy prtting $\theta=28-1 / 2^{\circ}$, 450, and $57-1 / 2^{\circ}$, succossivaly, in oquation (18). The coof iciouts worc fount to havo the folloring valuos:

$$
r_{3}=0.2724, \quad k_{5}=-0.0811, k_{7}=0.0542
$$

Also aj was takon as 5.79 por radian as in the casc of the straight-taper wing.

RETERENCES

1. Arsaidaux, L.: Investigation of Certain ${ }^{\text {Wing Siapes }}$ mith Sectiona Varirig Progressively Alone the Span. T.K. No. $617, \mathrm{Na.GAA.} 1931.$,
2. Glauert, $4 .$, and Getes, S.B.: Tio Ciaracteristics of
 No. 122j, Eritish A.R.O., 1929.
3. Jacobs, Eastman Mr., Tard, Wenneth E., and Pinkerton, Robert in. The Vharacteristics of 78 Related Airfoil Soctioas from Tests in the Variablo-Density Tind Pimnel. T.R. No. 460, N.A.O.A., 1933.
4. Glazert, H.: Tie Elamonts of Aorofoil and Airscrew Thoory. Canoridse Univorsity Pross, 1926.

TABIE I

Values of S_{n} and C_{n} - Straight Taper Wing

(a) straight taper.

(b) Distorted elliptical.

(c) Rounded tip.

Figure 1.- Plan forms of the winge.

