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CHAPTER 1

INTRODUCTION

Back-and-forth arguments date back to Cantor. The standard proof that two countable

dense linear orders without endpoints are isomorphic can be found in Hausdorff’s [9]. Lang-

ford in [11] relaxed the condition of isomorphism (∼=) and used the back-and-forth method

to get that any two dense linear orders without endpoints of any cardinality are elementarily

equivalent (≡). At the November 1948 meeting of the American Mathematical Society at

UCLA, Tarski presented a preliminary report [13] of work that he and Mostowski completed

in 1941. Inspired partly by Langford’s results, they were able to show using an elimina-

tion of quantifiers argument that two ordinal structures (α,<) and (β,<) are elementarily

equivalent iff they are congruent (mod ωω). As a corollary, they showed

(ON, <) ≡ (ωω, <)

(Here, ON is the class of all ordinals. Modular arithmetic on ON is extended in the natural

way. See II of [5].) Furthermore, Tarski conjectured that (ON, <,+) ≡ ωωω

and (ON, <

,+, ·) ≡ ωωω
ω

, but it was known that standard elimination of quantifier methods were

insufficient. New techniques were needed.

In 1952, Fräıssé announced in [6] to the Colloque de logique mathématique in Paris that

he had developed new purely algebraic definitions and techniques that gave a new proof of

Tarski and Mostowski’s results without the elimination of quantifiers arguments. This gave

rise to his thesis [8] and finally [7]. But, it was Ehrenfeucht’s recasting of Fräıssé’s work

into the language of a game, which now bears both of their names, that broke through at

last, and in [5] Ehrenfeucht was able to reprove the original Tarski and Mostowski results

as well as both of Tarski’s conjectures. Finally, Karp’s [10] and Scott’s [14] infinitary logic

reformulated all of Ehrenfeucht’s and Fräıssé’s work into the form is exists today.
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Virtually all of this historical background can be found in (4.1) of Dickmann’s [3] and

§§1, 2 of Vaught’s [15]. The author takes no credit for their diligent and thorough treatments.

Fräıssé’s standard notion is that of a partial isomorphism existing between two structures.

That is, given two L-structures M and N , and each ordinal α, define (M, ā) ∼=α (N , b̄) by

induction where ā ∈ Mn and b̄ ∈ Nn, for n = 0, 1, 2, . . .. (M, ā) ∼=0 (N , b̄) if M |= φ(ā)

if and only if N |= φ(b̄) for all atomic L-formulas. For all ordinals α, (M, ā) ∼=α+1 (N , b̄)

if for all c ∈ M there is a d ∈ N such that (M, ā, c) ∼=α (N , b̄, d) (the forth property) and

for all d ∈ N there is a c ∈ M such that (M, ā, c) ∼=α (N , b̄, d) (the back property). For all

limit ordinals λ, (M, ā) ∼=λ (N , b̄) iff (M, ā) ∼=α (N , b̄) for all α < λ. If (M, ā) ∼=α (N , b̄),

then M and N are said to be partially isomorphic, sometimes denoted M ∼=p
α N . When

M ∼=p
α N , both M and N will agree on L-sentences of quantifier rank α where the quantifier

rank qr(φ) of an L-sentence φ is defined inductively

qr(φ) = 0 iff φ is quantifier-free

qr(¬φ) = qr(φ)

qr(φ ∧ ψ) = qr(φ ∨ ψ) = max{qr(φ), qr(ψ)}

qr(∃vφ) = qr(φ) + 1

With these definitions it can be shown that M ≡ N ⇐⇒ M ∼=ω N .

In the next chapter, we describe the Ehrenfeucht-Fräıssé game (sometimes called the

back-and-forth game) and how it captures this notion of partial isomorphism between two

ordinal structures with the single binary relation <. Our goal is to explicitly compute the

rank α of partial isomorphism between the two ordinals. That is, given ordinals α1, α2,

compute α such that α1
∼=α α2 and α1 ≇α+1 α2. This is accomplished by analyzing the

Cantor Normal Forms (CNF) of α1, α2, as Ehrenfeucht used in Theorem 14 of [5] (a paper

unknown to the author until recently.)

Our general strategy for computing α is as follows: first write α1, α2 in CNF and look for

the least power in which they disagree. Compute an ordinal term for each block that they
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have in common and one for the rest of the uncommon part. If a given block is the same

in both ordinals we assign ∞ to that term. α is then the minimum of these ordinal terms.

Our proof is by induction and begins with analyzing the simple case when the ordinals are

finite (Ch. 3). Optimal play in this case is straightforward; both players play their respective

midpoints until the game is over so that the rank is approximately log2 of the smaller ordinal,

truncating the fractional part, of course. This simple strategy actually occurs in the formula

for the general case. We then proceed to simple transfinite cases when one or both of the

ordinals are infinite isolating key concepts that generalize to the general transfinite case in

the last chapter.

The intuition behind each ordinal term is as follows: player I moves in one of the common

blocks of the CNF or in the uncommon block of one ordinal and Player II must respond in

the other ordinal. The ordinal term then corresponds to computing what is the best that I

can hold II to when he moves in that block. In most cases, it is in II’s best interest to follow

I’s play in the same block. In some small cases, however, a better move for II exists in some

block to the left or right of the one in which I played. This ability for II to run to the left or

right produces some interesting and unexpected phenomena in the final formula which we

will describe completely in the last theorem. In general, each ordinal term is approximately

twice the power of that block plus a log2 term similar to the one from the game on finite

ordinals.
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CHAPTER 2

PRELIMINARIES

We briefly review the basic notions of the Ehrenfeucht-Fräıssé game which can also be

found in [12] (p. 52ff). A treatment that emphasizes the model theoretic aspects can be

found in [4] and [3].

Let α, β, γ be ordinals and define a two-player game G(α, β, γ) as follows:

I (a1, γ1) (a2, γ2) · · · (an, γn)

II b1 b2 · · · bn

Players alternate playing ordinals in either α or β which we view as two disjoint copies.

(Fig. 2.1.) Neither player is allowed to replay previous moves in the same ordinal. Call

these moves a1, a2, . . . for I and b1, b2, . . . for II. Player I can freely move in either α or β,

but Player II must always respond to I’s move in the ordinal which II did not move. We

will say that I plays an in α or in β to identify on which board I makes his move. We call

ai, bi the ordinal moves for I and II, respectively. In addition to each of I’s ordinal moves

ai, I must play an ordinal γi, called the counter, such that γ > γ1 > γ2 > · · · . When the

context is clear for γ, we simply denote the game on α and β by G(α, β). Furthermore, II

must always respond order isomorphically to I’s move. For example, the × move in Figure

2.1 is a forbidden response for II to I’s move an.

The game ends when either player can no longer move and the last player to move is

declared the winner. That is, if II has responded to all of I’s challenges, and I can no

longer lower the counter, II wins. On the other hand, if II can no longer respond order

isomorphically to I’s ordinal play, I wins.
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α

β

|
a1

|
b1

|
b2

|
a2

|
b3

|
a3

|
an

|
bn

|
×

γ

γ1

γ2

γ3
...
γn

Figure 2.1. The game G(α, β, γ)

For every α, β, γ the tree of legal positions of G(α, β, γ) is necessarily well-founded, be-

cause I must decrease the counter in each of his moves. Thus, G(α, β, γ) is a clopen game,

and therefore, it is determined. If α = β, then II has a winning strategy in G(α, β, γ): II

copies I’s moves. If II has a winning strategy in G(α, β, γ), then II has a winning strat-

egy in G(β, α, γ), namely, turn the game upside-down. If II has winning strategies in both

G(α, β, γ) and G(β, δ, γ) for some ordinal δ, then II can compose these winning strategies to

get a winning strategy in G(α, δ, γ). Thus, a winning strategy for II defines an equivalence

relation on pairs of ordinals, and we write

I has a winning strategy in G(α, β, γ) ⇔ α ≁γ β

II has a winning strategy in G(α, β, γ) ⇔ α ∼γ β

In the case α = β we write α ∼∞ β. When γ is a limit ordinal and we write α ∼γ β, we

mean that for all δ < γ(α ∼δ β).

For every pair of ordinals α 6= β we claim that there is a unique γ for which α ∼γ β

and α ≁γ+1 β, which we denote γ(α, β). Clearly, when it exists, γ(α, β) = γ(β, α). For

α > β > 0, it follows from the order isomorphic restrictions on II’s play that α ≁β+1 β.

Moreover, we will prove in Lemma 1 that α ∼1 β for α > β > 0. Furthermore, suppose

α ∼γ β and γ′ < γ is any smaller counter. Then, a winning strategy for II in α ∼γ β is also

winning in G(α, β, γ′), and thus α ∼γ′ β. Similarly, if α ≁γ β and γ′ > γ, then α ≁γ′ β. So
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it follows that the ordinal γ(α, β) exists for all α 6= β. A formula which computes γ(α, β)

from α and β will be proven by induction.

The computation of γ(α, β) is done by comparing the Cantor Normal Forms of α, β and

looking at the least disagreement in their CNFs. I plays some a1 based on this comparison

and II responds with b1. The game G(α, β, γ) is now split into two games: one on the left

and one on the right, which we denote Ga1,b1
LHS

and Ga1,b1
RHS

. (Fig. 2.2.) We inductively compute

a value of γ for each new subgame on the left and right which we denote γa1,b1
LHS

and γa1,b1
RHS

.

α

β

|

|

a1

b1

G
a1,b1
LHS

G
a1,b1
RHS

Figure 2.2. The games Ga1,b1
LHS

,Ga1,b1
RHS

Each induction is divided into two parts: a computation of an upper bound, γ(α, β) ≤ θ;

and then the lower bound, γ(α, β) ≥ θ for some θ. Suppose that θ is a successor. To prove

the upper bound, we show that there is a legal ordinal move a1 for I such that for all legal

responses b1 for II either γa1,b1
LHS

≤ θ − 1 or γa1,b1
RHS

≤ θ − 1. It then follows that γ(α, β) ≤ θ

because I can then lower the counter θ by one and move a1. Regardless of II’s response,

I can always choose to play out the rest of G(α, β, γ) on the side with the smaller γ. For

the lower bound, the situation is reversed. We show that for any ordinal move a1, there is

some response for II b1 such that both γ
a1,b1
LHS

≥ θ − 1 and γ
a1,b1
RHS

≥ θ − 1. Then it follows

that γ(α, β) ≥ θ because regardless of both I’s ordinal move a1 and the smallest lowering of

the counter he can affect θ − 1, II always has a response b1 that insures that II can survive

on whichever side, left or right, I chooses to play out the rest of G(α, β, γ). In other words,

when θ is a successor

γ(α, β) ≤ θ ⇔ ∃a1∀b1(γ
a1,b1
LHS

≤ θ − 1 ∨ γa1,b1
RHS

≤ θ − 1)
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γ(α, β) ≥ θ ⇔ ∀a1∃b1(γ
a1,b1
LHS

≥ θ − 1 ∧ γa1,b1
RHS

≥ θ − 1)

The case when θ is limit generally follows from the successor case.

γ(α, β) ≤ θ ⇔ ∃a1∀b1∃θ
′ < θ(γa1,b1

LHS
≤ θ′ ∨ γa1,b1

RHS
≤ θ′)

γ(α, β) ≥ θ ⇔ ∀a1∃b1∀θ
′ < θ(γa1,b1

LHS
≥ θ′ ∧ γa1,b1

RHS
≥ θ′)
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CHAPTER 3

THE RANK OF FINITE GAMES

We first compute γ(α, β) when both α, β < ω. It should be clear that γ(α, β) ≥ 0 for all

α 6= β. Our first lemma computes γ(α, β) when β = 0, 1, 2 for any value of α.

Lemma 1. For all α ∈ ON,

(1) if α > 0, then γ(α, 0) = 0,

(2) if α > 1, then γ(α, 1) = 1,

(3) if α > 2, then γ(α, 2) = 1.

Proof. (1) is immediate. I simply plays arbitrarily on the nonempty side. (2) should also

be clear as α ≁2 β follows by I playing twice in α. (3) is similar to (2) except that in his

first move, I cannot move either the left-hand endpoint in α or, if it exists, the right-hand

endpoint in α (for otherwise II simply copies I’s move.)

�

We are now ready to compute γ(k, l) for all integers k, l. If k = l, then γ(k, l) = ∞. It

remains to compute γ(k, l) for k 6= l. By the symmetry in the game it is enough to compute

γ(k, l) for k > l. Note that ⌊x⌋ denotes the integer floor function, the greatest integer below

x.

Theorem 1. For all integers k > l, γ(k, l) = ⌊log2 (l + 1)⌋.

Proof. Let k > l be integers. We prove γ(k, l) = ⌊log2 (l + 1)⌋ by induction on l. Lemma

1 shows the formula holds for l = 0, 1, 2. Let l ≥ 3 and assume that for all l′ < l and

k′ > l′ that γ(k, l) = ⌊log2 (l′ + 1)⌋. First, we show γ(k, l) ≤ ⌊log2 (l + 1)⌋ and then we show

γ(k, l) ≥ ⌊log2 (l + 1)⌋.
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Upper Bound. γ(k, l) ≤ ⌊log2 (l + 1)⌋

I plays a1 =
⌊

k
2

⌋

in k and II responds with some b1 = l′ in l where 0 ≤ l′ ≤ l − 1.

Case 1. l′ <
⌊

l
2

⌋

Observe first that l′ <
⌊

k
2

⌋

. So, by induction, we have γ
a1,b1
LHS

= ⌊log2 (l′ + 1)⌋ ≤
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

. Write l = 2⌊log2 l⌋+1 − j where 1 ≤ j ≤ 2⌊log2 l⌋. We have two subcases

depending on the value of j.

Subcase 1.1. j = 1

First this means that l is odd so that
⌊

l
2

⌋

=
⌊

l−1
2

⌋

= l−1
2

. So,

γ
a1,b1
LHS

≤

⌊

log2

(⌊

l

2

⌋

+ 1

)⌋

=

⌊

log2

(

l − 1

2
+ 1

)⌋

=

⌊

log2

(

l + 1

2

)⌋

= ⌊log2 (l + 1)⌋ − 1

Thus, when j = 1, γa1,b1
LHS

≤ ⌊log2 (l′ + 1)⌋ ≤ ⌊log2 (l + 1)⌋ − 1.

Subcase 1.2. 2 ≤ j ≤ 2⌊log2 l⌋

First observe in this case that l ≥ 4. Now we have a similar computation as before.

γ
a1,b1
LHS

≤

⌊

log2

(⌊

l

2

⌋

+ 1

)⌋

=

⌊

log2

(⌊

2⌊log2 l⌋+1 − j

2

⌋

+ 1

)⌋

≤

⌊

log2

(⌊

2⌊log2 l⌋+1 − 2⌊log2 l⌋

2

⌋

+ 1

)⌋

=
⌊

log2

(

2⌊log2 l⌋−1 + 1
)⌋

=
⌊

log2

(

2⌊log2 l⌋−1
)⌋

(l ≥ 4)
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= ⌊log2 l⌋ − 1

= ⌊log2 (l + 1)⌋ − 1 (l = 2⌊log2 l⌋+1 − j and j ≥ 2)

Thus, when II response is b1 = l′ <
⌊

l
2

⌋

, we have γ
a1,b1
LHS

≤ ⌊log2 (l + 1)⌋ − 1. Thus,

γ(k, l) ≤ ⌊log2 (l + 1)⌋.

Case 2. l′ =
⌊

l
2

⌋

and k > l + 1

We still have
⌊

l
2

⌋

<
⌊

k
2

⌋

. So, by induction γa1,b1
LHS

=
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

. The same computa-

tion as above shows that γa1,b1
LHS

≤ ⌊log2 (l + 1)⌋ − 1. Thus, γ(k, l) ≤ ⌊log2 (l + 1)⌋.

Case 3. l′ =
⌊

l
2

⌋

and k = l + 1 or l′ >
⌊

l
2

⌋

In either of these two cases we now have l − l′ <
⌊

k
2

⌋

. So, by induction γ
a1,b1
RHS

=

⌊log2 (l − l′ + 1)⌋ ≤
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

. The same computation as above now shows that

γ
a1,b1
RHS

≤ ⌊log2 (l + 1)⌋ − 1. Thus, γ(k, l) ≤ ⌊log2 (l + 1)⌋.

So when I plays a1 =
⌊

k
2

⌋

in k, for every response for II b1 in l, we have γ(k, l) ≤

⌊log2 (l + 1)⌋.

Lower Bound. γ(k, l) ≥ ⌊log2 (l + 1)⌋

Case 1. I plays a1 = l′ in l

II response depends on the location of a1 with respect to the midpoint of l.

Subcase 1.1. a1 = l′ ≤
⌊

l
2

⌋

Then II responds with b1 = l′ in k. On the left, γa1,b1
LHS

= ∞. On the right, by induction

γ
a1,b1
RHS

= ⌊log2 (l − l′ + 1)⌋. Now l − l′ ≥
⌊

l
2

⌋

. So γ
a1,b1
RHS

≥
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

and the same

computation as above shows that
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

= ⌊log2 (l + 1)⌋ − 1. Thus, γ(k, l) ≥

γ
a1,b1
RHS

+ 1 = ⌊log2 (l + 1)⌋.
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Remark 1. This strategy for II will be used in future arguments. Whenever II responds

with a move a1 = b1 that gives an ∞−game on the left, we will simply say that II copies

from below (See Figure 3.1.).

γ
a1,b1
LHS

= ∞

α

β

|

|

a1

b1 = a1

Figure 3.1. II copies from below

Subcase 1.2. a1 = l′ >
⌊

l
2

⌋

Then II responds with b1 = k − (l − l′) in k. Now on the right γa1,b1
RHS

= ∞. On the left,

by induction γ
a1,b1
LHS

= ⌊log2 (l′ + 1)⌋. Since l′ >
⌊

l
2

⌋

, we have γa1,b1
LHS

≥
⌊

log2

(⌊

l
2

⌋

+ 1
)⌋

=

⌊log2 (l + 1)⌋ − 1. Thus, γ(k, l) ≥ γ
a1,b1
LHS

+ 1 = ⌊log2 (l + 1)⌋.

Remark 2. This strategy for II will also be used in future arguments. Whenever II responds

with some b1 so that the game on the right is an ∞−game, we will simply say that II copies

from above. (See Figure 3.2.)

γ
a1,b1
RHS

= ∞

α

β

|

|

a1

b1 = α− a1

Figure 3.2. II copies from above
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So if I plays any a1 in l, II has a response b1 in k that insures γ(k, l) ≥ ⌊log2 (l + 1)⌋.

Case 2. I plays a1 = k′ in k

Now II’s response depends on the location of a1 = k′ within k.

Subcase 2.1. a1 = k′ ≤
⌊

l
2

⌋

Then II responds by copying from below playing b1 = a1 in l. The argument is the same

as above when I played a1 = l′ ≤
⌊

l
2

⌋

in l.

Subcase 2.2. a1 = k′ ≥ k −
⌊

l
2

⌋

Then II responds by copying from above playing b1 = l − (k − k′) in l. The argument is

the same as above when I played a1 = l′ >
⌊

l
2

⌋

in l.

Subcase 2.3.
⌊

l
2

⌋

< a1 < k −
⌊

l
2

⌋

Then II plays b1 =
⌊

l
2

⌋

, the midpoint of l. Both γ
a1,b1
LHS

and γ
a1,b1
RHS

are computed by

induction and the same computations show that both γa1,b1
LHS

, γ
a1,b1
RHS

≥ ⌊log2 (l + 1)⌋−1. Thus,

γ(k, l) ≥ ⌊log2 (l + 1)⌋.

So if I plays any a1 in k, II has a response b1 in l that insures γ(k, l) ≥ ⌊log2 (l + 1)⌋.

�

Remark 3. From the proof of Theorem 1, an optimal strategy for playing the integer game

G(k, l) emerges. Namely, both players play their respective midpoints with I always choosing

the longer side first. For future reference, we denote this method of play for either player as

the midpoint strategy.
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CHAPTER 4

THE RANK OF GENERAL TRANSFINITE GAMES

Having computed the γ(α, β) for finite values of both α, β, we are ready to compute

γ(α, β) when at least one of α, β ≥ ω.

4.1. Trivial Transfinite Games

Our first lemma computes γ(α, β) whenever exactly one of either α or β is finite or

whenever one of either α or β has a finite part that the other does not.

Lemma 2. Suppose λ, λ′ are limit ordinals and that n,m ∈ ω. Then

(1) γ(λ, n) = 1 for n > 0

(2) γ(λ+ n, λ′) = 1 for n > 0

(3) γ(λ+ n,m) = 2 for n > 0 and m > 2

Proof. Refer to Figure 4.1. For (1), I plays n − 1 in n. II must respond with some b1 in

λ where b1 < λ. In his second move I plays b1 + 1 in λ. II cannot respond and loses. A

similar argument for (2) shows that after I plays λ + (n− 1) in λ + n in his first move and

II responds with b1 in λ′, I defeats II by playing b1 + 1 in λ′ in his second move. For (3), I

plays λ in λ+ n. II must respond with some b1 in m. If b1 = 0 or b1 = m− 1, then II loses

immediately. Otherwise, if 0 < b1 < m − 1, then I plays a2 = b1 − 1 and II repsonds with

some b2 < λ. Then a3 = b2 + 1 is a win for I. �

We will refer to the games (1) and (2) from Lemma 2 as trivially separated, and a

game like (3) as trivially unbalanced. Generalizing these notions will prove useful in the

sequel. We can summarize Lemma 2 by observing that when G(α, β) is trivially separated,

γ(α, β) = 1 and when G(α, β) is trivially unbalanced, γ(α, β) = 2.
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G(λ, n)

λ

b b b b b b b· · ·n |

| |

a1 = n− 1

b1 a2

G(λ+ n, λ′)

λ+ n

λ′

· · ·b b b|

| |

a1 = λ+ (n− 1)

b1 a2

G(λ+ n,m)

λ+ n b b b

b b b b b b b· · ·m

|

||

| |
a1 = λ

b1b1 − 1 = a2

b2 a3

Figure 4.1. Trivial transfinite games

When both α and β are infinite and have a nonempty nonequal finite part, we can

compute an upper bound for γ(α, β). The reader should note that the computation is

similar to the proof of the upper bound in the proof of the finite formula for γ(k, l).

Lemma 3. Suppose λ, λ′ are limit ordinals and that n > m > 0. Then

γ(λ+ n, λ′ +m) ≤ ⌊log2 (m+ 4)⌋

Proof. Let α = λ + n, β = λ′ + m where n > m > 0. We prove the upper bound holds

by induction on m. Since γ(α, β) ≤ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1}, we must show that there is

a move a1 for I such that for every response b1 for II either γa1,b1
LHS

≤ ⌊log2 (m+ 4)⌋ − 1 or

γ
a1,b1
RHS

≤ ⌊log2 (m+ 4)⌋ − 1. We argue the cases m = 1, 2, 3 individually.

I plays the same move a1 = λ′ in β for m = 1, 2, 3, and II responds with some b1 in α.

14



Suppose m = 1. If b1 = λ+ (n− 1), then Ga1,b1
LHS

= G(λ+ (n− 1), λ) is trivially separated

and γ
a1,b1
LHS

= 1. If b1 < λ + (n− 1), then G
a1,b1
RHS

= G(α′, 0) for some 1 ≤ α′ ≤ α. By Lemma

1, γa1,b1
RHS

= 0. In all cases for II’s response b1, we have γ(α, β) ≤ 2 = ⌊log2 (1 + 4)⌋.

Suppose m = 2. If b1 = λ+(n−1), then Ga1,b1
RHS

= G(1, 0) and γa1,b1
RHS

= 0 again by Lemma

1. If b1 = λ + (n − 2), then G
a1,b1
LHS

= G(λ + (n − 2), λ) is trivially separated and γ
a1,b1
LHS

= 1.

If b1 < λ + (n − 2), then G
a1,b1
RHS

= G(α′, 1) for some 2 ≤ α′ ≤ α so that γa1,b1
RHS

= 1, again by

Lemma 1. In all cases, we have γ(α, β) ≤ 2 = ⌊log2 (2 + 4)⌋.

Suppose m = 3. If b1 = λ + (n − 1), then G
a1,b1
RHS

= G(2, 0) and γ
a1,b1
RHS

= 0 as before. If

b1 = λ + (n − 2), then G
a1,b1
RHS

= G(2, 1) and γ
a1,b1
RHS

= 1 by Lemma 1. If b1 = λ + (n − 3),

then G
a1,b1
LHS

= G(b1, λ
′) is trivially separated and γ

a1,b1
LHS

= 1. If b1 < λ + (n − 3), then

G
a1,b1
RHS

= G(α′, 2) for some 3 ≤ α′ ≤ α again by Lemma 1. In all cases, we have γ(α, β) ≤

2 = ⌊log2 (3 + 4)⌋.

For m ≥ 4, assume that for all m′ < m and all n′ > m′ that γ(λ + n′, λ′ + m′) ≤

⌊log2 (m′ + 4)⌋. I plays λ+(m−2⌊log2 m⌋)+1 in α and II responds with some b1 in β. If b1 < λ′,

then G
a1,b1
LHS

is trivially unbalanced and γ
a1,b1
LHS

= 2. Thus, γ(α, β) ≤ 3 ≤ ⌊log2 (m+ 4)⌋. If

b1 = λ′, then Ga1,b1
RHS

is trivially separated. Thus, γ(α, β) ≤ 2 < ⌊log2 (m+ 4)⌋. Now suppose

b1 = λ′ +m′ for some 1 ≤ m′ < m. There are two cases:

(1) 1 ≤ m′ ≤ m− 2⌊log2 m⌋ or

(2) m− 2⌊log2 m⌋ + 1 ≤ m′ < m

In the first case, γa1,b1
LHS

≤ ⌊log2 (m′ + 4)⌋ by induction. We claim that

⌊log2 (m′ + 4)⌋ ≤ ⌊log2 (m+ 4)⌋ − 1

Assuming the claim holds, we then have in this first case γ(α, β) ≤ γ
a1,b1
LHS

+1 ≤ ⌊log2 (m+ 4)⌋.

Proof (claim). Write m = 2⌊log2 m⌋+1 − j where 0 < j ≤ 2⌊log2 m⌋. By hypothesis,

m′ ≤ m− 2⌊log2 m⌋ = 2⌊log2 m⌋+1 − j − 2⌊log2 m⌋ = 2⌊log2 m⌋ − j
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and hence

m′ + 4 ≤ 2⌊log2 m⌋ + (4 − j)

Now if 1 ≤ j ≤ 4, then

⌊log2 (m′ + 4)⌋ ≤ ⌊log2m⌋ = ⌊log2 (m+ 4)⌋ − 1

On the other hand, if 4 < j ≤ 2⌊log2 m⌋, then

⌊log2 (m′ + 4)⌋ ≤ ⌊log2m⌋ − 1 = ⌊log2 (m+ 4)⌋ − 1

This proves the claim.

Now suppose that m− 2⌊log2 m⌋ + 1 ≤ m′ < m. Then Ga1,b1
RHS

is a finite versus finite game.

By the finite game formula,

γ
a1,b1
RHS

= ⌊log2 (m−m′)⌋ ≤
⌊

log2

(

2⌊log2 m⌋ − 1
)⌋

= ⌊log2m⌋ − 1

Thus, γ(α, β) ≤ γ
a1,b1
RHS

+ 1 ≤ ⌊log2m⌋ ≤ ⌊log2 (m+ 4)⌋.

�

4.2. The Separated CNF Game

Recall that for every ordinal α there are unique ordinals α1 > α2 > · · · > αn and unique

nonzero integers k1, . . . , kn such that

α = ωα1 · k1 + · · · + ωαn · kn

This unique decomposition is called the Cantor Normal Form (CNF) of α. We will refer

to each term of the CNF of α as the αi-block, or if the power is clear, simply the ith block.

If α has only one term in its CNF, i.e. n = 1, then α is a monomial. A monomial having a

coefficient of 1 is monic. We say that αn, the least power in the CNF of an ordinal, is the

terminal power of α.

We fix the following terminology and notation for any ordinal α written in CNF as above.

For 1 ≤ i ≤ n define

Φα
i = ωα1 · k1 + · · · + ωαi · ki
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the sum of the first i blocks of the CNF of α. Consider a single αi-block for αi > 0. We

refer to the endpoints of a given block as the left and right fences of the ith-block and the

multiples of ωαi · k′ as the holes. (See Figure 4.2.) We do not consider the left fence in Φα
1

a true fence since this equals zero.

b bbc bc bc bc

Φα
i Φα

i + ωαi Φα
i + ωαi · 2 Φα

i + ωαi · 3 Φα
i + ωαi · (ki − 1) Φα

i+1· · ·

fences

holes

Figure 4.2. Fences and holes in the ith-block

Let α = ωα1 · k1 + · · · + ωαn · kn and β = ωβ1 · l1 + · · · + ωβm · lm be written in CNF.

If αn 6= βm, then we say α and β are separated. THe next theorem can be viewed as a

generalization of parts (1) and (2) of Lemma 2.

Theorem 2 (The Separated Game formula). Let α = ωα1 · k1 + · · · + ωαn · kn and β =

ωβ1 · l1 + · · · + ωβm · lm be written in CNF and αn > βm. Then we have

γ(α, β) =















2β1 if β is a monic monomial

2βm + 1 otherwise

A symmetric formula holds for αn < βm.

Proof. Let α, β be as above. We prove the result by induction on the CNF of β.

Case 3. β is a monic monomial, i.e., m = 1, l1 = 1

Upper Bound. γ(α, β) ≤ 2β1

I plays β in α and II responds with some b1 in β. Now G
a1,b1
LHS

is separated. By induction

γ
a1,b1
LHS

≤ 2β′ + 1 where β′ is the terminal power of b1. If β1 is a successor, then β′ ≤ β1 − 1;
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otherwise, if β1 is limit, then β′ < β1. Either way, γ(α, β) ≤ γ
a1,b1
LHS

+ 1 = 2β′ + 2 ≤

2(β1 − 1) + 2 = 2β1.

Lower Bound. γ(α, β) ≥ 2β1

If I plays a1 in β or a1 in α for some a1 < β, then II copies from below. This gives

γ
a1,b1
LHS

= ∞ and γa1,b1
RHS

≥ γ(α, β), and this move for I does not gain anything for I.

Remark 4. For future reference, whenever a1 is such that there is a b1 such that either

γ
a1,b1
LHS

= ∞ and γa1,b1
RHS

≥ γ(α, β) or vice versa, then we say that a1 is a stalling move for I.

So assume I plays a1 ≥ β in α and let the CNF of a1 = ωδ1 · p1 + · · · + ωδr · pr. Among

the {δi}1≤i≤r, identify all of the powers greater than or equal to β1 as δ∗1 = δ1, . . . , δ
∗
i = δi for

some 1 < i ≤ r. That is, i is the largest index such that δi ≥ β1. Assuming for the moment

that β1 is a successor, II responds to a1 in α with b1 in β where

b1 = ωβ1−1 · p′1 + · · · + ωβ1−1 · p′i + ωδi+1 · pi+1 + · · · + ωδr · pr

where for 1 ≤ j ≤ i, p′j = 2 if pj = 1 and p′j = pj otherwise. (See Figure 4.3.) Thus, II copies

a1

b1

b b b b b b b

b b b b b b b

COPYCOMPRESS

· · ·

· · ·

ωδ∗
1 · p1

ωβ1−1 · p′1

ωδ∗
2 · p2

ωβ1−1 · p′2

ωδ∗
i · pi

ωβ1−1 · p′i

p′j ≥ 2 for 1 ≤ j ≤ i

δ∗j = δj for 1 ≤ j ≤ i δ∗i ≥ β1 δi+1 < β1

ωδi+1 · pi+1 + · · · + ωδr · pr

ωδi+1 · pi+1 + · · · + ωδr · pr

Figure 4.3. A (β1 − 1)-compressed copy of a1

what parts of the CNF of a1 that he can, namely all of the powers of a1 which are β1 − 1 or

less. Note that for a1 with large (≥ β1) terminal power, there is no copied part. On the rest
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of a1, II compresses the data in all of the δ∗i , the powers larger than β1 − 1, into a number

of blocks (at least 2) of the highest power that he has, β1 − 1.

Now we have two games: G
a1,b1
LHS

= G(a1, b1) and G
a1,b1
RHS

= G(α − a1, β − b1). On the

right, Ga1,b1
RHS

is at worst G(α′, β) where α′ ≥ ωαn . This is still a separated game and thus

γ
a1,b1
RHS

≥ γ(α, β). On the left, Ga1,b1
LHS

is comprised of r-many subgames each one corresponding

to a block in the CNF of a1. On the blocks ωδi+1 , . . . , ωδr , γ = ∞ since each is a copying

move. On the ωδ∗
1 , . . . , ωδ∗

i blocks, these games are all separated and the limiting factor in

the separated formula is II’s response: ωβ1−1 · p′i. Since II played at least two copies of ωβ1−1

in each block, II can last at least 2(β1 − 1) + 1 many moves in each of these subgames by

induction. Therefore, γa1,b1
LHS

≥ 2(β1 − 1) + 1 and thus, γ(α, β) ≥ 2β1.

If β1 is a limit, we must show that for any γ′ < 2β1, γ(α, β) ≥ γ′. This is easily

accomplished by a similar argument as above, except that in the compressed part of II’s

response b1, the β1 − 1 are replaced by some sufficiently large β′ < β1. This ends Case 1.

Remark 5. For future reference, we will call this strategy by II data compression (Fig.

4.3), where II responds with b1 to I’s move a1 by playing a number of copies of II’s highest

power followed by some copied blocks of lower powers, depending on the CNF of a1. If we

want to emphasize that largest power η of b1, we call b1 an η-compressed copy of a1. So

in the previous argument when β1 is a successor, b1 is a (β1 − 1)-compressed copy of a1.

Case 4. β is not a monic monomial

So in this case, we have β = ωβ1 · l1 + · · · + ωβm · lm where either m = 1 and l1 = lm > 1

or m > 1. In either case the argument is the same.

Upper Bound. γ(α, β) ≤ 2βm + 1, where βm is terminal

I plays the last hole in β. That is, if β is a monomial, I plays ωβ1 · (l1 − 1) in β. If β is

not a monomial, I plays ωβ1 · l1 + · · · + ωβm · (lm − 1) in β. In either case, II must respond
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with some b1 in α. Now G
a1,b1
RHS

= G(α′, ωβm) where at worst α′ ≥ ωαn . (Fig. 4.4) This game

is separated on the right, and by induction, γa1,b1
RHS

≤ 2βm and hence γ(α, β) ≤ 2βm + 1.

α

· · ·β b bc bc bc bc|

|

Φβ
m

a1

b1

≥ ωαn

= ωβm

Figure 4.4. Pinching off a block

Remark 6. For future reference, we will call this strategy for I pinching off a block where

I plays the largest possible move that leaves a single block on the right. Note that, however,

when I pinches off a block, it is not necessary that the resulting game be separated.

Lower Bound. γ(α, β) ≥ 2βm + 1, where βm is terminal

If I opens with either a1 in β or a1 < β in α, then II copies from below and I has made a

stalling move. Otherwise, a1 ≥ β in α with a1 = ωδ1 · p1 + · · ·+ ωδr · pr ≥ β and II responds

with b1 in β where b1 is a βm-compressed copy of a1:

b1 = ωβm · l1 + · · · + ωβm · (lm − 1) + ωδi+1 · pi+1 + · · · + ωδr · pr

We let be i+1 the smallest index so that δi+1 < βm and thus ωδi+1 ·pi+1 + · · ·+ωδr ·pr < ωβm .

This makes Ga1,b1
RHS

= G(α−a1, ω
βm). Since this game is separated, by induction γa1,b1

RHS
≥ 2βm.

On the left, we have (r− i)+1-many subgames. Each game corresponding to the CNF of a1

is an ∞-game while the game on the far left is separated, and hence covered by the induction

hypothesis, γ ≥ 2βm. In all cases we have γa1,b1
LHS

≥ 2βm. So, γ(α, β) ≥ 2βm + 1.

�

Henceforth, we assume that α, β are not separated so that the terminal powers of α and

β are equal.
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4.3. The Pure Monomial Game

As a generalization of the finite game G(k, l) = G(ω0 · k, ω0 · l), consider G(ωδ · k, ωδ · l)

when δ > 0 and k, l are nonzero integers. We identify this particular game as the pure

monomial game. In the pure monomial game, we view the holes of G(ωδ · k, ωδ · l) as the

points in G(k − 1, l − 1).

Lemma 4. Let α = ωδ · k and β = ωδ · l where δ > 0 and k 6= l are nonzero integers. Then

γ(α, β) = 2δ + ⌊log2 (k∧ l)⌋

Proof. Let α = ωδ · k and β = ωδ · l be as above. Clearly the formula is symmetric in k

and l, so without loss of generality assume k > l. We prove the result by induction on l.

Upper Bound. l = 1

We show that γ(α, β) ≤ 2δ + ⌊log2 l⌋ = 2δ. Observe that for k > l = 1, α has at least

one hole, but β has none. So I plays a1 = ωδ · 1 the first hole in α and II responds with

some b1 in β. Now the terminal power of b1 is < δ, so Ga1,b1
LHS

is necessarily separated. If δ is

a successor, then γ
a1,b1
LHS

≤ 2(δ − 1) + 1 by the Separated Game formula (Lemma 2) so that

γ(α, β) ≤ 2(δ − 1) + 2 = 2δ. If δ is a limit, then γ
a1,b1
LHS

≤ 2δ′ + 1 for some δ′ < δ, again by

the Separated Game formula. Thus, γ(α, β) ≤ 2δ.

Remark 7. This situation occurs often, and we make the follwing definition. Suppose in

some G(α, β), I plays a1 which has terminal power some η. We call an η-descent any

response b1 for II such that the terminal power of b1 is some η′ < η. It follows that Ga1,b1
LHS

is

separated and by the Separated Game formula, γa1,b1
LHS

≤ 2η′+1. Thus, γ(α, β) ≤ 2η′+2 ≤ 2η.

So in the above case l = 1, every response b1 for II is a δ-descent.

Lower Bound. l = 1

We show that for l = 1, γ(α, β) ≥ 2δ + ⌊log2 l⌋ = 2δ. If a1 is in β, then II responds by

copying from below with b1 = a1 in α. On the left, γa1,b1
LHS

= ∞. On the right, Ga1,b1
RHS

= G(α, β)
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so this a1 is a stalling move for I. Similarly, if I plays a1 < ωδ · 1 in α, this is stalling for I.

So suppose I plays a1 ≥ ωδ · 1 in α. II responds by playing b1 in β, a δ′-compression of a1

where, depending on whether or not δ is a limit or successor, δ′ < δ is as in the proof of the

lower bound of the Separated Game formula. In either case, using an identical argument

from Lemma 2, γ(α, β) ≥ 2δ. Thus, we have for l = 1, γ(α, β) = 2δ = 2δ + ⌊log2 l⌋.

Now let l > 1 and assume for all l′ < l and k > l′

γ(ωδ · k, ωδ · l′) = 2δ + ⌊log2 l
′⌋

Upper Bound. l > 1

Notice that G(α, β) = G(ωδ · k, ωδ · l) looks like the finite game G(k − 1, l − 1) and

we argue similarly as in the proof of the Finite Game formula (Lemma 1). First, we show

γ(α, β) ≤ 2δ + ⌊log2 l⌋. I plays the “midpoint” hole ωδ ·
⌊

k
2

⌋

and II responds with some

b1 in β. Observe that any b1 that is not a hole in β is a δ-descent and thus, for such b1,

γ(α, β) ≤ 2δ ≤ 2δ + ⌊log2 l⌋. So suppose b1 = ωδ · l′ is a hole in β where 1 ≤ l′ < l. This b1

then splits β into l′ many copies of ωδ on the left and l − l′ many copies on the right:

β = ωδ · l = ωδ · l′ + ωδ · (l − l′)

Let l̂ = min{l′, l − l′}. If l′ < l − l′, then we have
⌊

k
2

⌋

> l′. Thus, by induction,

γ
a1,b1
LHS

= 2δ +
⌊

log2 l̂
⌋

≤ 2δ +

⌊

log2

⌊

l

2

⌋⌋

= 2δ + (⌊log2 l⌋ − 1)

So γ(α, β) ≤ 2δ + ⌊log2 l⌋. If l′ = l− l′ and
⌊

k
2

⌋

6= l′, then γa1,b1
LHS

computes the same, and we

again have γ(α, β) ≤ 2δ + ⌊log2 l⌋. If l′ = l − l′ and
⌊

k
2

⌋

= l′ (which can only occur when k

is odd and k = l + 1) or if l− l′ > l′, then by induction and a similar computation as above

γ
a1,b1
RHS

≤ 2δ + (⌊log2 l⌋ − 1). So, γ(α, β) ≤ 2δ + ⌊log2 l⌋.

Lower Bound. l > 1
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We show that γ(α, β) ≥ 2δ+⌊log2 l⌋. First suppose that I plays a hole in β, a1 = ωδ ·l′ for

some 1 ≤ l′ ≤ l− 1. If 1 ≤ l′ ≤
⌊

l
2

⌋

, then II copies from below and plays b1 = ωδ · l′ in α. On

the left, γa1,b1
LHS

= ∞. On the right, by induction γa1,b1
RHS

= 2δ+⌊log2 (l − l′)⌋ ≥ 2δ+
⌊

log2

⌊

l
2

⌋⌋

=

2δ + ⌊log2 l⌋ − 1. So γ(α, β) ≥ 2δ + ⌊log2 l⌋. If on the other hand
⌊

l
2

⌋

< l′ ≤ l − 1, then II

copies from above playing b1 = ωδ ·(k−(l− l′)). Now on the right γa1,b1
RHS

= ∞. On the left, by

induction γa1,b1
LHS

= 2δ+⌊log2 l
′⌋ ≥ 2δ+

⌊

log2

⌊

l
2

⌋⌋

= 2δ+⌊log2 l⌋−1. So γ(α, β) ≥ 2δ+⌊log2 l⌋.

Now suppose I plays a hole in α, a1 = ωδ · k′ for some 1 ≤ k′ ≤ k − 1. If 1 ≤ k′ ≤
⌊

l
2

⌋

, then

II copies from below playing b1 = ωδ · k′ in β. The computation is the same as above and it

follows that γ(α, β) ≥ 2δ+⌊log2 l⌋. If k−
⌊

l
2

⌋

≤ k′ ≤ k−1, then II copies from above playing

b1 = ωδ · (l − (k − k′)). Now on the right γa1,b1
RHS

= ∞. On the left, by induction γ
a1,b1
LHS

=

2δ + ⌊log2 (l − (k − k′))⌋ ≥ 2δ +
⌊

log2

⌊

l
2

⌋⌋

= 2δ + (⌊log2 l⌋ − 1). So, γ(α, β) ≥ 2δ + ⌊log2 l⌋.

If
⌊

l
2

⌋

< k′ < k−
⌊

l
2

⌋

, then II plays the “midpoint” hole in β, b1 = ωδ ·
⌊

l
2

⌋

. Now on the left

by induction γa1,b1
LHS

= 2δ +
⌊

log2

⌊

l
2

⌋⌋

= 2δ + (⌊log2 l⌋ − 1). On the right, if k − k′ = l−
⌊

l
2

⌋

,

then γa1,b1
RHS

= ∞. Otherwise, by induction γa1,b1
RHS

= 2δ+
⌊

log2

(

l −
⌊

l
2

⌋)⌋

≥ 2δ+(⌊log2 l⌋− 1).

In any case, γ(α, β) ≥ 2δ + ⌊log2 l⌋. This exhausts all possibilities for I playing a1 that is a

hole in either α or β.

Now suppose a1 is not a hole in either α or β. If a1 < ωδ · 1 in either α or β, then II

copies from below playing b1 = a1. This a1 is then easily seen to be a stalling move for I. So

a1 is of the form ωδ · p + η where η < ωδ and p is some integer less than k or l depending

on what side I plays. II responds by playing b1 = ωδ · p′ + η where is the same hole that

he would have in the previous paragraph plus a copy of the small tail η. We claim that the

presence of the tail η does not decrease the lower bound.

Proof (claim). Let a1, b1 be the untailed versions of the above moves a1, b1, respectively.

On the left, using a compression-type argument as in the Separated Game formula, γa1,b1
LHS

≥

γ
a1,b1
LHS

. On the right, Ga1,b1
RHS

= G(α− a1, β − b1) = G(α− a1, β − b1) so that γa1,b1
RHS

= γ
a1,b1
RHS

.

�
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4.4. The Common CNF Game

Toward the final formula for those α, β which are not separated, we identify the common

part of their CNFs as

α = Φα
0 + ωγ1 · k1 + · · · + ωγn · kn

β = Φβ
0 + ωγ1 · l1 + · · · + ωγn · ln

where the CNFs of Φα
0 ,Φ

β
0 are separated. We allow the possibility that one or both of Φα

0 ,Φ
β
0

may be empty. In case they are not empty, identify the terminal terms of Φα
0 and Φβ

0 as

ωα0 · k0 and ωβ0 · l0, respectively. We will ultimately prove that γ(α, β) is the minimum of

finitely many ordinal terms τi, 0 ≤ i ≤ n where each τi corresponds to a block in the common

CNF of α and β (Fig. 4.5), as follows:

|

|

ωα0 · k0

ωβ0 · l0

Φα
0

Φβ
0

b b b b. . .α
ωγ1 · k1 ωγ2 · k2 ωγn · kn

b b b b. . .β
ωγ1 · l1 ωγ2 · l2 ωγn · ln

τ0-block τ1-block τ2-block τn-block

Figure 4.5. Common Cantor Normal Form

4.4.1. n = 1

To simplify the exposition, we first consider the case where n = 1. That is, the common

CNFs of α, β have one block of the same power and one separated block on the left. As

we said before, one of the Φα
0 ,Φ

β
0 may be empty (if both are empty, this is just the pure

monomial game). Our next lemma computes γ(α, β) whenever exactly one of Φα
0 or Φβ

0 are

nonempty. For future reference we will call this game the unbalanced game. This lemma

can be viewed as a generalization of part (3) of Lemma 2.
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Lemma 5 (The Unbalanced Game formula). Let α > β be written in common CNF: α =

Φα
0 + ωγ1 · k1, β = ωγ1 · l1 where γ1 > 0. Then

γ(α, β) =



























2γ1 l1 = 1

2γ1 + 1 l1 = 2, 3

2γ1 + 2 l1 ≥ 4

Proof. Let α, β be as above. We prove the result by induction on l1 and we argue the

cases l1 = 1, 2, 3 individually. Note that when we identify a game as either separated or pure

monomial, we expect the reader to understand that we are using the formulas from Theorem

2 and Lemma 4.

Case 1. l1 = 1

Upper Bound. γ(α, β) ≤ 2γ1

I plays Φα
0 in α and II responds with some b1 in β. Observe that the terminal power of

b1 must be < γ1, and thus is a descending move for II. As we have argued before, whether

γ1 is limit or successor, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ′ + 1 for some γ′ < γ. Thus,

γ(α, β) ≤ 2γ1.

Lower Bound. γ(α, β) ≥ 2γ1

Suppose I plays a1. Any a1 in β or any a1 < ωγ1 in α is easily seen to be a stalling move

for I: II copies from below playing b1 = a1 in α. So suppose I plays a1 ≥ ωγ1 in α. Then

II plays b1 in β, a γ′-compression of a1 where, depending on whether or not γ1 is a limit or

successor, γ′ < γ is as in the proof of the lower bound of the Separated Game formula. In

either case, γ(α, β) ≥ 2γ1. Thus, for l1 = 1, γ(α, β) = 2γ1.

Case 2. l1 = 2

Upper Bound. γ(α, β) ≤ 2γ1 + 1
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I plays Φα
0 in α and II responds with some b1 in β. Any b1 that is not the hole ωγ1 · 1 is

a descent. Suppose b1 = ωγ1 · 1. If k1 = 1, then G
a1,b1
LHS

is separated on one copy of ωγ1 and

γ
a1,b1
LHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1. If k1 > 1, then G
a1,b1
RHS

is pure monomial on one copy

of ωγ1 and γa1,b1
RHS

= 2γ1. Thus, regardless of the value of k1, γ(α, β) ≤ 2γ1 + 1.

Lower Bound. γ(α, β) ≥ 2γ1 + 1

Suppose I plays a1. Any a1 in β or any a1 < ωγ1 · 2 in α is stalling for I: II copies from

below playing b1 = a1 in α. So suppose I plays a1 ≥ ωγ1 in α. If the terminal power of a1 is

≥ γ1, then II plays b1 = ωγ1 , the hole in β. When the terminal power of a1 is > γ1, on the

left Ga1,b1
LHS

is separated on one copy of ωγ1 and γ
a1,b1
LHS

= 2γ1. On the right, if a1 = Φα
0 , then

either γa1,b1
RHS

= ∞ (when k1 = 1) or Ga1,b1
RHS

is pure monomial so that γa1,b1
RHS

= 2γ1. If a1 < Φα
0

still with terminal power > γ1, then G
a1,b1
RHS

is as in the l1 = 1 case above and γ
a1,b1
RHS

= 2γ1.

In any case, γa1,b1
RHS

≥ 2γ1 so that γ(α, β) ≥ 2γ1 + 1. Now, if the terminal power of a1 = γ1,

then on the left, Ga1,b1
LHS

is as in the above l1 = 1 case so that γa1,b1
LHS

= 2γ1. On the right either

γ
a1,b1
RHS

= ∞ or γa1,b1
RHS

6= ∞ and G
a1,b1
RHS

is pure monomial on one copy of ωγ1 and γ
a1,b1
RHS

= 2γ1.

In either case, γ(α, β) ≥ 2γ1 + 1. Now if the terminal power of a1 is < γ1, then II plays

b1 = ωγ1 · 1 + η where η is the small tail of a1 that II copies. Using the same argument

at the end of the proof of the lower bound of the Pure Monomial formula (Lemma 4) the

presence of the tail does not decrease the lower bound. So γ(α, β) ≥ 2γ1 + 1. Thus, for

l1 = 2, γ(α, β) = 2γ1 + 1.

Case 3. l1 = 3

Upper Bound. γ(α, β) ≤ 2γ1 + 1

If k1 = 1, then I plays a1 = ωγ1 · 2 in α and II responds with some b1 in β. Any b1

that is not a hole is a descent. If b1 is the first hole in β, then G
a1,b1
LHS

is pure monomial and

γ
a1,b1
LHS

= 2γ1. If b1 is the second hole in β, then G
a1,b1
RHS

is as in the l1 = 1 case above so that

γ
a1,b1
RHS

= 2γ1. In either case, γ(α, β) ≤ 2γ1 + 1. If k1 > 1, then I plays a1 = Φα
0 in α. Again,
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b1 that is not a hole in β is a descent. If b1 is the first hole in β, then Ga1,b1
LHS

is separated and

γ
a1,b1
LHS

= 2γ1. If b1 is the second hole in β, then Ga1,b1
RHS

is pure monomial and γa1,b1
RHS

= 2γ1. In

either case, γ(α, β) ≤ 2γ1 + 1.

Lower Bound. γ(α, β) ≥ 2γ1 + 1

Suppose I plays a1. If a1 is in β or if a1 < ωγ1 · 3 in α, II copies from below so that

γ
a1,b1
LHS

= ∞ and γ
a1,b1
RHS

is as in the l1 = 1 case above so that γa1,b1
RHS

= 2γ1. Thus, γ(α, β) ≥

2γ1 + 1. So suppose a1 ≥ ωγ1 · 3 in α. Then the argument is almost identical to the l1 = 2

case except that II plays the second hole in β instead of the first hole. Suppose that the

terminal power of a1 is ≥ γ1. On the left, if the terminal power of a1 is > γ1, then G
a1,b1
LHS

is

separated on two copies of ωγ1 and γ
a1,b1
LHS

= 2γ1 + 1. If the terminal power of a1 is γ1, then

G
a1,b1
LHS

is the l1 = 2 case so that γa1,b1
LHS

= 2γ1 + 1. On the right, there is only one copy of ωγ1

on the bottom so the argument is the same as the l1 = 2 case. If the terminal power of a1 is

< γ1, the argument is the same on both sides: II plays the second hole and copies the small

tail of a1.

Case 4. l1 ≥ 4

Upper Bound. γ(α, β) ≤ 2γ1 + 2

I plays Φα
0 in α and II responds with some b1 in β. Any b1 that is not a hole is a descent.

Suppose b1 is some hole in β. On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. So,

γ(α, β) ≤ 2γ1 + 2.

Lower Bound. γ(α, β) ≥ 2γ1 + 2

We prove the formula by induction on l1. Suppose that for all l′1 < l1 the formula holds

and suppose I plays a1. First we consider a1 in β. If a1 < ωγ1 · (l1 − 1) in β, then II copies

from below playing b1 = a1 in α. On the left, γa1,b1
LHS

= ∞ and on the right Ga1,b1
RHS

is as in the

l1 = 2 case so that γa1,b1
RHS

= 2γ1 + 1. If a1 = ωγ1 · (l1 − 1) the last hole in β, then II copies
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from above playing b1 = Φα
0 + ωγ1 · (k1 − 1) in α. On the right γa1,b1

RHS
= ∞. On the left,

there are two possibilities for Ga1,b1
LHS

. If, on one hand, b1 = Φα
0 , then G

a1,b1
LHS

is separated and

γ
a1,b1
LHS

= 2γ1 + 1. If, on the other hand, b1 = Φα
0 + ωγ1 · k′ for some k′ ≥ 1, by induction we

have γa1,b1
LHS

≥ 2γ1 + 1 since l1 − 1 ≥ 3. If a1 > ωγ1 · (l1 − 1) in β, then II plays the last hole

b1 = ωγ1 · (k1 − 1) + η copying the small tail of a1. Again, the presence of the tail does not

decrease the lower bound. So for all possible a1 in β, γ(α, β) ≥ 2γ1 + 2.

Now suppose a1 is in α. If a1 < ωγ1 · (l1 − 1), then II copies from below. On the left

γ
a1,b1
LHS

= ∞ and on the right Ga1,b1
RHS

is as in the l1 = 2 case so that γa1,b1
RHS

= 2γ1 + 1. Thus,

γ(α, β) ≥ 2γ1 + 2. Suppose a1 ≥ ωγ1 · (l1 − 1). If the terminal power of a1 is > γ1, then II

plays ωγ1 ·2. On the left, Ga1,b1
LHS

is separated on two copies of ωγ1 and by the Separated Game

formula, γa1,b1
LHS

= 2γ1+1. On the right, by induction γa1,b1
RHS

≥ 2γ1+1. Thus, γ(α, β) ≥ 2γ1+2.

If the terminal power of a1 is γ1, then II plays b1 = ωγ1 ·
⌊

l1
2

⌋

, the “midpoint” hole in β. On

the left, there are two possiblities: either Ga1,b1
LHS

is pure monomial or it is not. If Ga1,b1
LHS

is

pure monomial, then by the Pure Monomial formula γa1,b1
LHS

≥ 2γ1 + 1 and on the right, by

induction γa1,b1
RHS

≥ 2γ1 + 1 so that γ(α, β) ≥ 2γ1 + 2. If Ga1,b1
LHS

is not pure monomial, then by

induction, γa1,b1
LHS

≥ 2γ1 + 1. In this case, on the right either γa1,b1
RHS

= ∞ or γa1,b1
RHS

6= ∞ and

either by the Pure Monomial forumla or by induction γ
a1,b1
RHS

≥ 2γ1 + 1. In any case, when

the terminal power of a1 is γ1, we have γ(α, β) ≥ 2γ1 + 2. Finally, if the terminal power of

a1 is < γ1, II copies the small tail of a1 on top of playing the same b1 he would have if a1

had no tail. The presence of the tail does not decrease the lower bound. �

To complete the case for n = 1, we consider the case where α, β are written in common

CNF and both Φα
0 ,Φ

β
0 6= ∅. First, we fix the following notation. Let α, β have common

CNFs:

α = Φα
0 + ωγ1 · k1

β = Φβ
0 + ωγ1 · l1
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where the CNFs of Φα
0 ,Φ

β
0 6= ∅ are separated. As before, identify the terminal terms of

Φα
0 ,Φ

β
0 as ωα0 · k0 and ωβ0 · l0, respectively. We define the ordinals τi for i = 0, 1 as follows:

Term τ0: Suppose α0 > β0. If β0 > γ1 + 1, then

τ0 =















2β0 if Φβ
0 is a monic monomial

2β0 + 1 otherwise

If β0 = γ1 + 1 and Φβ
0 = ωβ0 , then

τ0 =















2β0 if l1 ≤ 3

2β0 + 1 if l1 ≥ 4

If Φβ
0 = ωβ0 · 2, then

τ0 = 2β0 + 1

If Φβ
0 ≥ ωβ0 · 3 and has terminal power β0, then

τ0 =















2β0 + 1 if l1 ≤ 3

2β0 + 2 if l1 ≥ 4

A symmetric formula for τ0 holds for α0 < β0.

Term τ1: If k1 = l1, τ1 = ∞. Suppose k1 > l1. If γ1 = 0, then

τ1 = ⌊log2 (l1 + 4)⌋

Suppose γ1 > 0. If l1 = 1, then

τ1 =















2γ1 + 1 if k1 = 2

2γ1 + 2 if k1 ≥ 3

If l1 = 2, 3, then

τ1 = 2γ1 + 2
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If l1 = 4

τ1 =















2γ1 + 2 if k1 = 5

2γ1 + 3 if k1 ≥ 6

If l1 ≥ 5,

τ1 = 2γ1 + ⌊log2 (l1 + 3)⌋

A symmetric formula holds for k1 < l1.

Theorem 3 (The Common CNF Game, n = 1). Let α = Φα
0 +ωγ1 · k1 and β = Φβ

0 +ωγ1 · l1

be written in common CNF where Φα
0 ,Φ

β
0 6= ∅. Then if τ0, τ1 are defined as above

γ(α, β) = min{τ0, τ1}

Proof. Let α, β be as above. We first prove that γ(α, β) ≤ min{τ0, τ1}.

Upper Bound. γ(α, β) ≤ min{τ0, τ1}

Observe that I’s choice of his first move depends on which of τ0, τ1 is smaller. So we

break up the proof of the upper bound into cases: either τ0 ≤ τ1 or τ1 < τ0.

Case 1. τ0 ≤ τ1.

We will show that γ(α, β) ≤ τ0. We assume, for this τ0 ≤ τ1 case, without loss of

generality that α0 > β0. For if α0 < β0, reverse the labels on α and β and the labels on

the coefficients in the τ1-block. We adopt the notational convention that the k1 coefficient

remains with α and the l1 coefficient remains with β.

Subcase 1.1. β0 > γ1 + 1 and Φβ
0 is a monic monomial

I plays a1 = ωβ0 in α and II responds with some b1 in β. If b1 < Φβ
0 and β′ < β0 is the

terminal power of b1, then Ga1,b1
LHS

is separated and γa1,b1
LHS

≤ 2β′ +1. Thus, γ(α, β) ≤ 2β′ +2 ≤

2(β′ + 1) ≤ 2β0 = τ0. (Recall that we refer to this kind of response for II as a β0-descent,

because it holds II to at most 2β0.) If b1 = Φβ
0 , then Ga1,b1

RHS
is unbalanced and γa1,b1

RHS
≤ 2γ1+2.
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Thus, γ(α, β) ≤ 2γ1 + 3 = 2(γ1 + 1) + 1 < 2β0 = τ0. If b1 > Φβ
0 , then b1 is a β0-descent since

G
a1,b1
LHS

is separated and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 < 2β0 = τ0.

Subcase 1.2. β0 > γ1 + 1 and Φβ
0 is not a monic monomial

I pinches off a block of ωβ0 in β (Recall Fig. 4.4) by playing a1, the last β0 hole in the

τ0-block of β. II responds with some b1 in α. If b1 < Φα
0 , then Ga1,b1

RHS
is as in the previous case

where Φβ
0 in Ga1,b1

RHS
is a monic monomial. So, γa1,b1

RHS
≤ 2β0 and thus γ(α, β) ≤ 2β0 +1 = τ0. If

b1 = Φα
0 , then Ga1,b1

RHS
is unbalanced and γa1,b1

RHS
≤ 2γ1 +2. Thus, γ(α, β) ≤ 2γ1 +3 < 2β0 +1 =

τ0. If b1 > Φα
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 <

2β0 + 1 = τ0.

Subcase 1.3. β0 = γ1 + 1 and Φβ
0 = ωβ0

I plays ωβ0 in α and II responds with some b1 in β. If b1 < Φβ
0 , then b1 is a β0-descent

and γ(α, β) ≤ 2β0 ≤ τ0. If b1 = Φβ
0 , then Ga1,b1

RHS
is unbalanced and there are two possibilities:

either l1 ≤ 3 or l1 ≥ 4. If l1 ≤ 3, then γa1,b1
RHS

≤ 2γ1 +1 so that γ(α, β) ≤ 2γ1 +2 = 2(γ1 +1) =

2β0 = τ0. If l1 ≥ 4, then γa1,b1
RHS

= 2γ1 +2 so that γ(α, β) ≤ 2γ1 +3 = 2β0 +1 = τ0. If b1 > Φβ
0 ,

then Ga1,b1
LHS

is separated and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = 2β0 ≤ τ0.

Subcase 1.4. β0 = γ1 + 1 and Φβ
0 = ωβ0 · 2

I plays ωβ0 ·2 in α and II responds with some b1 in β. If b1 = ωβ0 , the hole in the Φβ
0 -block,

then G
a1,b1
LHS

is pure monomial and γ
a1,b1
LHS

= 2β0. Thus, γ(α, β) ≤ 2β0 + 1 = τ0. If b1 < Φβ
0

and b1 is not the hole in the Φβ
0 -block, then b1 is a β0-descent and γ(α, β) ≤ 2β0 < τ0. If

b1 = Φβ
0 , then Ga1,b1

RHS
is unbalanced and γa1,b1

RHS
≤ 2γ1 + 2 = 2β0. Thus, γ(α, β) ≤ 2β0 + 1 = τ0.

If b1 > Φβ
0 , then Ga1,b1

LHS
is separated and b1 is a β0-descent. So, γ(α, β) ≤ 2β0 < τ0.

Subcase 1.5. β0 = γ1 + 1 and Φβ
0 ≥ ωβ0 · 3 and has terminal power β0

Write Φβ
0 = Φβ

−1 + ωβ0 · l0 where Φβ
−1 (possibly empty) has terminal power > β0 in its

CNF and l0 is a nonzero integer. Then I plays Φβ
−1 + ωβ0 · (l0 − 1) in β, pinching off a block
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of ωβ0 in the Φβ
0 -block of β and II responds with some b1 in α. If b1 < Φα

0 , then Ga1,b1
RHS

is as in

the Φβ
0 = ωβ0 case. If l1 ≤ 3, then γa1,b1

RHS
≤ 2β0 so that γ(α, β) ≤ 2β0 +1 = τ0. If l1 ≥ 4, then

γ
a1,b1
RHS

≤ 2β0 + 1 so that γ(α, β) ≤ 2β0 + 2 = τ0. If b1 = Φα
0 , then G

a1,b1
RHS

is unbalanced and

γ
a1,b1
RHS

≤ 2γ1 + 2 = 2β0. Thus, γ(α, β) ≤ 2β0 + 1 ≤ τ0. If b1 > Φα
0 , then G

a1,b1
LHS

is separated

and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = 2β0 < τ0.

This ends the case when τ0 ≤ τ1.

Case 2. τ1 < τ0

We show that γ(α, β) ≤ τ1. First, it cannot be the case that k1 = l1 since τ1 < τ0 6= ∞.

So, suppose that k1 > l1. If γ1 = 0, then γ(α, β) ≤ ⌊log2 (l1 + 4)⌋ = τ1 by Lemma 3. For the

remainder of this case, suppose γ1 > 0.

Subcase 2.1. l1 = 1 and k1 = 2

I plays a1 = Φα
0 + ωγ1 the hole in the γ1-block of α and II responds with some b1 in β.

If b1 < Φβ
0 , then G

a1,b1
RHS

is unbalanced and γ
a1,b1
RHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ1. If

b1 = Φβ
0 , then Ga1,b1

LHS
is separated and γa1,b1

LHS
= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ1. If b1 > Φβ

0

and has terminal power γ′ < γ1, then G
a1,b1
LHS

is again separated and γ
a1,b1
LHS

≤ 2γ′ + 1. Thus,

γ(α, β) ≤ 2γ′ + 2 ≤ 2γ1 < τ1.

Subcase 2.2. l1 = 1 and k1 ≥ 3

I again plays a1 = Φα
0 +ωγ1 ·(k1−1) the last hole in the γ1-block of α and II responds with

some b1 in β. If b1 < Φβ
0 , thenGa1,b1

RHS
is unbalanced and γa1,b1

RHS
= 2γ1. Thus, γ(α, β) ≤ 2γ1+1 <

τ1. If b1 = Φβ
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
RHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

If b1 > Φβ
0 , then b1 is a γ1-descent so that γ(α, β) ≤ 2γ1 < τ1.

Subcase 2.3. l1 = 2

I plays a1 = Φα
0 + ωγ1 · (k1 − 2) the next to last hole in the γ1-block in α and II repsonds

with some b1 in β. If b1 < Φβ
0 , then G

a1,b1
RHS

is unbalanced and γ
a1,b1
RHS

= 2γ1 + 1. Thus,
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γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 + ωγ1 the hole in the γ1-block in β, then G

a1,b1
RHS

is pure

monomial and γ
a1,b1
RHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 < τ1. If b1 > Φβ
0 and is not the hole in

the γ1-block, this b1 is a γ1-descent and thus γ(α, β) ≤ 2γ1 < τ1.

Subcase 2.4. l1 = 3

I plays a1 = Φα
0 + ωγ1 · (k1 − 3) the third hole from the end in the γ1-block in α and II

responds with some b1 in β. If b1 < Φβ
0 , then Ga1,b1

RHS
is unbalanced and γa1,b1

RHS
= 2γ1 +1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 is either hole in the γ1-block of β, Ga1,b1
LHS

is pure monomial and

γ
a1,b1
LHS

≤ 2γ1 +1. Thus, γ(α, β) ≤ 2γ1 +2 = τ1. Any b1 > Φβ
0 that is not a hole is a γ1-descent

so that γ(α, β) ≤ 2γ1 < τ1.

Subcase 2.5. l1 = 4 and k1 = 5

I plays a1 = Φα
0 + ωγ1 · (k1 − 3) the third hole from the end in the γ1-block and II

responds with some b1 in β. If b1 < Φβ
0 , then Ga1,b1

RHS
is unbalanced and γa1,b1

RHS
= 2γ1 +1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

= 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 + ωγ1 the first hole in the γ1-block, then G

a1,b1
RHS

is as in

the l1 = 1 and k1 = 2 case above so that γa1,b1
RHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If

b1 > Φβ
0 is any other hole, then Ga1,b1

RHS
is pure monomial and γa1,b1

RHS
≤ 2γ1 +1. Thus, γ(α, β) ≤

2γ1 + 2 = τ1. Any b1 > Φβ
0 that is not a hole is a γ1-descent and thus γ(α, β) ≤ 2γ1 < τ1.

Subcase 2.6. l1 = 4 and k1 ≥ 6

I again plays a1 = Φα
0 + ωγ1 · (k1 − 3) the third hole from the end in the γ1-block and

II responds with some b1 in β. If b1 < Φβ
0 , then G

a1,b1
RHS

is unbalanced and γ
a1,b1
LHS

= 2γ1 + 2.

Thus, γ(α, β) ≤ 2γ1 +2 < τ1. If b1 = Φβ
0 , then Ga1,b1

LHS
is separated and γa1,b1

LHS
= 2γ1 +1. Thus,

γ(α, β) ≤ 2γ1 +2 < τ1. If b1 = Φβ
0 +ωγ1 the first hole in the γ1-block, then Ga1,b1

LHS
is as in the

l1 = 1 and k1 ≥ 3 case above so that γa1,b1
LHS

≤ 2γ1 + 2. Thus, γ(α, β) ≤ 2γ1 + 3 = τ1. If b1 is
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either of the two other holes in the γ1-block, then Ga1,b1
RHS

is pure monomial and γa1,b1
RHS

≤ 2γ1+1.

Any b1 > Φβ
0 that is not a hole is a γ1-descent and thus γ(α, β) ≤ 2γ1 < τ1.

Subcase 2.7. l1 ≥ 5

We show by induction that γ(α, β) ≤ τ1 = 2γ1 +⌊log2 (l1 + 3)⌋. Assume that the formula

for τ1 holds for all l′ < l1. The reader should recall the argument from Lemma 3. I plays

a1 = Φα
0 + ωγ1 · (l1 − 2⌊log2 l1⌋ + 1) and II responds with some b1 in β. If b1 < Φβ

0 , then Ga1,b1
RHS

is unbalanced and γ
a1,b1
RHS

≤ 2γ1 + 2. Thus, γ(α, β) ≤ 2γ1 + 3 ≤ 2γ1 + ⌊log2 (l1 + 3)⌋ = τ1.

If b1 = Φβ
0 , then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 < τ1.

Any b1 > Φβ
0 that is not a hole is a γ1-descent so that γ(α, β) ≤ 2γ1 < τ1. So suppose

b1 = Φβ
0 + ωγ1 · l′ is some hole in the γ1-block. There are two cases:

(1) 1 ≤ l′ ≤ l1 − 2⌊log2 l1⌋ or

(2) l1 − 2⌊log2 l1⌋ + 1 ≤ l′ < l1

Suppose first that 1 ≤ l′ ≤ l1−2⌊log2 l1⌋. Then γa1,b1
LHS

≤ 2γ1+⌊log2 (l′ + 3)⌋ either by induction

or by the formula when l′ = 1, 2, 3, 4, except possibly when l′ = 4 and k′ = l1−2⌊log2 l1⌋+1 ≥ 6.

We claim that this anomalous case does not adversely affect the proof.

Proof (claim). When 5 ≤ l1 ≤ 11, we have l′ ≤ 3 since we are in the case where

l′ ≤ l1 − 2⌊log2 l1⌋. Thus, γa1,b1
LHS

≤ 2γ1 + 2 = 2γ1 + ⌊log2 (l1 + 3)⌋ − 1. Now when l1 = 12, we

have l1 − 2⌊log2 l1⌋ + 1 = 5 so that if l′ = 4, we are not in the anomalous case and the formula

computes γa1,b1
LHS

≤ 2γ1 +2 = 2γ1 + ⌊log2 (l1 + 3)⌋−1. For l1 ≥ 13, we have ⌊log2 (l1 + 3)⌋ ≥ 4

and the l′ = 4, k′ = 6 case is not detrimental.

Now, we claim that

⌊log2 (l′ + 3)⌋ ≤ ⌊log2 (l1 + 3)⌋ − 1

Proof (claim). The case for 5 ≤ l1 ≤ 12 is covered by the above claim. So suppose l1 ≥ 13

and write l1 = 2⌊log2 l1⌋+1 − j where 1 ≤ j ≤ 2⌊log2 l1⌋. By hypothesis,

l′ ≤ l1 − 2⌊log2 l1⌋ = 2⌊log2 l1⌋+1 − j − 2⌊log2 l1⌋ = 2⌊log2 l1⌋ − j
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and hence

l′ + 3 ≤ 2⌊log2 l1⌋ + (3 − j)

Now if 1 ≤ j ≤ 3, then

⌊log2 (l′ + 3)⌋ ≤ ⌊log2 l1⌋ = ⌊log2 (l1 + 3)⌋ − 1

On the other hand, if 3 < j ≤ 2⌊log2 l1⌋, then

⌊log2 (l′ + 3)⌋ ≤ ⌊log2 l1⌋ − 1 = ⌊log2 (l1 + 3)⌋ − 1

This proves the claim.

Thus, when 1 ≤ l′l1 − 2⌊log2 l1⌋, we have γ(α, β) ≤ 2γ1 + ⌊log2 (l1 + 3)⌋ = τ1.

Now suppose that l1 − 2⌊log2 l1⌋ + 1 ≤ l′ < l1. Then Ga1,b1
RHS

is pure monomial and

γ
a1,b1
RHS

= 2γ1 + ⌊log2 (l1 − l′)⌋ ≤
⌊

log2

(

2⌊log2 l1⌋ − 1
)⌋

= ⌊log2 l1⌋ − 1

Thus, γ(α, β) ≤ 2γ1 + ⌊log2 l1⌋ ≤ 2γ1 + ⌊log2 (l1 + 3)⌋ = τ1.

This ends the case l1 ≥ 5 and this exhausts all of the cases of the formula when k1 > l1.

If k1 < l1, then the argument is symmetric using the obvious changes to the formula for τ1.

This ends the case when τ1 < τ0. Thus, γ(α, β) ≤ min{τ0, τ1}.

Lower Bound. γ(α, β) ≥ min{τ0, τ1}

Now we show that for every instance of the formula and every move for I a1 there is a

response for II b1 such that either γ(α, β) ≥ τ0 or γ(α, β) ≥ τ1. We break up the cases first

depending on the location of I’s move a1: either I moves in the τ0-block or I moves in the

τ1-block. Note that we will adopt the convention that both fence moves Φα
0 and Φβ

0 are in

the τ1-block.

Case 3. I plays a1 in the τ0-block

In this case, I plays either a1 < Φα
0 in α or a1 < Φβ

0 in β. Suppose α0 > β0.

Subcase 3.1. β0 > γ1 + 1 and Φβ
0 = ωβ0 · 1 is a monic monomial
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If a1 is in β or if a1 < Φβ
0 is in α, then II copies from below playing b1 = a1 in either α or

β, respectively. On the left, γa1,b1
LHS

= ∞. On the right, Ga1,b1
RHS

= G(α, β) and this a1 is stalling

for I. Suppose a1 ≥ ωβ in α. If β0 is a successor, then II plays b1 in β a (β0 − 1)-compression

of a1. On the left, γa1,b1
LHS

≥ 2(β0 − 1) + 1 by a compression argument. On the right, Ga1,b1
RHS

is

almost identical to G(α, β) and γ
a1,b1
RHS

≥ τ1. Thus, γ(α, β) ≥ 2β0. If β0 is limit, let β′ < β0.

Then II plays b1 a β′-compression of a1 in β. On the left, γa1,b1
LHS

≥ 2β′ + 1 by a compression

argument. On the right, γa1,b1
RHS

≥ τ1. Thus, for any β′ < β0, γ(α, β) ≥ 2β′ + 2. So we have

γ(α, β) ≥ 2β0.

Subcase 3.2. β0 > γ1 + 1 and Φβ
0 is not a monic monomial

Suppose a1 is in β. If a1 < Φα
0 , then II copies from below playing b1 = a1 in α and this

a1 is stalling for I. Note this case is vacuous for small Φβ
0 . If Φα

0 ≤ a1 ≤ Φβ
0 (or just a1 < Φβ

0

when Φβ
0 is small) and the terminal power of a1 is ≥ β0, then II plays b1 in α to pinch off

a block of ωα0 . On the left, γa1,b1
LHS

≥ 2β0. On the right, γa1,b1
RHS

≥ 2β0 using the τ0 term of

G
a1,b1
RHS

. Thus, γ(α, β) ≥ 2β0 + 1 = τ0. If Φα
0 ≤ a1 ≤ Φβ

0 (or just a1 < Φβ
0 when Φβ

0 is small)

and the terminal power of a1 is < β0, then II plays the same b1 he would have played on the

untailed version of a1, plus II copies a tail. The presence of the tail does not decrease the

lower bound. Now suppose a1 is in α. If a1 < Φβ
0 , then II copies from below and everything

is as above. If Φβ
0 ≤ a1 ≤ Φα

0 and the terminal power of a1 is ≥ β0. Then II plays b1 to

pinch off a block of ωβ0 in β. On the left, whenever the terminal power of a1 is > β0, G
a1,b1
LHS

is separated and γ
a1,b1
LHS

≥ 2β0. When the terminal power of a1 is β0 and l0 = 1, then G
a1,b1
LHS

is again separated. When the terminal power of a1 is β0 and l0 > 1, then the β0-block of

G
a1,b1
LHS

is pure monomial and in that block the γ is at least 2β0. So, on the left, we have in

all cases γa1,b1
LHS

≥ 2β0. On the right, Ga1,b1
RHS

is as in the monic monomial case, so by induction

γ
a1,b1
RHS

≥ 2β0. Thus, γ(α, β) ≥ 2β0 + 1.

Subcase 3.3. β0 = γ1 + 1 and Φβ
0 = ωβ0
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Any a1 in β or any a1 < Φβ
0 in α is stalling for I. Suppose a1 ≥ Φβ

0 in α. If l1 ≤ 3, then

II plays exactly the same as in the above β0 > γ1 + 1 case so that γ(α, β) ≥ 2β0. If l1 ≥ 4

and if the terminal power of a1 is > β0, then II plays b1 = Φβ
0 in β. On the left, Ga1,b1

LHS
is

separated so that γa1,b1
LHS

≥ 2β0. On the right, Ga1,b1
RHS

is unbalanced and γa1,b1
RHS

= 2γ1 +2 = 2β0.

Thus, γ(α, β) ≥ 2β0 + 1. If the terminal power of a1 is β0, then II plays b1 a γ1-compress of

a1 in β. On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

= 2γ1 + 2 = 2β0. On the right, Ga1,b1
RHS

is

almost identical to G(α, β) and γ
a1,b1
RHS

≥ τ1. Thus, γ(α, β) ≥ 2β0 + 1. If the terminal power

of a1 is γ1, then II plays ωγ1 · 4. On the left, Ga1,b1
LHS

is unbalanced and γa1,b1
LHS

= 2γ1 + 2 = 2β0.

On the right, using the τ0 term of Ga1,b1
RHS

, we have by induction γa1,b1
RHS

≥ 2β0. If the terminal

power of a1 is < γ1, then II plays the same b1 as if the terminal power of a1 were equal γ1

plus copying the small tail of a1. The presence of the small tail does not decrease the lower

bound. Thus, when l1 ≥ 4, γ(α, β) ≥ 2β0 + 1.

Subcase 3.4. β0 = γ1 + 1 and Φβ
0 = ωβ0 · 2

Any a1 in β or any a1 < Φβ
0 in α is stalling for I. Suppose a1 ≥ Φβ

0 in α. If the

terminal power of a1 is > β0, then II plays ωβ0 in β. On the left, Ga1,b1
LHS

is separated and

γ
a1,b1
LHS

= 2β0. On the right, Ga1,b1
RHS

is as in the above Φβ
0 = ωβ0 case and thus γa1,b1

RHS
≥ 2β0.

Thus, γ(α, β) ≥ 2β0 + 1. If the terminal power of a1 is β0, then II still plays ωβ0 . On the

left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

= 2β0. On the right, Ga1,b1
RHS

is as in the above Φβ
0 = ωβ0

case and thus γa1,b1
RHS

≥ 2β0. Thus γ(α, β) ≥ 2β0 +1. If the terminal power of a1 is < β0, then

II plays b1 = ωβ0 + η where η is the small tail of a1. The presence of the small tail does not

decrease the lower bound. Thus, when Φβ
0 = ωβ0 · 2, γ(α, β) ≥ 2β0 + 1.

Subcase 3.5. β0 = γ1 + 1 and Φβ
0 ≥ ωβ0 · 3 with terminal power β0

Suppose a1 is in β. If a1 < Φα
0 , then II copies from below playing b1 = a1 in α and this

a1 is stalling for I. Note this case is vacuous for small Φβ
0 . If Φα

0 ≤ a1 ≤ Φβ
0 (or just a1 ≤ Φβ

0

for small Φβ
0 ) and the terminal power of a1 is > β0, then II plays b1 in α to pinch off a block

of α0. On the left, γa1,b1
LHS

≥ 2β0 + 2. On the right, using the τ0 term of Ga1,b1
RHS

, by induction

37



we have γa1,b1
RHS

≥ 2β0 + 1. Thus, γ(α, β) ≥ 2β0 + 2. If Φα
0 ≤ a1 ≤ Φβ

0 and the terminal power

of a1 is β0, then II plays a β0-compression of a1. On the left, γa1,b1
LHS

≥ 2β0 + 1. On the right,

G
a1,b1
RHS

is at worst as in the Φβ
0 = ωβ0 case and thus γa1,b1

RHS
≥ 2β0 + 1 or γa1,b1

RHS
≥ 2β0 + 2

depending on the number of copies of ωγ1 . Thus, γ(α, β) ≥ τ0. Now suppose a1 is in α. If

a1 < Φβ
0 , then II copies from below and everything is as above. Suppose a1 ≥ Φβ

0 in α. If the

terminal power of a1 is > β0, then II plays b1 to pinch off a block of ωβ0 . On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≥ 2β0. On the right, Ga1,b1
RHS

is as in the Φβ
0 = ωβ0 case so that either

γ
a1,b1
RHS

≥ 2β0 or γa1,b1
RHS

≥ 2β0 + 1 depending on whether or not l1 ≤ 3. Thus, γ(α, β) ≥ 2β0 + 1

or γ(α, β) ≥ 2β0 + 2 depending or whether or not l1 ≤ 3. If the terminal power of a1 is

β0, then II plays again to pinch off a block of ωβ0 . On the left, Ga1,b1
LHS

is unbalanced and

γ
a1,b1
LHS

≥ 2β0 + 1. On the right Ga1,b1
RHS

is again as in the above case when Φβ
0 = ωβ0 . So

γ(α, β) ≥ 2β0 + 1 or γ(α, β) ≥ 2β0 + 2 depending on whether or not l1 ≤ 3. As before, if the

terminal power of a1 is < β0, II plays to pinch off a block of ωβ0 and copies the small tail of

a1. Thus, γ(α, β) ≥ 2β0 + 1 or γ(α, β) ≥ 2β0 + 2 depending on whether or not l1 ≤ 3.

So it follows if I plays a1 in the τ0-block, γ(α, β) ≥ τ0 ≥ min{τ0, τ1}.

Case 4. I plays a1 in the τ1-block

In this case we suppose that I plays either a1 ≥ Φα
0 in α or a1 ≥ Φβ

0 in β. Moreover,

assume without loss of generality α0 > β0.

Suppose k1 = l1. In this case, τ1 = ∞ and II responds in the same way to I’s a1: If

a1 = Φα
0 + η in α where 0 ≤ η < ωγ1 · k1 or if a1 = Φβ

0 + η in β where 0 ≤ η < ωγ1 · l1,

then II responds with the corresponding copying move b1 = Φβ
0 + η in β or b1 = Φα

0 + η in α,

respectively. Thus, γa1,b1
RHS

= ∞ in all cases. So, it is enough to analyze Ga1,b1
LHS

to show that

γ(α, β) ≥ τ0 as follows.

Subcase 4.1. β0 > γ1 + 1

We show that γ(α, β) ≥ 2β0 or γ(α, β) ≥ 2β0 + 1 depending on whether or not Φβ
0 is a

monic monomial. On the left, observe that Ga1,b1
LHS

is a separated game (when a1 is a fence
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move) or Ga1,b1
LHS

is separated with an ∞-game on the right. As before, the ∞-game does not

decrease the lower bound. γa1,b1
LHS

≥ 2β0 if Φβ
0 is a monic monomial and γa1,b1

LHS
≥ 2β0 + 1 if Φβ

0

is not a monic monomial. In either case, γ(α, β) ≥ τ0.

Subcase 4.2. β0 = γ1 + 1

Suppose also that Φβ
0 = ωβ0 . Observe that in the last case we did not use the fact that

β0 > γ1 +1. Thus, the same argument shows that γ(α, β) ≥ τ0. Suppose Φβ
0 = ωβ0 ·2. Then,

G
a1,b1
LHS

is separated or separated followed by an ∞-game. In either case, γa1,b1
LHS

≥ 2β0. Thus,

γ(α, β) ≥ 2β0 + 1 = τ0. Finally, if Φβ
0 ≥ ωβ0 · 3 and has terminal power β0. Then, Ga1,b1

LHS
is

either separated or separated followed by an ∞-game. Moreover, the separated game is on

more than one copy of ωβ0 so that γa1,b1
LHS

≥ 2β0 + 1. Thus, γ(α, β) ≥ 2β0 + 2 ≥ τ0.

When α0 < β0, a symmetric argument shows γ(α, β) ≥ τ0. This ends the case k1 = l1.

Now suppose k1 > l1 ≥ 1. Furthermore, suppose for the moment γ1 = 0. Note that we

are no longer necessarily assuming α0 > β0. We show that if a1 ≥ Φα
0 in α or a1 ≥ Φβ

0 in β,

then γ(α, β) ≥ ⌊log2 (l1 + 4)⌋ = τ1. We argue the first few cases l1 = 1, 2, 3, 4 individually

and then l1 ≥ 5 in general.

Subcase 4.3. l1 = 1

If I plays Φα
0 in α, then II plays b1 = 2 in β. On the left, Ga1,b1

LHS
= G(Φα

0 , 2) so that

γ
a1,b1
LHS

= 1 by Lemma 2. On the right, Ga1,b1
RHS

is as in Lemma 2 so that γa1,b1
RHS

≥ 1. Thus,

γ(α, β) ≥ 2 = ⌊log2 (l1 + 4)⌋. Similarly, if I plays a1 > Φα
0 in α, say a1 = Φα

0 + k′, then

II responds again with b1 = 2 in β. Both left and right games are trivially separated

(recall Lemma 2) so that γa1,b1
LHS

≥ 1 and γ
a1,b1
RHS

≥ 1. Thus, γ(α, β) ≥ 2 = τ1. If I plays

a1 = Φα
0 + (k1 − 1) in α, then II responds with b1 = Φβ

0 in β. On the right, Ga1,b1
RHS

is empty.

On the left, Ga1,b1
LHS

is trivially separated and γa1,b1
LHS

≥ 1. Thus, γ(α, β) ≥ 2 = τ1. Similarly, if

a1 = Φβ
0 in β, then II responds with b1 = Φα

0 + (k1 − 1) in α. The argument is the same and

γ(α, β) ≥ 2 = τ1.
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Subcase 4.4. l1 = 2

If I plays either endpoint a1 = Φα
0 + (k1 − 1) in α or a1 = Φβ

0 + 1 in β, then II responds

with the other corresponding endpoint. On the right, Ga1,b1
RHS

is empty. On the left, Ga1,b1
LHS

is

as in the previous l1 = 1 case so that γa1,b1
LHS

≥ 2. Thus, γ(α, β) ≥ 3 > ⌊log2 (l1 + 4)⌋ = τ1. If I

plays a1 = Φα
0 +k′ where 0 ≤ k′ < k1−1, then II plays b1 = 2 in α. On both the left and right

γ
a1,b1
LHS

≥ 1 and γ
a1,b1
RHS

≥ 1. Thus, γ(α, β) ≥ 2 = τ1. If I plays a1 = Φβ
0 in β, then II responds

with Φα
0 in α. On the left, Ga1,b1

LHS
is separated and γa1,b1

LHS
= 2β0 ≥ 2·1 = 2. On the right, Ga1,b1

RHS

is finite so that γa1,b1
RHS

= ⌊log2 (l1 + 1)⌋ = 1 by Lemma 1. Thus, γ(α, β) ≥ ⌊log2 (l1 + 4)⌋.

Subcase 4.5. l1 = 3

If I plays either endpoint, II responds with the other corresponding endpoint and the

argument is the same as above. If I plays a1 = Φα
0 + (k1 − 2) in α or a1 = Φβ

0 + 1 in β,

then II copies from above. On the right γa1,b1
RHS

= ∞. On the left, Ga1,b1
LHS

is as in the case

l1 = 1 above so that γa1,b1
LHS

≥ 1. Thus, γ(α, β) ≥ 2 = τ1. If I plays a1 = Φα
0 + k′ in α

where 0 ≤ k′ < k1 − 2, then II plays b1 = 2 in β. On both the left and right γa1,b1
LHS

≥ 1 and

γ
a1,b1
RHS

≥ 1. Thus, γ(α, β) ≥ 2 = τ1. If I plays b1 = Φβ
0 in β, then II responds with b1 = Φα

0

in α. On the left, Ga1,b1
LHS

is separated so that γa1,b1
LHS

≥ 2β0 = 2 · 1 = 2. On the right, Ga1,b1
RHS

is

finite so that γa1,b1
RHS

= ⌊log2 (l1 + 1)⌋ = 2. Thus, γ(α, β) ≥ 3 > τ1.

Subcase 4.6. l1 = 4

If I plays a1 ≥ Φα
0 + (k1 − 3) in α or a1 ≥ Φβ

0 + 1, then II copies from above. On

the right, Ga1,b1
RHS

is either empty or an ∞-game. On the left, Ga1,b1
LHS

is as in the l1 = 1, 2, 3

case so that γa1,b1
LHS

≥ 2. Thus, γ(α, β) ≥ 3 = ⌊log2 (l1 + 4)⌋ = τ1. If a1 = Φα
0 + k′ in α

where 0 ≤ k′ < k1 − 3, then II plays b1 = Φβ
0 in β. On the left, Ga1,b1

LHS
is separated so that

γ
a1,b1
LHS

≥ 2β0 ≥ 2. On the right, Ga1,b1
RHS

is finite so that γa1,b1
RHS

= ⌊log2 (l1 + 1)⌋ = 2. Thus,

γ(α, β) ≥ 3 = ⌊log2 (l1 + 4)⌋ = τ1. If I plays a1 = Φβ
0 in β, then II plays b1 = Φα

0 in α and

the argument is the same.
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Thus, for l1 = 1, 2, 3, 4, we have γ(α, β) ≥ ⌊log2 (l1 + 4)⌋.

Subcase 4.7. l1 ≥ 5

We prove the result by induction and assume that for all l′ < l1, γ(α, β) ≥ ⌊log2 (l′ + 4)⌋.

First, write l1 = 2⌊log2 l1⌋+1 − j where 1 ≤ j ≤ 2⌊log2 l1⌋. We divide first into two cases:

j = 1, 2, 3, 4 and 5 ≤ j ≤ 2⌊log2 l1⌋.

Suppose j = 1, 2, 3, 4. If I plays a1 in β, say Φβ
0 + l′ where 0 ≤ l′ < l1, then II copies from

either below or above, depending on the value of l′. If 0 ≤ l′ ≤ l1−2⌊log2 l1⌋, then II copies from

below playing b1 = Φα
0 +l′ in α. On the left, Ga1,b1

LHS
is either separated (i.e., l′ = 0) or Ga1,b1

LHS
is a

separated game followed by an ∞-game (i.e., l′ > 0). Suppose Ga1,b1
LHS

is separated. If β0 > γ1,

then γ
a1,b1
LHS

= τ0 since the τ0-term of G(α, β) is the same as the separated game formula. If

β0 = γ1 + 1, then by inspection of the formula γa1,b1
LHS

≥ τ0 − 1. In either case, γa1,b1
LHS

≥ τ0 − 1.

On the right, Ga1,b1
RHS

is finite so that γa1,b1
RHS

= ⌊log2 (l1 − l′)⌋ ≥ ⌊log2 l1⌋. Thus, γ(α, β) ≥

min{τ0, ⌊log2 l1⌋+1} = min{τ0, ⌊log2 (l1 + 4)⌋}. On the other hand, if l1−2⌊log2 l1⌋ +1 ≤ l′ ≤

l1 − 1, then II copies from above playing b1 = Φα
0 + (k1 − (l1 − l′)). On the right, γa1,b1

RHS
= ∞.

On the left, by induction γ
a1,b1
LHS

≥ ⌊log2 (l′ + 4)⌋ ≥
⌊

log2

(

2⌊log2 l1⌋ + (5 − j)
)⌋

. Since j ≤ 4,

this means γa1,b1
LHS

≥
⌊

log2

(

2⌊log2 l1⌋ + 1
)⌋

= ⌊log2 l1⌋. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋+1} =

min{τ0, ⌊log2 (l1 + 4)⌋}. Now suppose I plays a1 in α, say a1 = Φα
0 + k′ where 0 ≤ k′ < k1.

If 0 ≤ k′ ≤ l1 − 2⌊log2 l1⌋, then as above, II copies from below playing a1 = Φβ
0 + k′ and the

argument is the same as before. If k1 − (2⌊log2 l1⌋ − 1) ≤ k′ ≤ k1 − 1, then as before, II

copies from above playing b1 = Φβ
0 + (l1 − (k1 − k′)) and the argument is the same as before.

Finally, if l1 − 2⌊log2 l1⌋ + 1 ≤ k′ ≤ k1 − 2⌊log2 l1⌋, then II plays b1 = Φβ
0 + l1 − 2⌊log2 l1⌋. On the

left, by induction γ
a1,b1
LHS

≥
⌊

log2

(

l1 − 2⌊log2 l1⌋ + 4
)⌋

=
⌊

log2

(

2⌊log2 l1⌋ + (4 − j)
)⌋

= ⌊log2 l1⌋

since j ≤ 4. On the right, Ga1,b1
RHS

is finite, and γ
a1,b1
RHS

=
⌊

log2

(

2⌊log2 l1⌋
)⌋

= ⌊log2 l1⌋. Thus,

γ(α, β) ≥ min{τ0, ⌊log2 l1⌋ + 1} = min{τ0, ⌊log2 (l1 + 4)⌋}.

Suppose 5 ≤ j ≤ 2⌊log2 l1⌋. If I plays a1 in β, say Φβ
0 + l′ where 0 ≤ l′ ≤ l1 − 1,

then again II either copies from below or above, depending on the value of l′. If 0 ≤

l′ ≤ l1 − 2⌊log2 l1⌋−1, then II copies from below playing b1 = Φα
0 + l′ in α. Using the same
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reasoning as above, on the left, γa1,b1
LHS

≥ τ0 − 1. On the right, Ga1,b1
RHS

is finite and γ
a1,b1
RHS

=

⌊log2 (l1 − l′)⌋ ≥
⌊

log2

(

2⌊log2 l1⌋−1
)⌋

= ⌊log2 l1⌋ − 1. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} =

min{τ0, ⌊log2 (l1 + 4)⌋} since 5 ≤ j ≤ 2⌊log2 l1⌋. If l1 − 2⌊log2 l1⌋−1 + 1 ≤ l′ ≤ l1 − 1, then II

copies from above playing b1 = Φα
0 +(k1− (l1− l

′)). On the right, γa1,b1
RHS

= ∞. On the left, by

induction γ
a1,b1
LHS

≥ ⌊log2 (l′ + 4)⌋ ≥
⌊

log2

(

l1 − 2⌊log2 l1⌋−1 + 4
)⌋

≥
⌊

log2

⌊

l1
2

⌋⌋

= ⌊log2 l1⌋ − 1.

Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} = min{τ0, ⌊log2 (l1 + 4)⌋}. On the other hand, suppose

I plays a1 in α, say Φα
0 + k′ where 0 ≤ k′ ≤ k1 − 1. If 0 ≤ k′ ≤ l1 − 2⌊log2 l1⌋−1, then

as before, II copies from below playing b1 = Φβ
0 + k′ in β and the argument is the same

as before. If k1 − 2⌊log2 l1⌋−1 ≤ k′ ≤ k1 − 1, then as before, II copies from above playing

b1 = Φβ
0 +(l1− (k1 −k

′)) and the argument is the same as before. Finally, if l1 −2⌊log2 l1⌋−1 ≤

k′ ≤ k1 − 2⌊log2 l1⌋−1, then II plays b1 = Φβ
0 + (l1 − 2⌊log2 l1⌋−1). On the left, by induction

γ
a1,b1
LHS

≥
⌊

log2

(

l1 − 2⌊log2 l1⌋−1 + 4
)⌋

≥
⌊

log2

⌊

l1
2

⌋⌋

= ⌊log2 l1⌋ − 1. On the right, Ga1,b1
RHS

is

finite and γ
a1,b1
RHS

≥
⌊

log2

(

2⌊log2 l1⌋−1
)⌋

= ⌊log2 l1⌋ − 1. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} =

min{τ0, ⌊log2 (l1 + 4)⌋} since 5 ≤ j ≤ 2⌊log2 l1⌋. This ends the case for γ1 = 0.

Now suppose γ1 > 0.

Subcase 4.8. l1 = 1 and k1 = 2

If I plays a1 = Φα
0 in α, then II responds with b1 = Φβ

0 in β. On the left, Ga1,b1
LHS

is separated

and γ
a1,b1
LHS

≥ 2β0 ≥ 2γ1 + 2. On the right, Ga1,b1
RHS

is pure monomial and γ
a1,b1
RHS

= 2γ1. Thus,

γ(α, β) ≥ 2γ1 + 1. The argument is similar if I plays a1 = Φβ
0 in β. If I plays a1 = Φα

0 + ωγ1 ,

the hole in α, then II plays b1 = Φβ
0 the fence in β. On the right γa1,b1

RHS
= ∞. On the left,

G
a1,b1
LHS

is separated and γa1,b1
LHS

= 2γ1. Thus, γ(α, β) ≥ 2γ1 +1. If I plays any a1 in the γ1-block

with a small tail, II can copy a tail and keep γ(α, β) ≥ 2γ1 + 1.

Subcase 4.9. l1 = 1 and k1 ≥ 3

If I plays a1 = Φα
0 in α, then II responds with b1 = ωγ1 · 2 in β. On the left, Ga1,b1

LHS
is

separated and γ
a1,b1
LHS

= 2γ1 + 1. On the right, Ga1,b1
RHS

is unbalanced on at least 3 copies and

γ
a1,b1
RHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. If I plays a1 = Φβ
0 in β, then II copies from above
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playing b1 = Φα
0 + ωγ1 · (k1 − 1). On the left, Ga1,b1

LHS
is unbalanced and γ

a1,b1
LHS

= 2γ1 + 1. On

the right, γa1,b1
RHS

= ∞. Thus, γ(α, β) ≥ 2γ1 +2. Similarly, if I plays a1 = Φα
0 +ωγ1 · (k1−1) in

α, then II copies from above playing b1 = Φβ
0 in β and the argument is identical. If I plays

a1 = Φα
0 + ωγ1 · k′ in α where 1 ≤ k′ < k1 − 1, then II responds with b1 = ωγ1 · 2 in β. On

the left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

= 2γ1 + 1. On the right, Ga1,b1
RHS

is unbalanced on at

least 2 copies and γ
a1,b1
RHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. If I plays any a1 with a small

tail in either α or β, then II responds by playing his response to the untailed a1 along with

copying the small tail. The presence of the tail does not decrease the lower bound.

Subcase 4.10. l1 = 2

If I plays a1 = Φα
0 in α, then II responds with b1 = Φβ

0 in β. On the left, Ga1,b1
LHS

is

separated and γ
a1,b1
LHS

≥ 2β0 ≥ 2(γ1 + 1) = 2γ1 + 2. On the left, Ga1,b1
RHS

is pure monomial

and γ
a1,b1
RHS

= 2γ1 + ⌊log2 2⌋ = 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. Similarly, if I plays

a1 = Φβ
0 in β, then II responds with b1 = Φα

0 in α and the argument is the same. If I plays

a1 = Φα
0 + ωγ1 · (k1 − 1) in α, then II copies from above playing b1 = Φβ

0 + ωγ1 · 1 in β.

On the left, Ga1,b1
LHS

is as in the l1 = 1 case and γ
a1,b1
LHS

≥ 2γ1 + 1. On the right, γa1,b1
RHS

= ∞.

Thus, γ(α, β) ≥ 2γ1 + 2. Similarly, if I plays a1 = Φα
0 + ωγ1 · 1, II copies from above and

the argument is the same. If I plays a1 = Φα
0 + ωγ1 · k′ in α where 1 ≤ k′ < k1 − 1, then II

responds with b1 = ωγ1 · 2 in β. On the left, Ga1,b1
LHS

is unbalanced on at least 2 copies of ωγ1

and γa1,b1
LHS

≥ 2γ1+1. On the right, Ga1,b1
RHS

is unbalanced on 2 copies of ωγ1 and γa1,b1
RHS

= 2γ1+1.

Thus, γ(α, β) ≥ 2γ1 +2. If I plays any a1 with a small tail in either α or β, then II responds

by playing his response to the untailed a1 along with copying the small tail. The presence

of the tail does not decrease the lower bound.

Subcase 4.11. l1 = 3

If I plays a1 = Φα
0 in α, then II responds with b1 = Φβ

0 in β. On the left, Ga1,b1
LHS

is separated

and γ
a1,b1
LHS

≥ 2β0 ≥ 2γ1 + 2. On the right, Ga1,b1
RHS

is pure monomial γa1,b1
RHS

= 2γ1 + ⌊log2 3⌋ =

2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. Similarly, if I plays a1 = Φβ
0 in β, then II responds with
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b1 = Φβ
0 in β and the argument is the same. If I plays a1 = Φα

0 +ωγ1 ·k′ in α where k′ = k1−1

or k1 −2, then II copies from above playing b1 = Φβ
0 +ωγ1 + l′ where l′ = 2 or 1, respectively.

On the left, Ga1,b1
LHS

is as in the above l1 = 2 or l1 = 1 case and γa1,b1
LHS

≥ 2γ1 + 1. On the right,

γ
a1,b1
RHS

= ∞. Thus, γ(α, β) ≥ 2γ1 + 2. Similarly, if I plays a1 = Φβ
0 + ωγ1 · 1 or Φβ

0 + ωγ1 · 2 in

β, II plays b1 = Φα
0 +ωγ1 · (k1 − 1) and the argument is the same. If I plays a1 = Φα

0 +ωγ1 ·k′

in α where 1 ≤ k′ < k1 − 2, then II responds with b1 = ωγ1 · 2 in β. On the left, Ga1,b1
LHS

is

unbalanced on 2 copies of ωγ1 and γa1,b1
LHS

= 2γ1 + 1. On the right, Ga1,b1
RHS

is unbalanced on at

least 3 copies of ωγ1 and γ
a1,b1
RHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. If I plays any a1 with a

small tail in either α or β, then II responds by playing his response to the untailed a1 along

with copying the small tail. The presence of the tail does not decrease the lower bound.

Subcase 4.12. l1 = 4 and k1 = 5

If I plays a1 = Φα
0 in α, then II responds with b1 = Φβ

0 in β. On the left, Ga1,b1
LHS

is

separated and γ
a1,b1
LHS

≥ 2β0 ≥ 2γ1 + 2. On the right, Ga1,b1
RHS

is pure monomial and γ
a1,b1
RHS

=

2γ1 + ⌊log2 4⌋ = 2γ1 = 2. Thus, γ(α, β) ≥ 2γ1 + 3 > 2γ1 + 2. Similarly, if I plays a1 = Φβ
0

in β, then II responds with b1 = Φα
0 in α and the argument is the same. Now suppose I

plays a1 = Φα
0 + ωγ1 · k′. If k′ = k1 − 1, k1 − 2, or k1 − 3, then II copies from above playing

b1 = Φβ
0 + ωγ·l′ where l′ = 3, 2, or 1, respectively. In all three cases, γa1,b1

RHS
= ∞. On the left,

G
a1,b1
LHS

is as in the l1 = 3, 2, or 1 cases, respectively. When l1 = 3 or 2, γa1,b1
LHS

≥ 2γ1 + 2 and

when l1 = 1, γa1,b1
LHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2. Similarly, if I plays a1 = Φβ
0 + ωγ1 · l′

in β where l′ = 1, 2, 3. Now when 1 ≤ k′ < k1 − 3, II responds with b1 = ωγ1 · 4 in β. On

the left, Ga1,b1
LHS

is separated on 4 copies of ωγ1 and γ
a1,b1
LHS

= 2γ1 + 2. On the right, Ga1,b1
RHS

is

separated on at least 4 copies of ωγ1 and γa1,b1
RHS

≥ 2γ1 + 2. Thus, γ(α, β) ≥ 2γ1 + 2. If I plays

any a1 with a small tail in either α or β, then II responds by playing his response to the

untailed a1 along with copying the small tail. The presence of the tail does not decrease the

lower bound.

Subcase 4.13. l1 = 4 and k1 ≥ 6
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Observe from the k1 = 5 case that we actually have γ(α, β) ≥ 2γ1 + 3 except when I

plays a1 = Φα
0 + ωγ1 · (k1 − 3) in α and II responds with b1 = Φβ

0 + ωγ1 · 1. Under our

current hypothesis of k1 ≥ 6, this now puts Ga1,b1
LHS

in the l1 = 1 and k1 = 3 case so that

γ
a1,b1
LHS

≥ 2γ1 + 2. All other cases when k1 ≥ 6 are argued the same as in the k1 = 5 case.

Subcase 4.14. l1 ≥ 5

The argument is similar to the γ1 = 0 case except that we consider the holes in the γ1-

block in the same way we did the points in the γ1 = 0 case. We prove the result by induction

and assume that for all l′ < l1, γ(α, β) ≥ 2γ1 + ⌊log2 (l′ + 3)⌋. First, write l1 = 2⌊log2 l1⌋+1 − j

where 1 ≤ j ≤ 2⌊log2 l1⌋. We divide first into two cases: j = 1, 2, 3 and 4 ≤ j ≤ 2⌊log2 l1⌋.

Suppose j = 1, 2, 3. If I plays a1 = Φβ
0 + ωγ1 · l′ in α where 0 ≤ l′l1, then II copies either

from below or above, depending on the value of l′. If 0 ≤ l′ ≤ l1−2⌊log2 l1⌋, then II copies from

below playing b1 = Φα
0 +l′ in α. On the left, Ga1,b1

LHS
is either separated (i.e., l′ = 0) or Ga1,b1

LHS
is a

separated game followed by an ∞-game (i.e., l′ > 0). Suppose Ga1,b1
LHS

is separated. If β0 > γ1,

then γ
a1,b1
LHS

= τ0 since the τ0-term of G(α, β) is the same as the separated game formula. If

β0 = γ1 + 1, then by inspection of the formula γa1,b1
LHS

≥ τ0 − 1. In either case, γa1,b1
LHS

≥ τ0 − 1.

On the right, Ga1,b1
RHS

is finite so that γa1,b1
RHS

= ⌊log2 (l1 − l′)⌋ ≥ ⌊log2 l1⌋. Thus, γ(α, β) ≥

min{τ0, ⌊log2 l1⌋+1} = min{τ0, ⌊log2 (l1 + 3)⌋}. On the other hand, if l1−2⌊log2 l1⌋ +1 ≤ l′ ≤

l1 − 1, then II copies from above playing b1 = Φα
0 + (k1 − (l1 − l′)). On the right, γa1,b1

RHS
= ∞.

On the left, by induction γ
a1,b1
LHS

≥ ⌊log2 (l′ + 4)⌋ ≥
⌊

log2

(

2⌊log2 l1⌋ + (4 − j)
)⌋

. Now j ≤ 3

means γa1,b1
LHS

≥
⌊

log2

(

2⌊log2 l1⌋ + 1
)⌋

= ⌊log2 l1⌋. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋ + 1} =

min{τ0, ⌊log2 (l1 + 3)⌋}. Now suppose I plays a1 in α, say a1 = Φα
0 + k′ where 0 ≤ k′ < k1.

If 0 ≤ k′ ≤ l1 − 2⌊log2 l1⌋, then as above, II copies from below playing a1 = Φβ
0 + k′ and the

argument is the same as before. If k1 − (2⌊log2 l1⌋ − 1) ≤ k′ ≤ k1 − 1, then as before, II

copies from above playing b1 = Φβ
0 + (l1 − (k1 − k′)) and the argument is the same as before.

Finally, if l1 − 2⌊log2 l1⌋ + 1 ≤ k′ ≤ k1 − 2⌊log2 l1⌋, then II plays b1 = Φβ
0 + l1 − 2⌊log2 l1⌋. On the

left, by induction γ
a1,b1
LHS

≥
⌊

log2

(

l1 − 2⌊log2 l1⌋ + 3
)⌋

=
⌊

log2

(

2⌊log2 l1⌋ + (3 − j)
)⌋

= ⌊log2 l1⌋
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since j ≤ 3. On the right, Ga1,b1
RHS

is finite, and γ
a1,b1
RHS

=
⌊

log2

(

2⌊log2 l1⌋
)⌋

= ⌊log2 l1⌋. Thus,

γ(α, β) ≥ min{τ0, ⌊log2 l1⌋ + 1} = min{τ0, ⌊log2 (l1 + 3)⌋}.

Suppose 4 ≤ j ≤ 2⌊log2 l1⌋. If I plays a1 in β, say Φβ
0 + l′ where 0 ≤ l′ ≤ l1 − 1,

then again II either copies from below or above, depending on the value of l′. If 0 ≤

l′ ≤ l1 − 2⌊log2 l1⌋−1, then II copies from below playing b1 = Φα
0 + l′ in α. Using the same

reasoning as above, on the left, γa1,b1
LHS

≥ τ0 − 1. On the right, Ga1,b1
RHS

is finite and γ
a1,b1
RHS

=

⌊log2 (l1 − l′)⌋ ≥
⌊

log2

(

2⌊log2 l1⌋−1
)⌋

= ⌊log2 l1⌋ − 1. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} =

min{τ0, ⌊log2 (l1 + 3)⌋} since 4 ≤ j ≤ 2⌊log2 l1⌋. If l1 − 2⌊log2 l1⌋−1 + 1 ≤ l′ ≤ l1 − 1, then II

copies from above playing b1 = Φα
0 +(k1− (l1− l

′)). On the right, γa1,b1
RHS

= ∞. On the left, by

induction γ
a1,b1
LHS

≥ ⌊log2 (l′ + 3)⌋ ≥
⌊

log2

(

l1 − 2⌊log2 l1⌋−1 + 3
)⌋

≥
⌊

log2

⌊

l1
2

⌋⌋

= ⌊log2 l1⌋ − 1.

Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} = min{τ0, ⌊log2 (l1 + 3)⌋}. On the other hand, suppose

I plays a1 in α, say Φα
0 + k′ where 0 ≤ k′ ≤ k1 − 1. If 0 ≤ k′ ≤ l1 − 2⌊log2 l1⌋−1, then

as before, II copies from below playing b1 = Φβ
0 + k′ in β and the argument is the same

as before. If k1 − 2⌊log2 l1⌋−1 ≤ k′ ≤ k1 − 1, then as before, II copies from above playing

b1 = Φβ
0 +(l1− (k1 −k

′)) and the argument is the same as before. Finally, if l1 −2⌊log2 l1⌋−1 ≤

k′ ≤ k1 − 2⌊log2 l1⌋−1, then II plays b1 = Φβ
0 + (l1 − 2⌊log2 l1⌋−1). On the left, by induction

γ
a1,b1
LHS

≥
⌊

log2

(

l1 − 2⌊log2 l1⌋−1 + 3
)⌋

≥
⌊

log2

⌊

l1
2

⌋⌋

= ⌊log2 l1⌋ − 1. On the right, Ga1,b1
RHS

is

finite and γ
a1,b1
RHS

≥
⌊

log2

(

2⌊log2 l1⌋−1
)⌋

= ⌊log2 l1⌋ − 1. Thus, γ(α, β) ≥ min{τ0, ⌊log2 l1⌋} =

min{τ0, ⌊log2 (l1 + 4)⌋} since 4 ≤ j ≤ 2⌊log2 l1⌋. This ends the case for γ1 > 0. A symmetric

formula holds if k1 < l1. Thus, in all cases γ(α, β) ≥ min{τ0, τ1}. �

4.4.2. n > 1

Our final theorem computes γ(α, β) for the Common CNF game when n > 1. The

theorem will be the culmination of all of the formulas we have proven thus far with one new

twist. We begin by defining a formula that we will henceforth refer to as the recursive

condition. This formula checks whether or not a suitable condition exists for player II to

exploit a small advantage. Let ϕ(c, s, t) be the formula

s ≤ t < n ∧ (ct+1 6= 3 ∨ γt > γt+1 + 1) ∧ ∀s ≤ j < t(cj+1 = 3 ∧ γj = γj+1 + 1)
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The variable c stands for coefficient and, according to our notational conventions, c will

always be either k or l.

We reset our notation. Let α, β have common CNFs:

α = Φα
0 + ωγ1 · k1 + · · · + ωγn · kn

β = Φβ
0 + ωγ1 · l1 + · · · + ωγm · lm

where the CNFs of Φα
0 ,Φ

β
0 are separated and n > 1. When Φα

0 ,Φ
β
0 6= ∅, identify the terminal

terms of Φα
0 ,Φ

β
0 as ωα0 · k0 and ωβ0 · l0. We define the ordinal terms τi for 0 ≤ i ≤ n as

follows:

Term τ0: If both Φα
0 ,Φ

β
0 = ∅, then τ0 = ∞. Henceforth in this case, assume that not

both Φα
0 ,Φ

β
0 = ∅.

Suppose Φα
0 6= ∅ and Φβ

0 = ∅. If l1 = 1,

τ0 =















2γ1 + 1 ∃1 ≤ t < n(ϕ(l, 1, t) ∧ γt = γt+1 + 1 ∧ lt+1 > 3)

2γ1 otherwise

If l1 = 2, then τ0 = 2γ1 + 1.

If l1 = 3, then

τ0 =















2γ1 + 2 ∃1 ≤ t < n(ϕ(l, 1, t) ∧ γt = γt+1 + 1 ∧ lt+1 > 3)

2γ1 + 1 otherwise

If l1 ≥ 4, then τ0 = 2γ1 + 2. The formula for Φα
0 = ∅, Φβ

0 6= ∅ is symmetric.

Now suppose Φα
0 ,Φ

β
0 6= ∅ and α0 > β0. The formula for α0 < β0 is symmetric. For the

sake of the ϕ(c, s, t) formula, let γ0 = β0. First, suppose β0 > γ1 + 1. Then,

τ0 =















2β0 Φβ
0 is a monic monomial

2β0 + 1 otherwise

Now suppose β0 = γ1 + 1 and Φβ
0 = ωβ0 · l0 is a monomial.
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If l0 = 1,

τ0 =















2β0 + 1 ∃0 ≤ t < n(ϕ(l, 0, t) ∧ γt = γt+1 + 1 ∧ lt+1 > 3)

2β0 otherwise

If l0 = 2, then τ0 = 2β0 + 1.

If l0 = 3, then

τ0 =















2β0 + 2 ∃0 ≤ t < n(ϕ(l, 0, t) ∧ γt = γt+1 + 1 ∧ lt+1 > 3)

2β0 + 1 otherwise

If l0 ≥ 4, then τ0 = 2β0 + 2.

If Φβ
0 not a monomial, then

τ0 =















2β0 + 2 ∃0 ≤ t < n(ϕ(l, 0, t) ∧ γt = γt+1 + 1 ∧ lt+1 > 3)

2β0 + 1 otherwise

Terms τi, for 1 ≤ i ≤ n: For any 1 ≤ i ≤ n, if ki = li, then τi = ∞.

Suppose ki > li. First define for 1 ≤ i < n and c = k or c = l

R
c
i =















1 ∃i ≤ t < n(ϕ(c, i, t) ∧ γt = γt+1 + 1 ∧ ct+1 > 3)

0 otherwise

This is a flag which essentially says whether or not the recursive condition holds for the ith

block on the k or l side.

Let i = 1.

If Φα
0 ,Φ

β
0 = ∅, then τ1 = 2γ1 +

⌊

log2

(

l1 + Rl
1

)⌋

.

If Φα
0 6= ∅ and Φβ

0 = ∅, then τ1 = τ0.

If Φα
0 = ∅ and Φβ

0 6= ∅, then
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τ1 =



























2γ1 + 1 if either l1 = 1 and k1 = 2

or l1 = 2 and k1 = 3 and Rk
1 = 0

2γ1 + 2 otherwise

Now let 1 ≤ i ≤ n.

If i = 1 and Φα
0 ,Φ

β
0 6= ∅ or if 1 < i < n, then if li = 1 and ki = 2, then

τi =















2γi + 2 if Rk
i = Rl

i = 1

2γi + 1 otherwise

If li = 1 and ki ≥ 3, then τi = 2γi + 2.

If li = 2, then τi = 2γi + 2.

If li = 3 and ki = 4, then τi = 2γi + 2.

If li = 3 and ki ≥ 5 or if l1 = 4 and k1 = 5

τi =















2γi + 3 Rk
i = Rl

i = 1

2γi + 2 otherwise

If li = 4 and k1 ≥ 6, then τi = 2γ1 + 3.

If li ≥ 5, τi = 2γi +
⌊

log2

(

li + 3 + Rl
i

)⌋

. A symmetric formula holds for ki < li.

For i = n, we have simply the τ1-term from the n = 1 case:

If γn = 0, then

τn = ⌊log2 (ln + 4)⌋

Suppose γn > 0. If ln = 1, then

τn =















2γn + 1 if kn = 2

2γn + 2 if kn ≥ 3
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If ln = 2, 3, then τn = 2γn + 2. If ln = 4

τn =















2γn + 2 if kn = 5

2γn + 3 if kn ≥ 6

If ln ≥ 5, τn = 2γn + ⌊log2 (ln + 3)⌋. A symmetric formula holds for kn < ln.

Theorem 4 (The Common CNF Game, n > 1). Let α = Φα
0 + ωγ1 · k1 + · · · + ωγn · kn and

β = Φβ
0 + ωγ1 · l1 + · · · + ωγn · ln be written in common CNF where Φα

0 ,Φ
β
0 are separated.

Then if τ0, τ1, . . . , τn are defined as above

γ(α, β) = min{τ0, τ1, . . . , τn}

Proof. Let α, β be as above. We prove first that γ(α, β) ≤ min{τ0, τ1, . . . , τn}.

Upper Bound. γ(α, β) ≤ min{τ0, τ1, . . . , τn}

We prove the bound holds by induction. Assume that the formula holds for smaller

games.

Observe that I’s choice of his first move depends on which of τ0, τ1, . . . , τn is smallest. So

we break up the proof into cases as in the n = 1 case. We note here that at least one of the

τi, 0 ≤ i ≤ n must 6= ∞.

Case 1. τ0 ≤ τ1, . . . , τn

Immediately we have that τ0 6= ∞, so it cannot be the case that both Φα
0 ,Φ

β
0 = ∅.

Subcase 1.1. Φα
0 6= ∅,Φβ

0 = ∅, and l1 = 1

I plays ωγ1 ·1 in α. If II responds with any b1 in β having terminal power < γ1, then Ga1,b1
LHS

is separated. Thus, any such b1 is easily seen to be a γ1-descent so that γ(α, β) ≤ 2γ1 ≤ τ0.

The only response that is not immediately a descent is b1 = Φβ
1 in β. On the left, γa1,b1

LHS
= ∞,

so it is enough to show that the bound in τ0 formula holds on the right. Suppose the recursive

condition in the τ0 formula holds. Then by induction, using the τ0 term from G
a1,b1
RHS

, we have
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γ
a1,b1
RHS

≤ 2γ2 + 2 = 2(γ2 + 1) = 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ0. Now suppose that

the recursive condition in the τ0 formula does not hold. If γ1 > γ2 + 1, then again by

induction, γa1,b1
RHS

≤ 2γ2 + 2. Thus, γ(α, β) ≤ 2γ2 + 3 = 2(γ2 + 1) + 1 < 2γ1. If γ1 = γ2 + 1,

then it must be the case that l2 ≤ 3, for otherwise we would contradict our assumption

that the recursive condition holds. If l2 = 1, 2, then by induction γ
a1,b1
RHS

≤ 2γ2 + 1. Thus,

γ(α, β) ≤ 2γ2 + 2 = 2γ1. If l2 = 3, then it cannot be the case that the recursive condition in

the τ0 term of Ga1,b1
RHS

holds, for that would contradict our assumption that it does not hold.

So when l2 = 3, we must have γa1,b1
RHS

≤ 2γ2 + 1. Thus, γ(α, β) ≤ 2γ2 + 2 = 2γ1.

Subcase 1.2. Φα
0 6= ∅,Φβ

0 = ∅, and l1 = 2

I plays ωγ1 · 2 in α. Any response for II b1 in β that has terminal power < γ1 is a

γ1-descent and γ(α, β) ≤ 2γ1 < τ0. If b1 = ωγ1 · 1 in β, the hole in the γ1-block, then

G
a1,b1
LHS

is pure monomial and γ
a1,b1
LHS

≤ 2γ1 + ⌊log2 1⌋ = 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ0.

If b1 = Φβ
1 , the fence on the γ1, γ2-blocks, then by induction, using the τ0-term of Ga1,b1

RHS
,

γ
a1,b1
RHS

≤ 2γ2 + 2 = 2(γ2 + 1) ≤ 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1.

Subcase 1.3. Φα
0 6= ∅,Φβ

0 = ∅, and l1 = 3

I plays ωγ1 · 3 in α. Any response for II b1 in β that has terminal power < γ1 is a γ1-

descent and γ(α, β) ≤ 2γ1 < τ0. If b1 = ωγ1 · 1 in β, the hole in the γ1-block, then G
a1,b1
LHS

is pure monomial and γ
a1,b1
LHS

≤ 2γ1 + ⌊log2 1⌋ = 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 ≤ τ0. If

b1 = ωγ1 · 2 in β, the second hole in the γ1-block, then G
a1,b1
RHS

is as in the l1 = 1 case above.

If the recusive condition holds, then γa1,b1
RHS

≤ 2γ1 + 1 and thus γ(α, β) ≤ 2γ1 + 2 = τ0. If the

the recursive condition does not hold, then γ
a1,b1
RHS

≤ 2γ1 and thus γ(α, β) ≤ 2γ1 + 1 = τ0.

If b1 = Φβ
1 , then by induction, using the τ0-term of Ga1,b1

RHS
, γa1,b1

RHS
≤ 2γ2 + 2 ≤ 2γ1. Thus,

γ(α, β) ≤ 2γ1 + 1 ≤ τ0.

Subcase 1.4. Φα
0 6= ∅,Φβ

0 = ∅, and l1 ≥ 4
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I plays Φα
0 in α. Any response for II b1 must have terminal power ≤ γ1. Since α0 > γ1,

G
a1,b1
LHS

is separated and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2.

Thus, when Φα
0 6= ∅,Φβ

0 = ∅, γ(α, β) ≤ τ0.

Now assume Φα
0 ,Φ

β
0 6= ∅ and assume α0 > β0.

Subcase 1.5. Φα
0 ,Φ

β
0 6= ∅, β0 > γ1 + 1 and Φβ

0 is a monic monomial

The argument is similar to the same subcases in the proof of the upper bound in Theorem

3 with one exception. Instead ofGa1,b1
RHS

being unbalanced so that we use the Unbalanced Game

formula to get γa1,b1
RHS

≤ 2γ1 + 2, we are using induction and the τ0-term of Ga1,b1
RHS

to get the

same inequality.

Subcase 1.6. Φα
0 ,Φ

β
0 6= ∅, β0 > γ1 + 1 and Φβ

0 is not a monic monomial

The same comments from the previous subcase apply here as well.

Subcase 1.7. Φα
0 ,Φ

β
0 6= ∅, β0 = γ1 + 1 and Φβ

0 = ωβ0 · l0

The argument is identical to the Φα
0 6= ∅,Φβ

0 = ∅ subcase above, replacing γ1 in that

argument with β0.

Subcase 1.8. Φα
0 ,Φ

β
0 6= ∅, β0 = γ1 + 1 and Φβ

0 not a monomial

The argument is similar to the case β0 = γ1 + 1 and Φβ
0 ≥ ωβ0 · 3 subcase from Theorem

3. I plays Φβ
−1 + ωβ · (l0 − 1) in β to pinch off a block of ωβ0 . As before, where Ga1,b1

RHS
was

unbalanced in that argument, we invoke induction to get the same bound.

This ends the case when τ0 = min{τ0, τ1, . . . , τn}.

Case 2. τ1 = min{τ0, τ1, . . . , τn}

It cannot be the case that k1 = l1, so suppose k1 > l1.

Subcase 2.1. Φα
0 ,Φ

β
0 = ∅
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If R1 = 0, then τ1 = ⌊log2 l1⌋ and the argument is identical to the proof of the pure

monomial formula. So suppose R1 = 1.

Suppose l1 = 1. I plays a1 = Φα
0 +ωγ1 · (k0 −1) in α, the last hole in the γ1-block. Any b1

in β having terminal power < γ1 is a γ1-descent and γ(α, β) ≤ 2γ1 < 2γ1 + ⌊log2 (l1 + R1)⌋.

Suppose b1 = Φβ
1 in β. Now since R1 = 1, we must have γ1 = γ2+1 and l2 ≥ 3. Inspecting the

τ0-term of Ga1,b1
RHS

, we see that γa1,b1
RHS

≤ 2γ2 +2 = 2γ1. For, if l2 ≥ 4, then γa1,b1
RHS

≤ 2γ2 +2, and

in the case l2 = 3, observe that the recursive condition must still hold so that γa1,b1
RHS

≤ 2γ2+2.

In either case γa1,b1
RHS

≤ 2γ1 so that γ(α, β) ≤ 2γ1 + 1 = τ1.

Now suppose l1 > 1. I plays exactly as in the pure monomial game playing the midpoint

hole of the γ1-block. Any response for II having terminal power < γ1 is a γ1-descent. The

only remaining b1 that are not descents are the holes in the γ1-block in β. From this point,

an argument similar to the pure monomial game shows that γ(α, β) ≤ 2γ1 + ⌊log2 (l1 + 1)⌋.

Subcase 2.2. Φα
0 6= ∅ and Φβ

0 = ∅

I plays a1 = Φα
0 in α. All of the cases of the τ1 = τ0 formula check the same way they

did in the first case.

Subcase 2.3. Φα
0 = ∅, Φβ

0 6= ∅, l1 = 1 and k1 = 2

I plays a1 = Φβ
0 in β. If II plays any b1 having terminal power < γ1, then γ(α, β) ≤ 2γ1 <

τ1. If II responds with ωγ1 in α, then G
a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1. If II responds

with ωγ1 · 2, then using the τ0 term of Ga1,b1
RHS

, we have γa1,b1
RHS

≤ 2γ1 by induction. For either

response for II, γ(α, β) ≤ 2γ1 + 1 = τ1.

Subcase 2.4. Φα
0 = ∅, Φβ

0 6= ∅, l1 = 2, k1 = 3, and Rk
1 = 0

I plays a1 = Φβ
0 in β. If II plays any b1 having terminal power < γ1, then γ(α, β) ≤ 2γ1 <

τ1. If II responds with ωγ1 in α, then G
a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1. If II responds

with ωγ1 · 2, then using the τ1 term of Ga1,b1
RHS

, we have γa1,b1
RHS

≤ 2γ1 +
⌊

log2

(

1 + Rk
1

)⌋

= 2γ1
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by induction. If II responds with ωγ1 · 3, then using the τ0 term of Ga1,b1
RHS

, we have γa1,b1
RHS

≤

2γ2 + 2 ≤ 2γ1. For any of these responses for II, γ(α, β) ≤ 2γ1 + 1 = τ1.

Subcase 2.5. Φα
0 = ∅, Φβ

0 6= ∅, and neither of the two previous conditions hold

I plays a1 = Φβ
0 in β. The key observation in this case is that Ga1,b1

LHS
is separated so that

γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

Subcase 2.6. Φα
0 ,Φ

β
0 6= ∅ and l1 = 1 and k1 = 2

Suppose Rk
1 = Rl

1 = 1, that is, the recursive condition holds on both sides. Then I plays

a1 = Φβ
0 in α. Any b1 in β having terminal power < γ1 is a descent so that γ(α, β) ≤ 2γ1 < τ1.

If b1 = Φβ
1 in β, then G

a1,b1
LHS

is separated and γ
a1,b1
LHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 < τ1. If

b1 = Φβ
0 in β, then by induction using the τ1-term of Ga1,b1

RHS
, we have γa1,b1

RHS
= 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 < Φβ
0 and has terminal power ≥ γ1, then by induction using

the τ0-term of Ga1,b1
RHS

, we have γa1,b1
RHS

= 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2.

Now suppose at least one of Rk
1,R

l
1 is zero. If Rl

1 = 0, then I plays a1 = Φβ
0 in β and II

responds with some b1 in α. Any b1 having terminal power < γ1 is a descent. If b1 = Φα
1

in α, then using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ2 + 2 ≤ 2γ1. Thus,

γ(α, β) ≤ 2γ1+1 = τ1. If b1 = Φα
0 +ωγ1 , the hole in the γ1-block of α, then Ga1,b1

LHS
is separated

and γ
a1,b1
LHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ1. If b1 = Φα
0 in α, then using the τ1-term of

G
a1,b1
RHS

, we have γa1,b1
RHS

≤ 2γ1 since Rl
1 = 0. Thus, γ(α, β) ≤ 2γ1 + 1 = τ1. If b1 < Φα

0 in α

has terminal power ≥ γ1, then using the τ0-term of Ga1,b1
RHS

, we have γa1,b1
RHS

≤ 2γ1 again, since

Rl
1 = 0. Thus, γ(α, β) ≤ 2γ1 + 1.

If Rl
1 = 1 and Rk

1 = 0, then I plays a1 = Φα
0 + ωγ1 in α. Any b1 having terminal power

< γ1 is a descent. If b1 = Φβ
1 in β, then using the τ0-term of Ga1,b1

RHS
by induction we have

γ
a1,b1
RHS

≤ 2γ2 + 2 ≤ 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 = τ1. If b1 = Φβ
0 in β, then G

a1,b1
LHS

is

separated and γa1,b1
LHS

= 2γ1. Thus, γ(α, β) ≤ 2γ1 +1 = τ1. If b1 < Φβ
0 in β has terminal power

≥ γ1, then using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 since Rk
1 = 0. Thus,

γ(α, β) ≤ 2γ1 + 1 = τ1.
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Subcase 2.7. Φα
0 ,Φ

β
0 6= ∅ and l1 = 1 and k1 ≥ 3

I plays a1 = Φα
0 +ωγ1 · (k0 − 1) the last hole in the γ1-block in α. Any b1 having terminal

power < γ1 is a descent. If b1 = Φβ
1 in β, then using the τ0-term of Ga1,b1

RHS
by induction we

have γa1,b1
RHS

≤ 2γ1 + 2 ≤ 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 < τ1. If b1 = Φβ
0 in β, then G

a1,b1
LHS

is

separated on at least 2 copies of ωγ1 and γ
a1,b1
LHS

= 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If

b1 < Φβ
0 in β has terminal power ≥ γ1, then using the τ0-term of Ga1,b1

RHS
by induction we have

γ
a1,b1
RHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

Subcase 2.8. Φα
0 ,Φ

β
0 6= ∅ and l1 = 2

I plays Φβ
0 + ωγ1 · (k0 − 1) the last hole in the γ1-block of α. Any b1 having terminal

power < γ1 is a descent. If b1 = Φβ
1 in β, then using the τ0-term of Ga1,b1

RHS
by induction we

have γa1,b1
RHS

≤ 2γ2 + 2 ≤ 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 < τ1. If b1 = Φβ
0 + ωγ1 the hole in the

γ1-block of β, then G
a1,b1
LHS

is as in the n = 1 case (Theorem 3) and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 in β, then Ga1,b1

LHS
is separated and γa1,b1

LHS
≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 < Φβ
0 in β has terminal power ≥ γ1, then using the τ0-term of

G
a1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

Subcase 2.9. Φα
0 ,Φ

β
0 6= ∅ and l1 = 3 and k1 = 4

I plays Φβ
0 + ωγ1 · 2 the middle hole in the γ1-block of α. Any b1 having terminal power

< γ1 is a descent. If b1 = Φβ
1 in β, then using the τ0-term of Ga1,b1

RHS
by induction we have

γ
a1,b1
RHS

≤ 2γ2 + 2 ≤ 2γ1. Thus, γ(α, β) ≤ 2γ1 + 1 < τ1. If b1 = Φβ
0 + ωγ1 · 2 the last hole in the

γ1-block of β, then using the τ1-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 + ωγ1 the first hole in the γ1-block of β, then Ga1,b1

LHS
is as

in the n = 1 case and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φβ
0 , then Ga1,b1

LHS

is separated and γa1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 < Φβ
0 in β has terminal

power ≥ γ1, then using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1.
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Subcase 2.10. Φα
0 ,Φ

β
0 6= ∅ and l1 = 3 and k1 ≥ 5

Suppose Rl
1 = 0. I plays a1 = Φβ

0 in β. Any b1 in α having terminal power < γ1 is

a descent. If II plays b1 = Φα
0 + ωγ1 · k′ for 1 ≤ k′ ≤ k1, then G

a1,b1
LHS

is separated and

γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 = Φα
0 , then using the τ1-term of

G
a1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 + 1 since Rl
1 = 0. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

If b1 < Φα
0 , then using the τ0-term of Ga1,b1

RHS
we have γa1,b1

RHS
≤ 2γ1 + 1 since Rl

1 = 0. Thus,

γ(α, β) ≤ 2γ1 + 2 = τ1.

Now suppose Rl
1 = 1. I plays a1 = Φβ

0 + ωγ1 · 2 in α. Any b1 in β having terminal

power < γ1 is a descent. If II plays b1 = Φβ
0 + ωγ1 · l′ for 1 ≤ l′ ≤ 3, then using the τ1-

term of Ga1,b1
LHS

(or the τ0-term when l′ = 3) by induction we have γa1,b1
LHS

≤ 2γ1 + 1. Thus,

γ(α, β) ≤ 2γ1 + 2 ≤ τ1. If b1 = Φβ
0 in β, then G

a1,b1
RHS

is separated and γ
a1,b1
RHS

≤ 2γ1 + 1.

Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If b1 < Φβ
0 in β, then using the τ0-term of Ga1,b1

RHS
we have

γ
a1,b1
RHS

≤ 2γ1 + 1 if Rk
1 = 0 or γa1,b1

RHS
≤ 2γ1 + 2 if Rk

1 = 1. In either case γ(α, β) ≤ τ1.

Subcase 2.11. Φα
0 ,Φ

β
0 6= ∅ and l1 = 4 and k1 = 5

Suppose Rl
1 = 0. I plays a1 = Φβ

0 +ωγ1 in β. Any b1 in α having terminal power < γ1 is a

descent. Suppose II plays b1 = Φα
0 + ωγ1 · k′ for 0 ≤ k′ ≤ 5. If k′ = 3, 4, 5, then using the τ1-

term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 +1. Thus, γ(α, β) ≤ 2γ1 +2 = τ1. If k′ = 2,

then G
a1,b1
LHS

is as in the n = 1 case and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If

k′ = 0, 1, then using the τ1-term of Ga1,b1
RHS

by induction γa1,b1
RHS

≤ 2γ1+
⌊

log2

(

3 + Rl
1

)⌋

= 2γ1+1

since Rl
1 = 0. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1. If a1 < Φα

0 , then using the τ0-term of Ga1,b1
RHS

by

induction γa1,b1
RHS

≤ 2γ1 +
⌊

log2

(

3 + Rl
1

)⌋

= 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 = τ1.

Now suppose Rl
1 = 1. I plays a1 = Φα

0 + ωγ1 · 2 in α. Any b1 in β having terminal power

< γ1 is a descent. Suppose II plays b1 = Φβ
0 + ωγ1 · l′ for 0 ≤ l′4. If l′ = 2, 3, 4, then using

the τ1-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 ≤ τ1. If

l′ = 1, then Ga1,b1
LHS

is as in the n = 1 case and γa1,b1
LHS

= 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 ≤ τ1.
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If l′ = 0, then using the τ1-term of Ga1,b1
RHS

by induction γa1,b1
RHS

≤ 2γ1 +
⌊

log2

(

3 + Rk
1

)⌋

. Thus,

if Rk
1 = 1 or γ(α, β) ≤ 2γ1 + 3 = τ1 and if Rk

1 = 0, then γ(α, β) ≤ 2γ1 + 2.

Subcase 2.12. Φα
0 ,Φ

β
0 6= ∅ and l1 = 4 and k1 ≥ 6

I plays a1 = Φα
0 + ωγ1 · (k0 − 3) in α. Any b1 having terminal power < γ1 is a descent.

If b1 = Φβ
1 or b1 = Φβ

0 + ωγ1 · 3 or b1 = Φβ
0 + ωγ1 · 2, then γ

a1,b1
RHS

≤ 2γ1 + 1 by induction

using the same argument as before. Thus, γ(α, β) ≤ 2γ1 + 2 < τ1. If b1 = Φβ
0 + ωγ1 , then

G
a1,b1
LHS

is as in the n = 1 case and γ
a1,b1
LHS

= 2γ1 + 2. Thus, γ(α, β) ≤ 2γ1 + 3. If b1 = Φβ
0 ,

then G
a1,b1
LHS

is separated and γ
a1,b1
LHS

≤ 2γ1 + 1. Thus, γ(α, β) ≤ 2γ1 + 2 < τ1. If b1 < Φβ
0 has

terminal power ≥ γ1, then γ
a1,b1
RHS

≤ 2γ1 + 2 by induction using the τ0-term of Ga1,b1
RHS

. Thus,

γ(α, β) ≤ 2γ1 + 3 = τ1.

Subcase 2.13. Φα
0 ,Φ

β
0 6= ∅ and l1 ≥ 5 and Rl

1 = 0

This argument is identical to the same subcase in the n = 1 case (Theorem 3).

Subcase 2.14. Φα
0 ,Φ

β
0 6= ∅ and l1 ≥ 5 and Rl

1 = 1

This argument is similar to the previous case except that I moves his play one hole to

the right. I plays a1 = Φα
0 + ωγ1 · (l1 − 2⌊log2 l1⌋ + 2) in α. As in the previous case, we need

only check that the formula holds when II responds with some hole in the γ1-block in β since

any other move easily holds the bound. Suppose II responds with b1 = Φβ
0 + ωγ1 · l′. There

are two cases:

(1) 1 ≤ l′ ≤ l1 − 2⌊log2 l1⌋ + 1 or

(2) l1 − 2⌊log2 l1⌋ + 2 ≤ l′ ≤ l1 − 1

In the first case, Ga1,b1
LHS

is as in the n = 1 case and γ
a1,b1
LHS

≤ 2γ1 + ⌊log2 (l′ + 3)⌋. Now

⌊log2 (l′ + 3)⌋ ≤ ⌊log2 (l′ + 4)⌋. As we have shown in previous arguments, we claim γ
a1,b1
LHS

≤

⌊log2 (l′ + 3)⌋ ≤ ⌊log2 (l1 + 4)⌋−1 =
⌊

log2

(

l1 + 3 + Rl
1

)⌋

−1. Assuming that the claim holds,

then we have γ(α, β) ≤ 2γ1 +
⌊

log2

(

l1 + 3 + Rl
1

)⌋

.
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Proof (claim). Write l1 = 2⌊log2 l1⌋+1 − j where 1 ≤ j ≤ 2⌊log2 l1⌋. Now

l′ + 3 ≤ (l1 − 2⌊log2 l1⌋ + 1) + 3 = 2⌊log2 l1⌋ + (4 − j)

If j = 1, 2, 3, 4, then

⌊log2 (l′ + 3)⌋ ≤
⌊

log2

(

2⌊log2 l1⌋ + (4 − j)
)⌋

= ⌊log2 l1⌋ = ⌊log2 (l1 + 4)⌋ − 1

If 5 ≤ j ≤ 2⌊log2 l1⌋, then

⌊log2 (l′ + 3)⌋ ≤
⌊

log2

(

2⌊log2 l1⌋ + (4 − j)
)⌋

= ⌊log2 l1⌋ − 1 = ⌊log2 (l1 + 4)⌋ − 1

In the second case, using the τ1-term of Ga1,b1
RHS

by induction we have

γ
a1,b1
RHS

≤ 2γ1 +
⌊

log2

(

l1 − l′ + R
l
1

)⌋

≤
⌊

log2

(

2⌊log2 l1⌋ − 1
)⌋

= ⌊log2 l1⌋ − 1

Thus, γ(α, β) ≤ 2γ1+⌊log2 l1⌋ ≤ 2γ1+
⌊

log2

(

l1 + 3 + Rl
1

)⌋

. In both cases, we have γ(α, β) ≤

τ1.

This ends the case when τ1 = min{τ0, τ1, . . . , τn}.

Case 3. τi = min{τ0, τ1, . . . , τn} for 1 < i < n

The formula for τi is the same as the τ1 formula when Φβ
0 6= ∅. The argument is the

same.

Case 4. τn = min{τ0, τ1 . . . , τn}

The formula for τn is the same as the formula for τ1 when n = 1. The argument is the

same.

In all cases, we have γ(α, β) ≤ min{τ0, τ1, . . . , τn}.

Lower Bound. γ(α, β) ≥ min{τ0, τ1, . . . , τn}

We show that for every instance of the formula and every move a1 for I there is a response

b1 for II such that γ(α, β) ≥ τi for some 0 ≤ i ≤ n. We break up the cases according to
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the location of I’s move. As before, we adopt the convention that we will treat fence moves

Φα
i ,Φ

β
i in the γi+1-block.

Case 5. I plays in the τ0-block

First, this means that at least one of Φα
0 ,Φ

β
0 are nonempty. Suppose Φα

0 6= ∅ and Φβ
0 = ∅.

Now suppose I plays a1 < Φα
0 in α.

Subcase 5.1. l1 = 1

Suppose first that the recursive condition holds. If a1 < Φβ
1 in α, then II copies from

below and this is a stalling move for I. Suppose Φβ
1 ≤ a1 < Φα

0 in α. If a1 has terminal

power > γ1, then II plays b1 = Φβ
1 in β. On the left, Ga1,b1

LHS
is separated and γ

a1,b1
LHS

= 2γ1.

On the right, using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≥ 2γ2 + 2 = 2γ1 since

the recursive condition holds. Thus, γ(α, β) ≥ 2γ1 + 1 = τ0. If now the terminal power of

a1 equals γ1, then II again plays b1 = Φβ
1 in β. On the left, Ga1,b1

LHS
is as in the n = 1 case

and γ(α, β) ≥ 2γ1. On the right, Ga1,b1
RHS

is the same as before. Thus, γ(α, β) ≥ 2γ1 + 1 = τ0.

If the terminal power of a1 is γ2 = γ1 + 1, then II plays ωγ2 · 4 in β. On the left, Ga1,b1
LHS

is

unbalanced and γa1,b1
LHS

= 2γ2 + 2 = 2γ1. On the right, usin the τ0-term of Ga1,b1
RHS

by induction

we have γa1,b1
RHS

≥ 2γ1. Thus, γ(α, β) ≥ 2γ1 + 1 = τ0. If the terminal power of a1 is < γ2, then

II plays the same b1 he would have against the untailed version of a1 plus copying the tail.

The presence of the small tail does not decrease the lower bound.

Now suppose the recursive condition fails. Observe that all of the above argument is the

same except the case when I plays Φβ
1 ≤ a1 < Φα

0 in α. II then plays a γ′-compression of a1

where depending on whether or not γ1 is a limit or a successor. The argument proceeds as

in the proof of the Separated Game formula.

Subcase 5.2. l1 = 2

This case is identical to the l1 = 2 case in the Unbalanced Game formula, except that

γ
a1,b1
RHS

≥ 2γ1 is now computed by induction.
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Subcase 5.3. l1 = 3

Suppose first that the recursive condition holds. If a1 < Φβ
1 in α, then II copies from

below and this is a stalling move for I. Suppose Φβ
1 ≤ a1 < Φα

0 in α. If a1 has terminal power

> γ1, then II plays b1 = ωγ1 · 2 in β. On the left, Ga1,b1
LHS

is separated and γa1,b1
LHS

= 2γ1 +1. On

the right, Ga1,b1
RHS

is as in the above l1 = 1 case and γa1,b1
RHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2.

If a1 has terminal power equal γ1, then II again plays b1ω
γ1 · 2 in β. On the left, Ga1,b1

LHS
is

unbalanced and γ
a1,b1
LHS

= 2γ1 + 1. On the right, Ga1,b1
RHS

is again as in the l1 = 1 case and

γ
a1,b1
RHS

≥ 2γ1 + 1. Thus, γ(α, β) ≥ 2γ1 + 2 = τ0. If a1 has terminal power < γ1, then II

responds with b1 = ωγ1 · 2 + η where η is the small tail of a1. The presence of the small tail

does not decrease the lower bound.

Now suppose the recursive condition fails. Then II plays the same as before. Since the

recursive condition fails, it also fails in the l1 = 1 case so that now γ
a1,b1
RHS

≥ 2γ1. Thus,

γ(α, β) ≥ 2γ1 + 1.

Subcase 5.4. l1 ≥ 4

The argument is by induction on l1 and is the same as in the l1 = 4 case of the Unbalanced

Game formula.

This ends the case for Φα
0 6= ∅,Φβ

0 = ∅. A symmetrics argument shows that the lower

bound holds for Φα
0 = ∅,Φβ

0 6= ∅.

Now suppose that both Φα
0 ,Φ

β
0 6= ∅. Moreover, suppose α0 > β0.

Subcase 5.5. β0 > γ1 + 1

Whether or not Φβ
0 is a monic monomial or not, this argument is the same as in the same

subcase in the proof of the lower bound of the n = 1 case.

Subcase 5.6. β0 = γ1 + 1 and Φβ
0 = ωβ0 · l0 and l0 = 1
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Suppose the recursive condition holds. If I plays a1 < Φβ
0 in α or β, then II copies from

below and these moves are stalling for I. Suppose Φβ
0 ≤ a1 < Φα

0 in α. If the terminal power

of a1 is > β0, then II plays b1 = Φβ
0 in β. On the left, Ga1,b1

LHS
is separated and γ

a1,b1
LHS

= 2β0.

On the right, using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≥ 2γ1 + 2 = 2β0 since

the recursive condition holds. Thus, γ(α, β) ≥ 2γ1 + 1. If the terminal power of a1 equals

β0, then again II responds with b1 = Φβ
0 . On the left, Ga1,b1

LHS
is unbalanced and γa1,b1

LHS
= 2β0.

On the right, using the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≥ 2γ1 + 2 = 2β0. Thus,

γ(α, β) ≥ 2β0 + 1. If the terminal power of a1 is < β0, then II copies a tail.

Now suppose the recursive condition fails. Any a1 < Φβ
0 in α or β is stalling for I. If

Φβ
0 ≤ a1 < Φα

0 in α. Then II plays as in the monic monomial case of the Separated Game

formula by playing a compression of a1.

Subcase 5.7. β0 = γ1 + 1 and l0 ≥ 2

All of these instances of the formula are proven similarly to the Φα
0 6= ∅,Φβ

0 = ∅ cases.

Subcase 5.8. β0 = γ1 + 1 and Φβ
0 is not a monomial

Suppose the recursive condition holds. If I plays a1 < Φβ
0 in β having terminal power

≥ β0, then II plays ωβ0 · 4 in α. On the left, Ga1,b1
LHS

is either separated, in which case

γ
a1,b1
LHS

= 2β0 + 1, or Ga1,b1
LHS

is unbalanced, in which case γa1,b1
LHS

= 2β0 + 2. On the right, using

the τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≥ 2β0 + 1 since the recursive condition

holds. Thus, γ(α, β) ≥ 2β0 + 2. If a1 < Φβ
0 in β and the terminal power is < β0, then

II plays the same b1 in α plus copies a tail. If I plays a1 < Φβ
0 in α, then II copies from

below and this a1 is stalling for I. Suppose I plays a1 ≥ Φβ
0 in α. If the terminal power of

a1 is > β0, then II responds with b1 pinching off a block of ωβ0 in β. On the left, Ga1,b1
LHS

is

separated and γ
a1,b1
LHS

≥ 2β0 + 1. On the right, using the τ0-term of Ga1,b1
RHS

by induction we

have γa1,b1
RHS

≥ 2β0 + 1 since the recursive condition holds. Thus, γ(α, β) ≥ 2β0 + 2. If the

terminal power of a1 is β0, then II again plays to pinch off a block of ωβ0 in β. As before,
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γ
a1,b1
LHS

≥ 2β0 + 1 and γ
a1,b1
RHS

≥ 2β0 + 1 since the recursive condition holds. If the terminal

power of a1 is < β0, then II plays to copy tail.

If the recursive condition fails, then just as in the Φα
0 6= ∅,Φβ

0 = ∅ and l1 = 3 subcase, II

plays just as before and γa1,b1
RHS

≤ 2β0 since the recursive condition fails.

This ends the case when I plays in the τ0-block.

Case 6. I plays in the τ1-block

This case deals with a1 in α where Φα
0 ≤ a1 < Φα

1 or a1 in β where Φβ
0 ≤ a1 < Φβ

1 . Either

Φα
0 or Φβ

0 may be empty.

First suppose k1 = l1. If I plays any a1 = Φα
0 + η in α where 0 ≤ η < ωγ1 · k1, then

II copies playing b1 = Φβ
0 + η in β, and vice versa. By inspection of the formula, it should

be clear on the left that γa1,b1
LHS

≥ τ0 − 1 when τ0 is a successor and γ
a1,b1
LHS

≥ τ0 when τ0 is

limit. This is because if a1 changed the recursive condition from true to false, the overall

formula only goes down by 1, and this cost Player I a move to do this. Similarly, on the right,

γ
a1,b1
RHS

≥ min{τ2, . . . , τn} since no move in the γ1-block can change the value of any of the

terms in blocks to the right of the γ1-block. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn} for whatever

values the τi terms take. So any move in an ∞-block is a stalling move for I. For the rest of

this case, assume that k1 6= l1, and by the symmetry of the formula, in fact, assume k1 > l1.

We introduce the following notation. When we need to distinguish between the terms of

the original game G(α, β) and the terms of a left or right game, we will use a superscript

RHS or LHS. Terms without a superscript refer to the original G(α, β).

Subcase 6.1. Φα
0 ,Φ

β
0 = ∅ and Rl

1 = 0

In this instance of the formula where τ1 = 2γ1 +
⌊

log2

(

l1 + Rl
1

)⌋

= 2γ1 + ⌊log2 l1⌋, we

prove γ(α, β) ≥ min{τ1, . . . , τn} by induction on l1.

Suppose l1 = 1. If I plays any a1 hole in α, then II responds by playing b1 in β a

γ′-compression of a1 where, as usual, γ′ < γ1 is appropriate to whether γ1 is a successor

or limit. On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≥ 2γ′ + 1. On the right, by induction
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γ
a1,b1
RHS

≥ min{τRHS
1 , . . . , τRHS

n }. Now it should be clear by inspection of the formula that this

a1, b1 does not disturb the formula in blocks to the right so that for each 2 ≤ i ≤ n, τRHS
i = τi.

For τRHS
1 , if τRHS

1 6= ∞, II can last at least as long as he does in the pure monomial game so

that τRHS
1 ≥ 2γ1 +

⌊

log2

(

l1 + Rl
1

)⌋

= 2γ1. Thus, we have γa1,b1
RHS

≥ min{2γ1, τ2, . . . , τn} and

thus,

γ(α, β) = min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1}

≥ min{2γ′ + 2, 2γ1 + 1, τ2 + 1, . . . , τn + 1}

≥ min{2γ1, τ2, . . . , τn}

= min{τ1, . . . , τn}

If a1 is any nonhole move in α, then II again compresses. If a1 is in β, then II copies

from below playing b1 = a1 in α. On the left, γa1,b1
LHS

= ∞ and on the right γa1,b1
RHS

≥

min{2γ1, τ2, . . . , τn}. Thus, reasoning similarly as above γ(α, β) = min{γa1,b1
LHS

+1, γa1,b1
RHS

+1} ≥

min{2γ1 + 1, τ2, . . . , τn} ≥ min{τ1, . . . , τn}.

If l1 > 1, then II responds to I as in a pure monomial game. The argument is the same.

Subcase 6.2. Φα
0 ,Φ

β
0 = ∅ and Rl

1 = 1.

In this instance of the formula where τ1 = 2γ1 +
⌊

log2

(

l1 + Rl
1

)⌋

= 2γ1 + ⌊log2 l1⌋, we

prove γ(α, β) ≥ min{τ1, . . . , τn} by induction on l1.

Suppose l1 = 1. If I plays any hole in α, then II responds with b1 = Φβ
1 in β. On the

left, Ga1,b1
LHS

is pure monomial and γ
a1,b1
LHS

= 2γ1 + ⌊log2 l1⌋ = 2γ1. On the right, using the

τ0-term of Ga1,b1
RHS

by induction we have γa1,b1
RHS

≥ min{2γ2 +2, τRHS
1 , . . . , τRHS

n } and since Rl
1 = 1

we have 2γ2 + 2 = 2γ1. For the τRHS
1 term we observe that since Rl

1 = 1, we must have

l2 ≥ 3 (note that l2 in G
a1,b1
RHS

now corresponds to the τRHS
1 term). So even though that now

in G
a1,b1
RHS

in the τRHS
1 term (which is the τ2 term in G(α, β)) II can no longer run to the

left, the formula for the γ1 block has only decreased by one. That is, τRHS
1 = τ2 − 1. Thus,

by arguments similar to those given above, γa1,b1
RHS

≥ min{2γ1, τ2 − 1, τ3, . . . , τn}, and thus,
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γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} ≥ min{2γ1 + 1, τ2, τ3 + 1, . . . , τn + 1} ≥ min{τ1, . . . , τn}.

If a1 in α is not a hole or fence, then II copies a tail. The presence of the tail does not

decrease the lower bound. If a1 < Φβ
1 is in β, then II copies from below and this move is

stalling for I.

Suppose l1 > 1 and for all l′ < l1 the formula holds. Suppose for the moment that I plays

a hole in β, say a1 = ωγ1 · l′ where 1 ≤ l′ ≤ l1 − 1. There are two cases when I plays a hole

in β:

(1) 1 ≤ l′ ≤
⌊

l1+1

2

⌋

(2)
⌊

l1+1

2

⌋

+ 1 ≤ l′ ≤ l1 − 1

If 1 ≤ l′ ≤
⌊

l1+1

2

⌋

, then II copies from below playing b1 = a1 in α. On the left, γa1,b1
LHS

= ∞.

On the right, by induction

γ
a1,b1
RHS

≥ min{2γ1 +
⌊

log2

(

l1 − l′ + R
l
1

)⌋

, τRHS

2 , . . . , τRHS

n }

≥ min{2γ1 +

⌊

log2

(⌊

l1

2

⌋

+ 1

)⌋

, τ2, . . . , τn}

We claim that
⌊

log2

(⌊

l1
2

⌋

+ 1
)⌋

≥ ⌊log2 (l1 + 1)⌋ − 1. From this it follows that γ(α, β) ≥

min{τ1, . . . , τn}.

Proof (claim). Write l1 = 2⌊log2 l1⌋+1 − j where 1 ≤ j ≤ 2⌊log2 l1⌋.

If j = 1, then
⌊

log2

(⌊

l1

2

⌋

+ 1

)⌋

=

⌊

log2

(

l1 − 1

2
+ 1

)⌋

=

⌊

log2

(

l1 + 1

2

)⌋

= ⌊log2 (l1 + 1)⌋ − 1

If 2 ≤ j ≤ 2⌊log2 l1⌋, then
⌊

log2

(⌊

l1

2

⌋

+ 1

)⌋

≥

⌊

log2

(⌊

l1

2

⌋)⌋

= ⌊log2 l1⌋ − 1
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= ⌊log2 (l1 + 1)⌋ − 1

Now suppose
⌊

l1+1

2

⌋

+1 ≤ l′ ≤ l1−1. Then II copies from above (in the γ1 block) playing

b1 = ωγ1 · (k1 − (l1 − l′)). On the right, τRHS
1 = ∞ and none of the terms to the right are

disturbed from the original G(α, β) so that γa1,b1
RHS

≥ min{τ2+1, . . . , τn+1}. On the left, Ga1,b1
LHS

is pure monomial and γa1,b1
LHS

= 2γ1 +⌊log2 l
′⌋ ≥ 2γ1 +

⌊

log2

⌊

l1+1

2

⌋⌋

= 2γ1 +⌊log2 (l1 + 1)⌋−1.

Thus, γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} = min{2γ1 + ⌊log2 (l1 + 1)⌋ , τ2 + 1, . . . , τn + 1} ≥

min{τ1, . . . , τn}.

If I plays a hole in α, then there are three cases:

(1) 1 ≤ l′ ≤
⌊

l1+1

2

⌋

(2)
⌊

l1+1

2

⌋

+ 1 ≤ l′ ≤ k1 − (l1 −
⌊

l1
2

⌋

) − 1

(3) k1 − (l1 −
⌊

l1
2

⌋

) ≤ l′ ≤ k1 − 1

Now if I plays a1 to be in either cases (1) or (3), then II plays vice versa to when I played

in β and the argument is the same as above. So suppose we are in case (2). Note that when

k1 = l1 + 1, case (2) is empty. If k1 > l1 + 1, then II plays b1 = ωγ1 ·
⌊

l1+1

2

⌋

. On the left, by

the same argument as above, γa1,b1
LHS

≥ 2γ1 + ⌊log2 (l1 + 1)⌋ − 1. On the right, by induction

τRHS
1 ≥ 2γ1 +

⌊

log2

(⌊

l1
2

⌋

+ Rl
1

)⌋

= 2γ1 +
⌊

log2

(⌊

l1
2

⌋

+ 1
)⌋

. The same claim above shows that

τRHS
1 ≥ 2γ1 + ⌊log2 (l1 + 1)⌋ − 1. Thus, γa1,b1

RHS
≥ min{2γ1 + ⌊log2 (l1 + 1)⌋ − 1, τ2, . . . , τn} and

thus, γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} ≥ min{2γ1 + ⌊log2 (l1 + 1)⌋ , τ2 + 1, . . . , τn + 1} ≥

min{τ1, . . . , τn}.

If I plays any nonhole in either α or β, then II plays as above plus copies a tail. The

presence of the tail does not decrease the lower bound.

Subcase 6.3. Φα
0 6= ∅, Φβ

0 = ∅
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Observe first that in all cases for l1 ≥ 1, if I plays a1 = Φα
0 in α, all of the same arguments

from the case when I played in τ0 still hold. So it is enough to show that II holds the lower

bound when Φα
0 < a1 < Φα

1 in α or a1 < Φβ
1 in β.

Suppose l1 = 1. If I plays a1 < Φβ
1 in β, then II copies from below. On the left, γa1,b1

LHS
= ∞.

On the right, all of the terms in γ
a1,b1
RHS

are the same as in G(α, β). Thus, γa1,b1
RHS

≥ γ(α, β),

and this a1 is stalling for I.

Now suppose I plays Φα
0 < a1 < Φα

1 in α. Also, suppose the recursive condition holds,

Rl
1 = 1. If I plays any hole in the τ1 block of α, then II plays b1 = Φβ

1 in β. On the left, Ga1,b1
LHS

is

unbalanced and γa1,b1
LHS

= 2γ1. On the right, by induction γa1,b1
RHS

≥ min{τRHS
0 , τRHS

1 , . . . , τRHS
n }.

Now, since Rl
1 = 1, we have τRHS

0 ≥ 2γ2 + 2 = 2γ1. As in the case above when Φα
0 ,Φ

β
0 = ∅,

τRHS
1 = τ2 − 1. Moreover, the remaining terms in G

a1,b1
RHS

are undisturbed so that γa1,b1
RHS

≥

min{2γ1, τ2 − 1, τ3, . . . , τn}. Thus, γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} ≥ min{τ0 + 1, 2γ1 +

1, τ2, τ3 +1 . . . , τn +1} = min{τ0, τ1, . . . , τn}. If I plays any nonhole in the τ1 block of α, then

II copies a tail, the presence of which does not decrease the lower bound.

Now suppose the recursive condition fails, Rl
1 = 0. If I plays any hole in the τ1 block of

α, then II responds with a γ′-compression of a1 where γ′ < γ1 is appropriate to whether γ1 is

a limit or a successor. On the left, Ga1,b1
LHS

is separated and γa1,b1
LHS

≥ 2γ′ + 1. On the right, by

induction γ
a1,b1
RHS

≥ min{τRHS
1 , . . . , τRHS

n }. Now by induction τRHS
1 = 2γ1 +

⌊

log2

(

l1 + Rl
1

)⌋

=

2γ1. Moreover, the all of the other terms to the right in G
a1,b1
RHS

are undisturbed by this

move. Thus, γa1,b1
RHS

≥ min{2γ1, τ2, . . . , τn}, and thus, γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} ≥

min{τ0, 2γ1, 2γ1 + 1, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If I plays any nonhole in the τ1

block of α, then II copies a tail, the presence of which does not decrease the lower bound.

Suppose l1 = 2. If I plays any a1 < Φβ
1 in β, then II copies from below, and the

argument is the same as above. If I plays any hole in the τ1 block of α, then II plays

b1 = ωγ1 in β. On the left, Ga1,b1
LHS

is unbalanced and γa1,b1
LHS

= 2γ1. On the right, by induction

γ
a1,b1
RHS

≥ 2γ1 +
⌊

log2

(

l1 + Rl
1

)⌋

≥ 2γ1 using the l1 = 1 case when Φα
0 ,Φ

β
0 = ∅. Thus,

γ(α, β) ≥ min{τ0 +1, 2γ1 +1, τ2 +1, . . . , τn +1} ≥ min{τ0, τ1, . . . , τn}. If I plays any nonhole
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in the τ1 block of α, then II copies a tail, the presence of which does not decrease the lower

bound.

Suppose l1 = 3. If I plays any a1 < ωγ1 · 2 in β, then II copies from below and the

argument is the same as before. If ωγ1 · 2 ≤ a1 < Φβ
1 , then II plays to pinch off the last block

of ωγ1 in the τ1 block in α. On the left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

≥ 2γ1 + 1. On the

right, τRHS
1 = ∞ and all of the other terms are undisturbed. Thus, γa1,b1

RHS
≥ min{τ2, . . . , τn}.

Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}.

Now suppose I plays a hole in the τ1 block of α. If I plays a1 = Φα
0 + ωγ1 · k′, then

II responds with b1 = ωγ1 · 2 in β. On the left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

≥ 2γ1 + 1.

On the right, by induction, γa1,b1
RHS

≥ min{2γ1 +
⌊

log2

(

1 + Rl
1

)⌋

, τ2, . . . , τn}. Thus, γ(α, β) ≥

min{τ0 + 1, 2γ1 +
⌊

log2

(

3 + Rl
1

)⌋

, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If I plays any

nonhole in the τ1 block of α, then II copies a tail, the presence of which does not decrease

the lower bound.

Suppose l1 ≥ 4. This is by induction on l1, but it proceeds as it has before. All of the cases

where I plays in the τ1 block of β are as before. If I plays any hole in the τ1-block of α except

the last, then II responds with ωγ1 · 2 in β. If I plays the last hole a1 = Φα
0 + ωγ1 · (k1 − 1),

then II plays b1 = ωγ1 · 3 in β. In each case, our previous arguments have shown that

γ(α, β) ≥ min{τ0, . . . , τn}.

Subcase 6.4. Φα
0 = ∅, Φβ

0 6= ∅

Suppose l1 = 1 and k1 = 2. If I plays Φβ
0 in β, then II responds with ωγ1 in α. On the left,

G
a1,b1
LHS

is separated and γ
a1,b1
LHS

= 2γ1. On the right, from what we have said above it should

be clear that γa1,b1
RHS

≥ {τ2, . . . , τn}. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 1, τ2 + 1, . . . , τn + 1} ≥

min{τ0, τ1, . . . , τn}. If I plays a hole in α, then II plays vice versa and the argument is the

same. If I plays a nonhole in α or β then II copies a tail.

Suppose l1 = 2, k1 = 3, and Rk
1 = 0. If I plays Φβ

1 in β, then II plays ωγ1 in α and the

argument is almost identical to the l1 = 1, k1 = 2 case. Vice versa if I plays ωγ1 in α. If I

plays Φβ
1 +ωγ1 in β, then II responds with b1 = ωγ1 ·2 in α and vice versa. On the left, Ga1,b1

LHS
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is unbalanced and γa1,b1
LHS

≥ 2γ1 +1. On the right, Ga1,b1
RHS

is identical to the l1 = 1, k1 = 2 case.

Thus, γ(α, β) ≥ min{τ0 + 1, 2γ+2, τ2, . . . , τn} ≥ min{τ0, τ1, . . . , τn}. If I plays a nonhole in α

or β then II copies a tail.

Now the τ1 term is 2γ1 + 2 in all of the rest of the cases when Φα
0 = ∅ and Φβ

0 6= ∅.

Suppose l1 = 1 and k1 ≥ 3. If I plays Φβ
1 in β, then II responds with ωγ1 · 2 in α and vice

versa. On the left, Ga1,b1
LHS

is separated and γa1,b1
LHS

≥ 2γ1 + 1. On the right, Ga1,b1
RHS

is as before

so that the terms to the right are undisturbed. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 +

1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If I plays ωγ1 in α, then II runs to the left playing a

copying move b1 = ωγ1 . On the left, γa1,b1
LHS

= ∞. On the right, Ga1,b1
RHS

is as in the l1 = 1,

k1 = 2 case. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If

I plays a nonhole in α or β then II copies a tail.

Suppose l1 = 2, k1 = 3 and Rk
1 = 1. If I plays Φβ

1 in β, then II responds with ωγ1 · 2

in α and vice versa. On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≥ 2γ1 + 1. On the right, by

induction γ
a1,b1
RHS

≥ min{τRHS
1 , . . . , τRHS

n }. Now τRHS
1 = 2γ1 +

⌊

log2

(

1 + Rk
1

)⌋

= 2γ1 + 1 and

each of the remaining terms of Ga1,b1
RHS

are undisturbed. Thus, γa1,b1
RHS

≥ min{2γ1+1, τ2, . . . , τn}.

So we have γ(α, β) ≥ min{γa1,b1
LHS

+ 1, γa1,b1
RHS

+ 1} ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥

min{τ0, τ1, . . . , τn}. If I plays Φβ
1 + ωγ1 in β, then II responds with ωγ1 · 2 in α. Now the

argument is the same as the l1 = 2, k1 = 3, and Rk
1 = 0 case when I played ωγ1 in α so that

γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1 . . . , τn}. If I plays ωγ1 in α,

then II runs to the left playing a copying move b1 = ωγ1 in β. The same argument above

shows that II holds the bound. If I plays a nonhole in α or β then II copies a tail.

The rest of the arguments in this repeat previous ones. We will simply identify I’s move

and II’s response that holds the bound when I plays some hole in α or β.

Suppose l1 = 2 and k1 ≥ 4. If I plays the first hole in α, a1 = ωγ1 , then II re-

sponds by running to the left and copying b1 = ωγ1 in β. Observe that now τRHS
1 =

2γ1 +
⌊

log2

(

3 + l1 + Rl
1

)⌋

≥ 2γ1 + 2, so that II easily holds the lower bound. If I plays
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the last hole in the γ1-block of α, then II responds with b1 = Φβ
1 + ωγ1 in β and vice versa.

If I plays any other hole in α, then II responds with b1 = Φβ
1 in β.

Suppose l1 ≥ 3. If I plays ωγ1 in α, II copies b1 = a1 in β. If I plays Φβ
1 in β, then II

responds with b1 = ωγ1 · 2 in α and vice versa. If I plays any hole in β, then II copies from

above the same number of holes from the right in the γ1 block in β and vice versa. If I plays

any hole in α not covered by the previous cases, II responds with b1 = Φβ
1 in β.

This ends the case when Φα
0 = ∅ and Φβ

0 6= ∅.

Subcase 6.5. Φα
0 ,Φ

β
0 6= ∅ and l1 = 1 and k1 = 2

Suppose first that Rk
1 = Rl

1 = 1. If I plays a1 = Φα
0 in α, then II responds with b1 = Φβ

0

in β. On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

≥ 2γ0 where γ0 = min{α0, β0} and 2γ0 ≥

2γ1 + 2. On the right, by induction γ
a1,b1
RHS

≥ min{2γ1 + 1, τ2, . . . , τn} since Rl
1 = 1. Thus,

γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. Similarly, if I plays

a1 = Φβ
0 in β, II responds with b1 = Φα

0 in α. If I plays a1 = Φα
0 + ωγ1 , the hole in the

γ1-block of α, then II plays ωγ1 ·4 in β. On the left, Ga1,b1
LHS

is unbalanced and γa1,b1
LHS

= 2γ1 +2.

On the right, by induction we have γa1,b1
RHS

≥ min{2γ1 + 1, τ2, . . . , τn} since Rk
1 = 1. Thus,

γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If a1 is not a hole or

fence in the τ1-block, then II copies a tail.

If either of the recursive conditions fails, II still plays the same as he did before. If

I plays Φβ
0 in β, then II responds with ωγ1 in α. On the left, Ga1,b1

LHS
is separated and

γ
a1,b1
LHS

= 2γ1. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn} since the τ1-term of Ga1,b1
RHS

is ∞. Thus,

γ(α, β) ≥ min{τ0 + 1, 2γ1 + 1, τ2 + 1, . . . , τn} ≥ min{τ0, τ1, . . . , τn}. In the other possibilities

for I’s move, γa1,b1
RHS

≥ 2γ1 now because the recursive condition does not hold on one side or

the other.

Subcase 6.6. Φα
0 ,Φ

β
0 6= ∅ and l1 = 1 and k1 ≥ 3

If I plays a1 = Φα
0 in α, then II plays b1 = ωγ1 · 2 in β. On the left, Ga1,b1

LHS
is separated

and γa1,b1
LHS

≥ 2γ1 + 1. On the right, by induction we have γa1,b1
RHS

≥ min{τRHS
0 , τRHS

1 , . . . , τRHS
n }.
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Now τRHS
0 ≥ 2γ1 +1. And, τRHS

1 = 2γ1 +
⌊

log2

(

l1 + 3 + Rl
1

)⌋

≥ 2γ1 +1. The remaining terms

are undisturbed. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn} ≥ min{τ0, τ1, . . . , τn}.

If I plays Φβ
0 in β, then II plays Φα

0 + ωγ1 · 2 in α. On the left, Ga1,b1
LHS

is separated and

γ
a1,b1
LHS

≥ 2γ1 + 1. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn}. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}.

If I plays a1 = Φα
0 +ωγ1 in α, the first hole in the γ1-block, then II plays ωγ1 · 2 in β. On the

left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

≥ 2γ1 + 1. On the right, by induction we have γa1,b1
RHS

≥

min{τRHS
0 , τRHS

1 , . . . , τRHS
n }. Now τRHS

0 = 2γ1 + 1. And, τRHS
1 = 2γ1 +

⌊

log2

(

l1 + 3 + Rl
1

)⌋

≥

2γ1 + 1. The remaining terms are undisturbed. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 +

1, . . . , τn} ≥ min{τ0, τ1, . . . , τn}. If I plays a1 = Φα
0 + ωγ1 · 2 in α, then II plays b1 = Φβ

0 in β.

On the left, Ga1,b1
LHS

is separated and γ
a1,b1
LHS

= 2γ1 + 1. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn}.

Thus, γ(α, β) ≥ 2γ1 +2. If I plays any a1 in α or β that is not a fence or hole, then II copies

a tail.

Subcase 6.7. Φα
0 ,Φ

β
0 6= ∅ and l1 = 2

If I plays a1 = Φα
0 in α, then II plays b1 = Φβ

0 in β and vice versa. On the left, Ga1,b1
LHS

is

separated and γ
a1,b1
LHS

≥ 2γ1 + 2. On the right, by induction γ
a1,b1
RHS

≥ min{2γ1 + 1, τ2, . . . , τn}

since l1 = 2. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}.

Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If I plays a1 = Φβ
0+ωγ1 in β, then II plays b1 = Φα

0 +ωγ1 ·2

in α and vice versa. On the left, Ga1,b1
LHS

is as in the n = 1 case and γa1,b1
LHS

≥ 2γ1 + 1. On the

right, γa1,b1
RHS

≥ min{τ2, . . . , τn}. Thus, γ(α, β) ≥ 2γ1 + 2. If I plays a1 = Φα
0 + ωγ1 in α, then

II plays ωγ1 · 2 in β. If I plays a1 that is not a hole or fence, then II copies a tail.

Subcase 6.8. Φα
0 ,Φ

β
0 6= ∅ and l1 = 3 and k1 = 4

If I plays a1 = Φα
0 in α, then II plays b1 = Φβ

0 and vice versa. On the left, Ga1,b1
LHS

is

separated and γ
a1,b1
LHS

≥ 2γ1 + 2. On the right, by induction γ
a1,b1
RHS

≥ min{2γ1 + 1, τ2, . . . , τn}

since l1 = 3. Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. If

I plays Φα
0 + ωγ1 in α, then II plays ωγ1 · 2 in β. The argument then proceed as in previous

cases when II runs to the left and copies. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If I plays
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a1 = Φα
0 + ωγ1 · 2 in α, then II plays Φβ

1 + ωγ1 · 1 and vice versa. On the left, Ga1,b1
LHS

is

as in the n = 1 case and γ
a1,b1
LHS

≥ 2γ1 + 1. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn}. Thus,

γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If I plays a1 = Φα
0 + ωγ1 · 3 in α, then II repsonds with

b1 = Φβ
0 + ωγ1 · 2 and vice versa. The argument is the same as when I plays one hole to the

left. If I plays any nonhole or nonfence, II copies a tail.

Subcase 6.9. Φα
0 ,Φ

β
0 6= ∅ and l1 = 3 and k1 ≥ 5

Suppose first that Rk
1 = Rl

1 = 1. First suppose I plays a1 = Φα
0 + ωγ1 · k′ for 0 ≤ k′ ≤ k1

in α. For k′ = k1 − 1, k1 − 2, then II plays b1 = Φβ
0 + ωγ1 · l′ where l′ = 1, 2, respectively.

On the left, Ga1,b1
LHS

is as in the n = 1 case and γ
a1,b1
LHS

= 2γ1 + 2. On the right, γa1,b1
RHS

≥

min{τ2, . . . , τn}. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If 0 ≤ k′ ≤ k1 − 3, then II responds

with b1 = ωγ1 · 4 in β. On the left, Ga1,b1
LHS

is unbalanced (or separated when k′ = 0) and

γ
a1,b1
LHS

≥ 2γ1 + 2. On the right, by induction γ
a1,b1
RHS

≥ min{2γ1 + 1, τ2, . . . , τn} since Rk
1 = 1.

Thus, γ(α, β) ≥ min{τ0 + 1, 2γ1 + 2, τ2 + 1, . . . , τn + 1} ≥ min{τ0, τ1, . . . , τn}. Now suppose I

plays b1 = Φβ
0 +ωγ1 · l′ for 0 ≤ l′2. If l′ = 1, 2, then I plays vice verse as above. If l′ = 0, then

II plays b1 = Φα
0 in α. On the left, Ga1,b1

LHS
is separated and γa1,b1

LHS
≥ 2γ1 + 2. On the right, the

τ1-term of Ga1,b1
RHS

by induction is τRHS
1 = 2γ1 +

⌊

log2

(

3 + Rl
1

)⌋

= 2γ1 + 2 since Rl
1 = 1. Thus,

γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If a1 is not a hole or fence, then II copies a tail.

Now suppose either Rk
1 = 0 or Rl

1 = 0. Then all of II’s responses above show that

γ(α, β) ≥ min{τ0, τ1, . . . , τn}.

Subcase 6.10. Φα
0 ,Φ

β
0 6= ∅ and l1 = 4 and k1 = 5

Suppose first that Rk
1 = Rl

1 = 1. First suppose I plays a1 = Φα
0 + ωγ1 · k′ for 0 ≤ k′ ≤ 4

in α. For k′ = 3, 4, then II plays b1 = Φβ
0 + ωγ1 · l′ where l′ = 2, 3, respectively. On the left,

G
a1,b1
LHS

is as in the n = 1 case and γ
a1,b1
LHS

= 2γ1 + 2. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn}.

Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If k′ = 1, 2, then II plays ωγ1 · 4 in β. On the left,

G
a1,b1
LHS

is unbalanced and γ
a1,b1
LHS

= 2γ1 + 2. On the right, the τ0-term of Ga1,b1
RHS

by induction

is τRHS
0 = 2γ1 +

⌊

log2

(

3 + Rk
1

)⌋

= 2γ1 + 2 since Rk
1 = 1. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}.
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If k′ = 0, then II plays b1 = Φβ
0 . On the left, Ga1,b1

LHS
is separated and γ

a1,b1
LHS

≥ 2γ0 ≥

2γ1 + 2 where γ0 = min{α0, β0}. On the right, the τ1-term of Ga1,b1
RHS

by induction is τRHS
1 ≥

2γ1 +
⌊

log2

(

4 + Rl
1

)⌋

= 2γ1 + 2. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. Now suppose I plays

a1 = Φβ
0 + ωγ1 · l′ in β for 0 ≤ l′ ≤ 3. If l′ = 2, 3, then II plays b1 vice versa in α

as above. If l′ = 1, then II plays b1 = Φα
0 + ωγ1 in α. On the left, Ga1,b1

LHS
is as in the

n = 1 case and γ
a1,b1
LHS

≥ 2γ0 ≥ 2γ1 + 2. On the right, the τ1-term of Ga1,b1
RHS

by induction is

τRHS
1 ≥ 2γ1 +

⌊

log2

(

3 + Rl
1

)⌋

= 2γ1 + 2 since Rl
1 = 1. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}.

If l′ = 0, then II plays b1 = Φα
0 . On the left, Ga1,b1

LHS
is separated and γ

a1,b1
LHS

≥ 2γ0 ≥ 2γ1 + 2.

On the right, the τ1-term of Ga1,b1
RHS

by induction is τRHS
1 ≥ 2γ1 +

⌊

log2

(

4 + Rl
1

)⌋

= 2γ1 + 2.

Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If a1 is not a hole or fence, then II copies a tail.

Now suppose either Rk
1 = 0 or Rl

1 = 0. Then all of II’s responses above show that

γ(α, β) ≥ 2γ1 + 2 = τ1.

Subcase 6.11. Φα
0 ,Φ

β
0 6= ∅ and l1 = 4 and k1 ≥ 6

First suppose plays a1 = Φα
0 +ωγ1 ·k′ for 0 ≤ k′ ≤ k1−1 in α. For k′ = k1−1, k1−2, k1−3,

then II plays Φβ
0 + ωγ1 · l′ in β where l′ = 3, 2, 1, respectively. On the left, Ga1,b1

LHS
is as

in the n = 1 case and γ
a1,b1
LHS

≥ 2γ1 + 2. On the right, γa1,b1
RHS

≥ min{τ2, . . . , τn}. Thus,

γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If 1 ≤ k′ ≤ k1 −4, then II plays ωγ1 ·4 in β. On the left, Ga1,b1
LHS

is unbalanced and γ
a1,b1
LHS

= 2γ1 + 2. On the right, both the τ0 and τ1 terms of Ga1,b1
RHS

give

γ
a1,b1
RHS

≥ 2γ1 + 2. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}. If k′ = 0, then II plays b1 = Φβ
0 in β.

On the left, Ga1,b1
LHS

is separated and γa1,b1
LHS

≥ 2γ0 ≥ 2γ1 +2. On the right, the τ1-term of Ga1,b1
RHS

by induction is τRHS
1 ≥ 2γ1 +

⌊

log2

(

4 + Rl
1

)⌋

= 2γ1 + 2. Thus, γ(α, β) ≥ min{τ0, τ1, . . . , τn}.

Now suppose I plays a1 = Φβ
0 + ωγ1 · l′ in β where 0 ≤ l′ ≤ 3. If l′ = 1, 2, 3, then II plays

vice verse in α as before. If l′ = 0, then II plays b1 = Φα
0 in α as before. If a1 is not a hole

or fence, then II copies a tail.

Subcase 6.12. Φα
0 ,Φ

β
0 6= ∅ and l1 ≥ 5 and Rl

1 = 0

This case is identical to the same subcase in the n = 1 case.
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Subcase 6.13. Φα
0 ,Φ

β
0 6= ∅ and l1 ≥ 5 and Rl

1 = 1

The argument is by induction and the computational details are identical to those in the

proof of the the finite game.

This ends the case when I plays in the τ1-block.

Case 7. I plays in the τi-block, 1 < i < n.

The formula is the same as the τ1 formula and the argument proceeds by induction

similarly to the τ1 case.

Case 8. I plays in the τn-block

The formula is the same as in τ1 formula in the n = 1 case and the argument proceeds

by induction similarly.

�

73



BIBLIOGRAPHY

[1] J. W. Addison, Leon Henkin, and Alfred Tarski (eds.), The theory of models, Proceedings

of the 1963 International Symposium at Berkeley, North-Holland, Amsterdam, 1965.

[2] J. Barwise and S. Feferman (eds.), Model-theoretic logics, Perspectives in Mathematical

Logic, Springer-Verlag, New York, 1985.

[3] M. A. Dickmann, Larger infinitary languages, in Barwise and Feferman [2].

[4] H.-D. Ebbinghaus, Extended logics: The general framework, in Barwise and Feferman

[2].

[5] Andrzej Ehrenfeucht, An application of games to the completeness problem for formal-

ized theories, Fundamenta Mathematicae 49 (1961), 129–141.
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