A COMPUTATION OF PARTIAL ISOMORPHISM RANK
ON ORDINAL STRUCTURES
Ross Bryant, B.S., M.A.

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS
August 2006

APPROVED:

Steve Jackson, Major Professor
Su Gao, Committee Member
R. Daniel Mauldin, Committee Member
Neal Brand, Chair

Department of Mathematics
Sandra L. Terrell, Dean

Toulouse School of Graduate Studies



Bryant, Ross. A Computation of Partial Isomorphism Rank on Ordinal Structures. Doctor

of Philosophy (Mathematics), August 2006, 75 pp., 9 illustrations, 15 titles.
We compute the partial isomorphism rank, in the sense Scott and Karp, of a pair of
ordinal structures using an Ehrenfeucht-Fraisse game. A complete formula is proven by

induction given any two arbitrary ordinals written in Cantor normal form.



CONTENTS

LIST OF FIGURES

CHAPTER 1. INTRODUCTION

CHAPTER 2. PRELIMINARIES

CHAPTER 3. THE RANK OF FINITE GAMES

CHAPTER 4. THE RANK OF GENERAL TRANSFINITE GAMES

4.1.
4.2.
4.3.
4.4.
4.4.1.
4.4.2.

Trivial Transfinite Games

The Separated CNF Game

The Pure Monomial Game

The Common CNF Game
n=1

n>1

BIBLIOGRAPHY

1

il

13
13
16
21
24
24
46

74



LIST OF FIGURES

2.1 The game G(a, 3,7)

ai,by ~ai,by
2.2 The games G| 5" ,Gris

3.1 1I copies from below

3.2 1I copies from above

4.1 Trivial transfinite games

4.2 Fences and holes in the i*"-block
4.3 A (81 — 1)-compressed copy of a;
4.4 Pinching off a block

4.5 Common Cantor Normal Form

1l

11

11

14

17

18

20

24



CHAPTER 1

INTRODUCTION

Back-and-forth arguments date back to Cantor. The standard proof that two countable
dense linear orders without endpoints are isomorphic can be found in Hausdorff’s [9]. Lang-
ford in [11] relaxed the condition of isomorphism (2¢) and used the back-and-forth method
to get that any two dense linear orders without endpoints of any cardinality are elementarily
equivalent (=). At the November 1948 meeting of the American Mathematical Society at
UCLA, Tarski presented a preliminary report [13] of work that he and Mostowski completed
in 1941. Inspired partly by Langford’s results, they were able to show using an elimina-
tion of quantifiers argument that two ordinal structures (o, <) and (3, <) are elementarily

equivalent iff they are congruent (mod w*). As a corollary, they showed
(ON, <) = (&, <)

(Here, ON is the class of all ordinals. Modular arithmetic on ON is extended in the natural
way. See II of [5].) Furthermore, Tarski conjectured that (ON, <, +) = w*” and (ON, <
) = w“’ww, but it was known that standard elimination of quantifier methods were
insufficient. New techniques were needed.

In 1952, Fraissé announced in [6] to the Colloque de logique mathématique in Paris that
he had developed new purely algebraic definitions and techniques that gave a new proof of
Tarski and Mostowski’s results without the elimination of quantifiers arguments. This gave
rise to his thesis [8] and finally [7]. But, it was Ehrenfeucht’s recasting of Fraissé’s work
into the language of a game, which now bears both of their names, that broke through at
last, and in [5] Ehrenfeucht was able to reprove the original Tarski and Mostowski results
as well as both of Tarski’s conjectures. Finally, Karp’s [10] and Scott’s [14] infinitary logic

reformulated all of Ehrenfeucht’s and Fraissé’s work into the form is exists today.



Virtually all of this historical background can be found in (4.1) of Dickmann’s [3] and
§81,2 of Vaught’s [15]. The author takes no credit for their diligent and thorough treatments.

Fraissé’s standard notion is that of a partial isomorphism existing between two structures.
That is, given two L-structures M and A/, and each ordinal a, define (M, a) =, (N,b) by
induction where @ € M™ and b € N", for n = 0,1,2,.... (M,a) =, (N,b) if M |= é(a)
if and only if N = ¢(b) for all atomic £-formulas. For all ordinals a, (M,a) =1 (N, D)
if for all ¢ € M there is a d € N such that (M,a,c) =, (N,b,d) (the forth property) and
for all d € N there is a ¢ € M such that (M, a,c) =, (N,b,d) (the back property). For all
limit ordinals A, (M, a) =, (N, b) iff (M, a) =, (NV,b) for all a < \. If (M,a) =, (N,b),
then M and N are said to be partially isomorphic, sometimes denoted M =2 A. When
M 22 N both M and NV will agree on L-sentences of quantifier rank o where the quantifier

rank qr(¢) of an L-sentence ¢ is defined inductively
qr(¢) =0 iff ¢is quantifier-free
q(-¢) = ar(¢)
ar(@ AY) = ar(¢ V) = max{ar(¢), qr(¥)}
qr(Fve) = qr(¢) +1

With these definitions it can be shown that M =N <— M =, N.

In the next chapter, we describe the Ehrenfeucht-Fraissé game (sometimes called the
back-and-forth game) and how it captures this notion of partial isomorphism between two
ordinal structures with the single binary relation <. Our goal is to explicitly compute the
rank « of partial isomorphism between the two ordinals. That is, given ordinals aq, s,
compute a such that ay =, as and a; 2,41 @s. This is accomplished by analyzing the
Cantor Normal Forms (CNF) of ay, asy, as Ehrenfeucht used in Theorem 14 of [5] (a paper
unknown to the author until recently.)

Our general strategy for computing « is as follows: first write a;q, as in CNF and look for

the least power in which they disagree. Compute an ordinal term for each block that they



have in common and one for the rest of the uncommon part. If a given block is the same
in both ordinals we assign oo to that term. « is then the minimum of these ordinal terms.
Our proof is by induction and begins with analyzing the simple case when the ordinals are
finite (Ch. 3). Optimal play in this case is straightforward; both players play their respective
midpoints until the game is over so that the rank is approximately log, of the smaller ordinal,
truncating the fractional part, of course. This simple strategy actually occurs in the formula
for the general case. We then proceed to simple transfinite cases when one or both of the
ordinals are infinite isolating key concepts that generalize to the general transfinite case in
the last chapter.

The intuition behind each ordinal term is as follows: player I moves in one of the common
blocks of the CNF or in the uncommon block of one ordinal and Player II must respond in
the other ordinal. The ordinal term then corresponds to computing what is the best that I
can hold IT to when he moves in that block. In most cases, it is in II’s best interest to follow
I’s play in the same block. In some small cases, however, a better move for II exists in some
block to the left or right of the one in which I played. This ability for II to run to the left or
right produces some interesting and unexpected phenomena in the final formula which we
will describe completely in the last theorem. In general, each ordinal term is approximately
twice the power of that block plus a log, term similar to the one from the game on finite

ordinals.



CHAPTER 2

PRELIMINARIES

We briefly review the basic notions of the Ehrenfeucht-Fraissé game which can also be
found in [12] (p. 52ff). A treatment that emphasizes the model theoretic aspects can be
found in [4] and [3].

Let a, 3,7 be ordinals and define a two-player game G(a, 3,7) as follows:

I (a1,m) (az,72) T (@ns Vn)

II by by e b,

Players alternate playing ordinals in either « or  which we view as two disjoint copies.
(Fig. 2.1.) Neither player is allowed to replay previous moves in the same ordinal. Call
these moves aq,as, ... for I and by, bs, ... for II. Player I can freely move in either a or j3,
but Player IT must always respond to I's move in the ordinal which II did not move. We
will say that I plays a, in « or in [ to identify on which board I makes his move. We call
a;, b; the ordinal moves for I and II, respectively. In addition to each of I’s ordinal moves
a;, I must play an ordinal +;, called the counter, such that v > v, > 75 > ---. When the
context is clear for v, we simply denote the game on o and § by G(a, ). Furthermore, 11
must always respond order isomorphically to I's move. For example, the X move in Figure
2.1 is a forbidden response for II to I's move a,,.

The game ends when either player can no longer move and the last player to move is
declared the winner. That is, if II has responded to all of I's challenges, and I can no
longer lower the counter, II wins. On the other hand, if II can no longer respond order

isomorphically to I's ordinal play, I wins.
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FIGURE 2.1. The game G(a, 3,7)

For every a, 3,7 the tree of legal positions of G(a, 3,7) is necessarily well-founded, be-
cause I must decrease the counter in each of his moves. Thus, G(«, 3,7) is a clopen game,
and therefore, it is determined. If @ = 3, then II has a winning strategy in G(a, 3,7): 11
copies I’s moves. If Il has a winning strategy in G(«,3,7), then II has a winning strat-
egy in G(0,a,7), namely, turn the game upside-down. If IT has winning strategies in both
G(a, 8,7) and G(f3, 9, ) for some ordinal d, then II can compose these winning strategies to
get a winning strategy in G(a,d,7). Thus, a winning strategy for Il defines an equivalence

relation on pairs of ordinals, and we write
I has a winning strategy in G(«, §,7) < a =, (3

IT has a winning strategy in G(o, 8,7) © a ~, (3

In the case a = B we write a ~o, 3. When + is a limit ordinal and we write o ~,, 3, we
mean that for all § < y(a ~s ).

For every pair of ordinals a # [ we claim that there is a unique « for which a ~, 3
and « ~.,4q (, which we denote vy(a, 3). Clearly, when it exists, v(a, ) = (8, «). For
a > 3 > 0, it follows from the order isomorphic restrictions on II's play that a ~<zy; 5.
Moreover, we will prove in Lemma 1 that o ~; 3 for a« > 3 > 0. Furthermore, suppose
a ~., (3 and 7/ < v is any smaller counter. Then, a winning strategy for II in a ~., 3 is also

winning in G(a, 3,7'), and thus o ~, 8. Similarly, if o =, 8 and 4" > 7, then a =, 3. So



it follows that the ordinal v(a, 3) exists for all a # 3. A formula which computes v(«, 3)
from a and § will be proven by induction.

The computation of v(a, ) is done by comparing the Cantor Normal Forms of a, 3 and
looking at the least disagreement in their CNFs. I plays some a; based on this comparison
and II responds with b;. The game G(a, 3,7) is now split into two games: one on the left

ai,by

and one on the right, which we denote G’ﬁ,ﬂl’gl and Grye . (Fig. 2.2.) We inductively compute

a value of 7 for each new subgame on the left and right which we denote v'L2! and &2,

ai

ay,by ay,bq
GLHS GRHS

a1,b ay,b
FIGURE 2.2. The games G| }is",Griis

Each induction is divided into two parts: a computation of an upper bound, v(a, §) < 6;
and then the lower bound, v(«, 3) > 6 for some . Suppose that € is a successor. To prove
the upper bound, we show that there is a legal ordinal move a; for I such that for all legal
responses by for 1T either 452" < 6 — 1 or v&L2 < 6 — 1. Tt then follows that v(a, §) < 0
because I can then lower the counter # by one and move a;. Regardless of II's response,
I can always choose to play out the rest of G(a, 3,7) on the side with the smaller . For
the lower bound, the situation is reversed. We show that for any ordinal move aq, there is
some response for II by such that both 442" > 6 — 1 and ya2t > 6 — 1. Then it follows
that v(«, 5) > 6 because regardless of both I's ordinal move a; and the smallest lowering of
the counter he can affect § — 1, Il always has a response b; that insures that II can survive

on whichever side, left or right, I chooses to play out the rest of G(«, 3,7). In other words,

when 6 is a successor

(@, 8) <0 & 3aVhi(ls' <0 -1V ks <6-1)



(@, 8) 2 0 Var3bi (1 = 0 — 1 Ais >0 —1)

The case when 6 is limit generally follows from the successor case.
e, ) < 66 3ah30' < 6(lS <0V g <)

V(Qaﬁ) >0 Valﬂblve’ < 9(75h731 > 0 A 7;}4,21 > 0/)



CHAPTER 3

THE RANK OF FINITE GAMES

We first compute y(«, ) when both «, f < w. It should be clear that v(a, ) > 0 for all

a # (3. Our first lemma computes v(«, 3) when 8 = 0, 1,2 for any value of «.

LEMMA 1. For all & € ON,

(1) if @ > 0, then v(«,0) = 0,
(2) if @ > 1, then v(a, 1) =1,
(3) if @ > 2, then y(«,2) = 1.

PROOF. (1) is immediate. I simply plays arbitrarily on the nonempty side. (2) should also
be clear as a »y [ follows by I playing twice in . (3) is similar to (2) except that in his
first move, I cannot move either the left-hand endpoint in « or, if it exists, the right-hand
endpoint in « (for otherwise II simply copies I's move.)

O

We are now ready to compute y(k,1) for all integers k,l. If k =1, then v(k,l) = co. It
remains to compute y(k, ) for k # . By the symmetry in the game it is enough to compute
v(k, 1) for k > 1. Note that |x| denotes the integer floor function, the greatest integer below

.
THEOREM 1. For all integers k > [, v(k,l) = |log, (I +1)].

PROOF. Let k > [ be integers. We prove y(k,1) = |log, (I + 1)] by induction on [. Lemma
1 shows the formula holds for I = 0,1,2. Let [ > 3 and assume that for all I’ < [ and
k' > 1I' that v(k,l) = |log, (I" + 1)]. First, we show v(k,[) < |log, (I + 1)] and then we show

v(k, 1) > |logy (I +1)].



UpPPER BOUND. ~(k,l) < [log, (I +1)]
I plays a; = [%J in £ and II responds with some by =" in [ where 0 < I’ <[ — 1.
Case 1. I' < [L]

Observe first that I/ < |£|. So, by induction, we have AL = log, (I'+1)] <

UOg2 (L%J + 1)J Write [ = 2Uog2l+1 _ 5 where 1 < j < 2Uo2l) We have two subcases

depending on the value of j.

SUBCASE 1.1. j =1

b
7&1451 < |log,

Thus, when j = 1, ’yf,ﬂ’_gl < |logy (I"'+1)] < |log, (I +1)] — 1.
SUBCASE 1.2. 2 < j < 2llee2ll

First observe in this case that [ > 4. Now we have a similar computation as before.
ai,bq l
Nhs < |log, 3 +1
2Llog2lJ+1 s

ollogy 1]+1 _ 9llogy 1]
< |log, ( 2 J + 1)J

= UOg? (QUng -1 + 1)J

L TR



= |logy ] —1

= |log, (I+1)] —1 (I = 2Ues2ll+1 5 and j > 2)

Thus, when II response is b = I’ < |L], we have A < |logy (I+1)] — 1. Thus,

Y(k, 1) < |logy (I +1)].

CASE 2. l’:LJandk>l+1

1
2
We still have L%J < L%J So, by induction 'yﬁh’gl = Llog2 (L%J + 1)J The same computa-

tion as above shows that 42" < [log, (I +1)] — 1. Thus, y(k,1) < |log, (I +1)].

Case 3. I'=|L]andk=1l+1orl' > ||

In either of these two cases we now have [ — I < L%J So, by induction 7?{%—1’21 =
log, (1 — ' +1)] < Llog? (\_éj + 1)J The same computation as above now shows that
yabet < [logy (I +1)] — 1. Thus, y(k,1) < [logy (I +1)].

So when I plays a; = LEJ in k, for every response for II by in [, we have v(k,1) <

2
[log, (14 1)].
LOWER BOUND. (k1) > [log, (I 4+ 1)]
CAseE 1. I playsa; =10"in [

IT response depends on the location of a; with respect to the midpoint of [.
SUBCASE 1.1. a; =1 < | ]

Then II responds with b; =1’ in k. On the left, fyfh’gl = 00. On the right, by induction
ygll_"gl = [log, (I —U'+1)]. Now -1 > |L]. So 'y;h’gl > |log, (|4] +1)]| and the same
computation as above shows that |log, (|£] +1)] = [logy (I +1)] — 1. Thus, (k1) >

Yriis + 1= [logy (1 +1)).

10



REMARK 1. This strategy for IT will be used in future arguments. Whenever II responds
with a move a; = b; that gives an co—game on the left, we will simply say that II copies

from below (See Figure 3.1.).

ay

ai,by _ 55
TLHs —

by

a

F1GURE 3.1. II copies from below

SUBCASE 1.2. a; =1 > Léj

Then IT responds with by = k — (I — ') in k. Now on the right 7252 = co. On the left,
ai,b

by induction vyt = |log, (' +1)]. Since I' > |4], we have v{lie" > [log, (|L] +1)] =
llog, (1 +1)] — 1. Thus, y(k,1) > 742" + 1 = |log, (I + 1)].

REMARK 2. This strategy for II will also be used in future arguments. Whenever II responds
with some b; so that the game on the right is an co—game, we will simply say that II copies

from above. (See Figure 3.2.)

a1
(0 7
/ /
/ 7/
Ja 01,01 0o
" TRHS ;
/ /
5 Vi

bleé—a,l

FI1GURE 3.2. II copies from above
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So if I plays any a; in [, II has a response by in k that insures v(k,l) > |log, (I + 1)].
CAsE 2. I plays a; = k' in k

Now II'’s response depends on the location of a; = k' within k.
SUBCASE 2.1. a; = k' < | ]

Then II responds by copying from below playing b; = a4 in [. The argument is the same

as above when I played a; =1’ < L%J in [.

SUBCASE 2.2. a; = k' >k — | L]

Then II responds by copying from above playing b; =1 — (k — k') in I. The argument is

l

the same as above when I played a; =1’ > [EJ in [.

SUBCASE 2.3. 4] <a; <k — |L]

1

Then II plays b; = |4|, the midpoint of {. Both A2 and 422 are computed by

ai,br _a1,b

induction and the same computations show that both 7'ljs', Vate. = [log, (I +1)] —1. Thus,
Ak, 1) > Llogy 1+ 1),
So if I plays any a; in k, II has a response by in [ that insures v(k,l) > |log, (I + 1)].
U

REMARK 3. From the proof of Theorem 1, an optimal strategy for playing the integer game
G(k, 1) emerges. Namely, both players play their respective midpoints with I always choosing
the longer side first. For future reference, we denote this method of play for either player as

the midpoint strategy.

12



CHAPTER 4

THE RANK OF GENERAL TRANSFINITE GAMES

Having computed the y(«, ) for finite values of both «, 3, we are ready to compute

v(a, ) when at least one of «, f > w.
4.1. Trivial Transfinite Games

Our first lemma computes ~y(a, #) whenever exactly one of either o or ( is finite or

whenever one of either a or # has a finite part that the other does not.

LEMMA 2. Suppose A, X are limit ordinals and that n,m € w. Then
(1) y(A\,n) =1 for n >0
(2) y(A+n,N)=1forn >0
(3) y(A+n,m) =2 for n >0 and m > 2

PROOF. Refer to Figure 4.1. For (1), I plays n — 1 in n. II must respond with some b; in
A where b; < A. In his second move I plays b; + 1 in A. II cannot respond and loses. A
similar argument for (2) shows that after I plays A + (n — 1) in A 4+ n in his first move and
IT responds with b; in A, I defeats II by playing b; + 1 in X" in his second move. For (3), I
plays A in A + n. II must respond with some b; in m. If b =0 or by = m — 1, then II loses
immediately. Otherwise, if 0 < by < m — 1, then I plays as = b; — 1 and II repsonds with

some by < A. Then az = by + 1 is a win for . O

We will refer to the games (1) and (2) from Lemma 2 as trivially separated, and a
game like (3) as trivially unbalanced. Generalizing these notions will prove useful in the
sequel. We can summarize Lemma 2 by observing that when G(«, (3) is trivially separated,

v(a, B) = 1 and when G(a, 3) is trivially unbalanced, v(«, 5) = 2.

13



A ' i
G(A\,n)
n e . . . . .
ar=n—1
Nt n Cap=A+(n—1)
GA+n,X\)
\
A+n .
G(A+n,m)
m e .

b1—1:a2 bl

FIGURE 4.1. Trivial transfinite games

When both a and [ are infinite and have a nonempty nonequal finite part, we can
compute an upper bound for «y(a, ). The reader should note that the computation is

similar to the proof of the upper bound in the proof of the finite formula for v(k,1).
LEMMA 3. Suppose A\, X' are limit ordinals and that n > m > 0. Then
YA+ n, X +m) < [logy (m + 4))

PROOF. Let « = A +n, 8 = X +m where n > m > 0. We prove the upper bound holds
by induction on m. Since v(a, ) < min{y'Le! 4 1,252 + 1}, we must show that there is
a move a; for I such that for every response b, for II either ”yﬁ,ﬁgl < |logy (m+4)] — 1 or

e < |log, (m +4)] — 1. We argue the cases m = 1,2, 3 individually.

I plays the same move a; = X in  for m = 1,2, 3, and II responds with some b; in a.

14



Suppose m = 1. If by = A+ (n — 1), then Gﬁh’gl = G(A+ (n—1),A) is trivially separated
and 42 = 1. If by < A+ (n — 1), then Gai2t = G(a/,0) for some 1 < o/ < a. By Lemma
1, 7;}4’21 = 0. In all cases for IIs response by, we have v(a, ) < 2 = |log, (1+4)].

Suppose m = 2. If by = A+ (n—1), then G4 = G(1,0) and 422" = 0 again by Lemma
1 If by = A+ (n — 2), then GI52 = G(A + (n — 2), \) is trivially separated and 752" = 1.
If by < A+ (n —2), then G&Y = G(c/, 1) for some 2 < o/ < « so that yahe! = 1, again by
Lemma 1. In all cases, we have y(«, 5) < 2 = |log, (24 4)].

Suppose m = 3. If by = A+ (n — 1), then G&% = G(2,0) and 7252 = 0 as before. If
by = A+ (n — 2), then G&2 = G(2,1) and &2 = 1 by Lemma 1. If by = A + (n — 3),
then G{Le' = G(by, N) is trivially separated and 7(e' = 1. If by < A+ (n — 3), then
QL = G(af,2) for some 3 < o < « again by Lemma 1. In all cases, we have y(a, §) <
2 = |log, (3+4)].

For m > 4, assume that for all m’ < m and all »’ > m' that y(A +n/, N + m') <
[log, (m +4)]. I plays A+(m—21°82™) 11 in @ and I1 responds with some b; in 3. Ifb; < X,
then G5 is trivially unbalanced and 42" = 2. Thus, y(a,3) < 3 < [log, (m +4)]. If
by = X, then G?{g? is trivially separated. Thus, vy(«, 5) < 2 < [log, (m + 4)]. Now suppose
by = XN +m/ for some 1 < m' < m. There are two cases:

(1) 1 <m' <m —2lesml op

(2) m —2lle2m] L 1 </ <m

In the first case, v'ie' < |log, (m’ +4)] by induction. We claim that
[log, (m' +4)] < [log, (m+4)] —1
Assuming the claim holds, we then have in this first case v(a, ) < 432 +1 < [log, (m +4) .

PROOF (cLAIM). Write m = 2U°s2m+1 — j where 0 < j < 2U°82) " By hypothesis,

m' < m — lesam] — gllogami+l _ 5 gllogam] _ gllogam] _

15



and hence

m/ 44 < 2Ues2ml (4 g)

Now if 1 < 7 <4, then
[logy (m' + 4)] < [logym| = [log, (m +4)] —1
On the other hand, if 4 < j < 2Ueg2™ then
[log, (m' +4)| < [logym] — 1= [logy (m +4)| — 1

This proves the claim.

Now suppose that m — 2l°g2™ 41 <m/ < m. Then G‘Fl{l,_]lgl is a finite versus finite game.

By the finite game formula,

a1,b1

Yriis = [logy (m — m')] < UOg2 (QUOgQ m 1)J = [logym]| — 1

Thus, v(a, 3) < v,‘;}_,’gl +1 < [log,m| < |logy (m +4)].

4.2. The Separated CNF Game

Recall that for every ordinal « there are unique ordinals oy > g > -+ > «,, and unique

nonzero integers ki, ..., k, such that
a:wal.k1+...+wa".kn

This unique decomposition is called the Cantor Normal Form (CNF) of a. We will refer
to each term of the CNF of a as the a;-block, or if the power is clear, simply the i** block.
If « has only one term in its CNF, i.e. n =1, then « is a monomial. A monomial having a
coefficient of 1 is monic. We say that a,,, the least power in the CNF of an ordinal, is the
terminal power of a.

We fix the following terminology and notation for any ordinal o written in CNF as above.
For 1 < ¢ < n define

@C.V:wal.kl—’—..._i_wai.ki

1

16



the sum of the first ¢ blocks of the CNF of a. Consider a single «;-block for a; > 0. We
refer to the endpoints of a given block as the left and right fences of the i*-block and the
multiples of w® - k" as the holes. (See Figure 4.2.) We do not consider the left fence in ¢

a true fence since this equals zero.

@ CDO“—b—waL(I)ava -2 <I>°‘+w -3 <I>"‘—|—w (ki — 1) Z+1

holes /J
fences

FIGURE 4.2. Fences and holes in the i**-block

Let v = w® kg + -+ w* -k, and B = W - l; +--- +wP - [, be written in CNF.
If v, # B, then we say a and [ are separated. THe next theorem can be viewed as a

generalization of parts (1) and (2) of Lemma 2.

THEOREM 2 (The Separated Game formula). Let o = w® - ky + -+ +w* - k, and § =

Wil 4 -+ WP -, be written in CNF and a,, > 3,,. Then we have

20, if § is a monic monomial
Ve, B) =
26, +1 otherwise

A symmetric formula holds for «,, < 3,,.
PROOF. Let a, 8 be as above. We prove the result by induction on the CNF of j3.
CASE 3. [ is a monic monomial, i.e., m=1,l; =1
UPPER BOUND. v(a, 3) < 204

I plays 8 in « and II responds with some b; in 3. Now Gﬁhsl is separated. By induction

fyfhgl <273 + 1 where (' is the terminal power of b;. If 3, is a successor, then ' < 3; — 1;
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otherwise, if 3y is limit, then 3 < ;. Either way, vy(a, ) < ’y&ﬂ,’gl +1=20+2<
2061 — 1) +2 =25

LOWER BOUND. ~(a, ) > 20,

If T plays a; in 3 or a; in « for some a; < (3, then II copies from below. This gives

a1,b1 ai,by

Yt = 00 and Ygpe > (o, #), and this move for I does not gain anything for I.

REMARK 4. For future reference, whenever a; is such that there is a b; such that either

fyfﬁl’gl = 0o and fyﬁlH’gl > v(a, B) or vice versa, then we say that a; is a stalling move for I.

So assume I plays a; > 3 in « and let the CNF of a; = w® - p; 4 -+ + w’ - p,. Among
the {d;}1<i<, identify all of the powers greater than or equal to 3, as 6] = dy,...,07 = ¢; for
some 1 < ¢ < r. That is, ¢ is the largest index such that §; > ;. Assuming for the moment
that (3 is a successor, II responds to a; in a with b; in § where

bl:wﬁl_l-p/1—|—--~—|-wﬁl_1'p;+wai+l'pi+1+"'+wér'pr

where for 1 < j <, p’ = 2if p; = 1 and p; = p; otherwise. (See Figure 4.3.) Thus, II copies

5?2&‘ l5i+1<ﬂ1‘

(5;:5jf0r1§j§i‘

5t 5 5 5, 5
W epr o WPy Wi PN WO Py s W Py

aq ? 7

/ /

COMPRESS /|  COPY |

! /
é /

by ‘
Bl _p; Wit “Piv1+ o+ wdr “Pr

/

Wit ph Wit ph

p;-22f0r1§j§i

FIGURE 4.3. A (; — 1)-compressed copy of a;

what parts of the CNF of a; that he can, namely all of the powers of a; which are 5; — 1 or

less. Note that for a; with large (> /3;) terminal power, there is no copied part. On the rest
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of a;, I compresses the data in all of the ¢, the powers larger than 3, — 1, into a number
of blocks (at least 2) of the highest power that he has, 5, — 1.

Now we have two games: GiLe' = G(ay,bi) and G&2 = G(a — ay, 3 — by). On the
right, G?{g? is at worst G(«/, 3) where o/ > w®». This is still a separated game and thus
vgh’gl > v(a, #). On the left, Gle’gl is comprised of r-many subgames each one corresponding
to a block in the CNF of a;. On the blocks w’+!, ... w% v = oo since each is a copying
move. On the w’ ..., w% blocks, these games are all separated and the limiting factor in
the separated formula is IT’s response: w” 1. pl. Since II played at least two copies of w1
in each block, II can last at least 2(#; — 1) + 1 many moves in each of these subgames by
induction. Therefore, ’yf,ﬂl’gl > 2(6; — 1) + 1 and thus, y(a, 8) > 20;.

If 5 is a limit, we must show that for any v < 20y, v(a,3) > /. This is easily

accomplished by a similar argument as above, except that in the compressed part of II'’s

response by, the 31 — 1 are replaced by some sufficiently large 3’ < (3;. This ends Case 1.

REMARK 5. For future reference, we will call this strategy by II data compression (Fig.
4.3), where II responds with b; to I's move a; by playing a number of copies of II’s highest
power followed by some copied blocks of lower powers, depending on the CNF of a;. If we
want to emphasize that largest power n of by, we call b; an n-compressed copy of a;. So

in the previous argument when /3 is a successor, by is a (; — 1)-compressed copy of a;.
CASE 4. [ is not a monic monomial

So in this case, we have 3 = w? -l +--- +w” - 1,,, where either m =1 and [; =1, > 1

or m > 1. In either case the argument is the same.
UPPER BOUND. v(a, 3) < 26, + 1, where (3, is terminal

I plays the last hole in 3. That is, if 3 is a monomial, I plays w” - (I; — 1) in 8. If 3 is

not a monomial, I plays w® -l + -+ +w? . (I,, — 1) in . In either case, II must respond
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with some by in a. Now Gaiet = G(o/,wPn) where at worst o/ > w®. (Fig. 4.4) This game

is separated on the right, and by induction, 7&}_{21 < 20, and hence y(«, 5) < 26, + 1.

by
(0% = 7
S 7
RN /
\\ /
~. K\_wﬁm
T~ /
ﬂ L2 — - P
B
o ay

FIGURE 4.4. Pinching off a block

REMARK 6. For future reference, we will call this strategy for I pinching off a block where
I plays the largest possible move that leaves a single block on the right. Note that, however,

when I pinches off a block, it is not necessary that the resulting game be separated.
LOWER BOUND. ~(a, 3) > 203, + 1, where (3, is terminal

If T opens with either a; in 3 or a; < 3 in «, then II copies from below and I has made a
stalling move. Otherwise, a; > 3 in o with a; = w - p; + - - +w® - p, > 3 and II responds

with by in 8 where by is a [3,,-compressed copy of a;:
b1 :wﬁm~l1+"‘+wﬁm~(lm—1)—|—w6i“ ‘p¢+1+'--+w5“pr

We let be i+ 1 the smallest index so that §,,1 < (3, and thus w+! “Piv1 - 4w p, < WP
This makes G"F?,jl? = G(a—ay,wPm). Since this game is separated, by induction vgh’? > 20m.
On the left, we have (r — i) + 1-many subgames. Each game corresponding to the CNF of a;
is an co-game while the game on the far left is separated, and hence covered by the induction
hypothesis, v > 23,,. In all cases we have yfﬁ’gl > 20,,. So, y(a, B) > 26, + 1.

O

Henceforth, we assume that «, § are not separated so that the terminal powers of o and

0 are equal.
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4.3. The Pure Monomial Game

As a generalization of the finite game G (k,1) = G(w° - k,w° - 1), consider G(w® - k,w® - 1)
when 6 > 0 and k,[l are nonzero integers. We identify this particular game as the pure

monomial game. In the pure monomial game, we view the holes of G(w® - k,w’ - 1) as the

points in G(k — 1,1 —1).
LEMMA 4. Let & = w® -k and 3 = w® - I where 6 > 0 and k # [ are nonzero integers. Then

Ve, B) = 26 + [log, (kA1)

PROOF. Let a = w’ - k and 8 = w’ - [ be as above. Clearly the formula is symmetric in k

and [, so without loss of generality assume k > [. We prove the result by induction on [.
UpPPER BounD. [ =1

We show that v(a, 3) < 26 + [log,l| = 26. Observe that for k > | = 1, o has at least
one hole, but 3 has none. So I plays a; = w’ - 1 the first hole in « and II responds with
some b; in #. Now the terminal power of b; is < 4, so G‘Eh’gl is necessarily separated. If 9 is
a successor, then 7't < 2(5 — 1) + 1 by the Separated Game formula (Lemma 2) so that
v(e, ) < 2(6 — 1) +2 = 26. If § is a limit, then 742" < 26’ 4 1 for some ¢ < §, again by

the Separated Game formula. Thus, vy(a, 3) < 24.

REMARK 7. This situation occurs often, and we make the follwing definition. Suppose in
some G(a,3), I plays a; which has terminal power some 1. We call an n-descent any
response b for II such that the terminal power of b; is some 1’ < 7. It follows that GﬁlH’gl is
separated and by the Separated Game formula, 7,‘_1,1_"31 < 2n7'+1. Thus, y(«a, 5) < 21/ +2 < 2.

So in the above case [ = 1, every response b; for II is a d-descent.
LOWER BounD. [ =1

We show that for [ = 1, y(a, 8) > 2§ + |log, I| = 260. If a; is in 3, then II responds by

a1,by a1,b1

copying from below with b; = a; in . On the left, 4'}is" = co. On the right, Ggjet = G(o, )
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so this a; is a stalling move for I. Similarly, if I plays a; < w? - 1 in «, this is stalling for 1.
So suppose I plays a; > w® -1 in «. II responds by playing b; in 3, a §’-compression of a;
where, depending on whether or not § is a limit or successor, ¢’ < § is as in the proof of the
lower bound of the Separated Game formula. In either case, using an identical argument
from Lemma 2, vy(«, 5) > 2d. Thus, we have for [ = 1, v(«, §) = 20 = 2§ + |log, {].

Now let [ > 1 and assume for all I’ <[ and k > I’
Y(w® - kW’ - 1) =25 + |log, U]
UPPER BOuUND. [ >1

Notice that G(a, 3) = G(w’ - k,w’ - 1) looks like the finite game G(k — 1,1 — 1) and
we argue similarly as in the proof of the Finite Game formula (Lemma 1). First, we show
Y(a, B) < 26 + [logyl]. I plays the “midpoint” hole w’ - |%] and II responds with some

by in 3. Observe that any b; that is not a hole in [ is a d-descent and thus, for such by,
y(a, B) <25 < 25 + |logy1]. So suppose by = w® - 1" is a hole in 3 where 1 <1’ < [. This b

then splits 4 into I’ many copies of w® on the left and [ — I’ many copies on the right:
B=w = I+ (1-1)
Let [ = min{l’,l = '}. If I’ < [ —1', then we have |£] > I'. Thus, by induction,
s = 20+ {logg fJ
[
< 20+ {log2 {—JJ
2
= 20+ ([log, 1] —1)

So y(a, B) < 26 + |logyl|. If I' =1—1" and ng # ', then ’yﬁﬁ"gl computes the same, and we
again have y(a, 8) < 20 + [log,l]. If ! =1 — 1 and |£| = !’ (which can only occur when k
isodd and k =1+ 1) or if L — " > I’, then by induction and a similar computation as above

Vet < 26 + ([logy 1] —1). So, (e, B) < 26 + [log, ).

Lowger BounD. [ >1
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We show that y(a, 3) > 26+ |log, []. First suppose that I plays a hole in 3, a; = w’-I’ for
some 1l <!I'<[-1.If1<!'< L%J, then II copies from below and plays b; = w®-I' in a. On
the left, 742" = co. On the right, by induction 7252 = 25+ [log, (I — I')| > 26+ [log, |£]] =
26 + |logy 1] — 1. So y(e, ) > 26 + |log, ]. If on the other hand || <!’ <1 —1, then II
copies from above playing b; = w’- (k— (I—1')). Now on the right V;h’? = 00. On the left, by
induction vt = 26+ |log, I'] > 26+ [logy | 5] ] =26+ [log, 1] —1. Sov(a, 3) > 20+ |log, ].
Now suppose I plays a hole in o, a; = w® - k' forsome 1 <k <k—1.If1 <k < LéJ, then

9. k" in . The computation is the same as above and it

IT copies from below playing b; = w
follows that y(a, 8) > 26+ [logy {]. If k— || < k' < k—1, then II copies from above playing
by = w® - (I — (k — k')). Now on the right 722" = co. On the left, by induction ;2" =
26 + [logy (I — (k— K'))] > 20 + |log, [ L] | =20 + ([logy 1] — 1). So, v(a, 3) > 20 + |log, 1.
If \_%J <k <k- Léj, then II plays the “midpoint” hole in 3, by = w?’ - [%J Now on the left
by induction y{je! = 26 + |log, | 4] | = 26 + (|logy 1] — 1). On the right, if k — &' =1 — | 1],
then ~ahe = co. Otherwise, by induction v = 26 + [log, (1 — |£])] =26+ ([logy 1] —1).
In any case, y(«, 3) > 20 + |log, I|. This exhausts all possibilities for I playing a; that is a
hole in either o or f.

Now suppose a; is not a hole in either o or 8. If a3 < w® -1 in either o or 3, then II
copies from below playing b; = a;. This a; is then easily seen to be a stalling move for 1. So
ay is of the form w® - p +n where n < w® and p is some integer less than k or | depending
on what side I plays. II responds by playing b; = w® - p’ + 1 where is the same hole that
he would have in the previous paragraph plus a copy of the small tail . We claim that the

presence of the tail 7 does not decrease the lower bound.

PROOF (CLAIM). Let @1, by be the untailed versions of the above moves ay, by, respectively.
On the left, using a compression-type argument as in the Separated Game formula, ”yf,ﬂl’gl >

JEE On the vight, G = Gla— a1, — by) = Gla— a7, — B so that A = 18-

O
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4.4. The Common CNF Game

Toward the final formula for those «, 3 which are not separated, we identify the common

part of their CNFs as

a = O+ k4w k,

B = Bp+wn W,
where the CNF's of @, q)g are separated. We allow the possibility that one or both of ®f, q)g
may be empty. In case they are not empty, identify the terminal terms of ®F and (IDg as
w® - ko and w® - [y, respectively. We will ultimately prove that v(a, 8) is the minimum of

finitely many ordinal terms 7;, 0 < ¢ < n where each 7; corresponds to a block in the common

CNF of a and (8 (Fig. 4.5), as follows:

C i =~
< wa() . k/’o w'yl . kl w'y2 . k;z w’yn . k‘n

o i . o« .. o

7o-block © 7i-block © 7»-block ~ 7,-block

5 — : : .

3 who . lo wn W2 -y w1,
q>0

FiGURE 4.5. Common Cantor Normal Form

441. n=1

To simplify the exposition, we first consider the case where n = 1. That is, the common
CNFs of a, 3 have one block of the same power and one separated block on the left. As
we said before, one of the ®f, @g may be empty (if both are empty, this is just the pure
monomial game). Our next lemma computes («, ) whenever exactly one of ®F or @g are
nonempty. For future reference we will call this game the unbalanced game. This lemma

can be viewed as a generalization of part (3) of Lemma 2.
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LEMMA 5 (The Unbalanced Game formula). Let a > 3 be written in common CNF: o =

Of +w™ - ky, B =w" -y where 73 > 0. Then

Y. B) =92y +1 1, =2,3

(2n+2 h=>4

PRrROOF. Let a, 3 be as above. We prove the result by induction on /; and we argue the
cases [; = 1,2, 3 individually. Note that when we identify a game as either separated or pure
monomial, we expect the reader to understand that we are using the formulas from Theorem

2 and Lemma 4.
Case 1. [; =1
UPPER BOUND. v(o, ) < 2y,

I plays ®f in o and II responds with some b; in 3. Observe that the terminal power of
by must be < 71, and thus is a descending move for II. As we have argued before, whether

ai,by

is separated and 7,}js' < 29" + 1 for some 7/ < 7. Thus,

‘a T a1,b1
71 is limit or successor, G| s

7(0[75) S 271
LOWER BOUND. v(a, 3) > 27

Suppose I plays a;. Any a; in 8 or any a; < w” in « is easily seen to be a stalling move
for I: II copies from below playing b; = a; in «. So suppose I plays a; > w” in . Then
II plays by in 3, a 4'-compression of a; where, depending on whether or not ~; is a limit or
successor, 7' < 7 is as in the proof of the lower bound of the Separated Game formula. In

either case, y(«, ) > 2v;,. Thus, for [; = 1, v(a, ) = 271.
CASE 2. [; =2

UPPER BOUND. 7(a, 3) < 2v + 1
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I plays @ in « and II responds with some b; in 5. Any b; that is not the hole w” - 1 is

a descent. Suppose by = w™ - 1. If k; = 1, then G‘L”H’gl is separated on one copy of w™ and

a1,by

Mhs' = 271. Thus, v(a, 5) <2y + 1. If ky > 1, then Ggﬁ? is pure monomial on one copy

al»

of w and gy’ = 271. Thus, regardless of the value of ki, y(a, 5) < 2y, + 1.
LOWER BOUND. 7(a,3) > 29 + 1

Suppose I plays a;. Any a; in § or any a; < w" - 2 in « is stalling for I: II copies from
below playing b; = a; in a. So suppose I plays a; > w” in «. If the terminal power of a; is

> 71, then II plays b; = w?, the hole in 3. When the terminal power of a; is > 7, on the

a1,by

left G‘E,{;gl is separated on one copy of w” and v \js' = 271. On the right, if a; = ®f, then

cither 7252 = oo (when k; = 1) or G2 is pure monomial so that vahet = 2v,. If a; < ®§

still with terminal power > 71, then G%% is as in the [; = 1 case above and vahe! = 27,.
In any case, Ypije 2> 2+, so that v(a, B) > 2y + 1. Now, if the terminal power of a; = 7,

ai,by

then on the left, Gﬁ,l_;sl is as in the above [; = 1 case so that 7 }js' = 27v1. On the right either
YELT = 00 or LY # 0o and Gt is pure monomial on one copy of W and YaLe = 2.
In either case, y(«,3) > 271 + 1. Now if the terminal power of a; is < 7, then II plays
by = WM - 14 n where 7 is the small tail of a; that II copies. Using the same argument

at the end of the proof of the lower bound of the Pure Monomial formula (Lemma 4) the

presence of the tail does not decrease the lower bound. So v(«,3) > 29, + 1. Thus, for

ll = 27 ’Y(Oé,ﬁ) = 2/71 + L.
CAseE 3. 1 =3
UPPER BOUND. 7(a, ) <27, +1

If k&, = 1, then I plays a; = w™ - 2 in a and II responds with some b; in 5. Any b,

that is not a hole is a descent. If by is the first hole in 3, then Gﬁh’gl is pure monomial and

fyf,ﬂl’gl = 27,. If by is the second hole in 3, then G‘,?H’gl is as in the {; = 1 case above so that

a1,b1

Yatiew = 271. In either case, y(«, B) < 27y + 1. If ky > 1, then I plays a; = @] in «. Again,
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by that is not a hole in 3 is a descent. If b; is the first hole in 3, then GﬁlH’gl is separated and

vf,ﬂ’gl = 27,. If by is the second hole in 3, then %ﬁgl is pure monomial and 7;}4’21 =2v. In

either case, y(a, 3) < 271 + 1.
LOWER BOUND. ~v(a,3) > 27, + 1

Suppose I plays a;. If a; is in 8 or if a; < w" -3 in «, II copies from below so that
LY = 00 and yahY! is as in the [; = 1 case above so that Y22 = 27y,. Thus, v(a, §) >
2v1 4+ 1. So suppose a; > w™ - 3 in a. Then the argument is almost identical to the [; = 2
case except that II plays the second hole in ( instead of the first hole. Suppose that the

terminal power of a; is > ~;. On the left, if the terminal power of a; is > v, then Gﬁh’gl is

separated on two copies of w™ and "2 = 2v; + 1. If the terminal power of a; is 71, then
TLHs v g

G‘E,ﬂl’gl is the l; = 2 case so that vfﬁ’gl = 27, + 1. On the right, there is only one copy of w”
on the bottom so the argument is the same as the [; = 2 case. If the terminal power of a; is

< 71, the argument is the same on both sides: II plays the second hole and copies the small

tail of a;.
CASE 4. ll >4
UPPER BOUND. ~(a, ) < 27y, + 2

I plays @ in o and II responds with some b; in 3. Any b; that is not a hole is a descent.
Suppose b; is some hole in 3. On the left, G‘E,l_;gl is separated and vf,l_,’gl < 2v1 + 1. So,

v(a, 8) < 2m +2.
LOWER BOUND. ~(a,3) > 27, + 2

We prove the formula by induction on ;. Suppose that for all I; < [; the formula holds
and suppose I plays a;. First we consider a; in 8. If a3 < w” - (I; — 1) in 3, then II copies
a1,b1 a1,b1

from below playing b; = a; in a. On the left, v/ \)s' = oo and on the right Gp;i' is as in the

l; = 2 case so that W;IH’? =2y + 1. If ag = w" - (I3 — 1) the last hole in 3, then II copies
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from above playing by = ®§ + w - (k; — 1) in . On the right ’yng’gl = 00. On the left,
there are two possibilities for G{l;2'. If, on one hand, b; = ®§, then G{L2' is separated and
'yﬁ,ﬂl’gl = 29, + 1. If, on the other hand, b; = & + w™ - k' for some £’ > 1, by induction we
have fyf,ﬂ’gl > 2y + 1since l; —1 > 3. If a3 > w™ - (l; — 1) in (3, then II plays the last hole
by = w" - (k; — 1) + n copying the small tail of a;. Again, the presence of the tail does not
decrease the lower bound. So for all possible ay in 3, y(«, 5) > 2y1 + 2.

Now suppose a; is in a. If a; < w” - (I — 1), then II copies from below. On the left
L2 = 00 and on the right G&% is as in the [; = 2 case so that yahe! = 24, + 1. Thus,
v(a, B) > 2v1 + 2. Suppose a; > w - (I; — 1). If the terminal power of a; is > ~;, then II
plays w” -2. On the left, Gﬁh’gl is separated on two copies of w” and by the Separated Game
formula, yflﬂ’gl = 2v;+1. On the right, by induction vﬁh’? > 2y1+1. Thus, v(a, 5) > 291 +2.
If the terminal power of a; is 7, then II plays b; = W - L%J, the “midpoint” hole in 5. On

the left, there are two possiblities: either Gﬁ,{;gl is pure monomial or it is not. If G‘E,l_;gl is

pure monomial, then by the Pure Monomial formula ’y,’_lﬁ"gl > 271 + 1 and on the right, by
induction 7252 > 27, + 1 so that v(a, 8) > 2y; + 2. If G'L2 is not pure monomial, then by

induction, 752" > 27, 4 1. In this case, on the right either 722" = oo or yahet # co and

either by the Pure Monomial forumla or by induction vg,l_;gl > 27 + 1. In any case, when
the terminal power of a; is 1, we have y(«, 5) > 27, + 2. Finally, if the terminal power of

ay is < 7, II copies the small tail of a; on top of playing the same b; he would have if a,

had no tail. The presence of the tail does not decrease the lower bound. O

To complete the case for n = 1, we consider the case where «, § are written in common
CNF and both ®f, (Dg # (). First, we fix the following notation. Let «, 3 have common
CNFs:

o = <I>8“+uf’1-k1

B = O +wn -]
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where the CNFs of <I>8“,<I>€ # () are separated. As before, identify the terminal terms of
oF, <I>g as w - ky and w® - [y, respectively. We define the ordinals 7; for i = 0,1 as follows:

Term 1y: Suppose g > Fo. If Byg > v1 + 1, then

203 if ® is a monic monomial
T0 =

20y + 1 otherwise

If Bp == +1and @g = w’_ then

25 if 1, <3
T0 =

200 +1 ifly >4
If & = w0 .2, then
7'0:2ﬁ0+1

If @g > w™ . 3 and has terminal power 3,, then

280 +1 ifl; <3
T0O —
200 +2 ifly >4
A symmetric formula for 7y holds for agy < (.
Term 1y : If ky =1y, 1 = 0o. Suppose k; > [;. If v; = 0, then
71 = |log, (I1 +4)]

Suppose v; > 0. If [; = 1, then

T =
29 +2 ifky >3
If Iy = 2,3, then

T =27 +2
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Ifl,=4
29 +2 ifk =5
T =
2vi +3 ifky > 6
Ifl, > 5,
T =27 + [log, (I + 3))

A symmetric formula holds for k; < [;.

THEOREM 3 (The Common CNF Game, n = 1). Let a = ®§ +w™ -k and f = &) +w™ -1

be written in common CNF where ®§, ®; # (. Then if 79, 7y are defined as above
V(e B) = min{ro, 71 }

PROOF. Let «, 3 be as above. We first prove that v(«, 5) < min{r, 71 }.

UPPER BOUND. 7(a, 5) < min{ry, 7}

Observe that I'’s choice of his first move depends on which of 7y, 7y is smaller. So we

break up the proof of the upper bound into cases: either 79 < 7 or 71 < 7.
CASE 1. T < 7.

We will show that v(«,5) < 79. We assume, for this 79 < 71 case, without loss of
generality that ag > [y. For if ag < [y, reverse the labels on o and § and the labels on
the coefficients in the 7-block. We adopt the notational convention that the k; coefficient

remains with « and the [; coefficient remains with (.
SUBCASE 1.1. fy >~ + 1 and ®] is a monic monomial

I plays a1 = w® in o and II responds with some b; in 3. If b; < <1>§ and 3 < [ is the
terminal power of by, then G’ﬁﬁgl is separated and 'yﬁh’gl < 203 41. Thus, y(a, 3) <20’ +2 <
2(0"+1) <28y = 19. (Recall that we refer to this kind of response for II as a [y-descent,

because it holds T1 to at most 20y.) If by = @), then G2t is unbalanced and 4252 < 2, +2.
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Thus, v(a, 8) <271 +3=2(n+1)+1<26y =7 Ilf b > @g, then by is a [y-descent since

th’gl is separated and 7“1_'31 < 27 + 1. Thus, y(«, 5) <271+ 2 < 26y = 7.
SUBCASE 1.2. () >, + 1 and @} is not a monic monomial

I pinches off a block of w® in 3 (Recall Fig. 4.4) by playing a;, the last 3, hole in the
To-block of 3. II responds with some b; in a. If by < ®f, then G'F?,jl? is as in the previous case
where ®) in G&% is a monic monomial. So, Yaie! < 26, and thus y(a, 8) < 26, +1 = 7. If
by = @, then G;Hs is unbalanced and vgjic b« 271 +2. Thus, v(o, 5) <2y +3 <26+ 1=
0. If by > ®F, then GULY is separated and 7'he! < 2y, + 1. Thus, v(a, ) < 2y + 2 <

Zﬁo +1= T0-
SUBCASE 1.3. By =71 + 1 and Q)g = Wb

I plays w™ in a and II responds with some b, in 3. If b; < @g, then b; is a fy-descent
and (o, B) <26y < 719. If by = <I>€ , then G?;,jllgl is unbalanced and there are two possibilities:
either [; <3or iy > 4. If |} < 3, then Ygye b1 < 271+ 1so that y(a, B) <2y +2=2(n+1) =
280 = 7o. If Iy > 4, then 42t = 27, 42 s0 that y(a, ) < 2y +3 =260 +1 = 7. If by > @},

then GﬁlH’sl is separated and 7LH51 < 27 + 1. Thus, y(«, 8) <271 +2 =206y < 7.
SUBCASE 1.4. By =71 + 1 and CDg =Wk .2

I plays w2 in o and II responds with some by in 3. If b; = w™, the hole in the @g—block,
then Gﬁ,ﬂl’gl is pure monomial and ’yf_l,ilsl = 203,. Thus, y(o, 8) < 280 +1 = 7. If by < B
and b; is not the hole in the @g—block then b; is a (yp-descent and y(«, 5) < 26y < 79. If
by = <I>0, then G?{H? is unbalanced and gje 1 < 9~ +2 = 28,. Thus, Y(e, B) <2Bp+1 = 7.

If by > <I>O, then Gﬁ,{;gl is separated and by is a fy-descent. So, y(a, f) < 26y < 7.
SUBCASE 1.5. By =7 + 1 and <1>§ > w% . 3 and has terminal power 3
Write ®) = &7 4+ w . [; where ®” | (possibly empty) has terminal power > f in its

CNF and [y is a nonzero integer. Then I plays @él +w’ . (lg — 1) in 3, pinching off a block
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of w® in the @g—block of # and II responds with some b; in . If b; < &, then G?{g? is as in
the ®) = w case. If [; < 3, then ygh’gl < 20 so that y(«, 8) < 260+ 1 = 79. If [; > 4, then
YR < 98y + 1 so that y(a, B) < 260 + 2 = 7. If b = ®F, then G2 is unbalanced and
YO < 2y + 2 = 26,. Thus, y(a, B) < 260+ 1 < 7. If by > ®F, then G2 is separated
and vﬁ,ﬁgl < 27 + 1. Thus, y(«, 8) <271 +2 =206y < 7o.

This ends the case when 7 < 77.
CASE 2. 11 < Ty

We show that v(«, 5) < 7. First, it cannot be the case that k; = [} since 17 < 79 # 0.
So, suppose that k; > l;. If v; = 0, then v(a, 8) < |log, (I1 +4)] = 71 by Lemma 3. For the

remainder of this case, suppose 7; > 0.
SUBCASE 2.1. [y =1 and k; =2

I plays a; = ®f + w the hole in the y;-block of a and II responds with some b; in 5.
If b, < CIDO’g, then G?{,j@l is unbalanced and vng’gl = 27;. Thus, y(a,[) <2y +1 =m7. If
by = @g, then GﬁlH’gl is separated and ’yfh’gl = 2v;. Thus, y(o,5) <2y + 1 =7. If by > (ID*g

and has terminal power 7/ < 7y, then G{L2' is again separated and 7,2 < 27/ 4 1. Thus,

Y, B) <29/ +2< 2y <7
SUBCASE 2.2. [y =1and k; > 3

[ again plays a; = ®§ +w" - (k; — 1) the last hole in the 7;-block of a and II responds with
some by in 3. If by < ®F, then G‘é}_’,? is unbalanced and ygh’gl = 2v1. Thus, v(a, B) < 2714+1 <
7. If by = ®f then G’E,ﬂl’gl is separated and 'ygh’gl < 291 + 1. Thus, v(a, 8) < 291 + 2 = 71.

If b, > @g, then by is a y;-descent so that y(«, 5) < 2y, < 7.
SUBCASE 2.3. [; =2
I plays a; = ®§ + w - (k1 — 2) the next to last hole in the 7;-block in o and II repsonds

with some by in 3. If b < ®F. then G‘él,jlgl is unbalanced and vng’gl = 2v; + 1. Thus,
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(e, B) < 2y +2 =m7. If by = B, then G‘ElH’gl is separated and ”yf,ﬂl’gl < 29; + 1. Thus,
Y(a,B) <2y +2=m. If b = <I>§ w” the hole in the ~;-block in 3, then G’C,QHSl is pure
monomial and ygh’gl = 2v. Thus, v(a, ) <2m +1 < 7. If by > <I>0 and is not the hole in
the ~1-block, this by is a y3-descent and thus v(«, 5) < 2y < 7.

SUBCASE 2.4. [; =3

I plays a; = ®§ +w - (k; — 3) the third hole from the end in the 7;-block in o and II
responds with some by in 3. If b; < <I>0, then G%Hs is unbalanced and 'y;hsl = 27, + 1. Thus,
Y, B) <29 +2 =m7. If by = ®, then G‘L”H’S1 is separated and fyﬁﬁl’gl < 29 + 1. Thus,
v(a, B) <291 +2 =7y If by is either hole in the v;-block of 3, Gﬁh’gl is pure monomial and
fyl‘_lhgl < 29, +1. Thus, y(a, 8) < 2v14+2 = 71. Any by > @} that is not a hole is a ;-descent

so that y(a, B) < 2y < 7.
SUBCASE 2.5. [ =4 and k; =5

I plays a; = ®f + w" - (k; — 3) the third hole from the end in the 7;-block and II
responds with some by in 8. If by < <I>€ , then G?{ﬂ? is unbalanced and ’y;h’gl = 29, + 1. Thus,
Y(a,B) <2y 4+2=m. Ifb = CIDB then G} 151 is separated and ’7L = 27, + 1. Thus,
Y(a,B) <2y +2=m. If b = @g w” the first hole in the ~;-block, then GCFllesl is as in
the [; = 1 and k; = 2 case above so that 7RH51 <27 + 1. Thus, v(o,5) <2y +2=m. If

a1,b1

by > <I>/6 is any other hole, then G?{HSl is pure monomial and vgje' < 271 +1. Thus, y(a, §) <

2v1+2=m7. Any b; > q>§ that is not a hole is a v;-descent and thus v(«, ) < 2y < 7.
SUBCASE 2.6. [; =4 and k; > 6

I again plays a; = ®§ + w” - (k; — 3) the third hole from the end in the v;-block and
IT responds with some by in . If by < @, then G&% is unbalanced and Y52 = 27, + 2.
Thus, v(a, 8) < 271 +2 < 71. If by = O, then Gﬁhsl is separated and yf_”,l_lsl = 27, + 1. Thus,
Yo, B) <2vi+2< 7. Ifh = <I>/3 +w" the first hole in the ~;-block, then Gﬁlel is as in the
[y =1 and k; > 3 case above so that fyf,l_,’sl < 27 + 2. Thus, y(o, 8) <2y +3=m. If by is
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a1,b1

either of the two other holes in the y;-block, then G(rlelﬁgl is pure monomial and gy’ < 271 +1.

Any by > @} that is not a hole is a ~;-descent and thus v(a, 8) < 2y, < 7.
SUBCASE 2.7. [; > 5

We show by induction that y(«, 3) < 7 = 291+ |log, (I; + 3)]. Assume that the formula
for 71 holds for all I’ < [;. The reader should recall the argument from Lemma 3. I plays
a; = ®F +w - (I} — 2l 1] 1 1) and II responds with some by in 3. If by < @g, then Gng’gl
is unbalanced and 7;}4’21 < 291 + 2. Thus, (o, ) < 2% +3 < 271 + |logy (11 + 3)| = 7.
If by = O, then G‘Eh’gl is separated and ’yfﬁl’gl < 2v + 1. Thus, y(o, ) < 291+ 2 < 7.
Any b > @g that is not a hole is a ~;-descent so that v(«,5) < 2y; < 71. So suppose
by = <I>§ + w™ - I’ is some hole in the y;-block. There are two cases:

(1) 1<V <y — 2lloe2l] oy

(2) 1 —2lee2li] 1 <1 < [
Suppose first that 1 < I’ < [y —2l°g21) Then A*L2 < 2+, + [log, (I + 3)| either by induction
or by the formula when I’ = 1,2, 3, 4, except possibly when I’ = 4 and k' = [; —2ll°s2h) 1 > 6.

We claim that this anomalous case does not adversely affect the proof.

PROOF (cLAIM). When 5 < [; < 11, we have I’ < 3 since we are in the case where
I' <1y —2Uogl) . Thus, "L < 2y, 42 = 2+, + [log, (I, +3)] — 1. Now when [; = 12, we
have I, — 2l°g2l1] 41 = 5 50 that if ' = 4, we are not in the anomalous case and the formula
computes Yot < 2y +2 = 2y, + [log, (I +3)] — 1. For [, > 13, we have [log, (I, +3)] >4

and the I’ = 4, k' = 6 case is not detrimental.

Now, we claim that

[log, (I +3)] < [logy (I +3)] — 1

PROOF (cLAIM). The case for 5 < [; < 12 is covered by the above claim. So suppose [; > 13

and write [; = 2Ueg2l]+1 _ j where 1 < j < 2Ueg2l1] | By hypothesis,

U<l — gllogza 1] _ 9llogyl]+1 —j— gllogzl1] _ 9llogy 1] —j
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and hence

I+ 3 < 2les2b) 4 (3 — )
Now if 1 < 7 < 3, then
[log, (I +3)] < [logy l1| = [logy (lh +3)] — 1
On the other hand, if 3 < j < 2Ul°g2h) then
llog, (I' +3)| < [logy 1| — 1= |logy (I1 +3)] — 1
This proves the claim.

Thus, when 1 < I'l; — 2l°e20) we have y(a, ) < 2y, + |log, (I; +3)| = 1.
Now suppose that ; — 2Ue2i) 11 <" < [;. Then G‘éﬂ? is pure monomial and
’V;IH? =27 + |logy (I — l/)J < UOgQ (QUOgQM - 1)J = [logy l1] — 1

Thus, v(a, 8) < 271 + [logy li| < 2% + [logy (L + 3)] = 71.
This ends the case [; > 5 and this exhausts all of the cases of the formula when &y > ;.
If k1 < I, then the argument is symmetric using the obvious changes to the formula for ;.

This ends the case when 7 < 79. Thus, v(a, 8) < min{7, 71 }.
LOWER BOUND. 7(a, ) > min{r, 71}

Now we show that for every instance of the formula and every move for I a; there is a
response for 1T b; such that either vy(«, 3) > 1 or y(a, ) > 171. We break up the cases first
depending on the location of I's move a;: either I moves in the 7p-block or I moves in the
71-block. Note that we will adopt the convention that both fence moves ®¢ and @ are in

the 71-block.
CASE 3. I plays a; in the 7p-block
In this case, I plays either a; < ®f in o or a; < Cbg in 3. Suppose agy > .

SUBCASE 3.1. By > v + 1 and Q)g = w™ . 1 is a monic monomial
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Ifa;isin forifa; < (IJg is in «, then II copies from below playing b; = a; in either « or

3, respectively. On the left, yf,{,’é’l = 00. On the right, %ﬁgl = G(«, ) and this a4 is stalling

for 1. Suppose a; > w” in . If By is a successor, then II plays b; in 3 a (8y — 1)-compression

of a;. On the left, 42" > 2(Fy — 1) + 1 by a compression argument. On the right, G2 is

almost identical to G(«, 3) and ngH’gl > 7. Thus, v(a, 5) > 26y. If Gy is limit, let 5" < Gy.
a1,b1

Then II plays by a ’-compression of a; in 8. On the left, /'lis' > 26"+ 1 by a compression

argument. On the right, ngH’gl > 711. Thus, for any ' < (o, 7(a, B) > 26" + 2. So we have
’)/(Oé,ﬁ) 2 Qﬁo

SUBCASE 3.2. () > 71 + 1 and ®} is not a monic monomial

Suppose a; is in 8. If a3 < ®f, then II copies from below playing by = a; in « and this
ay is stalling for I. Note this case is vacuous for small @g. Ifof <a; < @g (or just a; < (Dg
when @g is small) and the terminal power of a; is > fy, then II plays b; in a to pinch off
a block of w®. On the left, 7&"31 > 23. On the right, V;h’? > 203y using the 7y term of
GEY . Thus, y(a,8) > 260 +1 = 70. If ®F < a; < @) (or just a; < ®)) when @] is small)
and the terminal power of a; is < 3y, then II plays the same b; he would have played on the
untailed version of ay, plus II copies a tail. The presence of the tail does not decrease the
lower bound. Now suppose a; is in a. If a3 < CIDg , then II copies from below and everything
is as above. If @g < a; < ®f and the terminal power of a; is > . Then II plays b; to

pinch off a block of w® in B. On the left, whenever the terminal power of a; is > [, f,{,gl

is separated and ’y,‘fﬁ"gl > 26y. When the terminal power of a; is Fy and [y = 1, then GﬁlH’gl

is again separated. When the terminal power of a; is Fy and [y > 1, then the (y-block of

Gﬁ,ﬂl’gl is pure monomial and in that block the ~ is at least 2. So, on the left, we have in
a1,b1

all cases 42" > 2f,. On the right, G&% is as in the monic monomial case, so by induction

Yauet > 26o. Thus, y(a, B) > 26 + 1.

SUBCASE 3.3. y =71 + 1 and @) = w
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Any aq in § or any a; < (Pg in « is stalling for I. Suppose a; > (IDg in a. If [y < 3, then
IT plays exactly the same as in the above 3y > 71 + 1 case so that y(«, 5) > 20y. If [ > 4
and if the terminal power of a; is > [y, then II plays b; = <I>€ in 4. On the left, G‘ElH’gl is
separated so that 7't > 2. On the right, G2 is unbalanced and vae! = 2y, +2 = 20,.
Thus, v(«, B) > 206y + 1. If the terminal power of ay is fy, then II plays b; a ~y;-compress of
a; in 3. On the left, G{LY is separated and 72" = 27, + 2 = 23,. On the right, G&¥ is
almost identical to G(«, ) and Ygyie b1 > 7. Thus, v(a, B) > 206y + 1. If the terminal power
of a; is 71, then IT plays w™ - 4. On the left, G2 is unbalanced and ;2" = 27y, +2 = 203
On the right, using the 7y term of G?{H’?, we have by induction 7§|1-|’1§1 > 20g. If the terminal
power of a; is < =1, then II plays the same b; as if the terminal power of a; were equal v,

plus copying the small tail of a;. The presence of the small tail does not decrease the lower

bound. Thus, when I; > 4, y(«, 5) > 206, + 1.
SUBCASE 3.4. () = 4+ 1 and &) = wf .2

Any a; in 3 or any a; < (ID*B in « is stalling for 1. Suppose a; > @g in a. If the

' is separated and

terminal power of a; is > 3y, then II plays w® in 5. On the left, G‘“’S
AL = 2. On the right, G&2 is as in the above ®) = w™ case and thus vahe! > 20,.
Thus, v(a, 3) > 26y + 1. If the terminal power of a; is By, then II still plays w™®. On the
left, G{L2" is unbalanced and 7{}e' = 26y. On the right, G&4% is as in the above & = w
case and thus 7;}_;21 > 2y. Thus v(«, 3) > 20y + 1. If the terminal power of a; is < [y, then
II plays b; = w + n where 7 is the small tail of a;. The presence of the small tail does not

decrease the lower bound. Thus, when <I>Oﬂ = w2 y(a,B) > 268+ 1.
SUBCASE 3.5. By =71 + 1 and q)g > wh . 3 with terminal power 3,

Suppose a; is in 3. If a; < ®f, then II copies from below playing b; = a; in « and this
ay is stalling for I. Note this case is vacuous for small @é’. If of < a; < (IDg (or just a; < @g
for small q)g ) and the terminal power of a; is > [y, then II plays b; in « to pinch off a block

of ag. On the left, 'yf_l,ﬂ,’gl > 205 + 2. On the right, using the 7y term of G%ﬂ?, by induction
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we have 'ygh’gl > 20 + 1. Thus, y(«, 5) > 2060+ 2. If & < a; < (IJg and the terminal power
of ay is Py, then II plays a fFy-compression of a;. On the left, Vf,ﬂ’gl > 206y + 1. On the right,
GEY is at worst as in the ®f = w™® case and thus 422 > 26y 4+ 1 or yhe > 26y + 2
depending on the number of copies of w?. Thus, v(«, 3) > 7. Now suppose a; is in a. If
a; < <I>€, then II copies from below and everything is as above. Suppose a; > @g in a.. If the
terminal power of a; is > [, then II plays b; to pinch off a block of w®. On the left, Gf,l_,’gl
is separated and vf,ﬂl’gl > 2f3y. On the right, G?{I,jlgl is as in the @g = w’ case so that either
fyng’gl > 20, or fy;h’gl > 20y + 1 depending on whether or not {; < 3. Thus, (o, 5) > 26, + 1
or (o, B) > 28y + 2 depending or whether or not [y < 3. If the terminal power of a; is
Bo, then II plays again to pinch off a block of w®. On the left, GﬁlH’gl is unbalanced and
7,‘_’,14’31 > 20y + 1. On the right G‘,?H’l;l is again as in the above case when ®F = w. So
Y(a, B) > 26y + 1 or y(a, B) > 26y + 2 depending on whether or not [; < 3. As before, if the
terminal power of a; is < 3y, II plays to pinch off a block of w™ and copies the small tail of
ay. Thus, y(a, 5) > 206y + 1 or y(«, B) > 20y + 2 depending on whether or not ; < 3.

So it follows if T plays a; in the 75-block, (o, ) > 79 > min{y, 71 }.
CASE 4. I plays a; in the 7-block

In this case we suppose that I plays either a; > ®f in a or a; > <1>§ in . Moreover,
assume without loss of generality ag > (.

Suppose k; = l;. In this case, 7y = oo and II responds in the same way to I's a;: If
ap = ®f + 7 in a where 0 < n < W™ - ky or if a4 :<I>€+ninﬁwhere0 <n<wh-ly,
then II responds with the corresponding copying move b; = @g +nin Borb = b5 +nin «,

a1,b1

respectively. Thus, vgs = 00 in all cases. So, it is enough to analyze G‘E,ﬂl’gl to show that

v(a, B) > 19 as follows.
SUBCASE 4.1. Gy > v + 1

We show that («a, 8) > 26 or y(«, 5) > 26y + 1 depending on whether or not <I>€ is a

monic monomial. On the left, observe that GﬁlH’gl is a separated game (when a; is a fence
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move) or GﬁlH’gl is separated with an co-game on the right. As before, the co-game does not

decrease the lower bound. 72" > 23, if @7 is a monic monomial and v > 23, + 1 if @)

is not a monic monomial. In either case, v(«a, 5) > 7.
SUBCASE 4.2. By = + 1

Suppose also that <I>€ = w™. Observe that in the last case we did not use the fact that
Bo > 71+ 1. Thus, the same argument shows that v(«a, 3) > 7. Suppose (Dg = w%.2. Then,
G‘E,ﬂl’gl is separated or separated followed by an co-game. In either case, Vfﬁ"gl > 20y. Thus,
v(, B) > 26y + 1 = 7. Finally, if ®° > w™ - 3 and has terminal power 3;. Then, ﬁhgl is
either separated or separated followed by an oco-game. Moreover, the separated game is on
more than one copy of w™ so that ’y,‘_lh’gl > 20y + 1. Thus, v(a, B) > 26y + 2 > 7.

When oy < By, a symmetric argument shows y(«, 3) > 7p. This ends the case k; = [;.

Now suppose k; > l; > 1. Furthermore, suppose for the moment v; = 0. Note that we
are no longer necessarily assuming ag > 3. We show that if a; > ®§ in a or a; > @g in 3,
then v(a, B) > [log, (I +4)] = 7. We argue the first few cases I; = 1,2, 3,4 individually

and then [; > 5 in general.
SUBCASE 4.3. [; =1

If I plays ®F in «, then II plays by = 2 in S. On the left, G‘E,{;gl = G(Pg,2) so that
”yf,ﬂl’gl = 1 by Lemma 2. On the right, G?{H? is as in Lemma 2 so that ’yﬁ,l_igl > 1. Thus,
v(a, B) > 2 = |log, (I3 +4)]. Similarly, if I plays a; > ®§ in «, say a; = ®§ + £/, then
IT responds again with by = 2 in . Both left and right games are trivially separated
(recall Lemma 2) so that v'e' > 1 and 4252 > 1. Thus, y(a,3) > 2 = 7. If I plays
a; = ®§ + (k; — 1) in «, then II responds with b = @g in 5. On the right, G"éﬂ? is empty.
On the left, Gﬁh’gl is trivially separated and yf,{,’gl > 1. Thus, y(a, f) > 2 = 7. Similarly, if
a; = @) in (3, then II responds with by = ®% + (k; — 1) in . The argument is the same and

v(a,B) >2=m.
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SUBCASE 4.4. | =2

If I plays either endpoint a; = ®§ + (k; — 1) in o or a; = <I> + 1 in (3, then II responds
with the other corresponding endpoint. On the right, Gah2 is empty. On the left, G52 is
as in the previous I, = 1 case so that 442" > 2. Thus, y(a, 3) >3 > |log, (I +4)| = 7. If I
plays a; = ®§+k' where 0 < £k’ < k; —1, then II plays by = 2 in a. On both the left and right
%jién > 1 and Ygije "1 > 1. Thus, Y(a, B) > 2 =7, If I plays a; = @g in (3, then II responds
with ®§ in a. On the left, G1;2" is separated and 72" = 26, > 2-1 = 2. On the right, G2

is finite so that 722t = [log, (I; +1)] = 1 by Lemma 1. Thus, y(a, 3) > [log, (I, 4 4)].
SUBCASE 4.5. [; =3

If T plays either endpoint, II responds with the other corresponding endpoint and the
argument is the same as above. If T plays a; = ®% + (k — 2) in o or a3 = ®F + 1 in f,
then II copies from above. On the right VR}_'? = 00. On the left, Gﬁ,l_;gl is as in the case
Iy = 1 above so that ’yLﬁ'gl > 1. Thus, y(a, ) > 2 = 7. If I plays a1 = ®§ + k' in «
where 0 < k' < k; — 2, then II plays by = 2 in 4. On both the left and right vff,l_"gl > 1 and
'ygll_él > 1. Thus, v(«a,5) > 2 =7. If I plays b, = @g in (3, then II responds with b; = &
in a. On the left, G'LY is separated so that (2" > 26y = 2- 1 = 2. On the right, G&% is

finite so that 425 = [log, (I 4+ 1)] = 2. Thus, y(a, 8) > 3 > 7.
SUBCASE 4.6. [, =4

If T plays a; > &5 + (k; — 3) in « or a3 > <I>€ + 1, then II copies from above. On
the right, G%ﬂ? is either empty or an oo-game. On the left, GﬁlH’gl is as in the [; = 1,2, 3
case so that 7,_,1421 > 2. Thus, y(o,0) > 3 = |logy (L +4)] =7. Ifag = ¢ +k in «
where 0 < k' < k; — 3, then II plays b; = <I>g in 5. On the left, Gﬁlel is separated so that
ALY > 268, > 2. On the right, G&:2' is finite so that 4252 = |log, (I; +1)] = 2. Thus,
v(e, B) > 3 = |logy (Iy +4)] = 7. If I plays a; = ®f in 3, then II plays by = ®% in o and

the argument is the same.
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Thus, for [; = 1,2,3,4, we have v(a, 3) > [log, (I1 +4)].
SUBCASE 4.7. I > 5

We prove the result by induction and assume that for all I’ < Iy, y(«, 5) > |log, (I' +4)].
First, write ; = 2Uos2ll+l _ 5 where 1 < j < 2Ues2b)  We divide first into two cases:
j=1,2,3,4and 5 < j < 2llosz2l1]

Suppose j = 1,2,3,4. If I plays a1 in 3, say <I>€ + 1" where 0 <!’ < [y, then II copies from
either below or above, depending on the value of I’. If 0 < I’ < [; —2l°82l1] then II copies from

ai,by

below playing by = ®§+" in a. On the left, Gﬁ,ﬂl’gl is either separated (i.e., I’ = 0) or G|}j' is a

separated game followed by an oco-game (i.e., I’ > 0). Suppose G‘ElH’gl is separated. If Gy > 71,

then ’yﬁ,ﬂl’gl = 79 since the 7p-term of G(«, ) is the same as the separated game formula. If
Bo = m + 1, then by inspection of the formula 42" > 7, — 1. In either case, it > 79 — 1.
On the right, G?{ﬂ? is finite so that ”ygﬁgl = |log, (lh = 1")] > |[logyl1]. Thus, (o, B) >
min{7y, |logy l1 | +1} = min{7, [log, (I; +4)]}. On the other hand, if I; —2l°s2l] 41 <" <
l; — 1, then II copies from above playing b; = ®§ + (k1 — (I — ). On the right, ’yng’gl = 0.
On the left, by induction v}t > |log, (I +4)| > |log, (21s201) 4 (5 — ) |. Since j < 4,
this means 'yﬁﬁ"gl > Uog2 (2UOg2llJ + 1)J = |logy l1|. Thus, y(«, 5) > min{r, [log, 1| +1} =
min{7, |log, (I; +4)]}. Now suppose I plays a; in «, say a1 = ®§ + k' where 0 < k&’ < k.
If 0 < k' <1 —2Ues2h) then as above, II copies from below playing a; = <I>€ + k' and the
argument is the same as before. If k; — (2U°g2llJ — 1) < K < ky — 1, then as before, 11
copies from above playing b, = <I>€ + (ly — (k1 — K)) and the argument is the same as before.
Finally, if {; — 2log2 1) 41 <}/ < ky — 2Ues2l1) then IT plays by = ®F + 1, — 2Ue211) On the
left, by induction 7Lt > |[log, (I — 2Me2b) 4 4) | = |log, (2Ue2"1) + (4 — j)) | = |logy 11 ]
since j < 4. On the right, Gai2' is finite, and YLy = |log, (2U°e2"1)) | = |log, 1 ]. Thus,
v(a, B) > min{ry, [logy l1| + 1} = min{7, |log, (I1 +4)]}.

Suppose 5 < j < 2Ues2h) If T plays aq in [, say @g + 0" where 0 < I' < [} — 1,
then again II either copies from below or above, depending on the value of I'. If 0 <

I < 1y —2Ues2lil=1 then II copies from below playing b; = ®f + I’ in . Using the same
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reasoning as above, on the left, 'yL,ﬂlgl > 19 — 1. On the right, G?lel;l is finite and 'ygh’gl =

[logy (I — ')} > [log, (2M°821)=1) | = [log, i) — 1. Thus, v(a, 3) > min{r, |logy 1]} =
min{7y, [log, (I; +4)]} since 5 < j < 2lle2bl If |} — gllee2bl=1 4 1 < [/ < [} — 1, then I
copies from above playing by = ®§ + (k1 — (4 —’)). On the right, yg;fgl = 00. On the left, by
induction vyt > |log, (I' +4)] > |log, (1 — 2Mee2b=1 1 4) | > |log, |2 || = |log, ] — 1.
Thus, v(a, ) > min{ry, [log, 1|} = min{7, [log, (l1 +4)]}. On the other hand, suppose
I plays a; in «, say ®F + k" where 0 < K < Kk —1. If 0 < K <[} — olloga li]=1 " then
as before, II copies from below playing b; = <I>€ + k' in # and the argument is the same
as before. If ky — 2Ues2hl=1 < g/ < |y — 1, then as before, II copies from above playing
by = ®) + (I, — (ky — k') and the argument is the same as before. Finally, if I, — 2les211]-1 <
k' < ky — 2Uos2h)=1 then II plays b, = @g + (I; — 2Ues214J=1) " On the left, by induction
AL > log, (I — 2Ue2b)=1 4 4)| > |log, |4]|] = [log, i) — 1. On the right, Gl s
finite and L2 > |log, (21°820)=1) | = |log, l;] — 1. Thus, v(«a, ) > min{r, [log, 1|} =
min{7y, |log, (I; +4)|} since 5 < j < 2ll°&21] This ends the case for v, = 0.

Now suppose y; > 0.
SUBCASE 4.8. |y =1 and k; =2

If I plays a; = ®f in «, then Il responds with b; = (ID in 4. On the left, Gﬁ,l_lsl is separated

and Y42t > 26y > 27, + 2. On the right, G2 is pure monomial and vah2' = 2v,. Thus,

v(a, B) > 291 + 1. The argument is similar if T plays a; = <I>§ in 8. It I plays a; = ®f +w™,

the hole in «, then II plays b; = @0 the fence in 5. On the right ’ygll_i’sl = 00. On the left,
a1,b1

th’gl is separated and 7, ;s = 2v1. Thus, v(a, 5) > 2y, +1. If I plays any a; in the y;-block

with a small tail, II can copy a tail and keep (o, 5) > 2y + 1.
SUBCASE 4.9. [; =1 and k; > 3

If I plays a; = ®§ in «, then II responds with b; = w™ -2 in 3. On the left, Gﬁ,{'gl is
separated and Yo' = 2y, + 1. On the right, G&:% is unbalanced on at least 3 copies and

7;}_'21 > 2y + 1. Thus, v(«, B) > 2y + 2. If I plays a; = <I>€ in 3, then II copies from above
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playing by = ®§ + w - (k; — 1). On the left, G{52" is unbalanced and A{}e! = 2y, + 1. On
the right, yahe! = oo. Thus, y(a, 3) > 27y, +2. Similarly, if I plays a; = ®§ +w™ - (k; — 1) in
a, then II copies from above playing b; = @g in # and the argument is identical. If I plays

= Of +w" - k' in a where 1 < k' < k; — 1, then II responds with by = w” -2 in 5. On
the left, GU52" is unbalanced and y{}e! = 27, + 1. On the right, G2 is unbalanced on at
least 2 copies and Ygpe o> 2v1 + 1. Thus, v(a, ) > 2y + 2. If I plays any a; with a small
tail in either a or 3, then II responds by playing his response to the untailed a; along with

copying the small tail. The presence of the tail does not decrease the lower bound.
SUBCASE 4.10. [; =2

If I plays a; = ®§ in «, then II responds with b = CIDO in §. On the left, Gﬁ,l_;gl i
separated and 73,{(51 > 20y > 2(y1 + 1) = 29 + 2. On the left, G;ﬁ? is pure monomial
and fy;lH’gl = 27 + |logy2] = 29, + 1. Thus, (o, 5) > 2y, + 2. Similarly, if I plays

= @g in 3, then II responds with b; = ®f in o and the argument is the same. If I plays
a; = ®§ +w” - (k; — 1) in «, then II copies from above playing b; = @ﬁ 4+ w” - 1in S.
On the left, Gﬁ,l_;sl is as in the I; = 1 case and 7{'}js " > 24 4+ 1. On the right, 7?{}4’21 = 0.
Thus, vy(«a, 5) > 2y + 2. Similarly, if I plays a; = ®§ + w - 1, II copies from above and
the argument is the same. If I plays a; = ®§ + w™ - k' in o where 1 < k' < ky — 1, then II
responds with by = w? -2 in 5. On the left, GﬁlH’gl is unbalanced on at least 2 copies of w™
and 7(_’,1_,’51 > 27v1+1. On the right, Gﬁl,_]gl is unbalanced on 2 copies of w™ and 7,%}_;5 =27 +1.
Thus, vy(a, B) > 271 + 2. If [ plays any a; with a small tail in either « or (3, then II responds
by playing his response to the untailed a; along with copying the small tail. The presence

of the tail does not decrease the lower bound.
SUBCASE 4.11. [ =3

If I plays a; = ®f in «, then Il responds with b; = (ID in 5. On the left, Gﬁh’gl is separated
ay,br __

and 2 > 26, > 2y, 4 2. On the right, G&% is pure monomial 252 = 27y, + |log, 3] =
27, + 1. Thus, v(a, 8) > 2y; + 2. Similarly, if I plays a; = <I>0’6 in 3, then II responds with
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by = <I>/6 in @ and the argument is the same. If I plays a; = ®§ +w" -k’ in o where k' = k; — 1
or k; — 2, then II copies from above playing b; = <I>B +w" +1" where I" = 2 or 1, respectively.
On the left, G{;2" is as in the above I; = 2 or [; = 1 case and 742" > 27, + 1. On the right,
yg;fgl = 0. Thus, v(a, B) > 279, + 2. Similarly, if I plays a; = <I>ﬂ +w™ -1 or <I>ﬁ +w™-2in
B, Il plays by = ®§ +w™ - (k; — 1) and the argument is the same. If I plays a; = ®§ +w™ - £’
in @ where 1 < k' < k; — 2, then II responds with b; = w” -2 in 5. On the left, GﬁlH’gl is
unbalanced on 2 copies of w™ and yah’gl = 27, + 1. On the right, G?fH’? is unbalanced on at
least 3 copies of w” and 'ygh’gl > 271 + 1. Thus, v(a, 8) > 271 + 2. If I plays any a; with a

small tail in either a or (3, then II responds by playing his response to the untailed a; along

with copying the small tail. The presence of the tail does not decrease the lower bound.
SUBCASE 4.12. |y =4 and k; =5

If T plays a; = ®§ in «, then II responds with b = CDO in 5. On the left, Gﬁ,l_;gl i
separated and 7,‘_1,14’31 > 26y > 271 + 2. On the right, G?{l,qsl is pure monomial and V;h’? =
2y1 + [logy 4] = 29, = 2. Thus, y(«, 5) > 2y + 3 > 271 + 2. Similarly, if I plays a; = <I>§’
in 3, then II responds with b; = ®f in a and the argument is the same. Now suppose I
plays a; = ®§ +w™ - k' If k' =Fk; — 1,k — 2, or k; — 3, then II copies from above playing
by = <I>B + w¥l" where " = 3,2, or 1, respectively. In all three cases, 7?{}4’21 = 00. On the left,
G’E,ﬂl’bl is as in the [; = 3,2, or 1 cases, respectively. When [; = 3 or 2, 'yf,ﬂl’gl > 2v1 + 2 and
when [} =1, yf_b,l_l’gl > 2y, + 1. Thus, y(a, §) > 21 + 2. Similarly, if I plays a; = @) +w™ -1/
in # where I’ = 1,2,3. Now when 1 < k' < k; — 3, II responds with by = w" -4 in 3. On
the left, G*LY is separated on 4 copies of w and Yo' = 27, + 2. On the right, G&% is
separated on at least 4 copies of w? and 'yal’bl > 2v1 + 2. Thus, v(«, 5) > 27 + 2. If I plays
any a; with a small tail in either o or 3, then II responds by playing his response to the

untailed a; along with copying the small tail. The presence of the tail does not decrease the

lower bound.

SUBCASE 4.13. |; =4 and k; > 6
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Observe from the k; = 5 case that we actually have y(«, 3) > 29 + 3 except when I
plays a; = ®¢ + w™ - (k; — 3) in @ and II responds with b = ®) + w™ - 1. Under our
current hypothesis of k; > 6, this now puts GLI1-|81 in the [y = 1 and k; = 3 case so that

ay,b

Mhs = 2m + 2. All other cases when k; > 6 are argued the same as in the k; = 5 case.
SUBCASE 4.14. [ > 5

The argument is similar to the v = 0 case except that we consider the holes in the ;-
block in the same way we did the points in the ;3 = 0 case. We prove the result by induction
and assume that for all I" < Iy, v(«, B) > 271 + [log, (I’ + 3)|. First, write [; = 2lls20J+1 5
where 1 < j < 2llo82l1] We divide first into two cases: j =1,2,3 and 4 < j < 2llog2l1],

Suppose j = 1,2,3. If I plays a; = <I>/6 wM - I"in o where 0 < ['ly, then II copies either
from below or above, depending on the value of I'. If 0 < I’ < [; —2l°8251] then II copies from
below playing b = ®§+1" in a. On the left, G‘E,ﬂlsl is either separated (i.e., ' = 0) or Gﬁlel isa
separated game followed by an co-game (i.e., I’ > 0). Suppose GLHS is separated. If Gy > 71,

then vf,ﬁlsl = 7p since the 7o-term of G(«, [3) is the same as the separated game formula. If

Bo = m + 1, then by inspection of the formula 42" > 7, — 1. In either case, Y}t > 79 — 1.
On the right, G2 is finite so that e’ = [logy (I — )] > |logy /). Thus, y(a, 3) >
min{7y, |logy l1 | +1} = min{7, [log, (I; + 3)]}. On the other hand, if I; —2l°s2l] + 1 <" <
l; — 1, then II copies from above playing b; = ®§ + (k1 — (I — ). On the right, vghgl = 00.
On the left, by induction 7{ie' > [log, (I' +4)] > [log, (2U°221) 4 (4 — 5))]. Now j < 3
means ﬁhg > |log, (2°8211) +1) | = |log, l1]. Thus, y(a, ) > min{r, [log, 1] + 1} =
min{ 7, |log, (I1 + 3)]}. Now suppose I plays a; in «, say a; = ®§ + &k’ where 0 < k' < ky.
If 0 <k < —2Uos2li] then as above, II copies from below playing a; = (Dg + k' and the
argument is the same as before. If k; — (2U°824] — 1) < k' < ky — 1, then as before, 11
copies from above playing by = ®f + (I; — (ky — k') and the argument is the same as before.
Finally, if I} — 2log2 1) 41 < &/ < ky — 2Ues2l1) then IT plays by = ®F + I, — 2Ues211) On the
left, by induction 4e" > [log, (I — 20221 4 3) | = |log, (21°8241) 4 (3 — j)) | = [log, 1]
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since j < 3. On the right, G¢ is finite, and yge! = |log, (21°%211)) | = [logy /1 ]. Thus,
(e, B) > min{ry, [log, {1 | + 1} = min{7, |log, (1 +3)]}.

Suppose 4 < j < 2Uls=hl If T plays ay in 3, say ®F + ' where 0 < ! < I; — 1,
then again II either copies from below or above, depending on the value of I'. If 0 <
I' < 1y — 2Ule2ll=1 "then II copies from below playing by = ®§ + I’ in a. Using the same

reasoning as above, on the left, 4*L2" > 7, — 1. On the right, Gai2' is finite and yabe =

llogs (l — )] > |log, (209%1-1) | = [logy 1] — 1. Thus, 7(a,3) > min{r, |logy 11|} =
min{7o, [log, (I; + 3)|} since 4 < j < 2Uos2la] If [ — 2llee2lil=1 1 1 < | <[} — 1, then II
copies from above playing by = ®§ + (k1 — (1 —")). On the right, vghgl = 00. On the left, by
induction 7't > [log, (I +3)] > [log, (Iy — 2Ue2bl=1 4 3)| > |log, |4]] = [log, &) — 1.
Thus, v(a, ) > min{ry, [logy 1|} = min{7, [log, (11 +3)]}. On the other hand, suppose
I plays a; in a, say ®§ + k" where 0 < k' < ky — 1. If 0 < k' < [ — 2lloe2h=1 " then
as before, Il copies from below playing b, = @g + k' in [ and the argument is the same
as before. If k; — 2Uog2hl=1 < |/ <k — 1, then as before, II copies from above playing
by = @) + (I; — (k; — k') and the argument is the same as before. Finally, if I; — 2Uog211]-1 <
k' < ky — 2Ues2lil=1 then IT plays by = ®F + (I; — 2Ues24)=1) " On the left, by induction
Yet > |logy (I — 2Uee2h)=1 4+ 3)| > |log, |4]] = [logy /1] — 1. On the right, Ggpe is
finite and 252 > |log, (2le2"=1) | = |log, 1| — 1. Thus, y(a, ) > min{r, [log, 1|} =
min{7y, |log, (I; +4)]} since 4 < j < 2ll°e2ll. This ends the case for y; > 0. A symmetric

formula holds if k; < ;. Thus, in all cases y(«, 3) > min{r, 71 }. O

442 n>1

Our final theorem computes v(«, 3) for the Common CNF game when n > 1. The
theorem will be the culmination of all of the formulas we have proven thus far with one new
twist. We begin by defining a formula that we will henceforth refer to as the recursive
condition. This formula checks whether or not a suitable condition exists for player II to

exploit a small advantage. Let (¢, s,t) be the formula

8§t<n/\(€t+1#3\/’7t>’}/t+1+1)/\V8§j<t(Cj+1:3/\’}/j:’}/j+1+l)
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The variable ¢ stands for coefficient and, according to our notational conventions, ¢ will
always be either k or [.

We reset our notation. Let «, 3 have common CNFs:
a = I w kW ky
B = S rwn L+ W™y

where the CNFs of ®f, ®}) are separated and n > 1. When &%, ®7 # ), identify the terminal
terms of @8‘,@@ as w® - ko and w® - [,. We define the ordinal terms 7; for 0 < i < n as
follows:

Term 79: If both @8,@@ = (), then 7y = co. Henceforth in this case, assume that not
both &2, &7 = 0.

Suppose ®¢ # 0 and ®F = 0. If I; = 1,

2’)/1+1 EllSt<n(<p(l,1,t)/\%:*yt+1—|—1/\lt+1>3)
T0 =

2m otherwise

If Iy = 2, then 7 = 2y, + 1.
If [; = 3, then

2’71—|—2 Ell§t<n(gp(l,l,t)/\’yt:'yt+1+1/\lt+1>3)
T0 =

271 +1 otherwise

If [ > 4, then 79 = 29, + 2. The formula for ®% = 0, <1>§ # () is symmetric.
Now suppose ®f, @g # () and ag > (. The formula for oy < B is symmetric. For the

sake of the ¢(c, s, t) formula, let vy = y. First, suppose Gy > 3 + 1. Then,

20 CIDg is a monic monomial
To =
20y + 1 otherwise

Now suppose Gy = v; + 1 and @g = w% . [ is a monomial.
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Ifly=1,

2/60+1 EIO§t<n(gp(l,0,t)/\’yt:7t+1+1/\lt+1>3)
T0 =

20 otherwise

If lo = 2, then T0 — 2&0 + 1.
If [y = 3, then

Qﬁg—l—z EIO§t<n(g0(l,0,t)/\’yt=7t+1+1/\lt+1>3)
T0 =

200+ 1 otherwise

If lQ Z 4, then T0 = 2ﬁ0 + 2.

If ® not a monomial, then

2ﬁ0+2 EIO§t<n(<p(l,0,t)/\’yt:fyt+1+1/\lt+1>3)
T0 =

260+ 1 otherwise

Terms 7;, for 1 <i <n: For any 1 <1 <n, if k; = [;, then 7; = cc.

Suppose k; > [;. First define for 1l <i<mnandc=korc=1

1 3@'§t<n(cp(c,i,t)/\%:%+1+1/\Ct+1 >3)
0 otherwise

This is a flag which essentially says whether or not the recursive condition holds for the 7
block on the k or [ side.

Let i = 1.

If &g, @) = 0, then 71 = 2y + [log, (I +RY)].

If &5 +# ) and &) = 0, then 7 = 7.

If ¢ = 0 and @) # 0, then
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e

2v1 +1 ifeither ; =1 and k; =2

L= orly =2 and k; = 3 and R¥ = 0

\271 + 2 otherwise

Now let 1 <7 <n.
If i =1and &2, &) £ or if 1 <i < n, then if [; = 1 and k; = 2, then

2y +2 ifRE=Rl=1

T, =

2v; +1 otherwise

Ifl;, =1and k; > 3, then 7; = 2v; + 2.

If [; = 2, then 7; = 2; + 2.

Ifl;, =3 and k; = 4, then 7, = 2+, + 2.
Ifl;,=3and k; >5orifly =4and k; =5

27, +3 RF=Rl=1

T; =

2v; +2 otherwise
If l; =4 and k; > 6, then 7; = 2y, + 3.
Ifl, >5 17=2v+ [log2 (li + 3+ Ri)J A symmetric formula holds for k; < I;.
For i = n, we have simply the 7y-term from the n = 1 case:
If v, =0, then
T, = |log, (I, +4)]

Suppose v, > 0. If [,, =1, then
29 + 1 if ky =2

Tn =

2 + 2 if ky, >3
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Ifl, =23, thenr, =2v,+2 Ifl, =4

29, +2 ifk,=5
Tn =

290 + 3 if ky > 6

Ifl,, > 5, 7, = 27, + [logy (I, +3)]. A symmetric formula holds for &, < [,.

THEOREM 4 (The Common CNF Game, n > 1). Let « = ®§ +w™ - k1 +--- +w™ - k, and
B =0 +wn I+ 4w -1, be written in common CNF where ®2, & are separated.

Then if 79, 7, ..., 7, are defined as above

Y(a, B) = min{7o, 71, ..., 7}
PROOF. Let a, 5 be as above. We prove first that vy(«, £) < min{7, 7,..., 7}
UpPPER BOUND. ~(a, 8) < min{7, 71,...,7n}

We prove the bound holds by induction. Assume that the formula holds for smaller
games.

Observe that I's choice of his first move depends on which of 79, 71, ..., 7, is smallest. So
we break up the proof into cases as in the n = 1 case. We note here that at least one of the

7i, 0 <4 < n must # oco.
CAsE 1. 0 < 71,...,Tn
Immediately we have that 75 # 0o, so it cannot be the case that both ®g, & = 0.

SUBCASE 1.1. ®§ # 0, ®) =, and I, = 1

I plays w™-1in «. If IT responds with any b; in 3 having terminal power < 71, then Gﬁh’gl

is separated. Thus, any such b; is easily seen to be a v;-descent so that y(a, 8) < 2y < 7.
The only response that is not immediately a descent is by = CID? in 4. On the left, 7&"31 = 00,

so it is enough to show that the bound in 7y formula holds on the right. Suppose the recursive

condition in the 7y formula holds. Then by induction, using the 7y term from ?{1,_’@1, we have
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’yng’gl < 27 +2 =2y +1) = 2y. Thus, y(a,5) < 291 +1 = 7. Now suppose that
the recursive condition in the 7y formula does not hold. If 3 > ~5 + 1, then again by
induction, 'yng’gl < 295 + 2. Thus, y(a,8) <27 +3=2(7+1)+1<2y. If 3 =y +1,
then it must be the case that I, < 3, for otherwise we would contradict our assumption
that the recursive condition holds. If I = 1,2, then by induction 'y;h’gl < 2795 + 1. Thus,
Y(a, B) < 2799 +2 = 2v;. If [y = 3, then it cannot be the case that the recursive condition in

the 79 term of G'F?,jl? holds, for that would contradict our assumption that it does not hold.

So when I, = 3, we must have fyng’gl < 275 + 1. Thus, y(«, 5) < 279 + 2 = 27;.
SUBCASE 1.2. 2 £ (), 2 =0, and I, = 2

I plays w™ -2 in a. Any response for II b; in  that has terminal power < v is a
~y-descent and y(a, 3) < 2y < 7. If by = w™ - 1 in G, the hole in the ~;-block, then

a1,b1

Gﬁh’gl is pure monomial and 4}js' < 2y + [log, 1| = 2v4. Thus, (o, 3) < 2791 + 1 = 7.
a1,b1

If by = @f, the fence on the 7y, v-blocks, then by induction, using the 7p-term of Ggyd',

”ygh’gl < 2% +2=2(y+ 1) < 2v. Thus, v(a, B) <279 + 1.
SUBCASE 1.3. % # (), ®) =0, and I, = 3

I plays w” - 3 in a. Any response for II b; in ( that has terminal power < ~; is a ;-
descent and (o, 3) < 291 < 719. If by = W - 1 in 3, the hole in the ~;-block, then Gf}_,’gl
is pure monomial and vﬁ,ﬁl’gl < 2y + |logy 1| = 2v. Thus, v(a,8) < 2y +1 < 7p. If
by = w™ - 2 in (3, the second hole in the ~;-block, then G‘él,_]gl is as in the [; = 1 case above.
If the recusive condition holds, then ”yng’gl < 2% + 1 and thus y(«, 5) < 2y, +2 = 7. If the
the recursive condition does not hold, then 722t < 2+, and thus y(a, 8) < 271 + 1 = 7.
If b, = &7 then by induction, using the 7o-term of G‘éﬂ?, vng’gl < 299 + 2 < 27;. Thus,

(e, B) <27+ 1 < 7.

SUBCASE 1.4. ®% £ (), ®° =, and I, > 4
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I plays ®F in o. Any response for II b; must have terminal power < ;. Since oy > 71,

a1,b1

"L s separated and et < 2, 4 1. Thus, y(a, 8) < 291 + 2.
Thus, when ®¢ # 0, 85 = 0, v(a, §) < 7.

Now assume B2, &2 £ () and assume o > .
SUBCASE 1.5. %, ®F #£0, fy > 71 + 1 and @} is a monic monomial

The argument is similar to the same subcases in the proof of the upper bound in Theorem

3 with one exception. Instead of ‘F?,_;gl being unbalanced so that we use the Unbalanced Game

formula to get fyslH’gl < 271 + 2, we are using induction and the 7p-term of G?{ﬁ? to get the

same inequality:.
SUBCASE 1.6. ®F, @) # 0, B > 71 + 1 and @] is not a monic monomial
The same comments from the previous subcase apply here as well.
SUBCASE 1.7. ®%,®° 40, By =~ + 1 and ) = w0 .|
07 *0 s MO a! 0 0

The argument is identical to the ®¢ # (), ®) = () subcase above, replacing ~; in that

argument with .
SUBCASE 1.8. %, ®F £ 0, fy = + 1 and ®} not a monomial

The argument is similar to the case 3y = v; + 1 and @g > w% . 3 subcase from Theorem
3. I plays ®°, +w? - (Ip — 1) in 3 to pinch off a block of w?. As before, where G&LY was
unbalanced in that argument, we invoke induction to get the same bound.

This ends the case when 70 = min{7y, 71, ..., 7.}
CASE 2. 7 = min{7o, 7, ..., 7}
It cannot be the case that ky = [y, so suppose k1 > ;.

SUBCASE 2.1. ®%, & =0
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If Ry = 0, then 7y = |log, ;] and the argument is identical to the proof of the pure
monomial formula. So suppose R; = 1.

Suppose l; = 1. I plays a1 = ®§ +w" - (kg — 1) in «, the last hole in the 7;-block. Any by
in # having terminal power < 7 is a y;-descent and v(«, 5) < 2y; < 291 + [log, (I1 + Ry)|.
Suppose b; = @f in 4. Now since Ry = 1, we must have v = 9+ 1 and [, > 3. Inspecting the
To-term of GEL2, we see that yaiet < 2y, +2 = 27;. For, if Iy > 4, then 4220 < 29, +2, and
in the case [, = 3, observe that the recursive condition must still hold so that 7,‘;}_,’21 < 2799 42.
In either case fy;h’gl < 27 so that y(a, B) <2y +1=m.

Now suppose [; > 1. I plays exactly as in the pure monomial game playing the midpoint
hole of the ~;-block. Any response for II having terminal power < 7 is a v;-descent. The

only remaining b; that are not descents are the holes in the ~;-block in . From this point,

an argument similar to the pure monomial game shows that v(«, 5) < 2+ + [log, (i1 +1)].
SUBCASE 2.2. ®% # () and @) = )

I plays a; = ®f in a. All of the cases of the 13 = 7y formula check the same way they

did in the first case.
SUBCASE 2.3. ®% =0, &) #0, [, =1 and k; =2

I plays a; = ®7 in 3. If I plays any by having terminal power < 71, then v(a, 8) < 2v; <

71. If II responds with w” in «, then GﬁlH’gl is separated and 'yff,il’gl < 2v;. If II responds

with W' - 2, then using the 7y term of G2, we have yabe' < 27, by induction. For either

response for 11, v(a, 5) <2y + 1 = 7.
SUBCASE 2.4. % = (), ®F #0, 1, =2, k; = 3, and R¥ = 0

I plays a; = @g in 5. If II plays any b; having terminal power < 71, then y(a, 8) < 2v; <

ai,b

is separated and 7o' < 27;. If II responds

7. If II responds with w?* in @, then G{L%

with w? - 2, then using the 7y term of G‘éﬂ?, we have 7;H21 < 2y + |log, (L+RY) | = 2%
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by induction. If II responds with w™ - 3, then using the 7y term of G?(l,jllgl, we have 'yng’gl <

2795 + 2 < 2v;. For any of these responses for I, (o, 5) < 2y +1 = 7.

SUBCASE 2.5. ®% = (), & # ), and neither of the two previous conditions hold

I plays a; = <I>§ in 4. The key observation in this case is that Gﬁ,l_;gl is separated so that

Yomet <2y + 1 Thus, y(a, B) < 271 +2 =71,
SUBCASE 2.6. <I>3,<I>€ #Pand iy =1and k; =2

Suppose R¥ = Rl = 1, that is, the recursive condition holds on both sides. Then I plays

— & in a. Any by in § having terminal power < 7; is a descent so that v(c, ) < 2y, < 7.
If by = (IJf in 3, then GL|1451 is separated and 7{_1,14’5 = 27v. Thus, y(a,3) <2y +1 < 7. If
by = <I>D in (3, then by induction using the 73-term of RHS , we have gy Sl = 27, + 1. Thus,
Y(a,B) <2m+2=m7. If b < @ﬁ and has terminal power > 7, then by induction using
the 7o-term of G&LY, we have yabe! = 2v; + 1. Thus, v(a, 8) < 2v; + 2.

Now suppose at least one of R¥ R] is zero. If Rl = 0, then I plays a; = @g in # and II

responds with some b; in a. Any b; having terminal power < v; is a descent. If b; = ®¢

a1,by

in o, then using the 7p-term of Ggy¢ by induction we have le’bl < 279 4+ 2 < 2v. Thus,

Y(a, B) < 2v1+1=m. If by = ®§ 4w, the hole in the v;-block of «, then GﬁlH’gl is separated

(Zl,

and v'}jo' = 271. Thus, v(a, 8) <2y + 1 =7. If by = O in «, then using the 74-term of

ai,b

G?{ﬁ?, we have Yghe' < 27 since RE = 0. Thus, y(a,8) <291+ 1 =7. If i) < ®§ in a

. . b b . .
has terminal power > 7, then using the 7o-term of Gryie', we have e < 2v; again, since

R, = 0. Thus, y(a, 3) < 2v; + 1.

If R =1 and R¥ = 0, then I plays a; = ®§ + w™ in a. Any b; having terminal power
< 7 is a descent. If by = (ID? in 3, then using the 1p-term of G?{H’? by induction we have
Y < 29y + 2 < 2y, Thus, Y(e, 8) < 2y + 1 = 7. If by = @) in B, then G{L' is
separated and vfﬁ"gl = 27;. Thus, y(a, B) <2y +1=m. If b < (IJO in 3 has terminal power

> 71, then using the 7p-term of %ﬁ? by induction we have fy;lH’gl < 27, since R¥ = 0. Thus,

’Y(avﬂ) S 271 +1= 1.
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SUBCASE 2.7. ®3,®) #( and l; =1 and k; > 3

I plays a; = ®§ +w - (ko — 1) the last hole in the 7;-block in a. Any b; having terminal
power < 71 is a descent. If by = CDf in 3, then using the my-term of GC,QH’? by induction we
have 7;}4’21 < 2y 4+ 2 <2y, Thus, y(a, ) <2y +1 <7y If by = <I>€ in 3, then GﬁlH’gl is
separated on at least 2 copies of w” and yf,l_,’gl =2y + 1. Thus, y(a, f) <2y +2=m. If

a1,by

by < q>§ in 3 has terminal power > =y, then using the 7o-term of Gy by induction we have

Vgll"’gl <2y + 1. Thus, y(a, ) <2v +2 =71
SUBCASE 2.8. ®§,®) # 0 and I, = 2

I plays @ + w™ - (kg — 1) the last hole in the y;-block of a. Any b, having terminal
power < 71 is a descent. If b = (IJf in 3, then using the 7-term of G?fH’? by induction we
have ”yng’gl < 299 4+ 2 < 29, Thus, y(a,8) <2y +1< 7. If b = @5 + w" the hole in the
~v1-block of 3, then Gle’gl is as in the n = 1 case (Theorem 3) and yflﬂ’gl < 2v; + 1. Thus,
Y(a,B) <2y +2=m.If b = @g in 3, then Gﬁh’gl is separated and fyf,ﬂl’gl < 27 + 1. Thus,
Y(a,B) <2y +2=mn.Ifb < CDg in  has terminal power > v, then using the 7yo-term of

G by induction we have yahe! < 29, + 1. Thus, v(a, §) < 2y +2 = 7.
SUBCASE 2.9. % ®F 40 and l; =3 and ky =4

I plays cI>g + w - 2 the middle hole in the y;-block of . Any b; having terminal power

< 71 is a descent. If by = <I>13 in (3, then using the 7p-term of G‘Fl{l,_]lgl by induction we have

’yng’gl < 279+ 2 < 2. Thus, y(a, f) <2y + 1< 7. If by = @g +w" - 2 the last hole in the
~1-block of 3, then using the 7-term of Gﬁl,_]gl by induction we have 7&}_,’21 < 2v; + 1. Thus,
Y, B) <2y +2=m. If by = (IJg + w" the first hole in the ~;-block of 3, then Gﬁh’gl is as
in the n = 1 case and 7'2' < 2y, 4 1. Thus, y(a, 3) < 271 +2 = 71. If by = ), then G2
is separated and 'yffh’gl < 2y1+ 1. Thus, y(ao, B) <2y +2=mn. If b < @g in 3 has terminal

power > 7, then using the 7o-term of %ﬂ? by induction we have ”ygh’gl < 27 + 1. Thus,

’Y(avﬁ) S 271 +2= 1.
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SUBCASE 2.10. @, <I>§ #QPandly =3 and k; > 5

Suppose Rt = 0. I plays a; = @g in 3. Any b; in o having terminal power < =, is
a descent. If II plays by = &% + w™ -k for 1 < k' < ki, then G52 is separated and
vﬁ.h’_i,’l < 2v + 1. Thus, y(a,5) < 2y +2 = 7. If by = Of, then using the 7i-term of
ﬁh’? by induction we have ”ygh’gl < 2y, + 1 since RY = 0. Thus, v(a, 8) < 27, +2 = 71
If by < ®@f, then using the 7y-term of GR1H51 we have vng’gl < 2v; + 1 since R = 0. Thus,
(e, B) <2y +2 =T
Now suppose R} = 1. 1 plays a; = @g 4+ w” -2 in a. Any b; in 8 having terminal
power < v is a descent. If II plays b = @g +wn " for 1 <1’ < 3, then using the 7-
term of GﬁlH’gl (or the 7p-term when I’ = 3) by induction we have 7,_;'31 < 271 + 1. Thus,
Y(,B) <2y +2 < 7. Ifh = CIDB in [, then G‘éﬂ? is separated and ’yng’gl < 2y + 1.
Thus, v(o, ) < 2y +2 = 7. If by < ®) in 3, then using the 7-term of G‘élel we have

YL < 2y + 1if RV = 0 or 4842 < 29, + 2 if RF = 1. In either case v(a, 8) < 7.
SUBCASE 2.11. ®,®5 # 0 and [, =4 and k; = 5

Suppose R, = 0. 1 plays a; = CIDg +w™ in B. Any b; in a having terminal power < 7, is a
descent. Suppose II plays by = @§ +w™ - k' for 0 < k' < 5. If k' = 3,4, 5, then using the 7-
term of G‘éﬂ? by induction we have fy;h’gl < 27+ 1. Thus, y(o, B) <2y +2=m7. If k' =2,
then Gﬁ,l_;gl is as in the n = 1 case and yf,l_l’gl < 2v + 1. Thus, v(a,B) < 2y +2 = 1. If
k' = 0,1, then using the 7i-term of G‘Fﬁ;? by induction ’y;h’? < 27+ |log, (3+RY) | =27 +1
since R, = 0. Thus, y(a, 3) < 2y +2 = 7. If a; < ®F, then using the 7o-term of Gﬁ}_]? by
induction ygje <9y + Uog2 (3 + R )J =2y, + 1. Thus, v(o, 6) <291 +2=1.

Now suppose R} = 1. T plays a; = ®§ + w? -2 in a. Any b in 8 having terminal power
< 71 is a descent. Suppose II plays by = @5 +wn - for 0 <U'4. If I = 2,3,4, then using

a1,b1

the m-term of Gl by induction we have ’yng’gl < 2%+ 1. Thus, y(o, 5) <2y +2 < 7. If

I"=1, then Gﬁlel is as in the n = 1 case and ﬁh’gl =271 + 1. Thus, v(o, 5) <291+ 2 < 7.
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If ' = 0, then using the 7i-term of G2 by induction vahe! < 2y, + log, (34 RY)|. Thus,
if R¥ =1 or y(r, ) <27y, +3 =7 and if R¥ = 0, then (o, 3) < 2y, + 2.

SUBCASE 2.12. ®§,®) # 0 and [, = 4 and k; > 6

I plays a1 = ®F + w™ - (kg — 3) in a. Any by having terminal power < 7 is a descent.
If b, = (IDf or by = <1>§ +wn-3orb = c1>§ + w™ - 2, then 'y;h’gl < 2v; + 1 by induction
using the same argument as before. Thus, y(a,3) < 2y +2 < 7. If b = @g + w7, then
GULY s as in the n = 1 case and Y52 = 2y, + 2. Thus, y(a, ) < 271 + 3. If by = @},
then G4 is separated and 7o' < 2v; + 1. Thus, y(a, ) < 2y1 +2 < 7. If by < ®f has
terminal power > 7, then 7;}4’21 < 27v; + 2 by induction using the 7p-term of G‘é}_]?. Thus,

a,f) <2n+3=m.
SUBCASE 2.13. ®¢,®) £ 0 and I; > 5 and R, =0

This argument is identical to the same subcase in the n = 1 case (Theorem 3).
SUBCASE 2.14. ®¢,®F # (0 and [; > 5 and R, =1

This argument is similar to the previous case except that I moves his play one hole to
the right. I plays a1 = @ +w™ - (I; — 2lleg2l1] 1 9) in . As in the previous case, we need
only check that the formula holds when II responds with some hole in the ~;-block in 3 since
any other move easily holds the bound. Suppose II responds with b; = <1>§ + w™ - I'. There
are two cases:

(1) 1<l <1y —2Uos2li) 1 or
(2) Ip —2les2bil L2 <P < 1

In the first case, G2 is as in the n = 1 case and ;2" < 2 + |log, (' +3)|. Now
llog, (I’ +3)] < [log, (I' +4)]. As we have shown in previous arguments, we claim 72" <
[log, (I +3)] < [log, (I1 +4)] —1 = |log, (I1 + 3 + R}) | —1. Assuming that the claim holds,

then we have v(a, 3) < 2y, + |log, (b +3+R}) .
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PROOF (CLAIM). Write [} = 2Us2l1+1 5 where 1 < j < 2log20l. Now
U +3< (I —2Mehl 1) 4 3=olleeh) 4 (4 j)

If =1,2,3,4, then

[log, (" + 3)] < \_Ing (QUOgZhJ + (4 - ]))J = [logy 1] = |logy (Ih +4)] — 1
It <5< 2U°g2lﬂ, then

[log, (I' +3)] < UOgQ (2Uog211j +(4- J))J = |logy l1] — 1 = [logy (I1 +4)] — 1
In the second case, using the 7 -term of G‘él,_"lgl by induction we have
vahet < 271 + |logy (I — U+ RY)] < [log, (21°82") — 1) ] = |log, 1] — 1

Thus, y(a, 5) < 2y + |logy 1| < 2y + Uog2 (l1 +3+ Rll)J In both cases, we have v(a, 5) <
T1.

This ends the case when 71 = min{m, 71,..., 7.}
CASE 3. 7, = min{7ry,7,..., T} for 1l <i<mn

The formula for 7; is the same as the 7 formula when ®; # (. The argument is the

same.
CASE 4. 7, = min{7y, 71 ..., 7Ty}

The formula for 7, is the same as the formula for 7y when n = 1. The argument is the

same.
In all cases, we have y(«, £) < min{7y, 7,..., 7, }.
LOWER BOUND. ~v(a, 3) > min{7, 71,...,Tn}

We show that for every instance of the formula and every move a; for I there is a response

by for II such that vy(«, ) > 7; for some 0 < ¢ < n. We break up the cases according to
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the location of I's move. As before, we adopt the convention that we will treat fence moves

®2, 7 in the 7;41-block.
CASE 5. I plays in the m-block

First, this means that at least one of ®f, q>§ are nonempty. Suppose ®§ # () and P =0.

Now suppose I plays a; < ®f in a.
SUBCASE 5.1. [; =1

Suppose first that the recursive condition holds. If a; < (ID’lg in «, then II copies from

below and this is a stalling move for I. Suppose ® < a; < ®¢ in a. If a; has terminal

a1,by a1,b1

power > q, then II plays b, = <I>'13 in 8. On the left, G|}j<' is separated and v, js' = 2v.
On the right, using the 7o-term of G2 by induction we have yahe! > 295 + 2 = 27, since
the recursive condition holds. Thus, v(a, ) > 27, + 1 = 7p. If now the terminal power of
ay equals 7v;, then I again plays b; = (ID? in 4. On the left, G‘E,ﬂl’gl is as in the n = 1 case
and v(a, 3) > 27v;. On the right, G‘é}_’,? is the same as before. Thus, v(a, ) > 27 + 1 = 7.

If the terminal power of a; is v = 71 + 1, then II plays w? -4 in 5. On the left, Gﬁh’gl is

a1,b1 a1,b1

unbalanced and '}js' = 272 + 2 = 27;. On the right, usin the 7p-term of Gy by induction
we have 'yng’gl > 271. Thus, y(a, 8) > 271 + 1 = 79. If the terminal power of a; is < 79, then
IT plays the same b; he would have against the untailed version of a; plus copying the tail.
The presence of the small tail does not decrease the lower bound.

Now suppose the recursive condition fails. Observe that all of the above argument is the
same except the case when I plays @f < a; < @ in a. II then plays a «'-compression of a,

where depending on whether or not ~; is a limit or a successor. The argument proceeds as

in the proof of the Separated Game formula.
SUBCASE 5.2. [ =2

This case is identical to the [; = 2 case in the Unbalanced Game formula, except that

fyng’gl > 27 is now computed by induction.

29



SUBCASE 5.3. [ = 3

Suppose first that the recursive condition holds. If a; < <I>’18 in «, then II copies from
below and this is a stalling move for I. Suppose CIDﬁ < a; < ®f in . If a; has terminal power
> 71, then II plays by = w” -2 in 5. On the left, Gﬁlel is separated and yf,ﬂ’s =2y+1. On
the right, G‘§1H’51 is as in the above [; = 1 case and Ygyie 2 > 94, + 1. Thus, v(a, B) > 2y + 2.
If a; has terminal power equal vy, then II again plays byw? -2 in 5. On the left, Gﬁhgl is
unbalanced and 72" = 27, + 1. On the right, Gai2' is again as in the I; = 1 case and
7,3}_"21 > 291 + 1. Thus, v(a, 3) > 27 + 2 = 75. If a; has terminal power < 7, then II
responds with by = w" - 2 + n where 7 is the small tail of a;. The presence of the small tail
does not decrease the lower bound.

Now suppose the recursive condition fails. Then II plays the same as before. Since the

recursive condition fails, it also fails in the l; = 1 case so that now e Lo > 27v;. Thus,

(e, B) > 271 + 1.

SUBCASE 5.4. [; > 4

The argument is by induction on /; and is the same as in the [; = 4 case of the Unbalanced
Game formula.

This ends the case for ®f # 0, <I>g = (). A symmetrics argument shows that the lower
bound holds for &% = ), B # 0.

Now suppose that both ®f, <I>0’6 # (). Moreover, suppose ag > (3.
SUBCASE 5.5. By > v + 1

Whether or not ® is a monic monomial or not, this argument is the same as in the same

subcase in the proof of the lower bound of the n = 1 case.

SUBCASE 5.6. 0y =71 + 1 and q>§ =wh . [yand ;=1
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Suppose the recursive condition holds. If I plays a; < @g in « or 3, then II copies from
below and these moves are stalling for I. Suppose @g < a; < ®f in a. If the terminal power
of ay is > By, then II plays by = ® in 3. On the left, G'EIH’SI is separated and vf,ﬂl’gl = 20,.
On the right, using the 7p-term of G‘,QH’? by induction we have ’yﬁh’sl > 2y, + 2 = 23, since
the recursive condition holds. Thus, v(«, 3) > 2v; + 1. If the terminal power of a; equals
Bo, then again II responds with by = ®5. On the left, GILY s unbalanced and vt = 20
On the right, using the 7p-term of G‘FTH’? by induction we have 7RH51 > 271 + 2 = 205y. Thus,
v(a, B) > 26y + 1. If the terminal power of ay is < [3y, then II copies a tail.

Now suppose the recursive condition fails. Any a; < (Pg in « or (3 is stalling for I. If

®) < ay < B¢ in a. Then II plays as in the monic monomial case of the Separated Game

formula by playing a compression of a.
SUBCASE 5.7. By =71+ 1 and [y > 2

All of these instances of the formula are proven similarly to the ®g # 0, &7 = () cases.
SUBCASE 5.8. () =1 + 1 and ®} is not a monomial

Suppose the recursive condition holds. If I plays a; < (I>€ in 4 having terminal power

> [y, then II plays w® -4 in a. On the left, Gﬁ,ﬂl’gl is either separated, in which case

ai,by ay,by ai,by

Mhs = 200 + 1, or G|}j¢' is unbalanced, in which case v'}js' = 26y + 2. On the right, using
the 7o-term of G%"? by induction we have yahe! > 26, 4 1 since the recursive condition
holds. Thus, y(«,3) > 26y +2. If a1 < <I>O in # and the terminal power is < [y, then
IT plays the same b; in « plus copies a tail. If I plays a; < (IJg in «, then II copies from
below and this a; is stalling for I. Suppose I plays a; > CIDg in . If the terminal power of
a; is > 3, then II responds with b; pinching off a block of w® in 3. On the left, Gﬁngl is

a1,by

separated and 2 > 23, + 1. On the right, using the 7p-term of G2 by induction we
a1,by

have Yge > 20y + 1 since the recursive condition holds. Thus, y(«, 3) > 26, + 2. If the

terminal power of a; is 3y, then II again plays to pinch off a block of w™ in 3. As before,
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’yf,ﬂl’gl > 206y + 1 and 'yf{h’gl > 20 + 1 since the recursive condition holds. If the terminal
power of a; is < 3y, then II plays to copy tail.
If the recursive condition fails, then just as in the ®§ # (), @g = () and [; = 3 subcase, II
a1,b1

plays just as before and ~gyis' < 20, since the recursive condition fails.

This ends the case when I plays in the 7p-block.
CASE 6. I plays in the 7-block

This case deals with a; in o where ®f < a; < ®f or a; in # where <I>0’6 <a < @f. Either
dF or <I>g may be empty.

First suppose k; = ;. If I plays any a; = @7 + n in a where 0 < 1 < w" - k;, then
IT copies playing b; = <I>€ +n in [, and vice versa. By inspection of the formula, it should
be clear on the left that yf_‘,ﬂ’gl > 79 — 1 when 7y is a successor and vfﬁ’gl > 79 when 73 is
limit. This is because if a; changed the recursive condition from true to false, the overall
formula only goes down by 1, and this cost Player I a move to do this. Similarly, on the right,
’yng’gl > min{y,...,7,} since no move in the v;-block can change the value of any of the
terms in blocks to the right of the y;-block. Thus, v(«, 3) > min{ry, 71, ..., 7,} for whatever
values the 7; terms take. So any move in an co-block is a stalling move for I. For the rest of
this case, assume that k; # [;, and by the symmetry of the formula, in fact, assume k; > [;.

We introduce the following notation. When we need to distinguish between the terms of

the original game G(«, 3) and the terms of a left or right game, we will use a superscript

RHS or LHS. Terms without a superscript refer to the original G(«, 3).
SUBCASE 6.1. @, ®) = () and R. =0

In this instance of the formula where 7 = 2v; + Uog2 (ll + Rll)J = 2y + [logy l1], we
prove y(a, ) > min{r,...,7,} by induction on [;.

Suppose I; = 1. If I plays any a; hole in «, then II responds by playing b; in § a
~'-compression of a; where, as usual, v/ < 7, is appropriate to whether ~; is a successor

or limit. On the left, Gﬁh’gl is separated and vf,ﬂl’gl > 24"+ 1. On the right, by induction
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AR > min{7RHS . 7RHSY Now it should be clear by inspection of the formula that this

a1, by does not disturb the formula in blocks to the right so that for each 2 < i < n, TiRHS =T;.
For 7RMS if 7RMS £ oo, II can last at least as long as he does in the pure monomial game so
that 7RHS > 2+, + Uog2 (l1 + Rll)J = 2v;. Thus, we have ’yng’gl > min{2v, 72, ..., T,} and

thus,

a1,b1

P)/(Oéaﬁ) = Inin{’)/LHS + 1773}-&? + 1}

v

min{2y +2,2y1 + 1, +1,...,7, + 1}

v

min{2vyy, 7o, ..., Ty}

= min{n,..., 7}

If a; is any nonhole move in «, then II again compresses. If a; is in 3, then II copies

from below playing b, = a; in a. On the left, 742 = oo and on the right 7252 >
min{2vy;, 7, . .., 7, }. Thus, reasoning similarly as above v(a, ) = min{y/ye' +1, vauet +1} >

min{2y; + 1,7,...,7,} > min{r,..., 7, }.

If [y > 1, then II responds to I as in a pure monomial game. The argument is the same.
SUBCASE 6.2. ®,®) = () and R = 1.

In this instance of the formula where 7 = 2v; + Llog2 (ll + Rll)J = 2y + [logy l1], we
prove y(a, ) > min{r,...,7,} by induction on [;.

Suppose [; = 1. If I plays any hole in «, then II responds with b; = (IDf in 4. On the

left, G{L2! is pure monomial and v'}e' = 2y, + |logyli] = 271. On the right, using the
To-term of G?{H? by induction we have 'y;h’gl > min{2y, +2,7RMS ... 7RHS1 and since R, = 1

we have 29, + 2 = 27;. For the 7RHS term we observe that since R} = 1, we must have

{3 > 3 (note that I3 in G5 now corresponds to the 7RHS term). So even though that now
RHS p 1

in G&% in the 7RMS term (which is the 7, term in G(a, 8)) II can no longer run to the

left, the formula for the ; block has only decreased by one. That is, 7RHS = 7, — 1. Thus,

by arguments similar to those given above, ’ygh’gl > min{2vy;, 79 — 1,73,...,7,}, and thus,
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ya, B) > min{yfhet + 1,782 +1} > min{2y, + 1,7, 73+ 1,..., 7 + 1} > min{r, ..., 7}
If a; in « is not a hole or fence, then II copies a tail. The presence of the tail does not
decrease the lower bound. If a; < (IDf is in (3, then II copies from below and this move is
stalling for I.

Suppose [; > 1 and for all I’ < [; the formula holds. Suppose for the moment that I plays
a hole in (3, say a; = w™ -’ where 1 <[’ <[y — 1. There are two cases when I plays a hole

in 3:

2 |BE | +1<V < -1

a1,b1

f1<l’'< \_llT“J, then II copies from below playing b; = a; in o. On the left, v ;" = 0.

On the right, by induction

vé‘ih’? > min{2vy; + Llog2 (l1 -+ RZI)J ,ToHs L RS

r'n

[
> min{2y + {log2 ({%J + 1)J T2y ey Tn}t

We claim that [log, (|2] +1)| > [log, (Ii +1)] — 1. From this it follows that y(a, 8) >

min{ry,...,7,}.

PROOF (CLAIM). Write [; = 2182111 — 5 where 1 < j < 2llog2h],

(g9 - )
[ (22)]

= [ogy (lhi+1)] -1

(849 = (12

= |logy,l1] —1

If j =1, then

f2<;< 2llog2 i) " then
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= |logy(h+1)] -1

Now suppose VlTHJ +1 <!" <l;—1. Then II copies from above (in the v; block) playing
by = wn - (k; — (I1 = 1')). On the right, 7R"S = 0o and none of the terms to the right are
disturbed from the original G(«, 3) so that V;H? > min{r+1,...,7,+1}. On the left, Gﬁh’gl
is pure monomial and Y52 = 27y, + |log, I'] > 271 + [logy |1 || = 291 + [log, (I + 1) — 1.
Thus, y(a, 3) > min{yXL2" + 1, 7252 + 1} = min{2y, + [log, (b + 1) |, 7o+ 1,..., 7 + 1} >
min{ry,...,7,}.

If T plays a hole in «, then there are three cases:

(1) 1<1 < [bf

B) k== [3) <V <k -1

Now if I plays a; to be in either cases (1) or (3), then II plays vice versa to when I played
in # and the argument is the same as above. So suppose we are in case (2). Note that when
ki =1y + 1, case (2) is empty. If ky > l; + 1, then II plays by = w™ - VlTHJ On the left, by
the same argument as above, 7/} e' > 27, + |log, (I; +1)] — 1. On the right, by induction
TRHS > 971 + Llog2 (L%J + Rll)J =27+ Uog2 (L%J + 1)J The same claim above shows that
TRHS > 29, 4 |log, (1) + 1)] — 1. Thus, yahe' > min{27y, + |logy (I, +1)] — 1, 7,...,7,} and
thus, v(e, ) > min{y*2" + 1,7452 + 1} > min{2y, + [logy (b +1)] , 7+ 1,...,7 + 1} >
min{ry,...,7,}.

If T plays any nonhole in either o or 3, then II plays as above plus copies a tail. The

presence of the tail does not decrease the lower bound.

SUBCASE 6.3. % £ (), &7 =0
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Observe first that in all cases for I, > 1, if [ plays a; = ®f in a, all of the same arguments
from the case when I played in 7y still hold. So it is enough to show that II holds the lower

bound when ®f < a; < ¢ in a or a; < @f in 3.

a1,b1

Suppose [; = 1. If I plays a; < CID? in 3, then IT copies from below. On the left, '}js' = o0.

a1,by

On the right, all of the terms in vg;¢' are the same as in G(a, 3). Thus, vgh’gl > (o, B),
and this a; is stalling for L.
Now suppose I plays @7 < a; < ®¢ in a. Also, suppose the recursive condition holds,

R! = 1. If I plays any hole in the 7; block of v, then II plays b; = CIDf in 4. On the left, Gﬁ,ﬂl’gl is

ai,by ,b1

unbalanced and v{};e' = 27;. On the right, by induction yge' > min{7HHS 7RHS  7RHSY

Now, since R} = 1, we have 78HS > 24, + 2 = 2v,. As in the case above when ®§, @g =0,

7_1RHS ai,by a1,by >

= 7 — 1. Moreover, the remaining terms in Gp);s are undisturbed so that vygys
min{2y,, 7 — 1,7s,...,7,}. Thus, v(a, ) > min{y{4e" + 1,742 + 1} > min{r + 1,2y +
1,7, 3+1...,7+1} = min{ry, 71,...,7,}. If I plays any nonhole in the 71 block of a, then
IT copies a tail, the presence of which does not decrease the lower bound.

Now suppose the recursive condition fails, Rt = 0. If I plays any hole in the 7; block of
a, then II responds with a +/'-compression of a; where ' < 7, is appropriate to whether ~; is
a limit or a successor. On the left, GIL2 is separated and 42" > 29/ + 1. On the right, by
induction 7;}4’21 > min{rf", ... 7f"5}. Now by induction 7" = 2y, + |log, (I; + RY)| =
27v1. Moreover, the all of the other terms to the right in G‘,?H’? are undisturbed by this
move. Thus, VSH? > min{2vyy, 7o, ..., 7T}, and thus, v(«, 3) > min{vfh’gl + l,vgh’gl +1} >
min{7y, 271,2v1 + L, 2+ 1,..., 7 + 1} > min{7y, 7, ..., 7, }. If I plays any nonhole in the 7
block of «, then II copies a tail, the presence of which does not decrease the lower bound.

Suppose [y = 2. If I plays any a; < @f in 3, then II copies from below, and the
argument is the same as above. If I plays any hole in the 71 block of «, then II plays
b1 = w™ in (. On the left, Gﬁ,ﬂl’gl is unbalanced and ’yfﬁé’l = 27;. On the right, by induction
wg}_"gl > 2y + |logy (i +RY)| > 271 using the {; = 1 case when @, ) = . Thus,

Y(a, B) > min{mo+1,2v1+ 1,72+ 1,...,7,+ 1} > min{ry, 7, ..., 7, }. If I plays any nonhole
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in the 71 block of «, then II copies a tail, the presence of which does not decrease the lower
bound.

Suppose I; = 3. If I plays any a; < w” -2 in (3, then II copies from below and the
argument is the same as before. If W -2 <a; < CIDf , then II plays to pinch off the last block
of w™ in the 7 block in . On the left, Gle’gl is unbalanced and 73,5"31 > 27, + 1. On the
right, 7RHS = 0o and all of the other terms are undisturbed. Thus, fy;h’gl > min{ry,..., Ty}
Thus, v(a, 8) > min{rg+ 1,2v1 + 2,2+ 1,...,7, + 1} > min{7r, 71, ..., 7.}

Now suppose I plays a hole in the 7 block of a. If I plays a; = @ + w - K, then
IT responds with b; = W - 2 in §. On the left, G‘E,{;gl is unbalanced and 7,‘_1,1_1’31 > 2v + 1.
On the right, by induction, ’y;ﬁgl > min{2vy; + \_log2 (1 + Rll)J T2y ooy Tn}. Thus, y(a, 5) >
min{7ry + 1,2y + Llog2 (3 + Rll)J T2+ 1, 71 + 1} > min{7, 7, ..., 7,}. If T plays any
nonhole in the 71 block of «, then II copies a tail, the presence of which does not decrease
the lower bound.

Suppose [; > 4. This is by induction on [, but it proceeds as it has before. All of the cases
where I plays in the 7 block of § are as before. If I plays any hole in the 7-block of « except
the last, then II responds with w™ -2 in . If I plays the last hole a; = ®§ + w™ - (k; — 1),

then II plays by = w” -3 in B. In each case, our previous arguments have shown that

v(a, B) > min{m, ..., 7}
SUBCASE 6.4. ®% = (), ®F #0

Suppose [; = 1 and k; = 2. If I plays <I>0’6 in 3, then II responds with w" in a. On the left,
G s separated and 42 = 2v;. On the right, from what we have said above it should
be clear that vﬁh’? > {7, ...,m}. Thus, v(a, ) > min{ro+ 1,291+ 1,2+ 1,..., 7, + 1} >
min{7y, 7, ...,7,}. If I plays a hole in «, then II plays vice versa and the argument is the
same. If I plays a nonhole in « or 3 then II copies a tail.

Suppose I} = 2, k; = 3, and R¥ = 0. If I plays @f in 3, then II plays w™ in « and the
argument is almost identical to the [y = 1, k; = 2 case. Vice versa if I plays w™ in a. If I

plays @f +w™ in (3, then II responds with by = w" -2 in «a and vice versa. On the left, GﬁlH’gl
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is unbalanced and fy,‘fﬁ{’gl > 27, +1. On the right, G%ﬂ? is identical to the I; = 1, k; = 2 case.
Thus, v(a, f) > min{mo + 1,2v,2, 79, ..., 7, } > min{7y, 7,...,7,}. If I plays a nonhole in «
or 3 then II copies a tail.
Now the 7, term is 2v; + 2 in all of the rest of the cases when ®¢ = @) and ) # 0.
Suppose [y = 1 and k; > 3. If I plays (IDﬂ in 3, then II responds with w” -2 in « and vice
versa. On the left, Gaul_;sl is separated and fyLl’bl > 29, + 1. On the right, G?{,_]Zl is as before
so that the terms to the right are undisturbed. Thus, v(a, 5) > min{ry + 1,2v; + 2,75 +

L....,7 + 1} > min{ry, 71,...,7,}. If I plays w” in «, then II runs to the left playing a

copying move b; = w?. On the left, 7,‘_1,1431 = 00. On the right, G?{l,jl? is as in the [, = 1,
ki = 2 case. Thus, v(a, f) > min{ro+ 1,2v1 + 2,70+ 1,..., 7, + 1} > min{7, 7y, ..., 7, }. If
I plays a nonhole in « or 3 then II copies a tail.

Suppose I; = 2, k; = 3 and RY = 1. If I plays @f in 3, then II responds with w - 2

in a and vice versa. On the left, Gﬁ,l_lbl is separated and ﬁh’gl > 27 + 1. On the right, by

induction yjet > min{rfHS, ... 7RHSL Now 7fHS = 24, + [log, (1 + R¥)| = 27, + 1 and
each of the remaining terms of G‘F?,_]gl are undisturbed. Thus, vgh’gl > min{2vy+1,79, ..., Tn}

So we have y(a, 3) > min{vﬁ,ﬁl’gl + 1,7;}4’21 + 1} >min{rp+ 1,2y +2, o+ 1,...,7 + 1} >
min{7y, 7, ...,7,}. If I plays @? + W in B, then II responds with w” -2 in . Now the
argument is the same as the [; = 2, k; = 3, and R¥ = 0 case when I played w? in « so that
v(a,B) > min{rg + 1,291 + 2, + 1,...,7, + 1} > min{ry, 71 ..., 7,}. If I plays w™ in «,
then II runs to the left playing a copying move b; = w” in 3. The same argument above
shows that II holds the bound. If I plays a nonhole in « or 3 then II copies a tail.
The rest of the arguments in this repeat previous ones. We will simply identify I's move
and IT’s response that holds the bound when I plays some hole in « or 3.
Suppose [y = 2 and k; > 4. If I plays the first hole in «, a; = w", then II re-
RHS _

sponds by running to the left and copying b; = w™ in 3. Observe that now 71> =

2y + Llog2 (3 + 1+ RZI)J > 27 + 2, so that II easily holds the lower bound. If I plays
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the last hole in the v;-block of «, then II responds with b, = (IDf + w™ in B and vice versa.
If T plays any other hole in «, then II responds with b; = @f in (.

Suppose [; > 3. If I plays w” in «, II copies by = a; in (. If I plays (IDf in 3, then II
responds with b; = w™ - 2 in a and vice versa. If I plays any hole in 3, then II copies from
above the same number of holes from the right in the v, block in  and vice versa. If I plays
any hole in a not covered by the previous cases, II responds with b; = q)f in 3.

This ends the case when ®¢ = () and ®f # 0.
SUBCASE 6.5. ®,®) # () and l; =1 and k; = 2

Suppose first that R¥ = R} = 1. If I plays a; = ®¢ in «, then II responds with b; = (Pg
in 4. On the left, GﬁlH’gl is separated and ’yfﬁl’gl > 279 where 79 = min{ay, 5o} and 2y >
21 + 2. On the right, by induction vgh’gl > min{2vy; + 1,7,...,7,} since Rt = 1. Thus,
v(a,B) > min{ro + 1,271 + 2,2+ 1,..., 7, + 1} > min{ry, 7, ..., 7, }. Similarly, if I plays
a; = d)g in 3, II responds with b; = ®f in o. If I plays a; = ®F + w™, the hole in the
~1-block of v, then II plays w? -4 in 3. On the left, G‘E,ﬂl’gl is unbalanced and ’yff,ﬂ,’gl = 2v +2.
On the right, by induction we have 7,‘-\1,}_,’21 > min{2vy, + 1,7,...,7,} since R¥ = 1. Thus,
Y(a, B) > min{mo + 1,2y1 + 2,2+ 1,..., 7 + 1} > min{7y, 7, ..., 7, }. If a; is not a hole or
fence in the 7i-block, then II copies a tail.

If either of the recursive conditions fails, II still plays the same as he did before. If
I plays <1>§ in §, then II responds with w” in a. On the left, ﬁ,l_'gl is separated and
’y‘f,ﬂl’gl = 27;. On the right, 'yng’gl > min{7,...,7,} since the 7-term of G(rlelﬁgl is 0o. Thus,
v(a,B) > min{mo+ 1,2y1 + 1,2+ 1,...,7,} > min{7y, 71, ..., 7,}. In the other possibilities

a1,b

for I's move, Ygyjs = 271 now because the recursive condition does not hold on one side or

the other.
SUBCASE 6.6. ®5,®) # 0 and I, =1 and k; > 3

If I plays a; = ®f in «, then II plays by = w” -2 in 3. On the left, fhgl is separated

and Vfﬁ"gl > 27, + 1. On the right, by induction we have 73,1_"21 > min{71S 7RHS - 7RHSY
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Now 7615 > 29, +1. And, 7fHS = 24, + Llog2 (l1 +3+ RII)J > 271+ 1. The remaining terms
are undisturbed. Thus, vy(«, 5) > min{7ro + 1,21 + 2,75 + 1,..., 7.} > min{ry, 71,...,Tn}-
If T plays <1>§ in 3, then II plays ®f + w™ -2 in a. On the left, G,_HS1 is separated and
”yf,ﬂl’gl > 27, + 1. On the right, ’y;lH’gl > min{r,...,7,}. Thus, v(«, 3) > min{ry, 71,...,Tn}-
If I plays a; = @ +w™ in «, the first hole in the v;-block, then II plays w™ -2 in 3. On the
left, G{L2' is unbalanced and 442" > 2y, + 1. On the right, by induction we have yaet >
min{rRHS 7RAS 7RHSY S Now 7§15 = 24, + 1. And, 7 = 24, + Uog2 (l1 +3+ Rll)J >
271 + 1. The remaining terms are undisturbed. Thus, v(a, 8) > min{m + 1,2y + 2,7 +
1,...,7} > min{7, 7,...,7}. If I plays a1 = & +w™ -2 in «, then II plays b; = CIDg in (3.
On the left, GIL2' is separated and y{ie! = 2y, + 1. On the right, yabe' > min{r, ..., 7, }.
Thus, vy(«, 5) > 271 + 2. If I plays any ay in « or (§ that is not a fence or hole, then II copies

a tail.
SUBCASE 6.7. ®F, @) # () and I, = 2

It I plays a; = ®f in «, then II plays b, = (IDg in 3 and vice versa. On the left, Gﬁngl is
separated and fyf_l,ﬂ’gl > 291 + 2. On the right, by induction fyng’gl > min{2vy; + 1,72,..., 7}
since Iy = 2. Thus, v(«o,3) > min{rg + 1,2y + 2,72+ 1,..., 7, + 1} > min{ro, 71,...,Tn}
Thus, v(a, 3) > min{7y, 71, ...,7,}. If I playsa; = q)g—l—uﬂl in 3, then Il plays b; = ®§+w?-2
in a and vice versa. On the left, Gﬁlel is as in the n = 1 case and 7,‘_1,5"31 > 27, + 1. On the

a1,b1

right, vape' > min{7s, ..., 7, }. Thus, v(o, 8) > 2y + 2. If I plays a; = & + " in «, then

IT plays w? - 2 in (. If I plays a; that is not a hole or fence, then II copies a tail.

SUBCASE 6.8. ®§, @) # () and I, = 3 and k; = 4

ay,by

It I plays a; = ®f in «, then II plays b; = CDg and vice versa. On the left, G| ' is
separated and ”yf,ﬂl’gl > 291 + 2. On the right, by induction fy;h’? > min{2vy; + 1,72,...,7n}
since [y = 3. Thus, v(a, 3) > min{rp+1,2v1 + 2, o+ 1,..., 7, + 1} > min{7r, 7y, ..., 7, }. If

I plays ®F + w in «, then II plays w” - 2 in 3. The argument then proceed as in previous

cases when II runs to the left and copies. Thus, v(a, 3) > min{7y,7,...,7,}. If I plays
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— ®Y + w" - 2 in a, then II plays ® + w™ - 1 and vice versa. On the left, G‘E,ﬂl’gl '
as in the n = 1 case and 72" > 2y, + 1. On the right, 4252 > min{n,...,7,}. Thus,
v(a, B) > min{ry,71,...,7}. If I plays a; = ®§ + w” - 3 in «, then II repsonds with
by = CI>B + w™ - 2 and vice versa. The argument is the same as when I plays one hole to the

left. If I plays any nonhole or nonfence, II copies a tail.
SUBCASE 6.9. %, @) # 0 and I; =3 and k; > 5

Suppose first that R} = R} = 1. First suppose I plays a; = & + w” - k' for 0 < k' < k
in a. For k' = ky — 1,k — 2, then II plays b = <I>€ + w" - I" where I' = 1,2, respectively.
On the left, Gﬁh’gl is as in the n = 1 case and Wflﬂl’gl = 2v; + 2. On the right, vgll_'gl >
min{7,...,7,}. Thus, v(a, ) > min{ry, 7,...,7}. If 0 <k < ky — 3, then II responds
with by = W -4 in B. On the left, G!2 is unbalanced (or separated when k' = 0) and
”yf,ﬂl’gl > 271 + 2. On the right, by induction ’ygh’gl > min{2y; + 1,7,...,7,} since R¥ = 1.
Thus, v(«, 8) > min{mo+ 1,2 + 2,2+ 1,..., 7, + 1} > min{7y, 7, ..., 7, }. Now suppose I
plays b; = CIDﬁ +wn - for 0 <1'2. If I’ = 1,2, then I plays vice verse as above. If I’ = 0, then
IT plays b; = ®§F in . On the left, G‘“’s1 is separated and yf,l_,’sl > 271 + 2. On the right, the
7i-term of Giie by induction is 7RHS = 29, + |log, (3 + RY)| = 2v; + 2 since RY = 1. Thus,
v(a, B) > min{ry, 71, ..., 7, }. If a1 is not a hole or fence, then II copies a tail.

Now suppose either R¥ = 0 or Rl = 0. Then all of II's responses above show that

v(a, B) > min{7o, 7, ..., 7}
SUBCASE 6.10. ®§,®) # 0 and [, =4 and k; = 5

Suppose first that R¥ = Rl = 1. First suppose I plays a; = ®§ +w - k' for 0 < k' < 4

in . For k' = 3,4, then II plays by = ®) 4+ w" - I' where I’ = 2,3, respectively. On the left,

“1’21 is as in the n = 1 case and ’YLHs = 27, + 2. On the right, Yg{ie 2 > min{m,..., T}
Thus, v(a, 8) > min{ry, 71,...,7,}. If & = 1,2, then II plays w” -4 in 5. On the left,
a1,b1

"L is unbalanced and y{e' = 27, 4+ 2. On the right, the 7-term of Giye by induction

is RS = 271 + |log, (34 RY)| = 271 + 2 since Rf = 1. Thus, (e, ) > min{ro, 71, ..., 7 }.
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If k¥ = 0, then II plays by = ®. On the left, G52 is separated and L' > 27,
2791 + 2 where 79 = min{ayg, fp}. On the right, the 7;-term of G‘él,_"lgl by induction is 7RHS >
2v1 + Uog2 (4 + Rll)J = 27, + 2. Thus, v(e, 3) > min{ry, 71,...,7,}. Now suppose I plays
ay = @g +wn - l"in B for 0 < " < 3. If I’ = 2,3, then II plays b; vice versa in «
as above. If I’ = 1, then II plays by = ®§ + w” in a. On the left, G‘E,ﬂl’gl is as in the
n = 1 case and fyf,l_"gl > 27 > 271 + 2. On the right, the 7-term of Gﬁl,_’,gl by induction is
S > 291 + [logy (3+ RY)| = 271 + 2 since R} = 1. Thus, v(a, 8) > min{r, 71,..., 7}
If I = 0, then II plays b, = ®3. On the left, G{L2' is separated and 42" > 279 > 2, + 2.
On the right, the 7 -term of G‘éﬂ? by induction is 7R"S > 2+, + Uog2 (4 + RZI)J =2y + 2.
Thus, v(a, ) > min{7g, 71, ..., 7,}. If a; is not a hole or fence, then II copies a tail.

Now suppose either R¥ = 0 or Rl = 0. Then all of II's responses above show that

P)/(O‘aﬁ) > 271 +2= T1-
SUBCASE 6.11. ®¢,®5 £ 0 and l; =4 and k; > 6

First suppose plays a; = ®§+w” -k for 0 < k' <k —lina. For k' =k —1,k; —2,k; -3,
then II plays (IDOﬂ +w” - 0" in B where I = 3,2,1, respectively. On the left, Gﬁ,{,’gl is as
in the n = 1 case and ”yfﬁgl > 27, + 2. On the right, ’yng’gl > min{ry,...,7,}. Thus,
v(a, B) > min{7o, 71, ..., 7 }. If 1 <k <k —4, then IT plays w? -4 in 3. On the left, G‘E,l_;gl
is unbalanced and ’yﬁﬁ"gl = 27, + 2. On the right, both the 79 and 7; terms of G‘éﬂ? give
vgh’gl > 291 + 2. Thus, v(a, 8) > min{7y, 7, ...,7,}. If ¥ =0, then II plays b; = @g in [.
On the left, G52 is separated and 432" > 279 > 27, +2. On the right, the 7-term of G&%
by induction is 7" > 24 + |log, (4 + RY)| = 271 + 2. Thus, v(a, 3) > min{ro, 71, ..., 7 }.
Now suppose I plays a; = ®F +w - in § where 0 < I' < 3. If ' = 1,2,3, then II plays
vice verse in « as before. If I’ = 0, then II plays b; = ®f in « as before. If a; is not a hole

or fence, then II copies a tail.
SUBCASE 6.12. ®§,® # () and I; > 5 and R, = 0

This case is identical to the same subcase in the n = 1 case.
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SUBCASE 6.13. ®¢,®) # 0 and I; > 5 and R, = 1

The argument is by induction and the computational details are identical to those in the
proof of the the finite game.

This ends the case when I plays in the 7-block.
CAske 7. I plays in the 7-block, 1 < i < n.

The formula is the same as the 7 formula and the argument proceeds by induction

similarly to the 7 case.
CAsk 8. I plays in the 7,-block

The formula is the same as in 77 formula in the n = 1 case and the argument proceeds

by induction similarly.
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