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CHAPTER 1

BACKGROUND AND NOTATION

Throughout this paper, X and Y will be compact metrizable spaces. Speci�cally, we

are studying continua of �nite degree. These continua are sometimes referred to as 'totally

regular.' The notation 'totally regular' was introduced by Nikiel [9]. Totally regular is weaker

than completely regular. In completely regular continua, all proper non-degenerate continua

have interior.

The formal de�nition of a point being of �nite degree is as follows:

Definition 1.1. A point, x, is of �nite degree in a compact metric space, X, if, for each

� > 0, there is an uncountable family of open sets, fU�g�2�, so that 8�; � 2 � ,

i) x 2 U�

ii) j U�nU� j< ! = !0

iii) U� � U� or U� � U� and

iv) diam(U�) < ".

And, most naturally, a continuum is of �nite degree means each point is of �nite degree.

The de�nition does not depend on a metric, and can be stated by saying for each neigh-

borhood U containing x there is an uncountable (strongly monotone) family of neighborhoods

all lying in U , each with �nite boundary and each containing x. However, this thesis deals

only with metric spaces, so we will use the de�nition above. A space X is considered to be

of �nite degree provided all of its points are of �nite degree.

We recall that a strongly monotone family di�ers from a "monotone" family in that for

any two sets in the family, the CLOSURE of one is contained in the INTERIOR of the other.

Let us note for future use that there is an equivalent de�nition using closed sets, where

we simply replace U by U and U by U o, the interior of U . We note also that if a continuum

X is of �nite degree, then it is a regular curve. A space X is a regular curve if there is a

basis of open sets, each with �nite boundary [6]. However, the converse is far from being
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true. For example, the Sierpinski gasket is a regular curve; but is not of �nite degree, as

shown by Kuratowski [6].

Continua of �nite degree were characterized almost up to our current knowledge by

Samuel Eilenberg and O.G. Harrold, Jr. [2]. That paper represents the accumulation of

several years of research on this topic by various authors and it is the focus of this thesis to

present parts of the proof of the theorem in that paper in greater detail. We want to mention

one additional theorem by D.H. Fremlin which answers a question left open in the Eilenberg-

Harrold paper. While Eilenberg and Harrold showed that a continuum of �nite degree can

be embedded into the Hilbert space, `2, so that the image has �nite linear measure, the

question of whether `2 could be replaced by [0; 1]
n for some n, with the usual metric, was left

open. Fremlin later showed that, in fact, a continuum of �nite degree can be embedded into

[0; 1]3 so that its image has �nite linear measure [4]. This, of course, also makes existence

of a homeomorphic image of �nite linear measure in [0; 1]1 imply a homeomorphic image of

�nite linear measure exists in [0; 1]3. This result is the best possible, since by a classic result

of Kuratowski, neither the complete graph on �ve vertices, K5 nor the complete bipartite

graph, K3;3 can be embedded into the plane, and each is of �nite degree [5].

We recall the basic de�nitions of Hausdor� measures and dimension. We will be using

various properties of Hausdor� measures and dimension, which may be found in books by

Falconer, Matilla, and Edgar.[4, 7, 1]

Definition 1.2. Let � be a metric on a space X. For each � � 0, H�, the Hausdor�

�-dimensional measure (with respect to �) is de�ned on subsets A of X as follows:

H�(A) := lim
�!0

�
H�

� (A)
�
where H�

� (A) := inff
X
G2F

(diam(G))� : F is a �-mesh cover of Ag:

F is a ��mesh cover of A means that F is a family of sets whose union contains A and

the diameter of each set in F is no more than �.

By way of explanation, we recall that H� is a metric outer measure on X. This implies

that all Borel subsets of X are H� measurable. Also, we note that H0 is counting measure

and H1 is linear Hausdor� measure.
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Definition 1.3. A space X has Hausdor� dimension � provided that for each � < �,

H�(X) =1 and for each � > �, H�(X) = 0.

Definition 1.4. A continuum X is recti�able means 9 a metric � and a continuous surjection

f : [0; 1]! X

such that f has �nite arclength.

Definition 1.5. A point, p is a separating point of a connected set, U means that U nfpg =

A [B where A and B are both open in U .

Definition 1.6. A point, p in a locally compact separable metric space, X, is a local sepa-

rating point of X provided 9U , open in X so that p is a separating point of the component,

C, of p in U . [10]

Definition 1.7. We need to de�ne, for ease of reference, the following:

For any function, f : X ! Y , let F (f) := fy 2 Y :j f�1(y) j< !g

Thus, F (f) consists of those points whose preimage is a �nite set. Note that F (f) is a

G�� for a continuous function on a compact set. This will be shown in Appendix B.
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CHAPTER 2

STATEMENT OF THEOREM, COMMENTS AND APPLICATIONS

Here is a slightly reformulated version of the main theorem in the paper by Eilenberg

and Harrold [2].

Theorem 2.1. For any continuum, X, the following are equivalent:

I) X is of �nite degree.

II) Given any disjoint closed subsets, X0; X1 in X, there is a continuous mapping

f(X) = I = [0; 1] so that:

a2) f(x) = i when x 2 Xi and i = 0; 1.

b2) jF (f)j � !1.

III) Given any disjoint closed subsets, X0; X1 in X, there is a continuous mapping

f(X) = I so that:

a3) f(x) = i when x 2 Xi and i = 0; 1.

b3) I nQ � F (f)

IV) X can be embedded into the Hilbert space, `2, so as to have �nite linear measure.

V) X has a homeomorphic image of �nite linear measure.

VI) Every subcontinuum of X contains uncountably many local separating points of X.

VII) X is locally connected and for every pair of closed, disjoint subsets X0; X1 in X,

there is a �nite collection of disjoint perfect sets N1; :::Nk so that any continuum in

X intersecting both X0 and X1 contains some Ni.

VIII) Given a sequence X0; X1; X2::: of subcontinua so that lim(Xi) = X there is an

integer n for which

1\
i=n

Xi is uncountable.

Being of �nite degree is certainly a valuable property to recognize in general. The results

contained here are useful in that they give alternate ways to check this. Let us give an

example. The dimension of the limit set of Apollonian packing, or the Curvilinear Sierpinski

Gasket, was a long open question [3]. If one is not familiar with the curvilinear gasket, one

can consider that it is homeomorphic to the usual gasket. It was clear that its dimension,
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�, satis�es 1 � � � 2; but to make the inequalities strict was surprisingly di�cult. Strict

inequality was �rst shown by Hirst in 1965; but Mauldin and Urbanski showed how the

question could be answered with relative ease [8]. Using their theory of conformal iterated

function systems, they showed that if A had dimension 1, then H1(A) < 1. Since A is

a continuum, by 2:1 part V I, A would have uncountably many local separating points.

However, Kuratowski showed that the Gasket has only countably many local separating

points [6]. Therefore, the gasket has Hausdor� dimension strictly greater than 1.

For an example of a continuum of �nite degree, one might consider the graph of the Takagi

function on the unit interval, [0; 1]. This is a famous example of a continuous function which

is nowhere di�erentiable. It certainly has in�nite linear measure in the usual metric. In fact,

the graph of a continuous function on a closed interval has �nite linear Hausdor� measure

in the usual metric if and only if the function is of bounded variation. In that case, the

linear measure is equal to the arclength of the graph [3]. However, the projection map is a

homeomorphism of the graph to the closed interval. Hence, the graph of the Takagi function

is a continuum of �nite degree, while not having �nite linear Hausdor� measure in the usual

metric.

One of the beautiful things about theorem 2:1 is that parts of it are purely topological,

as the de�nition itself, whereas other characterizations are highly analytic in nature.
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CHAPTER 3

PROOF

Let us begin by showing the equivalence of the �rst �ve statements by showing I !

III  ! II and III ! IV ! V ! I. We note that II and III tell us that stronger

versions of Urysohn's Lemma hold for continua of �nite degree.

3.1. I ! III

Let X be of �nite degree by the formal de�nition.

Now, for the purpose of showing property III, let X0; X1 be disjoint, closed subsets in

X. Identify all points of X0 with some point x0 of X0. De�ne X� =
�
X n X0

�
[ fx0g So,

� : X �! X� is de�ned by the rule:

�(x) = x0 if x 2 X0; x otherwise.

Then, under the quotient topology on X�, de�ned in the natural way by: V is open in

X� if and only if ��1
�
V
�
is open in X, X� is a continuous image of a continuum, and is

therefore a continuum itself, by construction.

X� is clearly of �nite degree at every point except perhaps x0. The fact that X� is of

�nite degree at x0 is an easy corollary of a theorem of Whyburn's [10]. Then, since X� is

of �nite degree, there exists fV�g�2�, an uncountable family of closed sets in X� so that

8�; � 2 � , x0 2 V�, j V�nV
o
� j< ! and V� � Vo

� or V� � Vo
�. We use the equivalent

de�nition mentioned earlier for clearer argument later.

Now, for each � 2 �, de�ne K� := ��1
�
V�
�
. Then, since � is continuous, fK�g�2� is an

uncountable family of closed sets so that 8�; � 2 � , X0 � K�, j K�nK
o
� j< ! and K� � Ko

�

or K� � Ko
�.

Next we want to apply the following theorem of Kuratowski (proven in Appendix A).

Theorem 3.1. Given any two disjoint closed subsets, X0 and X1, of a compact metric space

X, if fK�g�2InQ is a family of closed subsets of X so that
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1) � < � () K� � Ko
�

2) For all but countably many �,
[
�<�

K� = K�

and
[
�<�

K� = Ko
�

3) For all but countably many �,
\
�<�

K� = K�

4) For all �, X0 � K� and X1 \K� = ;

5) 9 N so that 8 �, j K� nK
o
� j� N ,

there is a continuous function, f : X ! I so that f(X0) = f0g, f(X1) = f1g and for all

t 2 I nQ, j ff�1(t)g j� N .

We need to show that the hypotheses hold. The following will show the hypotheses that

are not automatic, through reindexing our sets in a reasonable way.

Suppose, instead of the initial Kuratowski hypotheses, we have fK�g�2�, an uncountable

strongly monotone family of closed sets in a continuum X so that X0 � K� for all � and

X1 \K� = ; for all � and for each �, K� nK
o
� is �nite.

By taking a suitable uncountable subfamily, if necessary, we can assume there is a positive

integer N such that, for each �, j K� nK
o
� j< N .

Let fBng
1
n=1 be a base for the topology of X and de�ne � : � �! I by:

�(�) =
X

Bn�K�

1

2n

.

Then � is certainly injective.

For each �; � 2 �, eitherK� � K� orK� � K�. Without loss of generality, supposeK� �

K�. Then for each n so that Bn � K�, automatically, Bn � K�. Therefore, �
�
�
�
� �
�
�
�
.

But, there is some point x so that x 2 Ko
� nK� and there is some n so that x 2 Bn � Ko

� nK�

as Ko
� nK� is open. Thus, �

�
�
�
< �
�
�
�
. Hence �(�) < �(�) () K� � Ko

�:

Since �(�) is an uncountable subset of I, �(�) = D [C where C is countable and every

point of D is a condensation point of D. Let P = D. Then P is perfect.

De�ne an "above" function, A : P �! K(X) = fM � X jM is compactg by

A(p) =
\
fK� : p < �(�)g
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and de�ne a "below" function, B : P �! K(X) by

B(p) =
[
fK� : p > �(�)g:

Then, for all but possibly countably many �(�) 2 D, A, B(�(�)) = K�, as all but

countably many points in D must be limit points from both the right and the left.

Claim: A(p) = B(p) for all but countably many p 2 P .

Suppose not. Then there is an uncountable set ~P so that A(p) 6= B(p) for any p 2 ~P .

Clearly B(p) � A(p) for all p 2 P . So, it must be that for all p 2 ~P , A(p) 6� B(p).

But B(p) and A(p) are closed for each p 2 P . Then, if there is x 2 A(p) n B(p), there

also is np so that x 2 Bnp � X nB(p).

So, for each p 2 ~P , there is an np so that Bnp \ A(p) 6= ;, but Bnp \B(p) = ;.

Since there are only countably many Bn, there must be an n so that for uncountably

many p 2 ~P , Bn \ A(p) 6= ;. But, there can only be countably many pairs, p1; p2, in P so

that there is not a point of D between them (which gives uncountably many points of D

between them), else we have uncountably many disjoint intervals in I.

Then, for all but countably many pairs, p1; p2, in ~P , if p1 < p2, then A(p1) � B(p2).

Hence, for all but countably many pairs, p1; p2, in ~P , if p1 < p2, and Bn � A(p1), then

Bn � B(p2). This is a contradiction.

We now need to show that for all but countably many p 2 P , j Fr(B(p)) j� N . This

will allow us to simply add fA(p)gp2P into our family of sets.

Suppose not. Suppose fx1, ... xN+1g � Fr(B(p)). Let V1, ... VN+1 be connected

neighborhoods of fx1, ... xN+1g, respectively, so that Vi \ Vj = ;, i 6= j. Then for each i,

there is a pi < p so that K�i\Vi 6= ; and �(�i) = pi. Let m = maxfpig, and choose � so that

�(�) = m. Then for each i, K� \ Vi 6= ;. But, K� � B(p), so for each i, Fr(K�) \ Vi 6= ;.

This is a contradiction to the cardinality of the frontier of K�.

So, since P contains a homeomorphic copy of Cantor's middle third set, C, we can

consider that we have fKcgc2C , a strongly monotone family of closed subsets of X, so that

X0 � Kc for all c 2 C and X1 \ Kc = ; for all c 2 C and for each c 2 C, Kc n K
o
c is

�nite. Then, with the Cantor singular function, these sets can be reindexed with a set which

contains the irrationals. Then we can throw out the rational-indexed sets, and we have a
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continuous function, f : X ! I so that f(X0) = f0g, f(X1) = f1g, and for all but countably

many t 2 I nQ, j f�1(t) j< !.

Therefore, by the theorem of Kuratowski, there is a continuous function f : X �! I so

that f
�
X0

�
= 0, f

�
X1

�
= 1, and for all t 2 I nQ, j f�1(t) j< !.

3.2. II ! III

Let X0; X1 be disjoint, closed subsets in X. Suppose there is a continuous function,

f : X �! I so that f(X0) = 0 and f(X1) = 1 and j F (f) j� !1. Since F (f) is an

uncountable Borel set of real numbers, it contains a homeomorphic copy, N , of Cantor's

middle third set. Let h be a continuous, injective map of [inf(N); sup(N)] onto I so that

h maps N onto C homeomorphically. Then let ~h : I �! I extend h so that ~h restricted to

[inf(N); sup(N)] is equal to h and ~h[[0; h�1(0))] = f0g and ~h[(h�1(1); 1]] = f1g.

Let g : I �! I be the continuous singular function of Cantor. Thus, g is constant

on every complimentary interval of C, and for every irrational, t, g�1(t) = fcg; c 2 C and

g(0) = 0 and g(1) = 1.

Now de�ne f1 = g � ~h � f : X �! I. Then f�11 (t) = (g � ~h � f)�1(t) = f�1(~h�1(g�1(t))).

Suppose that t 2 I nQ. Then g�1(t) 2 C, so ~h�1(g�1(t)) 2 N � F (f), and, consequently,

j f�11 (t) j=j f�1(~h�1(g�1(t))) j< !.

3.3. III ! II

This implication is trivial.

3.4. III ! IV

(We note that this is the �rst equivalence which is more analytic.)

Suppose that for any two, X0; X1, disjoint closed subsets of X, there is a continuous

function, f : X �! I so that

i) f(X0) = 0 and f(X1) = 1 and

ii) I nQ � F (f)

Claim: There also exists, for each pair, X0; X1, of disjoint closed subsets of X, a contin-

uous map g : X �! I so that

i) g(X0) = 0 and g(x) > 0, x 2 X1 and
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ii) for any regular decomposition, fFig of X, (that is Fi is a continuum for all i and

Fi \ Fj is �nite when i 6= j),

X
i

diam(g(Fi)) � 1.

Proof of Claim:

Let X0; X1, disjoint closed subsets of X, and f : X �! I be as above. Also, de�ne

K : I �! N� by K(t) =j f�1(t) j. De�ne g : X �! I by g(x) =

Z f(x)

0

dt

K(t)
.

If x 2 X0, f(x) = 0, so g(x) = 0. If x 2 X1, f(x) = 1, g(x) =

Z 1

0

dt

K(t)
. Since f(X) = I,

K(t) 6= 0 for any t, and K(t) <1 on a set of positive measure, so g(x) > 0.

Now suppose that fFig is a regular decomposition. Since for each i, Fi is a continuum,

f(Fi) = [ai; bi] where ai � bi. So, since g is non-decreasing, for each i, diam[g(Fi)] =Z bi

ai

dt

K(t)
. Then,

X
i

diam[g(Fi)] =
X
i

Z bi

ai

dt

K(t)
.

Now, arrange faig[fbig in the usual order and relabel them fcjg
r
j=1 so that cj < cj+18j.

Now, for each i, [ai; bi] =
m[
l=0

[cj+l; cj+l+1] for some j and some m.

So,
X
i

diam[g(Fi)] =
r�1X
j=1

Kj

Z cj+1

cj

dt

K(t)
where Kj is the number of [ai; bi] for which

[cj; cj+1] � [ai; bi]. It follows that [cj; cj+1] � f(Fi) for Kj many i. Now, since j Fi\Fj j<1

for all i 6= j, j f�1(t) j� Kj for all but possibly �nitely many t 2 [cj; cj+1].

So, Kj � K(t) almost everywhere in [cj; cj+1]

Therefore, Kj

Z cj+1

cj

dt

K(t)
=

Z cj+1

cj

Kj

K(t)
dt �

Z cj+1

cj

dt = cj+1 � cj.

So,
X
i

diam[g(Fi)] =
r�1X
j=1

Kj

Z cj+1

cj

dt

K(t)
�

r�1X
j=1

(cj+1 � cj) = 1.

End Claim.

Let fUig be a countable base. For each n 2 N, let fX0;n; X1;ng be so that X0;n = U i for

some i and X1;n = X n Uj for some j where U i � Uj. We may easily choose these so that

whenever n 6= m, X0;n 6= X0;m or X1;n 6= X1;m and so that each Ui appears in some pair. So

without loss of generality, we shall do so.

Now, for each n, let gn : X �! I be so that gn(X0;n) = 0 and gn(X1;n) > 0 and for any

regular decomposition fFig, of X,
X
i

diam(gn(Fi)) � 1.

Let h : X �! [0; 1]! be de�ned by:
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h(x) = (
1

n2
gn(x))n2!:

For all x, h(x) 2 `2 and h is clearly continuous and bijective. Therefore, X is homeo-

morphic to h(X) � `2. Let `2 have the metric induced by the usual norm. Then,

�((xn); (yn)) =
� 1X
n=1

(xn � yn)
2
� 1
2

.

So, �(h(x0); h(x1)) =
� 1X
n=1

(
1

n2
gn(x0)�

1

n2
gn(x1))

2
� 1
2 =

� 1X
n=1

� 1
n4
�
(gn(x0)� gn(x1))

2
� 1
2 .

Then, if A � X, diam[h(A)] �
� 1X
n=1

1

n4
(diam(gn(A)))

2
� 1
2 �

1X
n=1

� 1
n2
(diam(gn(A)))

�
.

Now, let fFig be a regular decomposition of X. Then

X
i

diam(h(Fi)) �
X
i

1X
n=1

1

n2
(diam(gn(Fi))) �

1X
n=1

1

n2

X
i

diam(gn(Fi)) �
1X
n=1

1

n2
=

�2

6

So, for all regular decompositions,
X
i

diam(h(Fi)) �
�2

6
. Hence, if for any � > 0, there

is a regular decomposition of X which is a �-mesh cover, then H1(h(X)) � �2

6
< 1. We

prove this next.

Claim: For � > 0, there exists a regular decomposition, fFig of X so that diam(Fi) < 2�

for all i.

Let � > 0. Temporarily �x x 2 X. Then, there exists a continuous function fx : X �! I

so that fx(x) = 0 and fx(X nB(x; �)) = 1 and for all t 2 I nQ, j f�1x (t) j< !.

Un�x x. For each x 2 X, let Ux = f�1x

�
[0; �

4
)
�
. Then, for each x, x 2 Ux � f�1([0; 1)) �

B(x; �). But for each x, f�1x (�
4
) = f�1x

�
[0; �

4
]
�
n f�1x

�
[0; �

4
)
�
and f�1x

�
[0; �

4
]
�
is a closed set

which contains f�1x

�
[0; �

4
)
�
.

Therefore, f�1x (�
4
) = f�1x

�
[0; �

4
]
�
n f�1x

�
[0; �

4
)
�
contains f�1x

�
[0; �

4
)
�
n f�1x

�
[0; �

4
)
�
which is

the boundary of Ux. So, fUxgx2X is an open cover of X so that the boundary of each open

set is �nite, since �
4
2 F (f).

Choose fUig, a �nite subcover. We would like to "almost" disjointify them, so we shall

do the following iterative action:

11



Let V1 = U1. For each i > 1, Let Vi = Ui n
i�1[
k=1

Uk. Since Fr(Vi) = Fr(Ui n
i�1[
k=1

Uk) �

i[
k=1

Fr(Uk), for each i, Fr(Vi) is �nite.

Temporarily �x i, and let fb1; b2:::bjg be the boundary points of Vi.

There are only �nitely many components of Vi which have more than one bi as a limit

point. Otherwise, as there are only �nitely many distinct subsets of fb1; b2:::bjg, there is at

least a pair, bx; by so that in�nitely many components have both of them as limit points. Let

� = �(b1; b2). Then any open set containing b1 with diameter less than � must have a point

from each of these components in its boundary. Then b1 wouldn't be of �nite degree. This

is a contradiction.

Let D1; :::Dm be this �nite collection. For each boundary point, let Dbi be the union

of the components which have only bi as a boundary point. Then, fDk : k 2 f1; :::mg or

k 2 fb1; :::bjg is a �nite set of subcontinua so that the intersection of any two of them is

�nite and each has diameter less than 2�. Hence, there is a regular decomposition, fFig of

X so that diam(Fi) < 2� for all i. Therefore, H1(h(X)) � �2

6
<1:

3.5. IV ! V

This is clear.

3.6. V ! I

Suppose X has a homeomorphic image with �nite linear measure. Let x0 2 X be

arbitrary and h(x0) = x where h(X) has �nite linear measure, with metric �. De�ne f :

h(X)! R by f(y) = �(x; y) for our �xed x.

Then j f(x1) � f(x2) j=j �(x1; x) � �(x2; x) j. Without loss of generality, �(x1; x) �

�(x2; x). So, j �(x1; x) � �(x2; x) j= �(x1; x) � �(x2; x) � (�(x1; x2) + �(x2; x)) � �(x2; x) =

�(x1; x2).

Thus, f is nonexpansive.

We now apply the following theorem of Eilenberg concerning non-expansive maps [1]:

Given a metric space, X, and a real valued function, f , on X which is nonexpansive,

Z 1

�1

H�[f�1(t)]dt � H�+1(X):

12



This is proven in Appendix C.

By our lemma,

Z 1

0

H0[f�1(t)]dt � H1(h(X)) <1. So, H0[f�1(t)] must be �nite for all

t eexcept for a set of measure zero. Noting that for any real number t, f�1(t) = Fr(B(x; t)),

it follows that X is of �nite degree.

Now, for the remaining equivalences, we shall give a less rigorous, more intuitive proof.

The reason for this is that the proof of each of these envolves a multitude of theorems.

To avoid confusion, it is preferable to simply reference most of the theorems quoted in the

proofs.

3.7. I ! VI

Let X be a continuum of �nite degree and M a proper, nondegenerate subcontinuum.

Choose p 2 M . Because p is of �nite degree, there is an uncountable family, fU�g�2� of

strongly monotone open sets containing p so that for all �, the diameter of U� is less than the

diameter of M and the boundary of each U� is �nite. Temporarilty �x � and let fb1; : : : ; bng

be the points on the boundary of U�.

Now each bi is an isolated point of a closed cutting set (Fr(U�)) and there is at least one

i so that bi 2 M and bi is a limit point of both U� \M and M n U�. Hence, bi is a limit

point of U� and also of X n U�. We now apply the following theorem of Whyburn [10].

If a point, p, of a continuum, X, is an isolated point of a closed cutting set, K, and is a

limit point of both X1 and X2, where X1 [X2 is the separation of X nK, then p is a local

separating point of X. (1)

Proof:

Choose open sets G and R so that p 2 G � G � R and R \K = fpg. Set Ri = R \Xi.

Then R nfpg = R1[R2 is a separation of R. Let N be the component of p in R. Now, since

p is a limit point of M1, it is also a limit point of R1. If p is a limit point of N \ R1, then

N \ R1 6= ;. Suppose p is not a limit point of N \ R1. Then, there is a sequence, J1; J2; :::

of components in G \R1 converging to a limit continuum, J containing p.

In the latter case, J n fpg � R1 and J n fpg � N since N contains the component of p in

G. Hence, J n fpg � R1 \ N . Note, J n fpg 6= ; since it contains at least one point on the

frontier of G. So, in either case, N \ R1 6= ;. Similarly, N \ R2 6= ;. Therefore, p is a local

separating point of X.

13



End Claim.

Un�x �. For each �, there is at least one point, p�, so that p� 2 Fr(U�) \M and p� is

a local separating point of X. Therefore, fp�g�2� is an uncountable set of local separating

points of X contained in M .

3.8. VI ! I

Suppose that each subcontinuum, M , of X contains uncountably many local separating

points of X, but that X is not of �nite degree.

Then there is a point, p of X so that p is not of �nite degree. Then, by a theorem of

Whyburn's, there is a non-degenerate subcontinuum, N of X containing p so that no point

of N is of �nite degree. But, N must contain uncountably many local separating points of

X. Also by a theorem of Whyburn's, only countably many local separating points of any

continuum are of degree greater than two. So, it must be that N contains at least one point

of degree two. This is a contradiction.

3.9. I ! VII

Suppose X is of �nite degree, with metric �, and let X0, X1 be disjoint, closed subsets of

X. Then, by the method used in section 3.1, we can get an uncountable family of strongly

monotone closed sets, fK�g�2�, so that the boundary of each is of �nite cardinality and

for each K�, X0 � K� and X1 \ K� = ;. Then, certainly, the boundaries of the K�s

are cutting sets; and similarly to the argument in a previous section, each point on the

boundary is a local separating point of X. Then, since X has only a countable number

of local separating points with degree greater than 2, all but possibly countably many of

the K�s have boundaries consisting only of local separating points of degree 2. So, we can

choose a K� whose boundary consists only of local separating points of degree 2. Then X0

and X1 are separated by x0; :::xn which are all local separating points of degree 2. Then

set d = min(�(xi; xj); i 6= j; �(xi; X0 [ X1)). BUT, each xi is of degree 2, so there is

an uncountable family for each xi, fK
i
�g�2�i

, so that diam(Ki
�) < d

2
8i; � and for each

i, fKi
�g�2�i

is a strongly monotone family of closed sets, each of which has a boundary

containing only two points.

14



For each i, let Fi =
[
�2�i

FrfKi
�g. Then each Fi is the closure of a countable set, along

with a set of condensation points of itself. So, each Fi contains a perfect set. For each i, let

Ni be a perfect subset of Fi.

Now let M be any subcontinuum of X intersecting both X0 and X1. M must contain

some xi. Since X is locally connected, M contains an arc which also intersects X0 and X1,

and contains xi. The arc, then, must contain Ni.

3.10. VII ! VI

Suppose X, with metric �, is locally connected and for every pair of closed, disjoint

subsets X0; X1 in X, there is a �nite collection of disjoint perfect sets N1; :::Nk so that any

continuum in X intersecting both X0 and X1 contains some Ni.

Let M be a subcontinuum of X and xo; x1 2 M . Then let X0 = fx0g and X1 = fx1g.

Then there are disjoint perfect sets N1; :::Nk so that Mcontains some Ni, say N1. Let L be

the set of local separating points of X. If M \ L is uncountable, we're done. So, suppose

not. Then there is a point n1 2 N1 so that n1 =2 L. Let

d =

�(N1; ffx0g [ fx1g [
k[

j=2

Njg

4
:

Let V = B(n1; d)\X. Then d1 = �(n1; F r(V ) � d. Let W = B(n1;
d1
2
)\X. Let Y0 and

Y1 be the components of M nW containing x0; x1, respectively. Since Y0 and Y1 each contain

a point of V (X connected) and n1 2 X nL, there must be an arc, s which is in V n fn1g so

that Y = Y0 [ Y1 [ s is connected (and thus a continuum). Since n1 =2 Y , certainly N1 6� Y .

Y is a subcontinuum of X containing x0 and x1. Then, without loss of generality, suppose

that Y contains N2. A similar argument can produce a subcontinuum of Y which (using the

same d) does not contain N2. With �nitely many (fewer than k) steps, we will construct a

subcontinuum of X containing x0 and x1 and not containing any Ni. This is a contradiction

to the hypothesis.

3.11. I ! VIII

Suppose X is of �nite degree. X is thus locally connected. Suppose also that fKigi2!

is a sequence of nondegenerate continua in X with limfKig = K and K nondegenerate.

Since X is locally connected, we can take fKig to be arcs. Then, for each i, let ai; bi be

15



the endpoints of Ki so that limfaig = a and limfbig = b Since K is nondegenerate, a 6= b.

Since every subcontinuum of X has uncountably many points of degree 2, we can choose

z 2 K n fa; bg so that z is of degree 2. Let A;B;Z be neighborhoods of a; b; z, respectively

so that A \ B = A \ Z = B \ Z = ;. There is then a strongly monotone, uncountable

family of open sets, fU�g�2�, so that for each �, z 2 U� � U� � Z and j Fr(U�) j� 2 for

all �. So choose � so that V = U� � U� for uncountably many �. Since z 2 limKi, there is

N so that whenever n � N , Kn \ V 6= ;. We can choose m � N large enough so that for

all n � m, an 2 A and bn 2 B also. Then for each U� that contains V , of which there are

uncountably many, every Kn with n � m must pass through two boundary points. Then,

since the boundaries of each of the U� only contain two points, they must be the same points

for each Kn, but distinct for each �. So,
1\
i=n

Ki is uncountable.

3.12. VIII ! I

By contrapositive, assume that X is a continuum with metric � which is not of �nite

degree. If X is not locally connected, one can easily construct a sequence of subcontinua

converging to a subcontinuum K so that they do not intersect at all. So, we can limit our

attention to a continuum which is not of �nite degree but IS locally connected. Since X is

not of �nite degree, there must be a nondegenerate subcontinuum, M of X so that M only

contains countably many local separating points of X. Without loss of generality, let M be

an arc with endpoints a and b. For each n, let Wn = B(M; 1
n
). Let Mn be the component of

Wn containing M . De�ne Ln as the set of points in Mn which separate a and b in Mn. Then

there exists arcs, sn; tn �Mn from a to b so that sn\ tn = fag[fbg[Ln, which is countable.

Then let K2n�1 = sn and K2n = tn. Then limfKng = M , but for any two consecutive sets,

Ki; Ki+1, their intersection is at most countable. Then,
1\
i=n

Ki � ! despite the choice of n.
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APPENDIX A

KURATOWSKI'S THEOREM
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Theorem .2 (Kuratowski). Given any two disjoint closed subsets, X0 and X1, of a compact

metric space X, if fK� j � 2 I nQ g is a family of closed subsets of X so that

(1) � < � () K� � Ko
�,

(2) for all but countably many �,
S

�<�K� = K� and
S

�<�K� = Ko
�,

(3) for all but countably many �,
T

�<�K� = K�,

(4) for all �, X0 � K� and X1 \K� = ;, and

(5) there is an N so that j K� nK
o
� j� N for all �,

then there is a continuous function, f : X ! I so that f(X0) = f0g, f(X1) = f1g and

j ff�1(t)g j� N for all t 2 I nQ, .

Proof. Note, it su�ces to show this for all but countably many t 2 I n Q, as there would

be a continuous order preserving map onto all of I nQ, whereby we could throw out the bad

sets.

Suppose X0, X1, and fK� j � 2 I nQ g are as above. Then de�ne f : X ! I as follows:

f(x) =

8>><
>>:
inff� j x 2 K� g if such a � exists

1 otherwise.

It is clear that f(X0) = f0g and f(X1) = f1g. Also, if x 2 Fr(K�) for some �, then certainly

f(x) = �. [What is \Fr?" If it's some kind of math symbol, the the correct syntax for that

symbol should be used. One guess: Fr means \boundary" (that is, frontier), in which case

Fr would be correct.]

Conversely, suppose f(x) = � for some � 2 I n Q. For all but countably many � 2 I n Q,
S

�<�K� =
T

�<�K� = K�. Also, if f(x) = �, x 2
T

�<�K�, but x 62
S

�<�K�. Otherwise,

there is a � < � so that x 2 K� making f(x) � � < �. So, if f(x) = �, x 2
T

�<�K� nS
�<�K�. However, for all but countably many � 2 I nQ,

T
�<�K� n

S
�<�K� = K� nK

o
�.

Then, for all but countably many � 2 I nQ, f�1(�) = Fr(K�). Now, we need to show f is

continuous.

Suppose (y � �; y + �) � I, and that x 2 f�1(y � �; y + �). Then there is a ~y 2 (y � �; y + �)

so that f(x) = ~y. Also, there exists , � 2 I nQ so that y � � <  < ~y < � < y + �.

Then x 62 K and x 2 Ko
�.

If ~x 2 Ko
� nK, then f(~x) 2 [; �] � (y � �; y + �).
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Continuity in an open set U is easier to show if 1 2 U or 0 2 U . �
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APPENDIX B

BOREL NATURE OF F(f)
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Theorem .3. If f : X ! Y is continuous and X is compact metric, then F (f) is a G�;�.

Proof. For each m;n 2 N, de�ne Dm;n as follows:

Dm;n = fy 2 Y : 9 x1; :::; xn 2 X so that �(xi; xj) �
1
m
when i 6= j and f(xi) = y 8ig.

Claim: Dm;n is closed for all m;n 2 N.

Let y be a limit point of Dm;n for arbitrary m;n 2 N. Then, there is a sequence fypg in Dm;n

so that fypg ! y. Now, for each yp, let xp;1; :::xp;n be the pre-image points that witness that

yp 2 Dm;n.

For each 1 � j � n, fxp;jg is a sequence of points in a compact metric space. Therefore,

fxp;jg has a convergent subsequence. Without loss of generality, taking subsequences of fypg

possibly n times, assume for each 1 � j � n, fxp;jg ! xj.

However, since f is continuous, f(xj) = y for 1 � j � n. Suppose, for the purpose of a

contradiction, that �(xj; xq) <
1
m
for some j; q. Then, there is � > 0 so that �(xj; xq) <

1
m
�2�.

Consider B(xj; �) and B(xq; �). If zj 2 B(xj; �) and zq 2 B(xq; �) then �(zq; zj) � �(zq; xq) +

�(xq; xj) + �(xj; zj) < � + 1
m
� 2� + � = 1

m
. But, this contradicts that fxp;jg ! xj and

fxp;qg ! xq. Hence, y 2 Dm;n.

End Claim.

Now, suppose that y 62 F (f). Then for each n, there is some m so that y 2 Dm;n. So, for

each n, y 2
1[

m=1

Dm;n.

Hence, X n F (f) =
1\
n=1

� 1[
m=1

Dm;n

�
, which is an F�;�. So, F (f) is a G�;�.

�
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EILENBERG'S EQUATION
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Theorem .4. Given a metric space, X, and a real valued function, f , on X which is non-

expansive,

Z 1

�1

H�[f�1(t)]dt � H�+1(X):

Proof. For each n 2 N, let fAn;ig
1
n=1 be a decomposition of X so that diam(An;i) <

1
n
8 i.

These can clearly be chosen so that An;i \ An;j = ; 8 i 6= j. Now, for each n, given the

de�nition of H�+1
1

n

(X) there exists fAn;ig
1
i=1, a

1
n
-cover of X so that

1X
i=1

(diam(An;i))
�+1 < H�+1

1

n

(X) +
1

n
:

Since H�+1(X) = lim
�!0
H�+1

� (X), we would have chosen the fAn;ig
1
i=1 so that

H�+1(X) = lim
n!1

1X
i=1

(diam(An;i))
�+1. Now, de�ne g(f(X))! R by

g(t) = lim inf
n!1

1X
i=1

(diam(An;i))
��f(An;i)

(t):

Then, g is measurable. Since fAn;i \ f�1(t)g1n=1 is a 1
n
-mesh cover of f�1(t) for all n,

H�[f�1(t)] � lim inf
n!1

1X
i=1

(diam(An;i \ f�1(t)))�. Also, if diam(An;i \ f�1(t)) > 0, then

t 2 f(An;i) � f(An;i), so (diam(An;i \ f
�1(t)))� = (diam(An;i))

��f(An;i)
(t) for all i.

If, on the other hand, diam(An;i \ f
�1(t)) = 0, (diam(An;i))

��f(An;i)
(t) = 0 for all i.

So, H�[f�1(t)] � lim inf
n!1

1X
i=1

(diam(An;i \ f
�1(t)))��f(An;i)

(t) � g(t).

Now,

Z 1

�1

g(t)dt =

Z 1

�1

(lim inf
n!1

1X
i=1

(diam(An;i \ f
�1(t)))��f(An;i)

(t))dt,

which, by Fatou's Lemma,

� lim inf
n!1

1X
i=1

(diam(An;i))
�

Z 1

�1

�f(An;i)
(t))dt.

But,

Z 1

�1

�f(An;i)
(t))dt = m(f(An;i) �diam(f(An;i)) �diam(An;i).

So,

Z 1

�1

g(t)dt � lim inf
n!1

1X
i=1

(diam(An;i))
�+1, and

Z 1

�1

g(t)dt � H�+1(X), giving that

H�[f�1(t)] � g(t):
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Therefore,

Z 1

�1

H�[f�1(t)] �

Z 1

�1

g(t)dt � H�+1(X).

�
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