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By William C. Pitts and Jack N. Nielsen
SUMMARY

Ward's slender-body-theory formula for zero-lift drag contains three
integrals plus a base-drag term. Two of these integral terms depend only
upon the cross-sectional area distribution of the body. The third inte-
gral term depends only upon the body shape and axial slopes at the base
of the body. This term is neglected in the transonic area rule because
in many cases it is zero; however, there are also many cases in which it
is not zero. This paper examines the term for the possibility of drag
reduction for a parbticular case. The model considered comnsiste of a
body of revolution in combinetion with any wing that has an unswept trail-
ing edge and a constant trailing-edge angle along its span. It is found
that (neglecting any change in base drag) a drag reduction 1s obtainable
wvhich, for the case considered, is an aedditional 12 percent of that
obtained with the area-rule modification. The probable effect of viscosity
on this theoretical result is discussed.

TNTRODUCTTON

The transonic area rule (ref. 1) relates the drag of a configuration
and the drag of an equivalent body of revolution having the same area
distribution., FEngineering methods have been developed from the area rule
for calculating the drag of alrplanes and missiles at zero angle of attack.
The basis of the ares rule in slender-body theory can be investigated by
studying Ward's drag formula (ref. 2). It is found that the equivalent-
body concept holds rigorously only if certaein conditions at the base of
the body are met, and if the trailing edge of the wing is swept or cusped.
PFrequently these conditions are violated, as pointed out in references 3
and 4, and additional drag is obtained above that of the equivalent body.
Berndt (ref. 3) states that two bodies have the same drag only 1f in addi-
tion to being equivalent in the sense of the area rule they have the same
cross-gectional contour at the base and the same streemwise slope around
that contour. Imn reference 3, Berndt investligates how the difference in
drag between equivalent bodies depends upon the difference in base shape.
The important conclusion is that, within the limitations of his approxi-
mate theory, the drag of a slender body having a finite cross-sectional
slope at the base may be considerably reduced by spreading out the base
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contour from a circle without changing the distribution of cross-sectional
area. ILighthill (ref. 4) has evaluated the drag increment over that of
the equivalent body of revolution for plansr and cruciform wings with
unswept trailing edges alone and in combination with cylindrical body.

It is clear from references 3 and 4 that the body shape given by the
transonic ares rule does not give the minimum possible theoretical drag
for all configurations. An example is a wing-body combinstion for which
the wing tralling edge is uncusped and lies in the plane of the body base.
The purpose of the present paper is to determine (within the accuracy of
Ward!s drag formuls) how much the drag of this wing-body combination can
be reduced by modifying the streamwise slopes of the body at the base.
Since viscosity can have an important effect on the reality of the
inviscid-fluld-theory results presented herein, the probable effect of
viscosity 1s discussed.

SYMBOLS

a body redius at x =1
ao(x), .
bo(x) parameters in P -
ax(x) )

arameters in expanslion
8.4(x) k) o0 e p cpm :cp
b wing gemigspan at x = 1
c wing root chord
CP pressure coefficilent -
D y drag

AD ' drsg after adding shape modification minus drag before
adding shape modification .

gzgig: .'_}- parameters in ¢, expansion

g;g;g: ...}- parameters in ¢ expansion

gzgzg’ }- slope-amplitude function for shape modification
4 ] e v

1 length of wing-body combination
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X,r,0

X3

z(x,y)

T2, ]

Flg °

L4

w

poslitive integers

free-~stream dynamic pressure

real part of complex funection

surface of basic body

surface of body with shape modification
length of arc along contour
crogs-sectional ares of model at x
free-stream velocity

cylindrical coordinates (see sketch (b))
axlal distance from leading edge of wing root
complex number in x = 1 plane

upper wing surface

dummy variable of integration
perturbation velocity potential

outwaxrd veloelty component normal to surface

Subscripts

potential after adding shape modification

basic body plus area-rule modification
basic~model combination

interference between wing and cylinder of radius
shape modification

wing
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Superscripts

s first derivatlive with respect to x

" second derivative with respect to x
PHYSICAL: CONSIDERATIONS

The general statements of the Introduction can be given specific
meaning 1f the drag formula of Ward is consldered.

il
2 = --ELJ[‘jP log
a 2ndg Jo

GlE <j€ ® % ds>x___.z i CPBaseS( g | (l)

The flrst two terms depend only on the distribution of cross-sectional
area along the length of the wing-body combination. The third term

depends only on the shape of the wing-body cdmbination in the crossflow
plane of the trailing edge (contour C in sketch (a)) and the streamwise

ETEI S™(x)8"(g)aE ax + s;j(rl) vLzlog <1 - %) s"(e)ag -

Contour C
Sketch (a)

slopes of the wing and body surfaces approaching the trailing edge. The
last term is the base drag which is not considered, although some of the
body shape changes considered might possibly induce significant base-
pressure changes.,
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Since the first two terms of equation (1) depend only on the area
distribution, they represent the drag of the equivalent body. Frequently,
however, only the first term is used in engineering methods for calculat-
ing wave drag based on the equivalent body concept. It is, therefore,
important to know when all terms (other than base drag) but the first are
zero. Two cases can readily be found. The first case is that of a body
with a pointed base, or a wing with a cusped or -gwept tralling edge.

Then S!(1) is zero and the contour C is zero. The second case occurs
when the body and/or wing is tangent to the cylindrical extension of the
contour C. In this case the second term is zero because 8'(1) = 0 and
the third term is zero because Jd¢p/0n = 0. For other configurations,
the second and third terms usually contribute to the drag.

The purpose of this paper is to investligate what drag savings are
theoretically possible through control of the third term. This 1s done
by modifying the streamwlise slopes of the body on contour C without
changing the body cross-sectional area. The streamwise slopes forward
of x =1 can be chosen arbitrarily to fair into those at x = 1 with-
out affecting the drag. The first two terms of equation (1) are unaffected.

ANATYSTS
Velocity Potentials

The basic model and coordinste system used in the analysis are shown
in sketch (b). Only the shape and slopes of the model in the x = 1

+y

1 ' -

Area-rule modification

N
v N
a %
z=Z(x,y)

Sketch (b)

plane need be specified. The model shape forward of x = 1 is arbitrary
except that the model must be slender in the sense of Ward's theory. The
area-rule modification is included in the basic model. To simplify the
analysis, the case in which the wing-trailing-edge angle is a finite
constant along the span is considered.
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The perturbation veloclty potential in the crossflow plane of the
basic model can be written in the form

Po =%+ B+ Y (2)
wvhere @y 1is the potential of the wing alone (including the portion
blanketed by the body), Pp is the potential of the body plus the area-
rule modification, and ¢ 1is the interference potential that cancele
wing-alone components of veloclity through the body surface. To ¢, there
is added a shape modification potentisl, @,. As previously discussed,
the purpose for the shape modification is to modify the streamwise slopes
of the body at x = ! in such a manner as to reduce the drag of the
ving-body combination. For a reason which is subsequently pointed out,
the restriction 1s placed on the shape modification that the body cross
section at x = 1 must be & circle, This is not a serlious restriction
because eny meridian slope distribution can be faired into a clrcular
base by properly shaping the body forward of the base. The potentlal, @,
can be added directly to P provided it does not violeate the boundary
condition of no flow through the wing and body surfaces.

The wing-alone velocity potential in the crossflow plane, x = 1, is

9, = .,‘.’.t 2t (1) [ (X+b) Log(X+b) - (X-b) Tog(X~b)-2b] (3)

vhere X = rel® ig the complex variable in the crossflow plene. The
other potential components, @p, ¢;, and q,, are obtained from the gemeral
slender-body potential

o = ap(x)log r + bo(x)-+§; éﬁéé) cos mé (%)
m=1

This series converges for r greater than the body radius. This is the
exact slender-bvody theory potential only for body cross sections which

are circular. For this reason the restriction is put on the body shape

modification that the base of the body shall remain circular.

The parameters ao(x) and bo(x) are functions only of the model
cross-sectional ares distribution. The parameters ap(x) depend only

upon the streamwise slope distribution of the body. Therefore, the
potential of the body plus the area-rule modification is of the form

Py = ao(x)log r + bq(x) (5)

and the shape modification potential is of the form
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o =) B coi mo (6)
Mm=1

The parameters ap(x) are determined from the boundary condition

Then, o »
may, (x ot
- —mrz °08 md = VR'(x,0)
M=l

This suggests a shape modlfication of the form

R'(x,8) = & (x) cos mo
mZ

where gm(x) is a slope amplitude function. To the order of accuracy of
Ward's formula (eq. (1)) this type modification meets the requirement of
no body cross-sectional ares change, and 1f only even values of m are
taken, it satisfies the boundary condition of no flow through the wing
surface. Even values of m are also required for symmetrical flow about
the (x-z) plane. Then,

’ @ =z E:% cos 2no (N
n=1 -
with
2n+1
azn(x) = -V a2n gzn(x)

The normal velocities produced on contour C by the n =1 and n = 2
components of @, are shown qualitatively by the arrows in sketch (c).

:::::: :r~cos29 :i:::: ir~cos49
n=| n=2

Sketch (c)
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The interference potential ¢ is obtained from @y by using the
boundary condition thaet there be no net flow through the body surface.
Msthematically this is written

d d
<_q’l - - <iw (8)
ar =8 or =8

Expansion of equation (3) in a Fourier cosine serles that converges for
r<band 0<@8< i glves

0

oy = 4o(2) + z don(1)cos 2n6 (9)

N=1

where

ao(2) 2_’;1 log b+ £ - 1)2*(1)

_ v 1 2 b ri o,
den(?) = 5 [:n(2n-l) PR n3-1 b] z'(1)

Then ¢y 1s obtained from equations (4, (8), and (9) in the form

o0
fon()
9 = fo(1)log r + z = cos 2né (10)
Ne=l
where
£o(1) = - ?2—" 2t (1)

£on(1) = azn+1v<azn-1 21> 21 (1)

(en-1jx \p=B-1 20+
Theoretlical Drag Reduction Due to Body Shape Modification

As previously discussed, only the third term in equation (1) enters
in the drag increment produced by sdding a body shape modification with-
out altering the cross-sectional ares distribution. If subscript C
refers to the potential of the combination before adding body modifica-
tions and subscript A refers to the potential after adding the modifi-

cations
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d o
D__ 1 Bl § ooy a -

where

(The contour C is shown in sketch (a).) With the conditions that

O9n _O9p _ 3¢y Sy e
il -l 0 and 5 - VZ! (1) on the wing and —— = -S> the
body
s px d uzr (1) P
%3 =- f l:cpm B (@ Ppt @+ @) cpm] a9 - — f Ppdr
o a
(12)

Insertion of equations (5), (7), (9), and (10) and the orthogonality
property of the cosine function into equation (12) gives

v2

=1
l;z'(z) Zf agn(l)

Integration glves

%)- -2 i\/;ﬁ [dan(l) +rial fon() +}%ﬁ azn(l)] [%ﬁ:\ cosZ2no 36 -

We obtain the optimm values of gon(1) by considering each term of the
series separately. The values of gon(1) that give the maximm AD/q
are

= - L e T
een(t) = - 2 (1 55w () (24)

The maximum drag reduction is then
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sotpol DifmG-2

n=1 B

As expected, the optimum value of gon(1) and the drag reduction are zero
when the wlng trailing edge is cusped.

Although the total drag increment depends only on conditlions at the
model base, the drag increment does not originate there. Actually the
drag increment is distributed over the entire winged portion of the model
as illustrated by the following example; B8ince the distribution of the
smplitude function, gon(x), is arbitrary for x less than 1, choose

2
ge(x1) = M <§§> + Az <§%

where x; = x-(1-c) and A, and Ag are chosen so that go(1) satisfiles
the condition of maximum drag reduction (eg. (14)). The distribution of
drag ilncrement due to the addition of this gg(xg shape modification is
shown in sketch (d) for a blconvex-gection rectangular wing.

AD(x)

Sketch (d)

i
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Influence of Boundary-Layer Shock-Wave Interaction
on Drag Reduction

The foregoing calculations are based on invisclid-flow theory which
ignores the interaction between the trailing-edge shock wave of the wing
(end body) and the boundary layer approaching the base. The guestions
arise as to how this iInteraction affects °
the over-all drag and how it affects
the drag reductions due to the type of
modifications of the body shepes cal-
culated herein. In the theory the
streamlines at the trailling edge are
assumed to be as shown at the top of
sketch (e). The streemlines are par-
gllel to the sides of the tralling-

. . 1
edge wedge and undergo a pressure rise Inviscid S (2)*0
in traversing the trailing-edge shock
wave. Because the pressure rise
occurs behind the wing, 1t does not
act to decrease the drag. If the
trailing edge were cusped, as shown at 4;:7

the middle of sketch (e}, the pressure
rise would occur through a gradual
compression in front of the wing
trailing edge and the drag due to the

tralling-edge angle would be , .
eliminated. Inviscid S (2)=0

The influence of viscosity on the

drag is somevwhat similsr to that of

cusping the tralling edge. The bound- =%
2

ary layer allows the pressure rise
through the tralling shock waves to be
transmitted upstream. This thickens
the boundary layer; compression begins
over the wing surface; and shocks move . .
up in front of the trailing edge. The Viscid S (2)#0
accompanying pressure lncrease over

the rear of the wing acts to decrease Sketch (e)

the pressure drag below ite value on

the basis of inviscid fluld theory. Such an effect has been shown by
pressure distributions (e.g,, ref. 5) for two-dimensional airfoils in
supersonic flow. The amount the pressure drag 1s reduced below the
inviscid value depends on the boundary-layer thickness approaching the
tralling edge, the shock-wsve strength (Mach number), and whether the
boundary layer is laminar or turbulent. A phenomenon similar to that
shown at the bottom of sketch (e) is also important in the wave-making
resistance of hoat hulls. As pointed out by Havelock (ref. 6), the
wave-msking resigtance is reduced by virtue of a thickening of the
"Priction belt" near the stern.
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Since boundary-layer shock-wave interaction influences the flow at
the trailing edge and since the drag increment expression (eq. (15))
depends only on conditlons at the trailing edge, it is pertinent to ask
1f the drag reductions computed herein on the basis of inviscid fluid
theory are realistic. Although AD/q ls a function only of trailing-
edge conditions, the drag reduction is distributed over the entire winged
portion of the configuration as shown by the exemple in gketch (d). For
thls example the total drag increment up to x;/c = 0.65 (shaded region)
1s zero, so that the net drag reduction given by the present inviscid
fluid theory is distributed in the region 0.65 < (x1/c) < 1. Since
boundary-layer shock-wave interaction effects will influence this drag
distribution only near the trailing edge, it appears that most of the
drag reduction predicted by the inviscld theory can be realized; the
actual smount can only be determined by experiment.

CONCLUDING REMARKS

Equation (15) gives the meximum drag reduction obtained (in inviscid
theory) by modifying the streamwise slopes of the body without chenging
the cross-gectional area. This expression is independent of the wing
plen form since 1t depends only upon conditions at the base. However,
the drag reduction is distributed over the winged portion of the wing-
body combinatlion to the extent that the streamwise slopes of the body are
modified. This drag distribution does depend upon wing plan form.

To gilve an idea of the order of magnitude of the drag reduction
glven by equation (15), a comparison is made with the drag reduction
given by the area~rule modificetion. For a delta-wing cylindrical-body
combination (sketch (a)) with b/a = 3, the additional drag reduction
(neglecting any change in base drag) glven by the go(1) shape modifica-
tion 1s 12 percent of the drag given by the first term in equation (1)
(the area-rule term). This percentage varies somewhat with different
configurations, but it should remasin the same order of magnitude. The
effect of the other gen(z) modifications 1s negligible compared to
the go(1) modification.

Ames Aeronautical Laboratory
Nationel Advisory Committee for Aeronsutics
Moffett Field, Calif., Mar. 21, 1958
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