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Susceptibles-infectives-removals (SIR) and its derivatives are the classic
mathematical models for the study of infectious diseases in epidemiology. In order to
model and simulate epidemics of an infectious disease, a global stochastic field
simulation paradigm (GSFS) is proposed, which incorporates geographic and
demographic based interactions. The interaction measure between regions is a function
of population density and geographical distance, and has been extended to include
demographic and migratory constraints. The progression of diseases using GSFS is
analyzed, and similar behavior to the SIR model is exhibited by GSFS, using the
geographic information systems (GIS) gravity model for interactions. The limitations of
the SIR and similar models of homogeneous population with uniform mixing are
addressed by the GSFS model. The GSFS model is oriented to heterogeneous
population, and can incorporate interactions based on geography, demography,
environment and migration patterns. The progression of diseases can be modeled at
higher levels of fidelity using the GSFS model, and facilitates optimal deployment of

public health resources for prevention, control and surveillance of infectious diseases.
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CHAPTER 1

INTRODUCTION

Globalization and the ever-increasing population diversity accelerates the spread of com-
municable diseases in the modern society [48, 49]. The World Health Organization (WHO) [46]
and the Centers for Disease Control and Prevention (CDC) [18] involve in worldwide surveil-
lance of infectious diseases, and prioritize prevention measures at the root cause of epidemics.
As the significance of public health is being recognized, the role of epidemiologists has be-
come more prominent. Epidemiology deals with the study of cause, spread, and control of
diseases. The goal for epidemiologists is to implement mechanisms for surveillance, monitor-
ing, prevention and control of diseases. Epidemiological studies may require large data sets of
diseases to analyze and investigate in detail the cause and pattern of spread. Data collected
from various sources aare usually are spatially and temporally distributed and contain details
of different cases. It is in fact ironic that, for epidemiologists to study the dynamics of dif-
ferent diseases, it is imperative for an outbreak to occur. Epidemiologists have been studying
and analyzing disease outbreak data by means of statistical tools. Epidemiology deals with
data that are often sparse, widely distributed, incomplete (often due to confidentiality and
other constraints), and frequently compromised by conflicting data that confound or disguise
the evidence epidemiologists attempt to uncover. It is the ability to draw conclusions and
make predictions from this type of information that identifies epidemiology.

In order for the epidemiologists to prepare for a sudden outbreak of an infectious disease
or a bio-terror attack, they need tools to assist their planning. Hence, it is imperative to

design new models that take advantage of today’s cyber infrastructure and facilitate effective



solutions for disease surveillance, control and prevention. Our study focusses on the progres-
sion of infectious diseases in environments with diverse demographic and geographic settings.
Infectious diseases are varied and specific expertise is needed for every disease.

Computational and mathematical models such as the SIR (susceptible infectives removed)
model aid the epidemiologists in the analysis and understanding of the progression of an
epidemic in a geographic region with specific demographic characteristics, thereby facilitating
the optimal allocation of public health resources. Computational models also enhance the
quality of information, accelerate the generation of answers to specific questions and facilitate
prediction of disease outbreaks. The goal is to facilitate what-if-analyses that will allow the
formulation of public health strategies, such as vaccine distribution in the event of infectious
disease epidemics. The dynamics of an epidemic is tightly coupled with the geography and
demographics of a region in which an outbreak has manifested itself.Also, this suggests that
results that have been obtained by analyzing a disease outbreak in one geographic location may
not be readily applicable to define control and prevention strategies in other regions. Although
the framework for modeling and simulating infectious disease epidemics will be applicable to a
variety of diseases, we will portray Influenza as the disease to justify and highlight the different
methodologies. The choice of this diseases is deliberate as it exemplifies a dependence to
specific demographic parameters.

The focus of this thesis is a new framework for modeling infectious disease epidemics in a
given population. It focuses on the design, implementation and evaluation of global stochastic
field simulation (GSFS) to simulate outbreaks of infectious diseases [43], thereby facilitating
the optimal or at least adequate allocation of public health resources. We conjecture that
the dynamics of an epidemic can be portrayed from simulation of interactions among local
hosts. The results show that the model can replicate the results of existing epidemic models.

The remainder of this chapter introduces epidemics and concepts that are important while

modeling a disease outbreak. Chapter 2 outlines the review of different mathematical and



computation models in epidemics also with related work and some of the existing approaches.
Chapter 3 provides an overview of the Global Stochastic Field Simulation framework and the
details of design and functioning of the model. Chapter 4 describes the experiments that
were conducted to analyze the model and evaluate the performance of the model. Chapter 5

concludes this thesis with discussion and suggestions for future work.

1.1. Influenza

In an effort to prevent an influenza pandemic as the one witnessed in 1918, which killed
an estimated 20 - 40 million people world wide, disease monitoring and syndromic surveil-
lance methods have been deployed. These methods are designed to identify early cases of
influenza and guide the allocation of public health resources to control and contain an out-
break. Nevertheless, the dynamics and progression of influenza in a given population remains
elusive and cannot be easily derived. This is evident from the fact that estimates of expected
influenza cases during a flu season in a particular region vary widely (5% - 40%) [18] . What
is however known are medical facts that describe how influenza presents itself in individuals.
It is further known that the communicability of influenza, i.e., the length of the infectious
period is age dependent. The recent demand for influenza vaccination has resulted in ad-hoc
mass-vaccination clinics held by public health departments throughout the nation. The lack
of adequate supplies of vaccine has resulted in a selective prevention program specifically
vaccinating individuals that were considered at higher risk. This included very young children,
elderly, and individuals with compromised immune systems. The notion of risk, however, re-
ferred primarily to the medical consequences if the individual does indeed contract the disease.
While this policy undoubtedly protects the individuals that have received the vaccine, it is by
no means self-evident that this policy is optimal in general. An assessment of vaccination
strategies (and other public health policies) necessitates their evaluation with respect to a

specific geographic region with its corresponding demographics.



1.2. Epidemic Theory
1.2.1. Definition of an Epidemic

A disease outbreak usually occurs when the number of cases of infected individuals is higher
than what is normally expected or endemic level of infection. Different disease outbreaks
manifest themselves differently as a function of demographics and geographic dynamics of
the region. An influenza epidemic, in the United States, is considered as an endemic in many
parts of the world [19]. An epidemic when spreading through various continents is known as
a pandemic. An example of Influenza pandemic is that of 1918 which roughly killed more

than 30 million people around the world.

1.2.2. Infection Life-Cycle
1.2.3. Transmission

Transmission of the virus with respect to disease spread is from outside environment to a
susceptible individual’s body. Few important ways have been identified about transmission of
the virus from outside environment into the human body. The influenza virus is transmitted
primarily through direct-contact, which involves skin-to-skin contact and physical transfer of
microorganisms to a susceptible host from an infected or colonized person. Direct-contact
transmission occurs between two people through any form of physical contact (e.g., by hand
contact). Transmission through indirect-contact involves contact of a susceptible host with
a contaminated intermediate object, usually inanimate, known as fomites in the environment.
Transmission of influenza may occur through either direct skin-to-skin contact or through
indirect contact with virus in the environment. However, it is difficult to determine the
proportion of influenza transmission that is attributable to direct or indirect contact. [26]
Transmission can also occur through droplets, whereby contagious droplets produced by the
infected host are propelled a short distance through coughing or sneezing and can be absorbed

by a susceptible person. Influenza droplets, generally travel around 3 to 6 feet until they settle



to the ground. This determines which situations may by considered a contact, which is defined

as an interaction that may facilitate the transmission of disease.

1.2.4. Transmission Probability

Transmission probability refers to the chance that there will be a successful transfer of the
pathogen from one host to another during a contact. This probability helps in understanding
the dynamics of an epidemic [37]. Transmission probability can be estimated by defining a
secondary attack rate.

An attack rate is calculated as a measure of the virulence of an infectious disease, where
virulence is defined as the capacity of the virus to cause an infection. Secondary Attack Rate
is defined as the ratio of number of infectives to the total number of susceptible individuals in
the population. The secondary attack rate is calculated in retrospect with the data collected
as thus cannot be predicted. As a result, it cannot be used as a instantaneous measure of

epidemic spread. It is averaged over the period of an epidemic. [23]

1.2.5. Basic Reproductive Number Ry

Basic reproductive number, Ry, is the average number of susceptibles that are infected by
an infective host during its infectious period. This includes only the secondary infections and
not tertiary ones. For instance, if Ry for a disease is 4, then we would expect 4 individuals
to get infected by each primary infected individual. If Ry = 1, then the number of infectives
remains constant and results in an endemic. For an epidemic to occur, Ry > 1 is needed.

Public health policy and disaster preparedness has often relied on historical data of past
epidemic. This is particularly true for the comparison of specific epidemics on the basis of
the associated attack-rate (or reproduction number Rp).

Traditionally, Ry was computed directly from the partial differential equation’s that form
the susceptible infectives removed (SIR-type) models to describe disease dynamics in a ho-

mogeneous population.



More recently, the attack rate Ry of a specific infectious disease has been determined by
analyzing data that has been collected during the epidemic.

However, one must recognize, that the comparison of attack rates of two or more epi-
demics for the purpose of deciding control measures must take demographic changes into
consideration. That is, Ry of a past outbreak must be adjusted to account for such changes.
This however requires to predict how past disease models have manifested themselves in the
correct demographics. Consequently, the need for a computational model arises, where in
disease spread can be modeled given the demographics and can be used to predict how disease

manifests itself in a population, given the demographics of the population.



CHAPTER 2

REVIEW OF COMPUTATIONAL AND MATHEMATICAL MODELS OF EPIDEMICS

Modeling infectious disease epidemics has been going on for several years. Models of
epidemic spread exist in many forms, each with its own approach and set of assumptions.
However, all these models use a similar parameter set for simulating disease outbreak in a
reasonable amount of time.

Few parameters that are significant in determining epidemic spread as described by Mol-

lison [33] include:

e size of susceptible population

e homogeneity or heterogeneity of population

virulence or transmission probability

immunity among individuals

movement of individuals

infection incubation period, latent period and recovery period

In this chapter computational and mathematical models are reviewed and discussed. Some
of the existing epidemics models and reviewed by comparing their techniques and assumptions.
Most of the past work uses ordinary and partial differential equations (ODE's and PDE's).

Also mean field type approximation and cellular automata (CA) based models are analyzed.

2.1. Mathematical Epidemiology

The early 20" century laid the foundations of the mathematical theory of epidemics
[27],[35]. The initial work in epidemic modeling was mainly deterministic and probabilis-
tic elements were not included. Around 1930, statistical distributions were introduced and

stochastic modeling established its roots in the study of epidemics.



2.2. Deterministic and Stochastic Models

Deterministic models use partial and ordinary differential equations to model the spread of
a disease epidemic, and describe the dynamic behavior without any stochastic terms. These
models are likely to be very limited in terms of the parameters they consider, but can greatly
overestimate likelihood of adverse effects. When considering a large population, the behavior
of a stochastic model is similar to the deterministic model. Stochastic models provide a closer
real life approach to modeling the spread of infectious diseases, by introducing probability
metrics into the deterministic model. Stochastic models are better when there is inherent
variation in the real system. Stochastic models and the analysis of the epidemic curves, have
proved to be the primary mathematical framework of simulating infectious diseases outbreaks,

even in the 21°* century [6].

2.3. Susceptible-Infectious-Removals Model

Mathematical models of infectious diseases are based on the principles of susceptibles,
infectives, and removals, namely the SIR model. Susceptibles are those individuals in a
population who can be infected by the disease under study. Infectives are those individuals who
have been infected by the disease and are infectious. Removals include all individuals that are
incapable of transmitting the infection, and are either recovering, fully recovered, expired from
the disease, or immune to the disease. Variations of this model have been developed, namely
the SEIR, SIS and SEIS. In the susceptible exposed infectives removed (SEIR) model, a state
of being exposed is added before becoming infectious. In the Susceptible Infectives Susceptible
(SIS) model, the removals who recover may revert to susceptibles. The susceptible exposed
infective susceptible (SEIS) model incorporates the exposed state and also the removals may
revert to susceptibles. In case of influenza, a recovered individual can not be infected by the
same influenza strain due to acquired immunity during the infection. Nevertheless, individuals

may remain susceptible to other influenza strains. Figure 2.1 shows the transient curves for
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Figure 2.1. SIR Epidemic Curve for a Sample Population

the susceptibles, infectives and removals during the course of a disease epidemic in a given
population.

The Kermack-McKendrick threshold theorem [8] is the basis for the SIR model. A con-
tinuous influx of susceptibles is a requisite for sustained infection in a population. This is the
case of endemic diseases, such as tuberculosis, which prevail in a community at all times. The
model is based on the presumption of a population equilibrium, assuming that the epidemic
spreads rapidly enough that the changes brought in by births, deaths, migration and demo-
graphic changes are negligible [6]. During the start of a disease epidemic, the total population
comprises of susceptibles, excluding those that have inherent immunity to the disease. The
index case is the first infected individual and is the source of the infection. During the infec-
tious period, the infection is transmitted to some susceptibles, who interact with the index
case close enough to contract the infection. This triggers the cycle of infections spreading
through the population. Once the infected individuals become non-infectious, they move
over to the removals category. A point of interest is that the total number of susceptibles

(S), infectives (/), and removals (R) is a constant (Eq. 1). The rising infection on reaching
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the peak starts to recede due to the decrease in the number of susceptibles, and diminishes

eventually.

(1) S+ 1+ R = constant
ds
dl

2 — = [ ==l

(2) Ir +BSI —
A +/
a7

The random mixing of susceptibles and infectives [6] is given by the multiplicative product,
S« [. B defines the transmission coefficient [5] based on contact rate between susceptibles
(S) and infectives (/), and infectivity of the disease. -y defines the rate of infectives (/)
becoming non-infectious. Hence, the average duration of infectivity is given by 1/ [6]. The
set of differential equations used in classic SIR model for a closed population are shown in
equation 2. The transfer rates of individuals from S — / and /| — R are given by dS/dt and
dR/dt respectively. The rate of change of infectives is given by d//dt.

The SIR/SIRS state diagram (Fig. 2.2) illustrates the course of a disease in an individual.
A susceptible individual may be exposed to a disease pathogen and continue to be in the
susceptible state. A susceptible becomes an infective, once the susceptible is able to transmit

the pathogen onto others. The recovery state begins once the ability to infect ceases. The
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individual continues the state of recovery from the disease, or may expire. On full recovery,
the individual may acquire full immunity from disease, and hence is no more susceptible to
the disease (SIR model). The individual reverts to a susceptible on full recovery when lacking
disease immunity (SIRS model).

The SIR model provides a simple framework for understanding the spread of a disease.
However, it cannot be used to model a real epidemic for a specific population and region
at sufficient fidelity. The SEIR model is an extension of the SIR model, in which the ex-
posed/latent stage of a disease transmission is considered to account for the time period
between the onset of the infection in the body and becoming infectious. The SIR and its
related models do not take into consideration the geography or the spatial dimensions of a
region. In general, interactions among individual is distance-dependent and it is often more
likely to interact with individuals at closer proximity. Consequently, the probability of acquiring
an infection from an infectious individual is inversely proportional to the interaction proximity.
The spread of a disease is dependent on the levels of interaction in the given population of
a specific region. The SIR model considers a uniform population with homogeneous mixing
and null consideration of specific interaction measures. Also, it is assumed that the epidemic
recedes to an end. The model cannot be used effectively for smaller population sizes. The
SIR model can be extended to include geography and demographics, but makes it complicated

and unwieldy.

2.4. Cellular Automata Models

Cellular automata modeling paradigm has been used for several decades [24] in the do-
main of computational and epidemiological models. Infectious disease modeling uses cellular
automata to analyze the spatial progression and distribution of diseases [44]. The basic unit
of a cellular automaton is a cell and may represent an individual or a sub-population. Each

cell can be characterized with state and likelihood risks for exposure and contracting the

11



disease. The spatial disease progression is modeled via the cell neighborhoods, wherein each
infected individual may diffuse and spread the disease to the adjacent neighbors. The naive
cellular automata poses certain limitations due to the neighborhood restriction, which has

been discussed in the next chapter.

2.5. Agent Based Models

Spatially delineated regions with a small (< 10000) population can be constructed, using
an agent-based approach, in which each individual is represented by an autonomous agent [31].
Larger models with millions of agents necessitate the use of large computing clusters or grid
computing that can provide the necessary computational power. The interaction parameters
are pre-determined and population real-world mixing patterns are studied. The agent based
model is then used to understand the progression of diseases in a simulated agent society by
observing the emergent behavior of the epidemic. The cumulative modeling error that may
be introduced when the number of individuals increases may grow prohibitively and thus it is
essential to represent members of society with high fidelity. Agent-based models have been
used to analyze HIV/AIDS spread in the population and individual immune levels following the
infection [17]. A survey of agent-based epidemic simulation models is available [7]. BioWar is
an agent-based system that analyzes the disease spread, treatment, and recovery, by porting
principles of interactions from social, knowledge and work networks [13]. Mikler et. al. [31]
have applied agent-based models to analyze real world outbreaks of tuberculosis in factory
and homeless shelter settings.

Stochastic agent based models have been widely used for modeling infectious disease
spread such as influenza. Eubank et. al. [22] have developed a system for simulating spread
of disease among individuals in large urban population over several weeks. The model relies
of empirical data produced by TRANSIMS, a large scale simulation of transport system, to

model contact patterns and mixing among individuals.
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2.5.1. Network Models

Social networks or random networks have long been used in determining the rate and
pattern of epidemic spread of infectious diseases. The focus has been particularly on the
role of population heterogenities in the spread of sexually transmitted diseases, especially
HIV/AIDS and HPV. However, little work has been done in the field of social networks and

the spread of other infectious diseases.

2.6. Review of Literature
2.6.1. Mathematical Models

Most of the work in modeling infectious disease epidemics is mathematically inspired
and based on differential equations and SIR/SEIR model [7, 6]. Differential equation SIR
modeling rely on the assumption of closed population and neglect the spatial effects [14, 15].
The population sizes are constant throughout the simulation and do not account for births,
deaths or immigration constraints. Population is uniformly distributed over the region. Such
models, often fail to consider individual contact/interaction process and assume populations
are homogeneously mixed and do not include variable susceptibility.Both partial and ordinary
differential equation models are deterministic in nature and neglect stochastic or probabilistic
behavior [40]. Nevertheless, according to Di Stefano [40] these approaches/models have been
shown to be effective in regions of large populations.

Boccara and Cheong [14] study the SIS model for spread of infectious diseases in a
population of mobile individuals, thereby introducing non-uniform population density. In the
model susceptible individuals become infective with a probability of m if, and only if, it is
the neighborhood of and infective. This hypothesis however neglects the incubation and
latent period which have been identifies as factors influencing epidemic spread. After being
infectious the infectives move from infected to susceptible with a certain probability at each

time step. Length of time a individual stays infected is assumed to be 1 and is not variable.
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Boccara and Cheong [15] concentrate on SIR epidemic models and take into considera-
tion the fluctuation in the population by births and deaths, exhibiting a cyclic behavior with
primary emphasis on moving individuals. This level of complexity has been incorporated by
stochastic models, based on the same population categories as deterministic models, but
relying upon probabilities variables and their relationship to relative uncertainties between the
compartments. These models are better suited for larger communities because of use of

probabilistic expressions.

2.6.2. Cellular Automata Models

The earliest example of use of cellular automata is Bailey's lattice model [9] for the spread
of diseases from micro-level interactions. Schonfisch has analyzed varied cellular automata
models to study the dynamics of epidemics [36].

Di Stefano et al [40] have developed a lattice gas cellular automata model to analyze
the spread of epidemics of infectious diseases. The model is based on individuals who can
change their state independent of others and can move from one cell to other. However, this
approach does not consider the critical factor of the infection time-line.

Ahmed et al [4] study the susceptible-infected-susceptible (SIS) problem where suscepti-
bility of the population is considered first as uniform then as random. Variations in population
density is modeled by allowing cyclic host movement. The study claims that other models
which include random motion, whereas realistic motion is usually cyclic e.g, home to work to
home. In this model a susceptible site can be infected with the probability b and the number
of occupied nearest neighbors, which may lead to saturation of neighbors. Incubation period
of the infection is not considered as individuals become infected in just one time step.

Fu has used stochastic cellular automata to model epidemic outbreaks that take into
account the heterogeneous spatiality [23]. The model takes into account some geographic

and demographic factors such as neighborhood radius, natural birth, immigration and natural
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death parameters. A morbidity parameter has been implemented that defines the probability
that an infective will die from disease during a particular time step. However, the population
distribution in the beginning of the simulation is uniformly distributed and there is no variance.

Situngkir has developed a dynamic model of spatial epidemiology to study avian influenza
disease in Indonesia and uses cellular automata for computing analysis [38]. The CA model
uses the von Neumann neighborhood system for terrestrial interaction and spread of infection,
which is associated with a probability.

Bonabeau has studied the spatio-temporal characteristics of influenza outbreaks in France.
The study infers that the global transportation systems of the modern world lend to prop-
agation of influenza epidemics dominated by a global mixing process in comparison to local
dynamic heterogenities [16].

Duryea has analyzed spatially detailed epidemic models using probabilistic cellular au-
tomata for heterogeneous population densities in a region [20]. The results suggest that
increasing spatial heterogeneity in host density decreases the frequency of infection at en-
demic equilibrium. Spatial structure is given consideration assuming that individuals interact
more frequently with nearby than with distant organisms. The iterations in the model are
both local and global.

Benyoussef has used a one-dimensional lattice model and a two-dimensional automata
network model to illustrate the spatial spread of rabies among foxes [12].

Fuks describes a SIR epidemic in the spatio-temporal domain via a lattice gas cellular
automaton for both human and animal populations. Vaccination strategies are incorporated
and dynamics of the disease spread are investigated in relation to the spatial distribution of
the vaccinated individuals [25].

Mansilla and Gutierrez [30] have a developed a Deterministic site exchange cellular au-
tomata models for the spread of epidemics, rumors and news in a population of moving

individuals. The model depends on parameters, which represent the mean length of motion
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of individuals in population. They claim to have reproduced situations of perfect mixing
and perfect diffusion which are often described by system of ordinary and partial differential
equations. They assume that motion of individuals is periodic motion rather than random as

assumed by most other similar models.

2.6.3. MFT approximations

Disease epidemics have been modeled using mean field type (MFT) approximations [29].
Most MFT models assume that susceptible population is uniform over the world, which
makes it similar to differential equation models. Even though the MFT models are similar
to the differential equations, they add a probabilistic nature by adding different probabilities
for the mixing among individuals [14]. In the MFT models the decision to move around
is independent among individuals, unlike the differential equation models, where all or none
phenomena applies. According to Boccara [14], mean field approximations tend to neglect
spatial dependencies and correlations and assume that the probability of the state of a cell
being susceptible or infective is proportional to the density of the corresponding population.

MFT approximations sometimes use a lattice structure to simulate the spatial nature of
the disease spread, where in an individual present at a site can exist in one of the states as
specified by the model. Kleczkowski and Grenfell [29] describe that MFT and CA models
converge when the MFT mixing parameters tend to infinity. This leads to say that the world
contains more disorder than correlation.

Bayesian analysis of epidemiological data highlights the significance of analyzing demo-
graphics to uncover the higher risk spectrums of the population for infectious diseases [1]. A
Monte Carlo simulation using a Markov model is implemented to study the infection models
that occur naturally, such as influenza, whose viral pathogen spreads through a susceptible

community, or induced deliberately, as in the case of bio-terror attacks [34].
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Geographic-environmental re-infection modeling simulator (GERMS) [2] is a toolkit for
modeling transmission of infectious diseases. The model takes into consideration heteroge-
neous population dynamics with varied socio-geographic characteristics, complex interactions
among individuals, and infection specific features, such as transmission probabilities.

Viboud et.al [45] have analyzed spatial and temporal correlation of influenza epidemics
in the United States, France, and Australia. The results indicate a high correlation between
United States and France, but irregularity in the patterns between Australia and the other two
countries. They highlight demography as one of the reasons for causing the discrepancies,

and recommend further investigation using mathematical modeling.
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CHAPTER 3

OVERVIEW OF GLOBAL STOCHASTIC FIELD SIMULATION

3.1. Cellular Automata

Cellular automata have been used for several decades [24] in the domain of computational
models. Nevertheless, in modeling epidemics, this paradigm has rarely been utilized to its full
potential [3, 39, 24, 40]. Cellular automata, as defined by Lyman Hurd, is a discrete dynamic
system, where space, time, and the states of the system are distinct [47]. An automaton
is best exemplified by representing a point in space as a cell C; surrounded by other cells,
thereby defining the neighborhood H; of C;. The cells are most often arranged to constitute
a regular spatial lattice (see Fig. 3.1).

In general, we can define a cellular automaton of any dimension. One, two, and three
dimensional automata are most often used in science. For a one dimensional automaton,
|H;| = 2, that is, cell C; has a left and a right neighbor (ignoring edge conditions). A two
dimensional automaton is best represented as a reqular spatial lattice or grid. Here, cell C;;
is surrounded by cells that form its neighborhood H; ;. Traditionally, there are two possible
sizes of C;;'s neighborhood in a two dimensional automaton, namely, |H; | = 4 in the von
Neumann neighborhood and |H, ;| = 8 in the Moore neighborhood [47] (see Fig. 3.1 Used with
permission from World Scientific Publishing Company [32]). Table 3.1 (Used with permission
from World Scientific Publishing Company [32]) specifies the neighboring cells for C; ; in both
the neighborhoods.

At a particular time t, each cell C of the automaton is said to be in a specific state s(t),
which depends on the specific application. s(t) € S where S is the state space of the cellular

automaton. In a simple scenario, cells are assuming binary states (0,1). For more complex
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Table 3.1. Neighborhood Specification

Neighborhood Neighboring Cells for C; ;

von Neumann Cit1j, Cim1jo Cij1, Cijoa

Moore Cit1j, Cic1jy Cijyr, Cijon,
Cirrjrr, Cimnjor, Cicajrn, Ciprj

Figure 3.1. von Neumann and Moore Neighborhood

applications, any size of discrete (and even continuous) state space can be defined. The state
of cell C;; at time t is determined by the state of its neighborhood H;; at time t-1 (see eq. 3).
The function fcan be considered as the rule that dictates how a particular state configuration
of H;; determines the next state of C;;. For a deterministic cellular automaton, the initial
states of each cell and the update rule f completely describes the automaton. During a
time step t, a new state s(t) is computed for every cell as described above. An initial state

configuration will hence evolve, thus representing a dynamic system.

(3) sij(t) = f(Hi;(t = 1))

An example of a cellular automata update rule is shown in Fig. 3.2. Here, the function
fis defined by a majority rule. The state of the center cell transitions to a state, which is
in majority among the cells in the neighborhood and itself. The update rule determines the
deterministic or stochastic behavior of CA. Stochastic behavior is seen by probabilistic update

rules in non-deterministic state transitions. For example, in stochastic CA, for every update,
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Figure 3.2. Cellular Automata Update from time step t-1to t

a cell can choose probabilistically from a set of update rules, or for a particular update rule,

probabilistically choose from a set of states for the stochastic transition.

3.2. Disease Modeling with Cellular Automata

Modeling using traditional cellular automata paradigm incorporates the spatial distribution
of the population using the Moore or Neumann neighborhood. The basic unit of cellular
automata is a cell. In a disease model , a cell represents an individual or a sub-population.
Each cell can be characterized with state and likelihood risks for exposure and contracting
the disease. Unlike the SIR model, every cell comes in contact with the cells in its defined
neighborhood. Similar to the SIR model, state S for susceptible is defined as the state in
which the cell is capable of contracting a disease from its neighbors. In the infectious state /,
the cell is capable of transmitting the infection to its neighbors. In the recovery state R, the
cell is neither capable of passing on the infection nor capable of contracting the infection. On
full recovery and acquisition of disease immunity, the cell shall continue in the removal state
(R). The time-line for infection is illustrated in Fig. 3.4 Used with permission from World

Scientific Publishing Company [32]).

3.3. Definitions

The following section describes the different states a cell can attain and parameters used
in simulation. States of an individual
State S for susceptible is defined as the state in which, the individual is capable of

contracting a disease from its neighbors.
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Figure 3.3. The GSFS Model

In the infectious state, / the individual is capable of passing on the infection to its neigh-
bors.

In the recovery state, R the individual is neither capable of passing on the infection nor
capable of contracting the infection.

Immunized individual is modeled with less susceptibility to acuire the disease.

Parameters for the simulator

Infectivity ¢ of a disease is defined as the probability of a susceptible individual becoming
infectious, when coming in contact with an neighboring infectious individual.

Latency X is defined as the time period between exposure to an infectious organism and
appearance of the disease.

Infectious period 0 is the time period during which the infected individual is capable of
transmitting the disease to other individuals.

Recovery period p is defined as the time period the individual takes to recover, wherein
it is neither capable of transmission of the infection nor capable of contracting the infection.

The region over which the disease is to be simulated is given as a parameter together
with population dynamics and age structure.

Individuals from the population may be immunized for a particular disease being simulated.

The immunization is represented as a probability which as a results reduces the susceptibility
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Table 3.2. Parameters

Parameter Value
Incubation period 3 days
Latent period 3 days
Infectious period 4 days
Recovery period 6
Infectivity 0.035
Immunity 0.25
Population | Denton city
Contact Rate 8-14

of the individual. The immunization can be used to simulate various vaccination strategies
or immunity from previous infections.

Contact rate CR is defined as the average number of contacts an individual is involved
in during a 24 hour day. A contact is defined as a two way conversation without any physical
barrier between the two parties, which may lead to a successful disease transmission. Contact
rate is determined for individuals based on their demographics, which may result in different
contact rates for individuals of different age groups.

The earliest documented case of a disease is known as the index case. Index cases are
introduced in the beginning of the simulation at the initial state. These are the cases primarily

responsible for starting the epidemic in the simulation.

Table 4.1 states the approximate parameter values used for a base experiment specific to
influenza as the disease.
Rules for disease spread The rules described below determine the state transitions of

individuals in the population for the SEIR and SEIRS models.
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(i)

(i)

(iii)

(iv)

An individual changes the state from susceptible to latent (S — L) after coming in
contact with an infectious individual in the defined neighborhood. The probability
of acquiring the disease from an infectious neighbor is a function of infectivity 1.
The individual remains in the latent state for the number of time units (days) as
defined by the parameter latency A.
The state of the individual changes from latent to infectious (L — ) after being in
state L for a given A. In our model, we assume that every individual exposed to the
pathogen will become infectious. In state /, the individuals are capable of passing
on the infection to neighborhood individuals. For example for a disease D, with A=
2 units the individual will enter the infectious state / after two time units of initial
exposure.
After the infectious period 6, the individual changes the state from infectious to
recovered or removed (I — R). Once an individual enters the state R, they are no
more capable of passing on the infection.
From the state R, the individual's state changes back to either susceptible S for the

SEIRS model or it remains in state R, for the SEIR signifying complete immunity.

3.4. Restrictions of Classic Cellular Automata

3.4.1. Limitations of Naive Cellular Automata:Neighborhood Saturation

Figure 3.5 (Used with permission from World Scientific Publishing Company [32]) depicts

the cell layers with respect to a central cell in /ayery;. Layer; has 8 neighboring cells in its

outer-line /ayer, in a Moore neighborhood model. The outer-line neighborhood of /ayer; is

IThe next three sections are reproduced from: A. Mikler, S. Venkatachalam and K. Abbas, Modeling

Infectious Diseases Using Global Stochastic Cellular Automata, Journal of Biological Systems, Vol. 13, No. 4,

pp. 421-439, December 2005. with permission from World Scientific Publishing Co. Pte. Ltd, Singapore.
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Figure 3.4. Infection Time-line
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Figure 3.6. Effective Neighborhood

layer;y1 and the inner-line neighborhood is /ayer;_;. The total neighbors of a layer is defined
by a summation of its outer-line and inner-line neighborhoods. The ratio of neighboring cells

to the cells in the current layer defines the effective neighbors per cell of the current layer.
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L; is the number of cells in /ayer; and is defined in eq. 5. It can be visualized as the
area enclosed by layer L;_; subtracted from the area enclosed by layer L; (see eq. 5). The
effective outer-line neighbors of /ayer; are defined by L;,1/L; and the inner-line neighbors are
L; 1/L,. Figure 3.6 illustrates the effective inner-line and outer-line neighbors from /ayer; up
to layersg. Even though the effective outer-line neighbors of /ayer; is 8, it converges to 1

for higher layers. The effective inner-line neighbors increase from 0 for /ayer; to 1 for higher

layers.
L; = 1 i=1
(4) = (2xi—1)?=@2%i=3)? i>1
L,‘+1/L,‘ — 1 i — 0o

In the context of epidemiology, we consider a disease progressing at 100% infectivity
through neighboring layers. An index case at the central cell in /ayer; shall effectively infect
8 outer-line neighbors at /ayer,. However, at higher layers, each cell at /ayer; is able to
infect effectively only one outer-line cell at /ayer;.1. This resulting neighborhood saturation
is a primary limitation of naive cellular automata in depicting the spatial progression of a
disease. The classic cellular automata methodology suffers from saturation of a limited
neighborhood, as described above. This has been described in [32]. A neighborhood of 8
cells quickly saturates and thus reduces the number of susceptibles. In such a situation the
increase of infectivity parameter plays no role and has the same effect on the spread of the
disease. Neighborhood saturation dominates the effects of increasing infectivity and limits
the spread of the disease. Further, the need to model a disease where an infective can
spread the disease to an extended neighborhood in one time step can not be modeled. The

movement of individuals, migration, or travel is not considered. Some of the models discussed
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in the literature, deal with movement of individuals from one cell to another in the defined
neighborhood. Clearly as discussed above they are deemed to be hampered by early saturation.
In order to overcome the limitations posed by naive cellular automata, we introduce the global
stochastic model for cellular automata, that shall incorporate the demographics of location

and population density.

3.5. Towards a Global Model : Accounting for Spatial distributions

The traditional CA model described above may be used for simulating diseases over small
regions with local interaction and global interaction respectively. As mentioned before, the
model does not take into account the demographics of the region and may not be accurate
for simulating disease spread over large geographic regions because of the neighborhood
constriction posed by them. Hence, we can now look at a global stochastic cellular automata
with demographics that will facilitate the understanding of effects of different demographics,
the population density, socio-economics of a region and culture. It can also be used effectively

for investigating different vaccination strategies and understanding the effects of travel.

3.5.1. Interactions

For simulating the spread of disease in such an environment, contacts need to established
between cells. In this model, every cell has a chance of interacting with every other cell in the
environment, but the probability of contact varies based on what is defined to be the inter-
action coefficient. The interaction coefficient reflects the factors which are important when
considering contact between two cells. Such as distance, population and other demographics
and socio-economic factors. The interaction coefficient is based on the distance between
cells.

The neighborhood for a global SCA is defined using a fuzzy set:
Definition 1 : Fuzzy Neighborhood

The set F C S where S is a set of all the cells
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F:{(s,p)|ls€eS,0<p<1}
(s,1) : Total/Complete membership

(s,0) : No membership

Interaction Coefficient i for a particular cell is defined as the strength or likelihood of
interaction between two cells. As mentioned above the interaction coefficient depends on
various factors which can affect contact between two subjects, such as individuals or cells.
However, for this model distance is considered between cells as the factor influencing the
interaction coefficient. It is calculated as the reciprocal of the Euclidean distance between
the cells. Equation 5 shows the calculation for interaction coefficient based on distance.
Experiments were conducted on calculating the coefficient based on distance and population.

Equation 6 shows the calculation of interaction coefficient based on distance and population.

(5) iCi,j,Ck,/ = - ! -
N T
(6) PCi,j X PCk,,

o T TR G I

The state of infection ¢ is defined for every cell as a number between 0 and 1, indicating
the level of infection present in the cell. 0 indicates not infected, 1 indicates fully infected.
This parameter is used in order to determine whether the subject or group is capable of
transmitting the infection or not.

The global interaction coefficient [~ of cell C;; is the sum of all the individual (n-
1) interaction coefficients of the cell. This coefficient represents the overall interaction of
the particular cell. It is different for every cell based on their position. Figure 3.7 shows the
global interaction coefficient based on distance for every cell on a 50 x 50 grid. Naturally, the

center cell has the maximum interaction coefficient. Figure 3.8 show the global interaction
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Figure 3.8. Global Interaction Coefficient Based on Distance and Population

coefficient based on distance and population for every cell on a 50 x 50 grid. Experiment was
conducted with two cities of high population. In Figure 3.8, population size clearly dominates
distance. This however may not hold true if the interaction coefficient incorporates measures

of population and other demographic values.
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The global interaction coefficient and the interaction coefficients are calculated based on
the distance. As the distance between the cells reduces, the interaction coefficients increases,
which indicates greater chances of interaction between them. Equations 7 and 8 show the

calculation of the I based on distance and distance and population respectively.

1
@ fay= 2 (— K2+ (- )2

VCy, 1 7Cij

1
(8) I_C,'J: " = XPC,’JXPC,'J
VC;;;C;J <’ - k>2 + </ - />2

The infection factor | is calculated as a fraction of the interaction coefficient to the global
interaction coefficient I, for every cell to cell interaction. It is also based on the virulence
of the disease and the state of infection of the infecting agent. Referring to definition 1 the

parameter p is the ratio of interaction coefficient to the global interaction coefficient.

Ic; ;.Cis

(9) /CiJ = Z T X 6Ck,l XY
VCk, 1 7Cij Cig

3.6. Modeling with Global Stochastic Cellular Automata (GSCA)

In the GSCA model, the population is considered to be uniformly distributed over the
gird. Each cell is considered as an individual, with certain structural properties. As defined
earlier, contact rate for each cell is drawn from a Poisson distribution assuming that average
contacts that individuals are involved in is Poisson distributed. To model the interactions
between cells, we present two different algorithms for selection of contacts.

As mentioned earlier, the probability of interacting with cells closer is greater than the
probability of interacting with cells farther. Considering a n x n grid with n? cells, each cell

has n — 1 possible interactions. The simulator selects k interactions, where k is the average
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contacts per day, from the possible n—1 as controlled by the exponential decay function, which
yields an inefficient computational solution. When n is considerably large as to 10° cells then
the amount of data can approach terabyte range. Thus to solve the n? bottleneck problem
we propose the following algorithms. We assume that the probability decays exponentially
with distance. See Equation 10. The parameter a is a multiplicative factor used to scale the

actual geographical distance parameter to match the distances on the grid.

(10) P=axe®

In order to calculate the exponential random variant, we draw a random number R €
U[0,1] and transform equation 10 to obtain d. Once the distance is found two different ways

are used to choose contact cells.

3.6.1. Threshold Based Algorithm

For the threshold method, cells are chosen at random and a rejection method is used. The
cells with at a distance less than the threshold (calculated) distance are chosen, otherwise
rejected. The drawback of the method is the number of rejections that might occur, until a
cell at a distance less than the threshold is chosen. If a new distance is calculated after every
rejection then the number of calls to the random number generator increases drastically,
which may hamper the performance of the system. Figure 3.9 demonstrates that a large
portion of cells chosen are at smaller distances. However, for this algorithm the number of
calls to the random number generator is large, because of uniformly selecting from n2-1 cells
until a cell is found at a distance less than d.

The following pseudo code describes the threshold based algorithm for a cell x

1 choose distance d from the exponential decay function
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Figure 3.9. Frequency of Distances Based on Threshold

2 do

3 choose a cell y at random uniformly
4 calculate the distance of y from x
5 repeat until cell distance leq d

6 establish contact with y

7 repeat above steps until expected number of contacts are established.

Clearly, this method is based on trial and error. Consequently we propose the bounding
box algorithm, where in instead of choosing from n2-1 cells the choice is restricted by the
bounding box, thus reducing the number of calls to random number generator. The bounding

box based algorithm is described in the next section.

3.6.2. The Bounding Box Algorithm

The bounding box algorithm is proposed to reduce the overhead of calls to random number
generator. The idea of this algorithm is reduce the sample space so that calls to the random
number generator are limited and time complexity reduces. In this algorithm, with the cell as

the center a virtual bounding box is drawn around the cell at a distance d, to signify the local
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Figure 3.10. Frequency of Distances Based on Bounding Box

neighborhood of the cell. Cells within this neighborhood are chosen randomly for contact.
For every new contact a new d is calculated.

The following pseudo code describes the algorithm for a cell x

1 choose distance d from the exponential decay function

2 draw a bounding box of distance d from x on all four sides
3 calculate the boundaries of the box

4 choose a cell y at random within the box boundaries

5 establish contact with y

6 repeat above steps until expected number of contacts are established.

Experiments were conducted by generating a relatively large set of contacts to obtain
and test distribution of the contacts based on distance. Figure 3.10 shows the number of
contacts generated for different intervals of distances, indicating that more contacts are

generated with cells closer to the subject cell.
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The two algorithms described above were used to implement contacts based on distance,
assuming more contacts are local than global. To evaluate the effect of distance based inter-
actions, experiments were conducted in the GSCA model. When distance based interactions
are incorporated, the contacts between individuals are initiated assuming more contacts are
made locally than globally. Figure 3.11 depicts the results that illustrate that the rate of
disease progression is relatively slower in the global model, when the distance demographic
parameter is incorporated. The disease progression slows down as a result of more local
contacts being generated and interacting with same individuals repeatedly. Thus, it can be

concluded that distance place an important role in modeling interactions.
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Figure 3.11. Disease Progression with and without Distance Demographic Parameter

3.7. Global Stochastic Field Simulation

Disease modeling over small regions with local interactions can be implemented using
traditional cellular automata. However, its accuracy diminishes for simulating disease spread
over large geographic regions because of neighborhood saturation. We propose global sto-

chastic field simulation (GSFS) that includes demographic parameters of a given geographic
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region [44]. This facilitates understanding of the effects of different demographics, the pop-
ulation density, socio-economics and culture of a region. It can also be used effectively for

investigating different vaccination strategies and understanding the effects of travel.

3.7.1. Approach

Our approach to modeling spread of diseases is based on a geographic region represented
as a grid. Field is an overlay of the geographic region encompassing the spatial distribution
of population and interaction distributions. Each location in the field, is assumed to contain
a population of n individuals with associated demographics as obtained from US Census.
Individuals belonging to specific locations can be characterized by a state and likelihood of
risks for exposure and contracting the disease. A set of three possible states (S, I, R) has
been defined to signify an individuals clinic disease stage. As opposed to a purely agent-
based model, in a stochastic field simulator, each location maintains the statistics of the
three states. These can be used to calculate the attack rate, relative risk of sub-populations.
Disease spread is driven by contacts generated based on population statistics, unlike agent-

based models where, individuals (agents) themselves indulge in contacts.

3.7.2. Modeling Heterogeneous Populations

In order to model spatial spread of disease over a geographic region with a large popula-
tion, it is important to understand the underlying population and demographic dynamics of
the region. Consequently, one must rely on means to derive the population dynamics that
promotes the spread of diseases. This can be accomplished by exploiting publicly available
datasets, that describe composition and behavior of the population of interest.For example,
US census information provides necessary data that describes the population in terms of
socio demographic, race/ethnicity, age, gender, etc. at different levels of geographic aggre-
gation. Geographic information systems (GIS) facilitates the integration of information from

different sources for a specific geographic region or location. Any larger geographic region,
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such as a city, county, or state can be decomposed into individual census blocks. We are
proposing to use this structure as an overlay to a global stochastic field, which will use the
associated census information to define its corresponding interactions among individuals and
places. Age-structure of the population has been incorporated into the model as one of the
demographic constraints. For simplicity in modeling behavior patterns among individuals the
age-structure has been divided into four groups of under 9 years, 10 to 34 years, 35 to 59
years and 60 years and over.

The global stochastic field simulation (GSFS) model is implemented to incorporate het-
erogeneous populations. Rasterized GIS census block data of the area around city of Denton,
Texas for the total population of 110000 is overlaid on a grid of size 50 * 98. The following
section describes how census data is rasterized and ported into the simulator.

3.7.2.1. Rasterized Input data. Denton county regional census population data was im-
ported in vector format to GRAM++ GIS package [42]. This vector file is then converted

into a raster file with each block representing a unique location with specific demographic.
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The following describes the process of converting the census information to simulator in-
put format. This method distributes the population of census blocks into locations in the
simulation field.

Let P; be the population of ith census block.

Let N; be the number of cells in that census block

Let C;; be the population of the jth cell of the ith census block where

Cij = Pi/Ni

where j= 1 to n and n is the number of cells in each census block

i = 1 to m and m is the number of census blocks in the county

Hence the population of each census block is assumed to be uniformly distributed among
all the cells in that block Figure 3.12 shows the heterogeneous population distribution of area

around Denton city.

3.7.3. Demographics :Age-structure

GSFS model has been extended to incorporate age-structure of the region as one of the
demographic constraints. Together with the population age-structure data is obtained from
census block data of area around city of Denton, Texas. To simplify in modeling behavior
patterns among individuals, the age-structure has been divided into four groups of under
9years, 10 to 34 years, 35 to 59 years and 60 years and over. Each age group may be assigned
different values for disease parameters such as infectious, latent and recovery periods based
on how an individual of that age group might react to the disease in hand. They may also

be assigned different contact rates to model different interaction patterns.

3.7.4. Mixing Patterns

As we have seen, essentially all mathematical models of spread of airborne infections
were based on the assumption that the host population was homogeneously mixed. There-

fore, each individual has an equal chance of contacting anyone in the population, and being
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Table 3.3. Age Group Distribution

Age group Range

1 0 - 9 years
2|10 - 34 years
3135 - 59 years

4 60 + years

contacted by someone irrespective of whether or not that has person has been contacted
before. Quantitative studies in social networks research has characterized relevant network
structures, and has shown how specific aspects of contact patterns can alter the spread on
infectious diseases and the evolution of infective agents [28]. For successful transmission of
the virus, there is a need for a close contact between the susceptible host and the infected
host. Consequently, mixing patterns and contact structure of the host population are of
paramount importance, when dealing with spread of airborne infectious diseases. Studies [28]
have shown that different structured networks lead to different types of epidemics. For in-
stance, a densely connected host population is easier to invade than a sparsely connected
host population.

The social contacts can vary in many different ways, such as the number of contacts
per day, the context of a contact, the distance between the people in contact, duration of
contact and age of contacts. Among these mixing patterns, the variation in mixing within
and between age groups and between households and weekday to weekend variations is a
point of interest. Edmunds et. al. [21] conducted a study to identify such mixing patterns
which might lead to spread of infectious airborne diseases. A sample of 92 adults from an
English university were asked to detail the individuals with whom they had a conversation
over the period of on, randomly assigned, day. The data contained the age of the person,

the age of the contact and the social context in which the contacts took place. Edmunds
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et. al. [21] define a contact as a two way conversation in which at least wo words were
spoken by each party and in which there was no physical barrier between the two parties.
Statistical analysis was conducted on the collected data. The results showed that contacts
were highly structured according to age. The average age of contacts increased with the age
of the participant. Older individuals having more contacts with older adults, and considerably
less contacts with younger individuals. Also, older individuals showed a tendency to mix
with older children. Studies [21] have also shown that individuals are likely to interact more
with individuals of the same age group as compared to individuals of other age groups. The
statistical analysis of the data resulted in a mean number of contacts in a day of 16.8. There
was no significant difference in the mean number of contacts between the different weekdays,
irrespective of the age. Older adults had significantly lower contacts on weekends as compared
to weekdays, whereas younger adults did not show any significant variation. Since we do not
model weekdays and weekends, we averaged the contact rate for adults considering weekday
and weekend contact rates. Regarding the context of the contacts, 12-13 contacts were work
related, 2-4 social and 1-2 home contacts. Thus for individuals above the age of 80 who
might have retired will not have the work related contacts. Similarly children under the age
of 10 will also not have work/school related contacts. Thus contact structure is an essential
aspect in explaining the level or intensity of invasion of a virus in a host population. In the
GSFS model, a contact is modeled as any interaction which may lead to a successful disease

transmission and is different from a regular social contact.

3.7.5. Contact Structure

GSFS models heterogeneous mixing in the population by establishing contacts in a random
fashion. As defined before, a contact is any interaction between two individuals which can lead
to a successful disease transmission. To generate contacts proportionally to the demographics

we build probability distributions for the different age groups.
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Each cell or a sub-region is involved in k contacts, where k is computed based on the
population and contact rate of individuals per day. Assuming that contacts among individuals
are Poisson distributed over time, and individuals make contacts at an average rate of A,
the effective contact rate for a sub-region is determined by a Poisson random variate. For
a sub-region with population p, k = pX. The probability of exposure along with infectivity
determines the transmission of infection for a given contact. This leads to heterogeneous
interactions in the population, thereby overcoming the presumption of homogeneous mixing
in the SIR model. A contact is defined as an interaction between two individuals that may
result in successful disease transmission.As derived by the GIS gravity model, the probability
of contacts between individuals is inversely proportional to the domestic regional distance
between them. The modeling of interactions among individuals in the GSFS model is based
on this assumption.

To generate uniform contacts, while considering the age demographics and population dis-
tribution, probability distributions are generate. The following algorithms shows the steps
involved in generating probability distribution for different age groups. The distribution rep-

resents the contacts of individuals in each age group, grouped by locations.

Let N; be the number of individuals in age group /.

N=> N,

Let C; be the contacts established by the age group / and CR; be the contact rate of age
group / where

Ci=N; x CR;

C=>GC

Let P be the probability distribution.

Pii={P1+ G/Cifi>1}

P:={C/Cifi=1}
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ifi=1ton P, =1

To generate a contact between two individuals we choose two end points as representa-
tives of these individuals. To identify their demographics and location, we randomly pick an
age and location based on the demographics and population dynamics of the location. Sub-
sequently, individual belonging to locations with larger populations and age group with higher
contact rates have a higher probability of being chosen for a contact as compared to the
ones belonging to locations with smaller populations and lower contact rates. Once the two
end points are identified, based on the proportions of infectious and susceptible populations
present in the locations they belong to, their clinical stage of being infectious, susceptible, or
recovered is decided using a random experiment. If either of individuals is infectious and the
other susceptible, then the infection may be transmitted to the susceptible individual. The
probability of transmission, referred in the model as infectivity, is the virulence of the virus
strain being modeled along with considerations such as distance between individuals, duration
of contact etc. Based on the infectivity, the infection may be transmitted to the suscep-
tible individual. During each simulated time step individuals are moved from infectious to
recovered state and from latent to infectious state based on the latent period and infectious
period of the disease. The steps involved in the generation of contacts are explained by the

following steps.

3.7.6. Generating Contacts

e Randomly pick an age A from age probability distribution

Pick a cell from the grid where population of A greater than 0

Based on age A decide whether to make a local or a global contact

Randomly pick another age B from age probability distribution

Based on local or global contact pick cell from the respective neighborhoods with

population of B greater than 0
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e Contact is established between the two cells

3.7.7. Spatial Interactions

2

We have implemented a dichotomy of global and local interactions to model distance
dependency and investigate the role of local and global contacts. This dichotomy helps
analyze the transmission of infectious disease in a population where mixing takes place on
the local level within small groups like households, and on the global level between random
individuals in the population. Studies [10] have shown that transmission within local groups
amplifies the total epidemic, which results in smaller periods of epidemics as compared to
homogeneous mixing with global contacts only. For global interactions, contacts are initiated
between any two cells in the grid, while for local interactions, the contacts are between
neighboring cells. In general, locality can be defined as the set of cells (census blocks) within
a specified distance range. The mixing patterns of the population are varied over different
proportions of global and local interactions. Different age groups use different mixing patterns
with different proportions of local and global contact, to model household, social, school or
work related contacts.

The prevalence levels of influenza is withessed to be the same, irrespective of the propor-
tions of local and global mixing. This suggests that influenza prevalence is independent of
the spatial domain, and correlates to the results of influenza prevalence in France [16]. The
incidence of influenza is further analyzed for varied rates of local and global interactions to
generate the corresponding epidemic curves, as shown in Fig 3.13. The incidence decreases

with higher proportions of local interactions. The results indicate that although influenza

2This section is reproduced from: A. Mikler, S. Venkatachalam and K. Abbas, Modeling Infectious Diseases
Using Global Stochastic Cellular Automata, Journal of Biological Systems, Vol. 13, No. 4, pp. 421-439,

December 2005. with permission from World Scientific Publishing Co. Pte. Ltd, Singapore.
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Figure 3.13. Epidemic Curves for Varied Rates of Global and Local Interactions

in the Heterogeneous Population of Northern Denton County

prevalence is independent of the spatial domain, the incidence of the epidemic is lowered with

higher proportions of local interactions.
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CHAPTER 4

EXPERIMENTS

In the following section we discuss the experiments conducted with the model described in
the previous chapter. While the main focus of the thesis was the design and implementation
of the simulation framework, experiments were conducted to study how different parameters
used in the simulation, effect the dynamics of disease spread in a population. Experiments
were conducted to analyze the effects of change in demographic parameters and disease
parameters. From the review of the literature and epidemiological studies few factors have
been identified as being important in a disease manifestation, such as interactions, contact
patterns, age-structure and the strain of virus. The model incorporates many of such factors
with a simulation perspective and tries to model a real life scenario. The experiments were also
used as a method of examining if this framework is a good starting point for a comprehensive

model.

4.1. Experimental Setup

Experiments were conducted on a field of size 50 X 100, comprising a total of 5000 loca-
tions. Each location on the field has a population and corresponding age-structure mapped
from a geographical region. The mapping of regional census data to grid data is explained
in chapter 3. For experimental purposes, the population and age-structure data of Denton
county, Texas was used. The total population size was around 100000. The results in this
section represent the average over multiple similar experiments. The analysis of results in
this section have been conducted with reference to to above definitions.

Table 4.1 states the approximate parameter values used for a base experiment. The values

were changed for experiments on specific demographics or disease.
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Table 4.1. Parameters

Parameter Value
Incubation period 3 days
Latent period 3 days
Infectious period 4 days
Recovery period 6
Infectivity 0.035
Immunity 0.25
Population | Northern Denton county
Contact Rate 8-14

4.2. Disease Prevalence Distribution

In order to model spatial spread of disease over a geographic region with a large population,
it is important to understand the underlying population and demographic dynamics of the
region. Consequently, on must rely of other means to derive the population dynamics that
promote the spread of disease. This is accomplished by using publicly available datasets, that
describe composition and behavior of the population of interest. We use data provided by US
census. This section discusses the population distribution of the Denton county, Texas. The
figures represent the data as obtained after rasterization of the US census data of denton
county. For experimental purposes we used the data of northern part of the Denton county.
The population of Denton county is around 431000 and population of northern Denton county
is around 110000. The northern part encompasses the Denton city.

Denton County Figure 4.1 shows the heterogeneous population distribution of Denton
county, with the population of 431,000 on a 200 *200 grid.

Northern Denton county
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Figure 4.2. Heterogeneous Population Distribution

Figure 4.2 shows the heterogeneous population distribution of area around Denton city.
Figure 4.3 illustrates the geographical map of the Northern Denton county area that we used
for simulation and experiments. Northern denton county encompasses of Denton city. The
total population of the region is 110000.

Figure 4.2 illustrates the heterogeneous population distribution for different age groups
for the area around denton city. The different age groups being under 9 years, 10 to 34 years,

35 to 59 years and above 60 of age. It is clear that Denton city has a higher population of
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Figure 4.3. Northern Denton County Map

adults in the age group of 10 to 34 years and 35 to 59 years as compared to over 60 years.

The child population is higher in the city as compared to areas farther than the city.

4.2.1. Infected population distribution

An experiment was conducted to analyze Influenza prevalence over Denton city. Similar
parameters were used as mentioned for the base experiment. Disease prevalence data was
analyzed for different age groups in the same population.

Fig. 4.5 illustrates the disease prevalence of influenza over that region. The total popu-
lation of the region is 110000 and the total number of infected people is 48000.

Figure 4.2.1 illustrates the disease prevalence of influenza over the region, for the different
age groups being under 9 years, 10 to 34 years, 35 to 59 years and above 60 of age. Prevalence
data on being compared with the population distribution of different age groups, we observe
that the prevalence of influenza is higher in age groups of 10 to 34 and under 9 years of age.

Such a prevalence may be thought of as a result of the population distribution and contact
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rate. Thus this experiment depicts the fact that a disease manifests itself highly in a densely

populated region.

4.3. Age Structure Evaluation

To evaluate the age-structure impact on epidemic spread for influenza experiment was
conducted with differing influenza disease parameters for each age group and also different
contact rates for each age group. Table 4.2 shows the respective contact rates used for each

age group. The results in figure 4.7 show normalized epi-curves for the four different age
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Table 4.2. Contact Rates

Age group | Avg. Contact Rate
under 9 10
10 to 34 10 days
35 to 59 6
over 60 3

groups. Where the curves show the proportion of the population infected. The epi-curves
show the number of infectives in the age group at any given time. The experiment was
conducted with similar disease virulence parameter and the same strain of influenza virus.
The difference in the curves for each age group is associated with their varying contact

patterns and population distribution.

4.4. Contact Structure / Mixing Patterns

Networks of social contacts channel the transmission of airborne infections. For simulating
an airborne infection like Influenza, it is important to simulate the contacts established in the

population as most of the transmission takes place during contacts. Contact structure of a
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Figure 4.5. Disease Prevalence Distribution
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Figure 4.6. Disease Prevalence Distribution for Different Age Groups

population varies based on the number of contacts made by individuals, the context of the
contact, the age group of the contact and distance of the contact. To study the consequences
of different contact patterns, different experiments were conducted. Each contact pattern
had a specific contact rate distribution among the different age groups.

The GSFS models the behavior patterns based on different contact rates. Figure 4.8
depicts the fact that the incidence level of infection in the population varies depending on

the contact rates of the age groups. Table 4.3 lists the contact rates for age groups 1, 2
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Figure 4.8. Incidence Level of Influenza for Different Contact/Interaction Patterns

,3 and 4 respectively. Higher contact rates for the second and the third age group result
in higher incidence level of influenza. With moderate contact rates the infection seems to
sustain for a longer time period infecting approximately the same number of people. This can

be interpreted as a stretching effect where the duration of epidemic is longer than usual.
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Table 4.3. Contact Rate

Age range | Avg. CR | Avg. CR | Avg. CR | Avg. CR
under 9 10 6 7 7

10 - 34 10 8 10 10
35-59 6 4 10 4

60 and over 3 3 3 4

4.5. Disease parameters

This section discusses the experiments conducted by changing various disease related
parameters to understand the dynamics of disease spread. When studying disease spread in

a population, along with the population and demographics dynamics, it is also important to

understand the effect of the virus strain and its characteristics.

4.5.1. Different Diseases

Using the same metrics of population and grid size, experiments were conducted with the

model for three different diseases, namely, common cold, conjunctivitis and influenza, under

the assumption of similar virulence/Infectivity of disease.

2500

2000 -

1500

Population

1000

500 -

T
Influenza
Conjunctivitis
Common Cold

Figure 4.9. Comparison of Infection Spread for Different Diseases

L
20

40

Time Steps

51

L
60

L
80

100




Table 4.4. Infection Timelines for Common cold, Conjunctivitis and Influenza

Disease Incubation Period | Latent Period | Infectious Period
Common cold 3 days 2 days 5 days
Conjunctivitis 3 days 1 day 6 days

Influenza 3 days 3 days 5 days

Table 4.5. Experiments with Different Index Cases

No. of Index Cases | Age Group | Total Infected
2 1,4 18601
1 2 12377
1 4 2
2 2,3 22384
2 1,3 22424

The infectious period, latency period and recovery period of the diseases, shown in Ta-
ble 4.4 [11, 41] were used in the experiments. Due to the relatively smaller incubation period
and higher infectious period of conjunctivitis, the rate of spread and the prevalence of con-

junctivitis is relatively higher in comparison to common cold and influenza (see Fig. 4.9).

452, Index Case

The incidence level of influenza in each group differs based on their interaction patterns
as shown by the experiments. To evaluate the effect of the age group of the index case
experiment was conducted by introducing index cases in different age group. Table 4.5 shows
the total number of infected individuals in the population for index cases in different age
groups. Index case in the age group of above 60 years results in no infection spread as
compared to two index cases in the age group of 10 to 34 years and 35 to 59 years, as they

have a different behavior patterns.
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4.6. Infectivity

The probability of a contact resulting in successful disease transmission depends on the
disease infectivity which is the virulence of the disease and also the various considerations
such as distance and duration of contact. When modeling virus strains the virulence can
be thought of as the differentiating factor between the strains. The virulence of a strain
identifies the degree of ability to cause the disease spread. The prevalence of influenza is
analyzed for varied levels of infectivity. Figure 4.10 illustrates that incidence decreases for
lower levels of infectivity. Rest of the parameters were similar to that of the base experiment.
This experiment exemplifies the sensitivity of the infectivity parameter. As this parameter is

more related to the disease dynamics, it is same for all the different age groups.

4.6.1. Immunity

Influenza viruses go through change continually over time, due to mutation, resulting in
different virus strains. This changing enables the virus strains to evade the immune system
of the host, so that people are susceptible to influenza virus throughout life. Re-infection
can occur in influenza when, an individual infected with influenza virus develops antibodies

against that virus; and as the virus changes, the older antibodies fail to recognize the new
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Table 4.6. Immunity Probabilities for Different Age Groups

Age Group | Immunity
1 0.6
2 0.8
3 0.8
4 0.0

virus. There are possibilities where certain strains share common sub-sequences, because of
that, individuals might develop cross immunity or heterosubtypic immunity. This immunity
provides partial protection against re-infection. In order to model this an experiment was
conducted where individuals in certain area were immunized. They were less susceptible than
individuals in other areas. Fig. 11(a) illustrates the population distribution and region immu-
nized. Result (Fig. 11(b)) indicates considerably lower prevalence as compared to (Fig. 12(a))
which illustrates prevalence for an experiment without immunity.

The constant change in the influenza virus, affects the pathogenictiy of the virus among
different age groups. For instance a strain that comes early in the year, might affect children
under the age of 15 more than young adults or older adults. This can be modeled by reduced
susceptibility for certain age groups. GSFS models reduced susceptibility by introducing im-
munity probabilities for each age group. Based on the value of immunity probability, the
chances of successful transmission of the virus to an individual, reduces or increases during
each contact with a susceptible. Experiment was conducted with immunity values for age
groups as listed in the table 4.6, where values represent the probability with which the sus-
ceptibility of an individual reduces. Figure 13(a) shows the disease prevalence distributions in
the population with and without immunity being considered. It depicts that when population

was immunized, it resulted in reduced susceptibility and a considerable lower rate of infection.
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Figures 13(c), 13(d), 14(a), 14(b) show the disease prevalence comparison for total infection

and infection for the particular age-groups respectively.

4.7. Composite Model

The GSFS model facilitates the modeling and simulation of a single disease outbreak in
a large geographic region. The results obtained from this model represent the severity of
an epidemic over time, allowing an epidemiologist to quantify the incidence and prevalence
in response to employing different public health policies (e.g., vaccination strategies). A
composition model, is developed which presumes that an epidemic as observed by health
care providers and public health officials, is the cumulative effect of multiple spatially and
temporally distributed small outbreaks as shown in figure 4.15.In the context of influenza, the
temporal-spatial progression of the disease account for cases that are observed by health care
providers during a flu season. Clearly, population density and age breakdown are important
demographic parameters that will determine how influenza will manifest itself in a particular

sub-region. The influenza infectious period in young children is known to exceed that of
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adults. Hence, one could expect cells (or sub-regions) with a larger proportion of children to
display an increased prevalence of influenza as compared to regions with a larger proportion of
adult population. Further, it is known that children are the primary transmitters of influenza.
Consequently, one might hypothesize that the composition model will yield results that reflect
an accelerated spread among regions with larger proportion of children. The model can be
used to investigate the spread of disease in each location and spread of infection from one
location to the other. A path of infection can be drawn by learning the data. The composition

models helps in identifying high risk groups and risk rate among particular regions and can

aid in applying public health policies.
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CHAPTER 5

DISCUSSION

5.1. Conclusion

The modeling of disease progression through classic SIR and traditional CA are limited
by the assumptions of homogeneous population and uniform mixing. These limitations are
addressed by the GSFS model, which is oriented towards heterogeneous population. The cell
interactions are currently based on population density, age and Euclidean distance, and can
be extended to incorporate geography, demography, environment and migration patterns.

Modeling outbreaks of infectious diseases using the traditional cellular automata (CA)
model is constrained by neighborhood saturation. The classic susceptibles-infectives-removals
(SIR) model is oriented towards a homogeneous population with uniform mixing. The limita-
tions of traditional CA and classic SIR models necessitates the need for new computational
models to study the complexity of the spread of diseases in the real world. The global sto-
chastic field simulation (GSFS) paradigm is used to model outbreaks of infectious diseases.
The GSFS model supports modeling and analysis of disease progression in heterogeneous
environments, and can incorporate geography, demography, environment, and migration pat-
terns into the interaction measure between cells on a global neighborhood level. The GSFS
model includes interactions based on population density, age as a demographic characteristic
and Euclidean distance, and has been implemented to model the progression of three dis-
eases, namely, common cold, conjunctivitis, and influenza. Rasterized GIS population data
of Denton city is incorporated to model heterogeneous population through GSFS. The age
structure is incorporated into GSFS by dividing the population into four different age groups.

The different age groups being under 9 years, 10 to 34 years, 35 to 59 years and above 60

59



of age. Based on the experiments done on Denton city which has a higher population of
adults in the age group of 10 to 34 years and 35 to 59 years as compared to over 60 years,
we can notice that the prevalence is also different for these age groups. This shows that
age is an important demographic when modeling disease spread. Along with the age group,
other parameters that affect the spread of disease and are dependent on age of a person
are infectivity and immunity. GSFS also facilitates modeling diseases with different values of
infectivity and immunity. For simulating an airborne infection like Influenza, it is important to
simulate the contacts established in the population as most of the transmission takes place
during contacts. Contact structure of a population varies based on the number of contacts
made by individuals, the context of the contact, the age group of the contact and distance
of the contact. Current model of GSFS does simulate different contact patterns based on
age groups. The spatial progression of influenza across the heterogeneous population reveals
the independence of influenza prevalence for the spatial domain, while influenza incidence
decreases with higher rates of local interactions. The GSFS models the behavior patterns
based on different contact rates. Experiments have shown that the incidence level of infection
in the population varies depending on the contact rates of the age groups. Higher contact
rates for the 10 to 34 and 35 to 59 age group result in higher incidence level of influenza.
With moderate contact rates the infection seems to sustain for a longer time period infecting
approximately the same number of people. This can be interpreted as a stretching effect
where the duration of epidemic is longer than usual. The stretching effect further also shows
similar effect as seen by self quarantining. By self quarantine the contacts/interactions are
reduced as a result of which the infection spread is reduced. GSFS can thus be used to
model a situation of quarantine to study the effects on a disease outbreak. To facilitate
surveillance, monitoring, prevention and control of different diseases, computational models

must be developed. To this end, the GSFS model shall prove to be an valuable asset in the
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analysis of progression of infectious diseases, thereby leading to optimal utilization of public

health resources.
5.2. Future Work

Although the current GSFS model provides a framework for modeling infectious disease
spread, there are lot of chances for future work and to enhance the model further. Based on
the experiments shown in the previous chapter, it is obvious that interactions/contact struc-
ture is an important consideration while modeling infectious disease spread. The interactions
among individuals currently is done based on population and distance and age proportions.
However, instead of distance and population, the controlling factors for cell interaction are
age proportions and population densities. One caveat, however, is that real-world interaction
with individuals in the same neighborhood seldom causes the transmission of influenza. In
fact, it is much more likely that influenza viruses are being transmitted at common mixing
points, such as schools, work place, church, etc. Hence, we are proposing a modification
of the composition model to supplement direct cell interaction with indirect cell interaction
through common mixing points. These mixing points can have geographic/demographic as-
sociations to facilitate the interaction of specific sub-regions at specific. A model with few
mixing points causes an accelerated epidemic over a shorter time as compared to a global
interaction model. For example, children from a small sub-region,which is represented by a
block of cells in the CA may interact with each other at the same elementary school, transmit
influenza among themselves, and carry the disease to their corresponding locality. Teenagers
from a larger, not necessarily connected geographic region may interact at the a high school.
This may cause the spread of influenza across larger distance. Also as seen in the previous
chapter the composition model can prove to be a very effective way to analyze and study the
disease spread for all regions which are a part of the county or state. It can further by used

to identify certain risk groups in the region for optimal utilization of public health resources.
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