RESEARCH MEMORANDUM

LOW-SPEED ROLL EFFECTIVENESS OF A DIFFERENTIALLY DEFLECTED HORIZONTAL-TAIL SURFACE ON A 42° SWEPT-WING MODEL

By Peter C. Boisseau

Langley Aeronautical Laboratory
Langley Field, Va.

DECLASSIFIED - AUTHORITY
US 1391 DROBKA TO LEBOW
MEMO DATED 6/30/66

N66 34102

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
WASHINGTON
June 19, 1958
LOW-SPEED ROLL EFFECTIVENESS OF A DIFFERENTIALLY
DEFLECTED HORIZONTAL-TAIL SURFACE
ON A 42° SWEPT-WING MODEL

By Peter C. Boisseau

SUMMARY

An investigation has been made in the Langley free-flight tunnel to
determine the roll effectiveness of a differentially deflected horizontal
tail on a 42° swept-wing model. The model was tested through an angle-
of-attack range of 0° through the stall in the clean and landing config-
urations with the horizontal tail in a low position. The model was also
tested in the clean configuration with the horizontal tail in the middle
or high positions.

In general, differential deflection of the horizontal tail had little
effect on the longitudinal characteristics of the model. At low angles
of attack the rolling moments produced by the tail (at a mean tail inci-
dence of 0°) were less than half those produced by the ailerons, but near
the stall the moments produced by the two controls were almost equal.
The rolling moments for the three tail positions were generally less for
-15° incidence than those for a tail incidence of 0° over the angle-of-
attack range. Evaluated on the basis of longitudinal trim conditions,
differential deflection of the horizontal tail produced large favorable
yawing moments when the tail was in the low position and large adverse
yawing moments when the tail was in a high position but produced only
small yawing moments for the middle-tail position.

INTRODUCTION

Interest has recently been shown in the use of all-movable horizontal
tails deflected differentially for roll control. The results of previous
investigations (refs. 1 to 7) show that the roll effectiveness of the
horizontal tail is less than that for ailerons at low angles of attack
but that the roll effectiveness of the horizontal tail is maintained up
to high angles of attack and at transonic speeds where ailerons tend to
lose some of their effectiveness. These results, therefore, appear to indicate some promise for controls of this type.

In order to provide additional information on tail roll controls, force tests have been conducted in the Langley free-flight tunnel on a 42° swept-wing model with the all-movable horizontal tail deflected differentially. Tests were made of the model in the clean configuration with the horizontal tail in three vertical positions: low, middle (midway of the exposed height of the vertical tail) and high (on top of the vertical tail). Tests were made in the landing configuration with the low tail position.

SYMBOLS

The data are presented in the form of standard NACA coefficients of forces and moments. The longitudinal data are referred to the stability system of axes and the lateral data are referred to the body system of axes. (See fig. 1.) The coefficients are based on the dimensions of the wing plan form, the chord extension being neglected. The origin of the axes was located to correspond to a center-of-gravity position of 28.7 percent and 35.0 percent of the mean aerodynamic chord for the model in the clean configuration and the landing configuration, respectively.

- S wing area, sq ft
- c wing mean aerodynamic chord, ft
- V airspeed, ft/sec
- b wing span, ft
- q dynamic pressure, $\frac{\rho V^2}{2}$, lb/sq ft
- ρ air density, slugs/cu ft
- β angle of sideslip, deg
- ψ angle of yaw, deg
- ϕ angle of bank, deg
- α angle of attack of fuselage reference line, deg
- i_w angle of incidence of wing with respect to fuselage reference line, deg
Angle of incidence of horizontal tail with respect to fuselage reference line, deg

\(\delta \) difference in deflection between a pair of control surfaces used as lateral controls, positive when left-hand control has more positive deflection, deg

\(\delta_{f} \) symmetrical deflection of wing trailing-edge control, measured perpendicular to hinge line, deg

\(\delta_{ILE} \) deflection of inboard wing leading-edge, deg

\(\delta_{OLE} \) deflection of outboard wing leading-edge, deg

\(X_{s} \) longitudinal force, lb

\(Y \) lateral force, lb

\(Z_{s} \) normal force, lb

\(F_{y} \) side force, lb

\(F_{L} \) lift, lb

\(F_{D} \) drag, lb

\(M_{Y} \) pitching moment, ft-lb

\(M_{X} \) rolling moment, ft-lb

\(M_{Z} \) yawing moment, ft-lb

\(C_{L} \) lift coefficient, \(\text{Lift}/qS \)

\(C_{D} \) drag coefficient, \(\text{Drag}/qS \)

\(C_{m} \) pitching-moment coefficient, \(M_{Y}/qS\bar{c} \)

\(C_{n} \) yawing-moment coefficient, \(M_{Z}/qSb \)

\(C_{l} \) rolling-moment coefficient, \(M_{X}/qSb \)

\(C_{Y} \) lateral-force coefficient, \(F_{y}/qS \)

Subscripts:

\(w \) wing

\(t \) horizontal tail
APPARATUS AND MODEL

The tests were conducted in the Langley free-flight tunnel with a sting-type support system and an internally mounted strain-gage balance. A three-view drawing of the model is shown in figure 2 and the dimensional characteristics are given in table I. With the model in the clean configuration the wing incidence was \(-1^\circ\) and the leading- and trailing-edge flaps were at \(0^\circ\). For the landing configuration the wing incidence was \(9^\circ\), the inboard and outboard leading-edge flaps were down \(25^\circ\) and \(30^\circ\), respectively, and the trailing-edge flaps were down \(20^\circ\). When the horizontal tail was in the middle or high position, the center section, which represented the unexposed section of the horizontal tail in the low position, was used for longitudinal trim but not for roll control. That is, only the original exposed area was deflected differentially.

TESTS

Force tests were made to determine the rolling effectiveness of the horizontal tail with the vertical tail off and on. The horizontal tail in the low position was deflected differentially \(\pm 10^\circ\) and \(\pm 15^\circ\) from tail incidences of \(0^\circ\) and \(-15^\circ\) for the clean and landing configurations. The tail in the middle and high positions was deflected \(\pm 15^\circ\) from tail incidences of \(0^\circ\) and \(-15^\circ\) for the clean configuration only. Tests were made to determine the effect of differential deflection of the low horizontal tail on the longitudinal characteristics of the model for both the clean and landing conditions. The longitudinal characteristics of the model with the tail in the middle and high position were determined in the clean condition only.

All tests were run at a dynamic pressure of 4.37 pounds per square foot, which corresponds to an airspeed of about 61 feet per second at standard sea-level conditions and to a test Reynolds number of \(0.51 \times 10^6\) based on the mean aerodynamic chord of 1.309 feet.
RESULTS AND DISCUSSION

Longitudinal Characteristics

Static longitudinal characteristics of the model with the horizontal tail in the low position are presented in figure 3 for the model in the clean and landing configurations. The effects of tail incidence and differential deflection of the horizontal tail for the low, middle, and high positions are shown in figure 4 for the model in the clean condition. The greater effectiveness of the middle and high horizontal tails is attributed principally to the fact that in these cases the entire tail (not just the exposed area) was deflected for control. The effectiveness of the tail in the high position is slightly greater than that of the tail in the middle position apparently because of the greater tail length for the tail in the high position. (See table I and fig. 2.) In general, differential deflection of the horizontal tail had little effect upon the longitudinal characteristics of the model.

Lateral Characteristics

Presented in figures 5 and 6 are the incremental values of C_α, C_n, and C_y produced by deflecting the low horizontal tail differentially $\pm 10^\circ$ and $\pm 15^\circ$ for mean tail incidences of 0° and -15° for the model in the clean and landing configurations with the vertical tail off and on. For the model in the clean configuration (fig. 5), the roll effectiveness is much less at low angles of attack for an incidence of -15° than it is for 0° because one of the surfaces is stalled. At high angles of attack, however, the roll effectiveness is greater with the -15° incidence, because this incidence then tends to keep the tail unstalled. For the model in the landing configuration (fig. 6), the overall variation of roll effectiveness with angle of attack was generally similar but the values of ΔC_α were somewhat smaller than that for the model in the clean configuration. This decreased effectiveness in the landing configuration is probably caused by stalling on one of the surfaces resulting from the increased downwash at a given angle of attack produced by flap deflection and wing incidence. In general, the data of figures 5 and 6 show smaller rolling moments with vertical tail on than with vertical tail off apparently because the loads induced on the vertical tail by the differentially deflected low horizontal tail produce adverse rolling moments.

The data show that differential deflection of the horizontal tail had little effect on the yawing moments with the vertical tail off but the deflection produced very large yawing moments with the tail on. The large yawing moments, which occurred for both tail incidences, were produced by the asymmetrical loads induced on the vertical tail by the horizontal tail. These large yawing moments resulted in large values of
the parameter $\frac{\Delta C_r}{\Delta C_t}$ which would probably be considered undesirable from a flying-qualities standpoint.

The data for the horizontal tail in the middle and high positions for the model in the clean configuration are shown in figures 7 and 8, respectively. In order to show the effect of tail position, the vertical-tail-on data from figures 7 and 8 and similar data from figure 5 for the low-tail position are compared in figure 9. The data of figure 9(a) are directly comparable at zero angle of attack where the model was approximately in trim for all three tail positions. The data of figure 9(b) for -15° tail incidence are not directly comparable at any given angle of attack because the trim angle of attack is different for each tail position. (See fig. 4.) Although not directly comparable, the data of figure 9(b) should give some indication of the effect of tail position in the high angle-of-attack range.

The data of figure 9(a) show that at 0° tail incidence the incremental rolling moments for the tail in the low and middle positions were generally similar and somewhat less than the incremental rolling moments for the tail in the high position. The rolling moments were greater for the tail in the high position than for the middle and low tail positions apparently because of the difference in the loads induced on the vertical tail, and additionally, at the higher angles of attack from the difference in downwash on the horizontal tail. The yawing moments were favorable for the low tail position, almost zero for the middle tail position, and adverse for the high tail position. The changes in yawing moment with variation in height of the horizontal tail were caused by changes in both the magnitude and direction of the induced loads on the vertical tail.

A comparison of the data of figures 9(a) and 9(b) shows that the rolling moments for the three tail positions were generally less for -15° incidence than those for a tail incidence of 0° over the angle-of-attack range, except for the low tail position at high angles of attack. In the high angle-of-attack range, the rolling moments with the -15° incidence were greater for the low tail position than for the middle and high tail positions probably because of the differences in downwash at the tail.

The reasons for the large positive increase in yawing moment for the middle and high tail positions, at low angles of attack, when the incidence is changed from 0° to -15° are not fully understood. Only a portion of these changes in yawing moment can be explained by a consideration of the differential tail drag. On the basis of the present data, no explanation can be given for the changes in the yawing moment from a large negative value to a large positive value when the incidence of the high horizontal tail is changed from 0° to -15°. Actually, the yawing-moment data of figure 9(b) are of practical significance only in the high
angle-of-attack range where the model is in trim longitudinally with the
tail incidence of -15°. For these trim conditions, changes in tail posi-
tion cause changes in yawing moment that are in the same direction as,
but smaller than, those shown by the data of figure 9(a) for 0° incidence.
Interpolations based on the data of figures 4 and 9 indicate, for trimmed
conditions at intermediate angles of attack, the same general variation
of yawing moment with tail position would be obtained.

In figure 10 is shown a comparison of the incremental rolling and
yawing moments produced by the ailerons and the low horizontal tail
($i_t = 0$) up to an angle of attack of 50°. At low angles of attack the
aileron are more than twice as effective as the horizontal tail as a
roll control. As the angle of attack increases, the rolling moments of
the aileron drop off rapidly until at an angle of attack of about 18°
they become approximately equal to the moments produced by the horizontal
tail. Above an angle of attack of 32° the rolling moments produced by
the horizontal tail drop off to zero whereas the ailerons maintain some
effectiveness through an angle of attack of 50°. The yawing moments pro-
duced by the ailerons were favorable up to an angle of attack of 18° and
then become rather small and erratic over the remaining angle-of-attack
range. The yawing moments produced by the horizontal tail were favorable
up to an angle of attack of about 28° and became highly adverse at very
high angles of attack. It should be pointed out that, although the hori-
zontal tail and the ailerons produced about the same yawing moments at
an angle of attack of 0°, the important control parameter $\frac{\Delta C_n}{\Delta C_l}$
greater for the tail control. As pointed out previously, this large
value of $\frac{\Delta C_n}{\Delta C_l}$ for the low horizontal tail would probably lead to unde-
sirable flying qualities.

CONCLUSIONS

Results of an investigation made to determine the rolling effective-
ness of an all-movable horizontal tail when deflected differentially indi-
cate the following conclusions:

1. Differential deflection of the horizontal tail had little effect
on the longitudinal characteristics of the model.

2. At low angles of attack the rolling moments produced by the low
tail (at a mean tail incidence of 0°) were less than half those produced
by the ailerons but near the stall the moments produced by the two controls
were almost equal.
3. The incremental rolling moments for the three tail positions were generally less for -15° incidence than those for a tail incidence of 0° over the angle-of-attack range.

4. Evaluated on the basis of longitudinal trim conditions, differential deflection of the horizontal tail produced large favorable yawing moments when the tail was in the low position and large adverse yawing moments when the tail was in the high position but produced only small yawing moments for the middle tail position.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 12, 1956.
REFERENCES

3. English, Roland D.: Free-Flight Investigation, Including Some Effects of Wing Aeroelasticity, of the Rolling Effectiveness of an All-Movable Horizontal Tail With Differential Incidence at Mach Numbers From 0.6 to 1.5. NACA RM L54K30, 1955.

<table>
<thead>
<tr>
<th>Wing:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfoil section at root</td>
<td>NACA 65A006</td>
</tr>
<tr>
<td>Airfoil section at tip</td>
<td>NACA 65A005</td>
</tr>
<tr>
<td>Area (without chord-extension), sq ft</td>
<td>4.63</td>
</tr>
<tr>
<td>Span, ft</td>
<td>3.96</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>3.39</td>
</tr>
<tr>
<td>Root chord (on fuselage reference line), ft</td>
<td>1.87</td>
</tr>
<tr>
<td>Tip chord (without chord-extension), ft</td>
<td>0.462</td>
</tr>
<tr>
<td>Tip chord (with chord-extension), ft</td>
<td>0.518</td>
</tr>
<tr>
<td>Mean aerodynamic chord, c, ft</td>
<td>1.309</td>
</tr>
<tr>
<td>Sweep of quarter chord, deg</td>
<td>42</td>
</tr>
<tr>
<td>Dihedral, deg</td>
<td>-5</td>
</tr>
<tr>
<td>Taper ratio (without chord-extension)</td>
<td>0.247</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incidence:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean configuration, deg</td>
<td>-1</td>
</tr>
<tr>
<td>Landing configuration, deg</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontal tail:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfoil section at root</td>
<td>NACA 65A006</td>
</tr>
<tr>
<td>Airfoil section at tip</td>
<td>NACA 65A004</td>
</tr>
<tr>
<td>Area:</td>
<td></td>
</tr>
<tr>
<td>Total, sq ft</td>
<td>1.154</td>
</tr>
<tr>
<td>Exposed (low tail only), sq ft</td>
<td>0.711</td>
</tr>
<tr>
<td>Span:</td>
<td></td>
</tr>
<tr>
<td>Total, ft</td>
<td>2.01</td>
</tr>
<tr>
<td>Movable panel, ft</td>
<td>0.76</td>
</tr>
<tr>
<td>Root chord (on fuselage reference line), ft</td>
<td>1.00</td>
</tr>
<tr>
<td>Tip chord, ft</td>
<td>0.148</td>
</tr>
<tr>
<td>Sweep of quarter chord, deg</td>
<td>-45</td>
</tr>
<tr>
<td>Dihedral, deg</td>
<td>5.42</td>
</tr>
<tr>
<td>Aspect ratio (based on total tail area)</td>
<td>5.30</td>
</tr>
<tr>
<td>Taper ratio</td>
<td>0.148</td>
</tr>
<tr>
<td>Longitudinal distance from 0.287 c to quarter chord of tail:</td>
<td></td>
</tr>
<tr>
<td>Low, ft</td>
<td>1.473</td>
</tr>
<tr>
<td>Middle, ft</td>
<td>1.850</td>
</tr>
<tr>
<td>High, ft</td>
<td>2.24</td>
</tr>
<tr>
<td>Vertical distance from center of gravity:</td>
<td></td>
</tr>
<tr>
<td>Low, ft</td>
<td>-0.067</td>
</tr>
<tr>
<td>Middle, ft</td>
<td>0.79</td>
</tr>
<tr>
<td>High, ft</td>
<td>1.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical tail:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfoil section at root</td>
<td>NACA 65A006</td>
</tr>
<tr>
<td>Airfoil section at tip</td>
<td>NACA 65A004</td>
</tr>
<tr>
<td>Area (dorsal fin exposed and including 0.0926 ft² of), ft²</td>
<td>1.0</td>
</tr>
<tr>
<td>Span, ft</td>
<td>1.063</td>
</tr>
<tr>
<td>Root chord (on fuselage reference line), ft</td>
<td>1.455</td>
</tr>
<tr>
<td>Tip chord, ft</td>
<td>0.380</td>
</tr>
<tr>
<td>Sweep of quarter chord, deg</td>
<td>45</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>1.24</td>
</tr>
<tr>
<td>Taper ratio</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Figure 1.- System of axes used in the investigation. The longitudinal data are referred to the stability system of axes and the lateral data are referred to the body system of axes. Arrows indicate positive directions of moments, forces, and angles.
Figure 2.- Three-view drawing of the model used in the investigation. All dimensions are in inches.
Figure 3.- Longitudinal characteristics of the model in the clean and landing conditions with the horizontal tail in the low position.
Figure 4.— Effect of vertical position and differential deflection of the horizontal tail on the longitudinal characteristics of the model in the clean condition. All flap deflections zero. $i_w = -1^\circ$.

(a) Horizontal tail in low position.
(b) Horizontal tail in middle position.

Figure 4.- Continued.
(c) Horizontal tail in high position.

Figure 4.— Concluded.
Figure 5. - Increments in the lateral-force and moment coefficients produced by differential deflection of the horizontal tail in the low position for the model in the clean condition.

(a) $i_t = 0^\circ$.
(b) $i_t = -15^\circ$.

Figure 5.- Concluded.
Figure 6.- Increments in the lateral-force and moment coefficients produced by differential deflection of the horizontal tail in the low position for the model in the landing condition.
Figure 6.- Concluded.
Figure 7.- Increments in the lateral-force and moment coefficients produced by differential deflection of the horizontal tail in the middle position for the model in the clean configuration with vertical tail on.
Figure 8.- Increments in the lateral-force and moment coefficients produced by differential deflection of the horizontal tail in the high position for the model in the clean configuration with vertical tail on.
Tail position

- Low
- Mid
- High

Figure 9. - Comparison of the yawing- and rolling-moment coefficients produced by differential deflection of the horizontal tail at various vertical positions. $\delta = \pm 15^\circ$.

(a) $i_t = 0^\circ$.

Figure 9. - Comparison of the yawing- and rolling-moment coefficients produced by differential deflection of the horizontal tail at various vertical positions. $\delta = \pm 15^\circ$.

(a) $i_t = 0^\circ$.

(a) $i_t = 0^\circ$.
Tail position

--- Low
--- Mid
--- High

\[\Delta C_n \]

\[\Delta C_l \]

\(\alpha, \text{deg} \)

(b) \(\phi_t = -15^\circ \).

Figure 9.- Concluded.
Figure 10. Comparison of the lateral-control effectiveness produced by the ailerons and horizontal tail (low position), $\delta = 15^\circ$, $\alpha = 0^\circ$.

NACA - Langley Field, V_a.

NACA RM L56E03