

Declass NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC led by authority of N. RESEARCH MEMORANDUM Motices No.-EXPERIMENTAL INVESTIGATION OF THE TRANSONIC AND SUPERSONIC FLUTTER CHARACTERISTICS OF THE UPPER AND LOWER VERTICAL TAILS OF

AN AIR-TO-GROUND MISSILE

By Perry W. Hanson and A. Gerald Rainey

SUMMARY

20902 Flutter models of the upper and lower vertical tails of an air-toground missile have been tested in the Mach number range from 0.5 to 3.0. It was found that the upper surface exhibited more or less conventional flutter behavior throughout the Mach number range, whereas the lower surface experienced a sudden change in flutter mode at a Mach number of about 1.18. This change in flutter mode was accompanied by a decrease of about 50 percent in the density required for flutter to occur.

INTRODUCTION

Juchy

The increased usage of highly swept surfaces for stability and control of airplanes and missiles coupled with the frequent occurrence of flutter of these surfaces has led to considerable interest in a study of their flutter characteristics. At the present time, analytical predictions of the flutter behavior of such surfaces are subject to question, particularly in the transonic speed range. Furthermore, no systematic experimental trend studies have been made so that the designer, at present, is faced with the problem of having to determine experimentally the flutter characteristics of each particular configuration he may wish to It is for this reason that it was considered desirable to test use. models of the upper and lower vertical tails of a proposed air-to-ground The models were tested at Mach numbers of about 0.5 to 1.24 in missile. the Langley 2-foot transonic flutter tunnel and at Mach numbers of 1.3 to 3.0 in the Langley 9- by 18-inch supersonic flutter tunnel.

The purpose of this paper is to present the experimentally determined flutter characteristics of these two configurations and to present the available structural information describing the models.

SYMBOLS

a speed of sound, ft/sec

b semichord at three-quarter-span station, ft

M Mach number

 μ mass-ratio parameter (see pages 4 and 5)

ρ density of test medium, slugs/cu ft

 $\omega_{f}/\omega_{\beta}$ ratio of flutter frequency to coupled rudder rotation frequency

APPARATUS AND TESTS

Description of Wind Tunnels

The tests were conducted in the Langley 2-foot transonic flutter tunnel for the Mach number range from 0.5 to 1.24 and in the Langley 9by 18-inch supersonic flutter tunnel for the Mach number range from 1.3 to 3.0.

The Langley 2-foot transonic flutter tunnel is a conventional slottedthroat single-return wind tunnel equipped to use either air or Freon-12 as a test medium. This tunnel is of the continuous-operation type; that is, it is powered by a motor-driven fan. Both test section Mach number and density are continuously controllable.

The 9- by 18-inch supersonic flutter tunnel is a conventional fixednozzle blowdown-type wind tunnel exhausting into a vacumm sphere. The nozzle configurations used in this investigation gave Mach numbers of 1.3, 1.64, 2.0, and 3.0. At each Mach number the test-section density is continuously controllable. For one run the M = 1.3 nozzle was operated subsonically to check the compatability of the two tunnels at about the same Mach number.

Description of Models

The two configurations tested simulated the upper and lower vertical tails of an air-to-ground missile. These two configurations were similar in several respects. For example, both surfaces had their leading edges swept back 60° and both surfaces were equipped with unbalanced rudders hinged at the leading edge of the rudder. The two configurations differed

primarily in the root fixity and in plan-form details at the tip. The upper vertical tail plan form was 1/10 scale and had an aspect ratio of 0.63 and a taper ratio of 0.34. The lower vertical tail was 1/7 scale and had an aspect ratio of 0.72 and a taper ratio of 0.43. Models of both configurations had flat-plate airfoil sections with beveled leading and trailing edges. The models were cut from 202^{4} -T aluminum-sheet stock and tapered in thickness by a chemical milling process. The plan-form dimensions of the two configurations and the design thickness distribution of all the models tested are shown in figure 1. Models of different thicknesses indicated by the numerical designations were used in order to obtain flutter points within the limitations of the two tunnels. The actual measured thicknesses of the lower surface models were about 15 percent thicker than the design thickness and the upper surface models varied from the design thickness by about ± 0.003 inch.

The models were mounted on the tunnel wall with two different types of simulated fuselage mounts as shown in figure 2. In figure 2(b) the upper portion of the clamp has been removed to show the method of clamping. The mount used in the supersonic tests placed the root chord about 3/4 inch away from the wall, whereas the mount used in the transonic tunnel placed the root chord about 3 inches away from the wall. The primary purpose of these simulated fuselages was to remove the models from the tunnel-wall boundary layer.

The lower surface models had an integral base block which provided clamping along the entire root chord. The upper surface models had a root fixture (see figs. 1(b) and 3) which simulated the fuselage attachment fittings of the prototype.

The rudders of the models were made by cutting the outline of the rudder from the model except for a small portion near the hinge line near the root. The outer portion of the rudder was held to the fin by means of nylon thread hinges. These hinges were made by drilling a small hole on each side at the hinge line, drawing a small nylon thread through the holes so as to form a figure eight, and then gluing the thread at the holes. The model rudder rotation frequencies were tuned to the desired values by varying the amount of retaining metal at the hinge line near the root. (See fig. 3(b).) In some cases for the lower surface it was necessary to lower the bending frequency by making small cuts parallel to the air flow at the root chord.

The models were equipped with an electrical-resistance-wire straingage bridge oriented to be sensitive to the flutter mode.

The masses and natural vibration frequencies of the various models tested are presented in table I. In the "Model Number" column, the letters A, B, C, D suffixed to the numerical designations indicated duplicate models for each thickness series. The first four natural

vibration modes measured for models 11-B and 25-B are presented in figures 4 and 5. These measured modes are considered to be representative of all the models tested. These modes were obtained by the method used in reference 1. The modes are shown as three-dimensional drawings of the deflected models along with a table of deflections (normalized on the maximum deflection) at various points. The locations of these points are presented in figure 6 for both the upper and lower surfaces. The node lines for the lower surface are shown in figure 7(a) and those for the upper surface in figure 7(b).

Test Procedure

The test procedures used in the two wind tunnels were similar in that the Mach number was first established at the desired value and then the test section density was increased until flutter was observed. The tests in the two tunnels differed in that the time required to reach the flutter condition was only a few seconds in the supersonic flutter tunnel whereas the time required in the transonic tunnel was several minutes. As will be noted subsequently, the agreement indicated by the data from the two facilities implies that these and other differences between the two tests had insignificant effects on the results.

For the tests in the supersonic tunnel the model strain-gage output as well as tunnel conditions were recorded for the entire run by utilizing an oscillograph. In the transonic tunnel the strain-gage output from the model was recorded continuously by using a magnetic tape recorder equipped with a frequency modulation system. In this manner, a record of the flutter condition could be obtained even though the model might be destroyed in too short a period of time for a record to have been obtained otherwise.

RESULTS AND DISCUSSION

The basic data obtained in this investigation are presented in table I and figures 8 and 9. Figure 8 shows the variation of the altitude-stiffness parameter $\frac{b\omega_{\beta}}{a}\sqrt{\mu}$ with Mach number. The altitude-stiffness parameter values shown are based on the semichord b at the three-quarter-span station. For the lower surface the value of b used was 0.203 foot, whereas for the upper surface b was 0.214 foot. The frequency ω_{β} used

in calculating values of the parameter is the measured frequency of the second mode for all the models. This second mode resembles a rudder rotation mode and will be referred to as such subsequently. For the lower surface the mass-ratio parameter μ is defined as the ratio of the mass of the exposed model to the mass of the volume of air contained in the conical frustrum whose height is the model span and whose bases have

diameters equal to the root chord and the tip chord. For the upper surface, which has a rounded tip, the mass ratio is defined in the same manner except that an extrapolated tip chord which is obtained by extending the trailing edge to the tip is used. For the lower surface the volume was 0.0743 cubic foot whereas for the upper control it was 0.0874 cubic foot.

Figure 8(a) indicates that the altitude-stiffness parameter for the upper surface had a conventional variation with Mach number, that is, it increased almost linearly to a high value near M = 1.0 and then, after a small decrease, increased to higher values near M = 3.0. This type of flutter boundary has been observed for a variety of configurations.

In figure 8(b) the flutter boundary for the lower surface exhibits somewhat unusual behavior. The flutter boundary is composed of two segments which resemble conventional flutter behavior except that the two segments are separated by a discrete jump at a Mach number of about 1.18. This jump in the parameter corresponds to a decrease of about 50 percent in the density required to produce flutter. This decrease is associated with a change in the mode of flutter as evidenced by the change in flutter frequency shown in figure 9. Figure 9(b) indicates that the flutter frequency for the lower surface increased discontinuously from a frequency slightly below the rudder rotation frequency to values somewhat higher than the rudder rotation frequency. This change in mode occurred at the same Mach number as that at which the decrease in flutter density occurred. A sudden change of flutter mode with associated changes in the flutter boundary has been observed before for other configurations. (See ref. 2.)

Figure 9(a) indicates that the flutter mode for the upper fin underwent similar changes through the Mach number range except that the change from a low frequency mode to a higher frequency mode required a much larger change in Mach number.

The possibility of a reflected shock wave causing the abrupt change in flutter mode has been considered. Construction of a Mach angle diagram for the lower surface model at M = 1.3 in the supersonic tunnel indicates that the shock reflected from the tunnel side wall would intercept the model tip. However, a similar estimate of reflected-shock conditions in the larger transonic tunnel indicates that the reflected shock should clear the model at Mach numbers greater than M = 1.05. The relatively smooth variation of the data through this Mach number would indicate little effect of reflected shocks on the data. Furthermore, it might be noted that the generally good agreement indicated by the data from the two testing facilities lends credence to the data as a whole.

Some speculative remarks may be in order concerning a possible cause for the observed change in mode. It is noted in figure 1 that the trailing edge of the lower surface model is at an angle of 58.4° with the airstream

direction. The Mach number which has a Mach angle corresponding to this trailing-edge angle is about 1.17 - in other words, very near the Mach number at which the change in flutter mode occurred. When the Mach angle reaches the trailing-edge angle, certain changes in the flow conditions can be expected. For example, disturbances originating at the trailing-edge root intersection can no longer be propagated onto the surface. The possible importance of this observation can be judged by examination of the rudder-rotation deflection mode shown in figure 4(b) which indicates that the largest deflections in this mode occur at the intersection of the trailing edge and the root. Another change in flow conditions which occurs at this Mach number is that the shed vorticity in the wake can no longer induce forces on the surface.

Further substantiation of these remarks is offered by the data of reference 2 which indicate a change in flutter mode for delta configurations at M = 1.0. The data obtained for the upper surface in this investigation do not contradict the foregoing statements in that the gradual change in flutter mode which occurred for this configuration can be said to have occurred near M = 1.29, the Mach number having a Mach angle equal to the trailing-edge angle.

CONCLUDING REMARKS

Flutter models of the upper and lower vertical tails of an air-toground missile have been tested in the Mach number range from 0.5 to 3.0. It was found that the upper surface exhibited more or less conventional flutter behavior throughout the Mach number range whereas the lower surface experienced a sudden change in flutter mode at a Mach number of about 1.18. This change in flutter mode was accompanied by a decrease of about 50 percent in the density required for flutter to occur.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., March 28, 1957.

REFERENCES

- Hanson, Perry W., and Tuovila, W. J.: Experimentally Determined Natural Vibration Modes of Some Cantilever-Wing Flutter Models by Using an Acceleration Method. NACA TN 4010, 1957.
- 2. Jones, George W., Jr., and Young, Lou S., Jr.: Transonic Flutter Investigation of Two 64⁰ Delta Wings With Simulated Streamwise Rib and Orthogonal Spar Construction. NACA RM L56127, 1957.

TABLE I.- BASIC DATA

(a) Lower vertical tail

•••

																		1
L Emp	н в	1.41		1,4,1	1.20	1.20	1.96	•713	1.83	1•33	1.905	1.79	1.625	ч 8	2.04	250		990°
-	1	21.0	25.3	20.9	19.9	307.6	8	9 . 87	5	ං දැ	89.7	80.3	67 . 2	49.5	62.4	<u>с</u> ВО		
	a / dm	0.307	.281	•271	- 282	.0728	.218	.227	.229	.297	501	200	83	.256	258			Cot.
×	:	0.984	1.055	1.151	940	-874 -	1.236	.510	1.202	-974	1.3	1.3	1.6 ⁴	2.0	20.2			کر .
G	3	₹ 1	493	512	Ω.	1063	530	508	504	ます	8	995	931	873	122		777	1105
¢	Þ	0.002099	.001660	.001562	.002108	270000.	.000386	.003151	.000485	.002196	•000706	.00079	.000826	84100.		10000	Ctonno.	•00218
Mass of	model, slugs	0.00327	.00312	. 00312	.00312	•00176	.00231	.00231	.00231	.00327	.00472	00472	00304	- T P T P T P T O T O			• 004.72	.00394
, ,	gu/tu		0.860	.868	.781	.787	1.16	8	1.162	.828	1.205	8	700. 5			T T+C	1.141	.812
	Flutter mode		93.5	7. 5	86.4	47.8	104.8	81 . 4	105.0	95.2	188.0	186	0 5 1 1	1 a 1 a 1 a	3	лол Тол	5 <u>-</u>	911
y, cps	3d mode	145.4	135.7	135.3	130.0	72.9	0.111	0.111	0-111				172	26	יא	TQ	207	183
Frequenc	2d mode	0.911	108.7	108.8	7.0II	60.7	4.06	+,00*	1 00 *	115.0					C).T	148	170	143
	lst mode	7. ۲4	41.6	7.14	7.14	5.50		*3F 9	×2). (×						Ľo	58	99	57
	Model	0-B	17-1	17-8		- 4 - 4 - 4		- F	- -						13-01	11-D	ת-גר	7 1
	Run			K E)- + E	י גר ו ב			-α 						S-14	S-16	5-17	S-18

*Assumed to be the same value.

.

••

٢

,

TABLE I.- BASIC DATA - Concluded.

(b) Upper vertical tail

	<u>. </u>								-									
quid		11.1	1.30	1.46	14.1	1.42	707	.687	1.47	1.30	1.42	1.26	1.36	1.335	1.324	1.488	1.872	1.353
	ī	26.6	29.1	35.1	36.3	45.7	16.0	12.8	41.7	32.5	38.7	30.7	35.1	2	66.8	59.3	79.5	76.3
	bu _p /a	0.215	240	.246	.233	.211	.191	.192	.227	.228	.229	.228	.229	.160	.162	.193	.210	.155
	М	0.833	1.023	1.120	1.184	166.	.512	-to-t-	1.079	.926	8.	.898	1.013	1.3	1.64	2.0	3.0	L.3
	ಹ	544	497	483	498	534	499	498	488	486	1 8	486	84	986	924	848	722	986
	Ρ	0.001821	.001599	.001264	042100.	.000958	.002510	.002778	900T00.	.001293	.001085	.001367	.001209	.000872	£16000.	000100.	.000723	·000743
Meca of	mass or model, slugs	0.00424	-00407	.00388	.00393	.00583	11200.	.00311	.00367	.00367	.00367	.00367	.00371	.00533	.00533	.00518	.00502	.00495
· · ·	±r/wβ				0.838	419.	800	.887	.638	.668	.627	.692	.699	940	1.125	1.150	0TI.I	.918
	Flutter mode	 		1 1 1 1 1	72.2	51.4	63.2	63.0	52.6	55.0	51.6	56.9	58.3	011	125	041 041	125	104
sd:	4th mode	255.0	260.5	253.8	269.3	238.1	201.0	*201.0	226.2	225.3	*225.3	*225.3	263.6	325	329	344	315	312
quency, c	3d mode	132.3	131.5	128.5	124.0	124.5	104.5	*104.5	118.0	118.0	*118.0	*118.0	118.3	170	170.5	172.2	160	162
Fre(2d mode	87.1	88.8	88.9	86.2	83.8	0.17	0.17*	82.4	83.3	*83.3	*83.3	83.4	717 7	2.111	121.8	7.2LL	4.CLL
	lst mode	26.5	26.9	27.6	25.8	25.8	22.0	*22.0	24.3	24.1	*24.1	*24.1	24.7	34	34.4	34.6	33.3	33.4
	Model	21-B	21-A	21-0	21-D	27-C	19-A	19-A	27-A	27-A	27-A	27-A	27-B	25-D	25-B	25-A	23-D	23-B
							Ŀ	N		H	Ņ	Ň	Ч					

*Assumed to be the same value.

NACA RM L57D17

Х

....

:

.....

	⁴ 285 354 395
	t B, .085 .115 .142 .142
	1 021 035 035
	1 H H H H H H H H H H H H H H H H H H H
at to tip	Model number 19 21 23
, Tin Eg	015 026
	⁺ ⁺ .035 .059
	Model number 7 9 11
CONTRACT	

t _{B2}	.211	.285	.354	395	.255
, e	.085	.115	.142	.159	.102
ţ	021	028	035	039	.025
+ #	044	059	073	.082	.053
number	6	21	23	25	27

••••

ιr	.015	020	.025	.028	110	018	
¥	.035	.048	.059	066	026	.042	
number	2	6	=	5	ō	17	

Figure 1.- Line drawing of models with pertinent dimensions in inches.

(a) Lower vertical tail.

(b) Upper vertical tail.

,

10

•••

(a) Langley 2- by 2-foot transonic flutter tunnel.

L-57-1553

(b) Langley 9- by 18-inch supersonic flutter tunnel.

Figure 2.- Photographs of models mounted in wind tunnels.

82 11 Y. M. O. W.

(a) Detail of attachment fitting.

(b) Detail of method of hinging rudder. L-57-1554Figure 3.- Photographs of root area of upper surface model.

•

Leoding edge	Root	Undeflected surface Deflected surface

Deflection	•17	•37	•57	•78	1•00
Point	н ц	с х Е	а ца	E4	E 2
DefLection	•05	.17	•38	•(63	•87
Point	La	D_2	D3	\mathbb{D}_4	D5
Deflection	0	•11	•28	•53	•76
Point	с <mark>л</mark>	с ⁵	5	°¢	C ₅
Deflection	0	•03	•13	•36	•62
Point	B1	B2	B3	B4	B5
Deflection	0	10•	•04	•17	•41
Point	A	A2	A3	A.4	A5

••

Figure 4.- Lower surface natural mode shapes.

(a) First mode; 58 cps.

•••••

•

Point	Deflection	Point	Deflection	Point	Deflection	Point	Deflection	Point	Deflection
Γų	0	Ъ	0	5	0	ΓΩ	17	ц	-1 - 00
A2	.07	с ²	•05	3	•05	D2	16	сч ш	-1-00
A3	.21	B3	.21	63	.17	D3	.	е Н	- 95
A4	87.	B4	•50	C.4	•43	D4	•05	Е 4	- ,66
Å5	•86	B5	•78	c C	•75	D5	77.	E E	24

Figure 4.- Continued.

(b) Second mode; 155 cps.

NACA RM L57D17

.....

,

1

ļ

14

ī

0	5 5 5	0 •34 •75	
		ວິ ບິ	•34 C ₂
•30		ర్	12
•55		<u>n</u>	6n (/.•
•02		°4	•85 C4
96		°2	•37 C ₅

AL

•••••

Figure 4.- Continued.

(c) Third mode; 176 cps.

NACA RM L57D17

15

Leading edge	Root	Undeflected surface Deflected surface

••••

_										-1
	Dellection	57		•33	70		31	-67	•	
•	TULOY	4	ਸੂ 	ы ц	pa	<u> </u>	E4	נ בי 	î 	
	Deflection	10	¢0•	14	31	•	37	Ē		
	Point	,	Ļ	D2	ç	1	D4	F	5 7	
	Deflection		0	-,12	00	12.	-•40	Ę	1.7.	
	Point		5	°2	c	5	c		c c	
	Deflection		0	.23	ì	CE.	- 03		-1•00	
	Point		Ľ	В	1	е В	В,	4	B5	
	Deflection		0	. 15		۲.	-75		•28	
	Foint		ЧЧ	T CH	V	A3	Α.	7	A5	

••••

Figure 4.- Concluded.

(d) Fourth mode; 328 cps.

NACA RM L57D17

4

.

16

i I

:

.

i

i I

- Undeflected surface | | | |
- Deflected surface

Deflection	•51	•68	-81	•94	
Point	г _ы	ъ В	Ê	E4	
Deflection	ب 14	3 3	•57	.77	1.00
Point	Γſ	D2	D3	D4	D5
Deflection	•06	•30	•50	99	•92
Point	съ	с ⁵	3	с ₄	c ₅
Deflection	•02	•14	•34	•56	1 3.
Point	<u>م</u> رً'	B2 B2	в3	B4	B5
Deflection	-TO•	•05	.17	•43	•74
Foint	Al	A 2	A ₃	\mathbf{A}_4	A5

....

(a) First mode; 34 cps.

Figure 5.- Upper surface natural mode shapes.

NACA RM L57D17

Х

•

(b) Second mode; 112 cps.

Figure 5.- Continued.

NACA RM L57D17

- 22

•29 .34

.16 .36 •72

.16

86

•40

в 4 В 4

.36 .92

A 4 5

ย.

4

18

•••••

:

edcie
_eoding

----- Undeflected surface

				•	
Deflection	-,23	•03	.37	•78	
Point	ц	с Н	а Ш	E4	
Deflection	24	- 29	-,22	•26	1. 00
Point	Ľ	D2	D3	D4	D5
Deflection	-,19	31	- ,31	0	•64
Point	ч С	5	3	C4	c5
Deflection	- 05	-,26	36	- 30	•35
Point	B1	В2 Ш	B3	B4	B5
Deflection	0	07	- 29	-44	44
Point	A1	A 2	A ₃	A.4	A5

(c) Third mode; 169 cps. Figure 5.- Continued.

NACA RM L57D17

.

•••

••••

•••

- Undeflected surface
 - Deflected surface

								+	To fill on the form
Point	Deflection	Point	Deflection	Point	Deflection	Point	Deflection	Foint	Deltection
	C F	ſ	- - -	5	68	ų	54	ធ	1.00
А ₁	01.	۲ ⁻¹		5		4		۲ ۱	Ċ
A,	•46	B2	77.	5°	71	<u>م</u>	78	<u></u> 2 ¹	• 70
× v	۲۲.	<u></u>	•28	హ	- ,69	ĥ	76	щ Ш	•94
Å,	-84		•56	°7	-,71	D4	 79	E4	6 2•
A 4	-97	* ¤2	-84	c ²	•57	D5	-15		
•									

Figure 5.- Concluded.

(d) Fourth mode; 320 cps.

NACA RM L57D17

:

:

•

.

÷

(a) Lower surface.

(b) Upper surface.

Figure 6.- Concluded.

(b) opper burlace.

Figure 7.- Approximate positions of node lines.

•••

Figure 8.- Variation of altitude-stiffness parameter with Mach number.

~

.

24

•

.

NACA RM L57D17

.

Figure 9.- Variation of ratio of flutter frequency to rudder rotation frequency with Mach number.

-

.

-

•

26

٠

- CONTRACTOR

Figure 9.- Concluded.