RESEARCH MEMORANDUM

EXAMINATION OF RECENT LATERAL-STABILITY-DERIVATIVE DATA

By Frank S. Malvestuto, Jr., and Richard E. Kuhn

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFICATION CHANGED FROM
CONFIDENTIAL TO UNCLASSIFIED--
AUTHORITY NASA 798
7 JULY 63, J. H. CARROLL

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS
WASHINGTON
October 22, 1953
EXAMINATION OF RECENT LATERAL-STABILITY-DERIVATIVE DATA

By Frank S. Malvestuto, Jr., and Richard E. Kuhn

INTRODUCTION

In the present paper attention is directed to the aerodynamic parameters, the so-called stability derivatives, that affect the lateral behavior of airplanes and missiles. The discussion is centered on three important quantities \(C_{l\beta} \), the effective-dihedral derivative, \(C_{n\beta} \), the directional-stability derivative, and \(C_{l\phi} \), the damping-in-roll derivative. These quantities are considered for a large angle-of-attack range at subsonic speeds. A few remarks will also be made on the sideslip derivatives at zero lift in the supersonic speed range.

DISCUSSION

For the subsonic speed range, the lateral-stability derivatives have been the subject of intensive research by the Langley high-speed 7- by 10-foot tunnel. Particular attention has been paid to the variation with Mach number in the high angle-of-attack range that is representative of flyable attitudes of many high-speed airplanes. The effective-dihedral and the directional-stability derivatives of the three complete models sketched in figure 1 are presented in figures 2 and 3. Model I is equipped with a 30° sweptback wing of aspect ratio 3; model II has a 45° swept wing of aspect ratio 4; and model III (representing the X-5 airplane) is equipped with a 60° swept wing of aspect ratio 2. To the right of each sketch in figure 1 is a plot of the model lift coefficient against angle of attack for two available Mach numbers indicative of the low and high subsonic speed range.

The effective-dihedral derivative \(C_{l\beta} \), expressed here in radians, for the three models is presented in figure 2 for the range of angle of attack and the Mach numbers indicated in figure 1. It is important to note the highly nonlinear variation of this derivative with angle of attack and the pronounced effect of Mach number on these variations. This nonlinear behavior is strongly dependent upon the separation of flow from the wings, particularly in the vicinity of the tips, and
commences at angles of attack at which these swept wings are by no means completely stalled. Note that model I retains its positive effective dihedral (that is, $-C_\beta$) through the angle-of-attack range and increasing Mach number tended to increase this quantity at the higher angles. Models II and III have the more typical variation of C_β with angle of attack and show the decrease to zero and to negative effective dihedral at the higher angles. Configurations having this latter type of variation of C_β and the derivative $C_{n\beta}$, to be discussed later, could easily be flying at angles at which one or the other of these derivatives becomes zero. These zero values of the derivatives could seriously affect the lateral behavior of airplanes at these higher angles of attack. The point to be observed from the data presented here is that increasing Mach number may change the angle of attack at which these derivatives become zero. As an illustration, the results of model II show that increasing Mach number increases the angle at which C_β and $C_{n\beta}$ become zero; whereas, for model III, the Mach number effect is reversed; that is, increasing Mach number decreases the angle of attack at which zero values occur.

The effects of angle of attack and Mach number on the companion derivative $C_{n\beta}$ are shown in figure 3. At the higher angles the variation of this derivative depends not only upon the tail effectiveness, that is, the difference between the tail-on and tail-off results, but also may be greatly influenced by the variation of the wing-body characteristics. As an example, for models I and II the increase in the stability of the wing-body combination at the higher Mach number tends to compensate for the reduction in tail effectiveness shown by the decrease in the increment between the tail-on and tail-off results. For model III, however, although the tail effectiveness remains appreciably constant up to large angles of attack, the decrease in the stability of the wing-body combination causes a reduction in $C_{n\beta}$ for the complete model and is the primary cause of this reduction. It is also of interest to point out for this model that the angle of attack at which C_β and $C_{n\beta}$ tend to zero is approximately the same and decreases with increasing Mach number. This similarity of the action of Mach number on C_β and $C_{n\beta}$ is not surprising since for this model the wing-body characteristics, which in the main usually control C_β, are also the controlling influence for $C_{n\beta}$ as was indicated previously. These results emphasize the need for having, through the Mach range, not only proper tail effectiveness, but equally important, proper wing-body design, incorporating satisfactory directional characteristics.
The effects of horizontal-tail height on the directional-stability derivative $C_{n \beta}$ and also on the effective-dihedral derivative $C_{\gamma \beta}$ for model I are shown in figures 4 and 5. The curves on the left of each figure represent horizontal-tail-off data; the next set of curves are for the horizontal tail in the low position. This arrangement is the one considered in the previous figures. The data to the right are for the horizontal tail in high position. The expected increase in the directional-stability derivative with the tail in the high position is clearly evident from these results. For the effective-dihedral derivative $C_{\gamma \beta}$, the relocation of the tail from the low to the high position produced again, as expected, an increase in the negative value of the derivative.

There is one additional point related to the sideslip derivatives that deserves consideration. In attempts to devise "optimum fixes" to alleviate the pitch-up conditions for various airplanes, consideration has also been given to the effect of these same fixes on the lateral derivatives. The results available so far are very limited and no specific conclusion can be made. The data of figure 6, however, illustrate for one configuration, model III, the effect of a leading-edge chord-extension on the $C_{n \beta}$ and $C_{\gamma \beta}$ derivatives. At the lower Mach number the effect of chord-extensions in producing a linear pitching-moment variation is clearly evident, but the effect of these chord-extensions on the corresponding $C_{n \beta}$ and $C_{\gamma \beta}$ derivatives are relatively insignificant. At the higher Mach number, although unfortunately the available chord-extension-on data are somewhat incomplete, the small effect of these chord-extensions on the derivatives is still evident, the trend for the higher Mach number being almost identical to that shown for the lower Mach number. It should be remembered, of course, that $C_{\gamma \beta}$ did not show any pronounced breaks until angles of attack approaching stall were reached.

So far, the discussion of the lateral derivatives for the subsonic speed range has been directed toward the static effects. Recently, the characteristics in steady roll of several wings at high angles of attack in the subsonic speed range have been investigated experimentally. For a 45° swept-wing—body arrangement, the variation of the damping-in-roll parameter $C_{\gamma p}$ with angle of attack and Mach number is shown in figure 7, together with the corresponding lift variations. It can be seen that at a Mach number of 0.2 the wing maintains a reasonable amount of damping at all angles of attack up to the stall. However, as the Mach number is increased, the damping-in-roll ability of the wing seriously diminishes until at a Mach number of 0.91 instability in roll is indicated at an angle of attack of 11°. Note also that this effect occurs although the lift is still increasing at this angle of attack. Similar effects occur
for wings of other plan forms as indicated in figure 8. It will be noted here that all these wings indicate a serious loss in damping effectiveness in about the same angle-of-attack range. Note also that, with the exception of the unswept wing, this loss occurs although the over-all lift coefficients of the wings are still increasing. For the unswept wing, this loss in damping occurs at angles of attack corresponding to the stall, as would be expected.

One additional important point connected with these regions of poor damping is that the variation of rolling moment with rolling velocity may be very irregular as shown in figure 9. Under these conditions it is difficult to determine a representative value of the damping coefficient. The data shown in figure 9 are for a Mach number of 0.85. The variation of the rolling-moment coefficient with rolling velocity shown by the dashed curve is representative of the linear stable slope characteristic of the low angle-of-attack range. At an angle of attack of 11°, however, the variation is nonlinear and, in the case of the 32.6° swept wing, it is unstable over a very wide range of \(\frac{\rho b}{2V} \). The hysteresis shown in the data for the unswept wing and the 60° triangular wing would certainly give rise to some undesirable dynamic-stability characteristics and possibly complicate the design of any automatic stabilizing equipment. The instability at small values of \(\frac{\rho b}{2V} \) and the associated hysteresis loops also may have some relationship to the wing-dropping problem.

Some consideration has been given to the use of fixes in an attempt to reduce the loss of damping in roll. Since a loss in damping is associated with tip stalling, which is also a contributing factor in producing pitch-up, tests were made to determine whether devices which are known to alleviate pitch-up would also improve the damping in roll. The effect of a fence on the damping characteristics of the 45° swept wing is shown in figure 10. The fences were full chord and were located at the 0.55 b/2 station. For the Mach number of 0.85, the fences delayed the pitch-up by some 5° and decidedly improved the damping. At a Mach number of 0.91, however, the effect of the fences on either the damping or the pitch-up decreased considerably. Reference 1 contains a more complete discussion of the damping-in-roll characteristics of swept wings at high angles of attack and high subsonic speeds. Included also in this report is a simple procedure for estimating the load distribution in roll provided the corresponding angle-of-attack load distribution is known.

The preceding discussion of the lateral-stability derivatives at high angles of attack has of necessity been based wholly on experimental data. This discussion has been confined to the subsonic speed range. In the supersonic speed range, recent theoretical work applied to three complete configurations has demonstrated the ability of theory to predict the lateral-stability derivatives at low angles of attack. The variations of the derivatives \(C_\beta \) and \(C_{n\beta} \) with Mach number for these three
configurations are shown in figures 11 and 12. The theoretical results are presented for the complete arrangement, vertical-tail alone, and body or wing-body alone. The experimental results, the dark circles, are for the complete arrangement. The comparison of theory and experiment indicates that the level and trend of the experimental variations are predicted by the theory. For one of these airplanes a thorough study and prediction of all the major longitudinal and lateral derivatives has been made and is reported in reference 2.

CONCLUDING REMARKS

It has not been possible to consider all the recent information on lateral-stability derivatives. However, a bibliography of papers containing lateral-stability-derivative data has been attached. Reference 3 also contains a large number of references not included here. The following remarks are offered as an indication of the present general status of the stability-derivative field.

At low angles of attack within the subsonic speed range below the critical Mach number, it is felt that available theory permits fairly reliable predictions of the lateral-stability derivatives.

At the higher angles of attack in the subsonic and transonic ranges, the unpredictable, nonlinear characteristics of the derivatives stress the necessity for determining experimentally for a particular configuration the derivatives needed in the estimation of stability.

In the supersonic range at low angles of attack, combined theoretical and experimental studies have produced useful aerodynamic-derivative data. For the complete configurations so far considered, derivative estimates made for these conditions have met with a good measure of success.

In the supersonic range at high angles of attack there are no data available.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 26, 1953.
REFERENCES

BIBLIOGRAPHY

THEORETICAL STUDIES AND ESTIMATING PROCEDURES

10. Martin, John C., and Malvestuto, Frank S., Jr.: Theoretical Force and
Moments Due to Sideslip of a Number of Vertical Tail Configurations
at Supersonic Speeds. NACA TN 2412, 1951.

11. Riley, Donald R.: Effect of Horizontal-Tail Span and Vertical Location
on the Aerodynamic Characteristics of an Unswept Tail Assembly in
Sideslip. NACA TN 2907, 1953.

12. Coale, Charles W.: Restoring Moment in Yaw Due to Interference Between

13. Owen, P. R., and Andersen, R. G.: Interference Between the Wings and
the Tail Surfaces of a Combination of Slender Body, Cruciform Wings
and Cruciform Tail Set at Both Incidence and Yaw. Rep. No. Aero. 2471,
British R.A.E., June 1952.

15. Falkner, V. M.: Rotary Derivatives in Yaw. Aircraft Engineering,

16. Hunter-Tod, J. H.: The Aerodynamic Derivatives With Respect to Rate of
Yaw for a Delta Wing With Small Dihedral at Supersonic Speeds. Rep.
No. 28, College of Aero., Cranfield (British), March 1949.

17. Ribner, Herbert S.: On the Effect of Subsonic Trailing Edges on Damping
in Roll and Pitch of Thin Sweptback Wings in a Supersonic Stream. NACA
TN 2146, 1950.

18. Ribner, Herbert S.: Damping in Roll of Cruciform and Some Related Delta
Wings at Supersonic Speeds. NACA TN 2285, 1951.

Due to Rolling for Unswept Wings With or Without Flaps or Ailerons by
Use of Nonlinear Section Lift Data. NACA TN 2937, 1953.

20. Diederich, Franklin W.: A Simple Approximate Method for Calculating Span-
wise Lift Distributions and Aerodynamic Influence Coefficients at Sub-

21. Diederich, Franklin W., and Zlotnick, Martin: Theoretical Spanwise Lift
Distributions of Low-Aspect-Ratio Wings at Speeds Below and Above the

EXPERIMENTAL STUDIES
Wing and Wing-Fuselage Data

47. Salmi, Reino J.: Yaw Characteristics of a 52° Sweptback Wing of NACA 641-112 Section With a Fuselage and With Leading-Edge and Split Flaps at Reynolds Numbers From 1.93 x 10^6 to 6.00 x 10^6. NACA RM L8H12, 1948.

78. Strass, H. Kurt, and Marley, Edward T.: Rolling Effectiveness of All-Movable Wings at Small Angles of Incidence at Mach Numbers From 0.6 to 1.6. NACA RM L51H03, 1951.

87. Scherrer, Richard, and Dennis, David H.: Lateral-Control Characteristics and Dihedral Effect of a Wing-Body Combination With a Variable-Incidence Triangular Wing and Wing-Tip Ailerons at a Mach Number of 1.52. NACA RM A50H10, 1951.
Complete Model Configurations

121. Kemp, William B., Jr., and Becht, Robert E.: Stability and Control Characteristics at Low Speed of a $\frac{1}{4}$-Scale Bell X-5 Airplane Model. Lateral and Directional Stability and Control. NACA RM L50C17a, 1950.

130. D'Aiutolo, Charles T., and Mason, Homer P.: Preliminary Results of the Flight Investigation Between Mach Numbers of 0.80 and 1.36 of a Rocket-Powered Model of a Supersonic Airplane Configuration Having a Tapered Wing With Circular-Arc Sections and 40° Sweepback. NACA RM L50H29a, 1950.
131. D'Aiutolo, Charles T., and Parker, Robert N.: Preliminary Investigation of the Low-Amplitude Damping in Pitch of Tailless Delta- and Swept-Wing Configurations at Mach Numbers From 0.7 to 1.35. NACA RM L52G09, 1952.

134. Sherrer, Richard, and Dennis, David H.: Damping in Roll of a Missile Configuration With a Modified Triangular Wing and a Cruciform Tail at a Mach Number of 1.52. NACA RM A51A03, 1951.

THREE HIGH-SPEED MODELS

Figure 1

EFFECTIVE-DIHEDRAL DERIVATIVE C_{β}
FOR THREE HIGH-SPEED MODELS

Figure 2
DIRECTIONAL-STABILITY DERIVATIVE $C_{n\beta}$ FOR THREE HIGH-SPEED MODELS

Figure 3

VARIATION OF DIRECTIONAL-STABILITY DERIVATIVE $C_{n\beta}$ WITH HORIZONTAL-TAIL HEIGHT

Figure 4
VARIATION OF EFFECTIVE-DIHEDRAL DERIVATIVE $C_{l\beta}$
WITH HORIZONTAL-TAIL HEIGHT

Figure 5

EFFECT OF CHORD-EXTENSIONS ON CHARACTERISTICS OF MODEL III

Figure 6
VARIATION OF THE DAMPING IN ROLL C_{lp} WITH MACH NUMBER AND ANGLE OF ATTACK

Figure 7

VARIATION OF THE DAMPING IN ROLL C_{lp} WITH ANGLE OF ATTACK
$M=0.85$

Figure 8
TYPICAL VARIATIONS OF THE ROLLING-MOMENT COEFFICIENT \(C_2\) WITH RATE OF ROLL \(\frac{\phi_b}{2V}\)

\[M = 0.85\]

\[\Delta = 3.6^\circ\]

\[a = 0^\circ\]

\[\Delta = 60^\circ\]

Figure 9

EFFECT OF FENCE ON CHARACTERISTICS OF A 45° SWEPT WING

\[M = 0.85\]

\[M = 0.91\]

Figure 10
Figure 11

Figure 12

NACA-Langley - 10-22-53 - 325