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This dissertation investigates authentication techniques in some emerging areas. 

Specifically, authentication schemes have been proposed that are well-suited for 

embedded systems, and privacy-respecting pay Web sites. 

With embedded systems, a person could own several devices which are capable 

of communication and interaction, but these devices use embedded processors whose 

computational capabilities are limited as compared to desktop computers. Examples of 

this scenario include entertainment devices or appliances owned by a consumer, 

multiple control and sensor systems in an automobile or airplane, and environmental 

controls in a building.  An efficient public key cryptosystem has been devised, which 

provides a complete solution to an embedded system, including protocols for 

authentication, authenticated key exchange, encryption, and revocation.  The new 

construction is especially suitable for the devices with constrained computing 

capabilities and resources. Compared with other available authentication schemes, 

such as X.509, identity-based encryption, etc, the new construction provides unique 

features such as simplicity, efficiency, forward secrecy, and an efficient re-keying 

mechanism. 

In the application scenario for a pay Web site, users may be sensitive about their 

privacy, and do not wish their behaviors to be tracked by Web sites. Thus, an 

anonymous authentication scheme is desirable in this case. That is, a user can prove 

his/her authenticity without revealing his/her identity. On the other hand, the Web site 

owner would like to prevent a bunch of users from sharing a single subscription while 



hiding behind user anonymity. The Web site should be able to detect these possible 

malicious behaviors, and exclude corrupted users from future service. This dissertation 

extensively discusses anonymous authentication techniques, such as group signature, 

direct anonymous attestation, and traceable signature. Three anonymous authentication 

schemes have been proposed, which include a group signature scheme with signature 

claiming and variable linkability, a scheme for direct anonymous attestation in trusted 

computing platforms with sign and verify protocols nearly seven times more efficient 

than the current solution, and a state-of-the-art traceable signature scheme with support 

for variable anonymity. These three schemes greatly advance research in the area of 

anonymous authentication. 

The authentication techniques presented in this dissertation are based on 

common mathematical and cryptographical foundations, sharing similar security 

assumptions. We call them flexible digital authentication schemes. 
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CHAPTER 1

INTRODUCTION

The topic of this dissertation is a very specific area in information assurance: authenti-

cation techniques. This chapter reviews the information assurance model, prior work in the

field of authentication, and summarizes the contributions of the dissertation.

1.1. Information Assurance Model

In the past decade, the understanding of information and system protection has evolved

from Information Systems Security (INFOSEC) into Information Assurance (IA). Accord-

ing to the Information Assurance Glossary by the Committee on National Security Systems

(CNSS) [23], Information Assurance has been defined as:

Information operations (IO) that protect and defend information and in-

formation systems by ensuring their availability, integrity, authentication,

confidentiality, and non-repudiation. This includes providing for restoration

of information systems by incorporating protection, detection and reaction

capabilities.

This definition has been modeled by Maconachy et al. in [43], and a survey due to Loeb

can be found at [41]. The model is shown in Fig 1, which is an expansion of the information

security model due to McCumber proposed in 1991 [45].

The model presents three of the four dimensions of IA: Information States, Security Ser-

vices, Security Countermeasures, and Time. The model illustrates that in any information

system, information can be in one or more of the three states: stored, processing, or transmis-

sion. Security Countermeasures deal with the defense of information systems, which include

measures in technology, operations, and people.
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Figure 1. Information Assurance Model

Security Services are at the heart of information assurance. They include Availability,

Integrity, Authentication, Confidentiality, and Non-repudiation. Availability ensures that au-

thorized users can access data and information services timely and reliably. Integrity refers

to the trustworthiness in information systems, such as data that can only be modified by

authorized procedures, an information system in logical correctness, etc. Authentication is

to establish the validity of procedures, or participants in an information system. It could be

a means of verifying an individual’s authorizations to receive specific categories of informa-

tion. Confidentiality ensures that information can only be disclosed to authorized persons,

processes, or devices. Non-Repudiation provides a mechanism to ensure that neither the

sender of the data can deny what he has delivered, nor the receiver can repudiate his recep-

tion of such data.

1.2. Identification and Authentication

This dissertation investigates one of the five security services in the information assurance

model: authentication. Authentication includes the validity of transmission, message, and
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originator. This dissertation focuses on methods to validate an originator in different settings,

which is also called identification, or identity authentication.

According to [47], “identification is a statement of who the user is (globally known)

whereas authentication is proof of identification.” Thus, an authentication scheme would

deal with how to construct such an “identification statement” and the method to prove such

a statement. Authentication is fundamental to computing systems. Many security features

are based on authentication. For instance, an access control mechanism might control access

to system resources by a user’s identity and security clearance level. To do so, the system

must verify a user’s identity before granting certain access rights.

Generally speaking, techniques for authentication fall into three categories [47]:

(i) Authentication by Knowledge (“Something You Know”): A user shows he knows

something, such as password, to demonstrate his identity.

(ii) Authentication by Ownership (“Something You Have”): A user uses some physical

token he has to show his identity, such as a credit card, or a driver’s license.

(iii) Authentication by Characteristic ( “Something You Are”): A user uses his biometric

information to prove his identity, such as a fingerprint.

The combination of these three methods can provide strong authentication schemes. This

dissertation mainly discusses authentication methods by “Something You Know”, which is

also the most widely used method in current distributed computing environments.

1.3. Authentication Techniques

The construction of most authentication schemes in information systems, just as their

counterparts in daily life, relies on certain authorities trusted by all participants. These

authorities issue credentials to legitimate users, and the presentation of a valid credential is the

proof for a person’s authenticity for certain behavior. For example, the driver’s license system

is essentially an authentication system, in which the government takes the responsibility to

issue a valid credential, i.e., driver license, to a person who passes the driving test. Later,
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a person can show that he is authorized for driving by showing this credential when needed.

Authentication in information systems follows the same principles.

However, additional difficulty exists in information systems. In an information system, a

credential is nothing but a binary string, which can be easily duplicated, stolen, or modified.

The challenge is how to construct a digital credential resistant to these attacks. Many au-

thentication schemes have been proposed to construct such digital credentials with different

features. This section reviews the main techniques in this area. Since most authentication

techniques are based on public key cryptography, some basic concepts in public key cryptog-

raphy will be introduced first.

1.3.1. Public Key Cryptography

The concept of public key cryptography was introduced by Diffie and Hellman in 1977

[26]. In a public key cryptosystem, a user Alice has a keypair (PubKey, P r ivKey), where

PubKey is publicly known, and P r ivKey is kept private by Alice. Suppose a remote party,

Bob, wants to send a message m to Alice. For confidentiality of communication, Bob would

encrypt this message as a ciphertext

c = E(PubKey,m),

where E is an encryption function. Function E takes PubKey and m as input, and outputs

a ciphertext c. Bob sends c to Alice. Alice recovers the plaintext as

D(P r ivKey, c) = m,

where D is a decryption function. The security of a public key system relies on the property

that a ciphertext can only be decrypted by Alice’s private key, and only Alice knows her private

key.
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For some public key encryption schemes, a digital signature scheme may also be built

based on this special keypair. Alice uses her private key to compute

sg = S(P r ivKey,m),

where S is a sign function, and sg is called Alice’s signature on message m. Alice sends

(sg,m) to Bob, and Bob verifies whether

V (PubKey, sg) =? m,

where V is a verify function. If so, this shows sg is indeed Alice’s signature on message m,

since it is supposed that only Alice can compute sg based on her private key.

The invention of public key cryptosystems was a major breakthrough in cryptography. It

opened the door for much of the research and applications of modern cryptography.

1.3.2. Digital Certificates

A digital certificate is a typical application of public key cryptography. In a digital cer-

tificate based authentication system, a trusted third party called a certificate authority (CA)

issues digital certificates. The CA has a public key universally known by all participants. A

user needs to apply for a certificate before he/she can authenticate himself/herself to others.

The CA should ensure that only legitimate users can obtain certificates.

To apply for a certificate, Alice first generates her own public key and private key pair.

Alice gives her public key to the CA while keeping her private key secret. The CA produces a

string describing Alice’s identity information. The string may also include other data related

to certificate management such as an expiration date. The CA combines the identity string

with Alice’s public key, and signs the final string using its private key. The CA’s signature

together with Alice’s public key and identity string is the digital certificate issued by the CA.

When Bob receives Alice’s certificate, he first verifies the signature on the certificate

to ensure that it is really issued by the CA. Then Bob uses Alice’s public key to encrypt
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some random data. If Alice can decrypt this ciphertext, this proves Alice’s authenticity. In

many situations, Alice also needs to authenticate Bob, which leads to mutual authentication

procedures.

The X.509 certificate standard [39] is an international standard based on this technique.

X.509 has been adopted in the widely used Secure Socket Layer (SSL)/Transport Layer Secu-

rity (TLS) protocols which are used to protect most web applications [25]. X.509 is flexible,

powerful, but also complex, and heavyweight. A typical certificate would be a separate object

that is several times as large as the key that it is authenticating. For example, the current

X.509 certificate authenticating the 128 byte (i.e., 1024 bit) key for www.amazon.com is

945 bytes long, so requires 738% overhead.

The deployment of X.509 incurs lots of effort at the infrastructure level. Therefore, it is

mainly deployed on the Internet. In many situations, a simple and lightweight system is more

desirable.

1.3.3. Identity-based Authentication

To simplify system design, the concept of identity-based public key cryptography was

proposed by Shamir in 1984 [54]. In this scheme, the public key of a user is simply a

string with his identity information. For example, Alice’s email address could be her public

key. However, Shamir only proposed a construction of an identity-based public key signature

scheme, leaving the complete cryptographic system as an open problem. In 2001, Boneh and

Franklin proposed a construction for a complete identity-based public key system [11].

In an identity based authentication system, a trusted third party, called the Key Generation

Center (KGC), produces all the private keys for users. A very unusual characteristic for this

type of system is that each user’s private key is computed from the user’s public key which is

exactly the user’s identity string, and this computation can only be carried out by the KGC

based on its master key. No certificate exists in such a system. Therefore, the identity-based

public key system is much simpler and easier to deploy than a certificate based system.
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Identity-based authentication can implement a nice feature called “cryptographic work-

flow.” Cryptographic workflow is a method to control the work process. For example, Alice

sends Bob a message encrypted with a key string which is a specific date in the future. Bob

can only get the decryption key from the KGC on the day specified by the encryption key.

This technique has two implications: after Alice sends a message to Bob, she has no way

to “cancel” her behavior because the decryption key can be obtained from the KGC based

on the encryption key, the date. On the other hand, Bob can only open message when the

specific day comes. This technique can carry out certain work management tasks which are

hard to achieve by other cryptographic tools.

One major concern about identity-based public key systems is the key escrow problem,

i.e., the KGC knows all private keys for the users. Therefore, the KGC can decrypt its

users’ ciphertexts. If the KGC is corrupted, or compromised, it could bring disaster to the

whole system. This limitation makes the system more suitable for a constrained, small scope

application area.

1.3.4. Self-certified Public Key

In 1991, Girault proposed an authentication scheme, called the self-certified public key

scheme [34]. This scheme is an extension of the famous Schnorr identification scheme [52],

with the additional support of authentication, making a separate certificate unnecessary.

In Girault’s system, a user Alice and the KGC work together to produce a special con-

struction called a witness combining Alice’s public key and her identity. To some degree,

the witness can be seen as a lightweight digital certificate [1]. The novel property for the

self-certified public key system is that it avoids the key escrow problem in identity-based sys-

tems. Conceptually, it can be seen as a construction intermediate between a digital certificate

system and an identity-based encryption system.
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The advantage of the self-certified public key system is that it reduces a lot computation

overhead and storage space while avoiding the key escrow problem exhibited by identity-based

public key systems.

In 1997 Petersen and Horster explored the construction and applications of another con-

struction of self-certified key scheme based on discrete logarithms modulo a prime number

[49].

1.3.5. Certificateless Public Key

In 2003 Al-Riyami and Paterson proposed a new type of public key called a certificateless

public key [1]. Their design is a modification of Boneh and Franklin’s identity-based public

key. It is similar to a self-certified public key while keeping the cryptographic workflow feature

of identity-based public key cryptography. A user’s public key is implicitly authenticated, so

an additional certificate is unnecessary. It also avoids the key escrow problem in Boneh and

Franklin’s scheme.

The concept of a certificateless public key is very similar to a self-certified public key. Of

course, their construction is quite different, and based on different security assumptions. Both

of them are intermediate between certificate-based public keys and identity-based public keys.

In [1] the authors provide a comparison between certificate-based public key and self-certified

public key.

1.4. Anonymous Authentication

The wide spread applications on the Internet greatly change people’s life patterns. While

people enjoy the convenience of the Internet, one problem increasingly emerges as a big

concern: privacy. People’s personal data, such as address, birthday, social security number,

hobbies, habits, etc, are scattered in numerous places on the Internet. Some data may be

highly sensitive, while others could be private related. “Privacy protection” has become one

of the most urgent problems to be solved these days.
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Merriam-Webster defines privacy as “the quality or state of being apart from company or

observation, freedom from unauthorized intrusion” [48]. Wikipedia defines privacy as “the

ability of an individual or group to stop information about themselves from becoming known

to people other than those they choose to give the information to” [60]. The authentication

schemes introduced in the previous section are based on users’ identities, or at most users’

pseudonyms, without the consideration of privacy protection. Thus, a user’s private data,

scattered in different places, can be uniquely linked by this user’s identity/pseudonym. Sub-

sequently, a user’s data could be collected, processed, and utilized without the awareness of

its owner.

This raises the question: Can people be authenticated without revealing their real iden-

tities? This further leads to the concept of an anonymous authentication system in which a

user can prove his/her authenticity without disclosing his/her identity. A user may also be

able to show different appearances at different places to prevent link analysis. This technique,

called Privacy-Through-Anonymity, has been widely explored in recently years in the cryptog-

raphy area. Follows are the reviews for some main technologies in anonymous authentication

.

1.4.1. Group Signature

A group signature is a privacy-preserving signature scheme introduced by Chaum and

Heyst in 1992 [22]. In such a scheme, a group member can sign a message on behalf of the

group without revealing his identity. Only a specified open authority (who may or may not

be the group manager) can open a signature and find its originator. Signatures signed by the

same user cannot be identified as from the same source, i.e, “linked.” Recently, the study of

group signature schemes has attracted considerable attention, and many solutions have been

proposed in the literature (e.g., [18, 17, 2, 3, 14, 9, 12]) 1.

1An extensive bibliography of group signature literature can be found at http://www.i2r.a-

star.edu.sg/icsd/staff/guilin/bible/group-sign.htm
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In a group signature scheme, a trusted party called the group manager issues group

certificates to group members. The group certificate is a special construction jointly produced

by the group manager and a group member through a protocol called the Join protocol. The

Join protocol ensures that a valid group membership certificate can only be produced with

the help of the group manager, and a group member knows a secret corresponding to this

certificate. Later, only a group member can sign an anonymous signature based on his

certificate if this secret is not exposed. The group signature scheme also provides a signature

opening mechanism to reveal the signer.

Creating an anonymous authentication scheme from a group signature is simple: the group

is simply the set of authorized users, and authentication is performed by a group member

placing a group signature on a challenge (nonce) sent by the service requiring authentication.

From the properties of group signatures, all the service or an attacker can learn is that the

signature was made by a valid group member (i.e., an authorized user).

1.4.2. Traceable Signature

Unfortunately, anonymous authentication has a dangerous side effect: anonymous cor-

rupted users. Since all users are anonymous, a mechanism is needed to identify corrupted

users, effectively and fairly. In a group signature scheme, to reveal all behaviors by a ma-

licious group member, the group manager has to open all the signatures in the pool. This

is either inefficient (a centralized operation by the group manager), or unfair (unnecessarily

identifying all innocent group members’ signatures). To overcome this shortcoming, Kiayias

et al. have recently proposed a variant of group signatures, called traceable signatures [40].

They define “traceability” as the ability to identify signatures signed by a specified group

member (based on some per-user secret information called the “tracing trapdoor” kept by

the group manager) without requiring the open authority to open them. Tracing can be done

by “trace agents” distributively and efficiently. With a group signature, this cannot be done

fairly since opening all signatures violates the privacy of innocent group members. Kiayias et
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al. also introduced the concept of “self-traceability,” or “claiming.” That is, a group member

himself can stand out, claiming a signature signed by himself without compromising his other

signatures and secrets.

1.4.3. Direct Anonymous Attestation

Another variant of group signatures has been adopted by the Trusted Computing Group [57],

an industry group developing standards for “trusted computing platforms.” A trusted com-

puting platform is a computing device integrated with a cryptographic chip called the trusted

platform module (TPM). The TPM is designed and manufactured in a specific way such that

all parties can trust cryptographic computing results from this TPM. A trusted computing

platform can implement many security related features based on the TPM, such as secure

boot, sealed storage, and software integrity attestation.

However, deployment of TPMs introduces privacy concerns. Each TPM is loaded with its

own unique public key pair called its “endorsement key,” and the most straightforward use of

a TPM would reveal this unique public key to remote parties during attestation operations.

Thus, different servers could cooperate with each other to link the transactions made by the

same TPM. To protect the privacy of a TPM owner, it is desirable to carry out anonymous

authentication, i.e, a TPM can prove its authenticity to a remote server without disclosing its

identifier. Such a mechanism has been implemented by the technique called Direct Anony-

mous Attestation (DAA) in [13]. DAA is basically a group signature scheme; however, since

it is important for a user to have trust in such an anonymous attestation scheme, there is no

open authority or capability for signatures to be opened.

In addition, DAA introduces the notion of “variable anonymity,” which is conditionally

linkable anonymous authentication: the same TPM will produce linkable signatures for a

certain period of time. The period of time during which signatures can be linked can be

determined by the parties involved and can vary from an infinitesimally short period (lead-

ing to completely unlinkable signatures) to an infinite period (leading to completely linkable
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signatures). Signatures made by the same user in different periods of time or to different

servers cannot be linked. By setting the linkability period to a moderately short time period

(a day to a week) a server can potentially detect if a key has been compromised and is being

used by many different users, while still offering some amount of unlinkability.

1.5. Overview of this dissertation

This dissertation investigates authentication techniques for two typical applications in

today’s digital world: embedded systems, and pay web sites.

1.5.1. Application Background

Scenario 1: Embedded System. In this scenario, a person owns several devices which are

capable of communication and interaction, but these devices use embedded processors whose

computational capabilities are limited as compared to desktop computers. Examples of this

scenario include entertainment devices or appliances owned by a consumer, multiple control

and sensor systems in an automobile or airplane, and environmental controls in a building.

It would be desirable for these devices to use encrypted communication for confidentiality

and integrity, and to be able to securely recognize other devices with the same owner. A pair

of devices should be able to establish authenticated secure channels on their own, without

needing to interact with the owner or any other party at the time, and the system is also

dynamic, meaning that new devices can enter the system at any time.

Scenario 2: Pay Web Site. Today many web sites on the Internet provide pay services.

To be able to access these services, a user may first be charged an annual fee to become

a legitimate member with a login name and password. Later, this user can visit restricted

pages by his/her login name and password.

However, users may be sensitive about their privacy, and not wish their behaviors to be

tracked by web sites. Thus, an anonymous authentication scheme is desirable in this case.

On the other hand, a web site certainly does not hope a bunch of users can share a single
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subscription. The website should be able to detect these possible malicious behaviors, and

exclude corrupted users from future service.

1.5.2. Contributions of the Dissertation

The contributions of this dissertation include:

• An efficient public key cryptosystem for embedded systems. The proposed system

is a complete solution for an embedded system, including authentication, authen-

ticated key exchange, encryption and revocation protocols. The new construction

is simple and efficient, and especially suitable for the devices with constrained com-

puting capabilities and resources.

Compared with digital certificate-based systems such as X.509, authentication is

implicit in the key itself in the new scheme, so requires no overhead at all. Further-

more, the new scheme uses a short private exponent, allowing a device with a 1024

bit key to authenticate itself with roughly 15% of the number of modular multipli-

cations required by an RSA signature, a common public key encryption algorithm

used in X.509.

The new scheme is more efficient than identity-based encryption [11]. More

important than efficiency is the single weak point exhibited in IBE systems. That is,

if the KGC is compromised then all user keys are immediately compromised. The

new scheme can avoid this problem by adjusting the system parameters.

Self-certified public keys [34, 49], certificate-less public keys [1], and group signa-

ture schemes [2] also provide similar capabilities to the proposed scheme. However,

the basic model for these systems are quite different for target application, therefore

many complications in these schemes are unnecessary in target settings.

In addition, the proposed system supports a very compact revocation list and an

efficient secure re-keying protocol. These features are not available in the current

authentication scheme, but are particularly important for embedded systems.
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• A group signature scheme with variable linkability which can be used as an anony-

mous authentication scheme. This construction follows a similar mechanism as in

the first result to support anonymous authentication. The proposed group signa-

ture scheme supports two important features in anonymous authentication: signa-

ture claiming and variable anonymity, making it more practical in many settings.

Another protocol is also proposed to carry out direct anonymous attestation for

Trusted Computing Platforms. The new solution is a very simple and efficient

construction, in which the Sign and Verify protocols are almost seven times more

efficient than the current solution in [13].

• An efficient traceable signature which can be used as a more generic anonymous

authentication scheme with the support of fair and efficient corrupted user trac-

ing. This construction improves the state-of-the-art traceable signature scheme,

and further supports variable linkability. As far as we know, this scheme is the

first construction that supports a full revocation mechanism and variable anonymity.

Table 1 presents a comparison of the features supported by different anonymous

authentication techniques (
√
for “supported”, × for “not supported”, and − for

“not available”). Clearly, the new scheme provides the most flexibility for group

members as well as the group manager. Thus, it is the most suitable scheme for

scenario 2: the pay web site.

The reason that these different authentication schemes can be put together into this

dissertation lies in their common foundation. All these constructions are based on similar

mathematical and cryptographic tools, sharing similar security assumptions. We call them

flexible digital authentication schemes. Parts of these results have been accepted and will be

published in [31, 32]
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Scheme Openability Linkability Traceability Self-traceability

Pseudo-Anonymity -
√ √ √

Group signature
√ × × ×

Traceable Signature
√ × √ √

Direct Anonymous Attestation × variable × √

The new scheme
√

variable
√ √

Table 1. Supporting Features of Anonymous Authentication Schemes
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CHAPTER 2

MATHMATICAL AND CRYPTOGRAPHIC FOUNDATION

This chapter provides an introduction to some important concepts, theorems, and cryp-

tographic primitives that will be used in the subsequent chapters. The aim of this chapter is

to make this dissertation self-contained. Readers who are familiar with these topics may skip

this chapter. References for these topics include the books by Shoup [56], Goldreich [35],

and Menzes et al [46], and other research papers.

2.1. Abstract Algebra and Number Theory

This section describes the notions, theorems, and facts in abstract algebra and number

theory that play core roles in the authentication schemes in this dissertation.

2.1.1. Groups and Cyclic groups

Definition 2.1.1. A group is a set G together with a binary operation * on G such that

• (Associative) for all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c,

• (Identity) there exists an e ∈ G such that for all a ∈ G, a ∗ e = a = e ∗ a,

• (Inverse) for all a ∈ G, there exist a−1 ∈ G such that a ∗ a−1 = e = a−1 ∗ a.

If a group satisfies the commutative property, i.e., for all a, b ∈ G, a ∗ b = b ∗ a, a group

is called an abelian group. A group G is finite if |G|, the number of elements in G, is finite.

|G| is called the order of G.

Theorem 2.1.2. Let G be an abelian group with binary operation *, then

• G contains only one identity element;

• every element of G has only one inverse.
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Definition 2.1.3 (Subgroup). A non-empty subset H of a group G is a subgroup of G if H is

itself a group with respect to the operation to the operation of G.

Definition 2.1.4 (Cyclic group). A group G is cyclic if there is an element g ∈ G such that

for each element a ∈ G there is an integer i with a = gi . Such an element g is called a

generator of G.

Theorem 2.1.5 (Lagrange’s theorem). If G is a finite group and H is a subgroup of G, then

|H| divides |G|.

Definition 2.1.6. Let G be a group and a ∈ G. The order of a is the least positive integer t

such that at = e, assuming that such an integer exists.

Theorem 2.1.7. If G is a group and a ∈ G, then the set of all powers of a forms a cyclic

subgroup of G, called the subgroup generated by a, and denoted by 〈a〉.

2.1.2. The Group Z∗n

For a positive integer n, and a, b ∈ Z, if a−b can divide n, a is said congruent to b modulo

n, and written as a ≡ b (mod n). Obviously, a ≡ b (mod n) if and only if a = b + cn for

an integer c. The modulo operation maps all integers into the set of (0, n − 1), which leads

to the technique known as modular arithmetic. Modular arithmetic exhibits the following

properties:

• (a (mod n) + b (mod n)) (mod n) = (a+ b) (mod n)

• (a (mod n)− b (mod n)) (mod n) = (a− b) (mod n)

• (a (mod n)× b (mod n)) (mod n) = (a× b) (mod n)

Definition 2.1.8 (Multiplicative Group Z∗n). The set of all positive integers that are less than

n and relatively prime to n, together with the operation of multiplication modulo n, forms a

multiplicative group Z∗n.

17



Definition 2.1.9 (Euler’s Totion Function). φ(n) = |Z∗n|.

• If p is a prime, then φ(p) = p − 1.

• The Euler totion function is multiplicative. That is, if gcd(m,n) = 1, then φ(mn) =

φ(m)φ(n).

• If n = pe11 pe22 · · · pekk is the prime factorization of n, then

φ(n) = n(1− 1
p1
)(1− 1

p2
) · · · (1− 1

pk
).

2.1.3. Fermat’s Theorem and Euler’s Theorem

Theorem 2.1.10 (Fermat’s Theorem). If p is prime and a is a positive integer not divisible

by p, then

ap−1 ≡ 1 (mod p).

Theorem 2.1.11 (Euler’s Theorem). For every a and n that are relatively prime,

aφ(n) ≡ 1 (mod n).

2.1.4. Euclid’s Algorithm

Theorem 2.1.12 (Euclid’s theorem). For any non-negative integer a and any positive integer

b,

(1) GCD(a, b) = GCD(b, a (mod b)).

Algorithm 2.1.1 (Basic Euclidean Algorithm). For any non-negative integer a, b, one can re-

peat using equation 1 to find the greatest common divisor d of a, b such that d = GCD(a, b)

in O(len(a) + len(b)) arithmetic operations.

Algorithm 2.1.2 (Extended Euclidean Algorithm). For any non-negative integer a, b, let d =

GCD(a, b). There exists integers s, t such that as + bt = d . The Extended Euclidean

Algorithm allows us to efficiently compute s and t in O(len(a)+len(b)) arithmetic operations.
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2.2. Number-Theoretic Problems

The security of many cryptographic systems relies on the assumption that certain compu-

tational problems are intractable. The integer factorization problem and discrete logarithm

problem are two fundamental problems for many cryptographic systems. The intractability of

these two problems is still an assumption, since no one has been able to prove their hardness.

In fact, a proof that either of these problems cannot be solved in polynomial time would give

as a consequence that P 6= NP , solving what is arguably the most famous and important

open problem in computer science. Nonetheless, with many years of experience examining

these problems, they are widely accepted as intractable problems in cryptographic literature.

The security of the schemes in this dissertation also relies on the hardness of these two

problems as well as additional problems that will be discussed in the next chapter.

2.2.1. The Integer Factorization Problem

Definition 2.2.1 (Integer Factorization Problem). Given a positive integer n, find its prime

factorization; that is, write n = pe11 p
e2
2 · · · pekk where the pi are pairwise distinct primes and

each ei ≥ 1.

The current available algorithms for factoring an integer n include 1:

• Pollard’s rho algorithm with running time O(√n).

• Elliptic curve method: if n has a small prime factor p, this method finds p in

O(exp((1 + o(1))
√
2 ln p ln ln p)).

• Quadratic sieve algorithm with running time O(exp((1 + o(1))
√
ln n ln ln n)).

• Number field sieve algorithm with running timeO(exp((1.92+o(1))(ln n) 13 (ln ln n) 23 )).

1Note that following the convention of computational number theory, n is used to represent the number

itself rather than the length of the number, as is standard in other areas of algorithms. This means that an

O(n) time algorithm is actually exponential time.
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All the current integer factorization algorithms are super-polynomial, and it is widely

accepted that this problem is intractable. Therefore the integer factorization assumption is

described as follows.

Assumption 2.2.2 (Integer Factorization Assumption). There exists no probabilistic polynomial-

time algorithm that can find the factors of an arbitrary integer with non-negligible probability.

2.2.2. The Discrete Logarithm Problem

Definition 2.2.3 (Discrete Logarithm). Let G be a finite cyclic group and g ∈ G be a generator

of G. The discrete logarithm of an element a ∈ G, is the unique integer x, 0 ≤ x < |G|, such

that a = gx .

Definition 2.2.4 (Discrete Logarithm Problem). Given a finite cyclic group G, a generator g

of G, and an element a, find the integer x, 0 ≤ x < |G|, such that a = gx .

The current available algorithms for discrete logarithm problems include:

• Generic algorithms that work in arbitrary groups that include Pollard’s rho algorithm,

and the Baby-step Giant-step algorithm. Both run in time O(
√
n log(n))

• Pohling-Hellman algorithm for a special group whose order has only small prime

factors. It’s running time is O(
∑r
i=1 ei(lg n +

√
pi)).

• Index calculus algorithm for groups Z∗p and Z∗2m with running time upper-bound by

O(exp((c + o(1))
√
ln q ln ln q)).

• The number field sieve method for group Z∗p runs with timeO(exp((1.92+o(1))(ln p)
1
3 (ln ln p)

2
3 )).

It is widely accepted that if fro a suitable group, the discrete logarithm problem is in-

tractable. This is expressed as the following assumption.

Assumption 2.2.5 (Discrete Logarithm Assumption). There exists no probabilistic polynomial-

time algorithm that can find the discrete logarithm of an element in a group G that supports

the discrete logarithm assumption with non-negligible probability.
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Many groups support the discrete logarithm assumption. For example, the discrete loga-

rithm problem is assumed intractable in a group Z∗p where p has a large factor.

2.3. Hash Function

Hash functions are used in many cryptographic schemes such as digital signatures and

authentication.

Definition 2.3.1 (Hash Function). A hash function is a function mapping binary strings of

arbitrary finite length to binary strings of fixed length l :

H : {0, 1}∗ → {0, 1}l .

For cryptographic purposes a hash function must also be hard to invert, i.e., it must have

at least one of the following properties (in decreasing order of desirability):

• Strong collision resistant: It is hard to find a pair (x, x ′) with x 6= x ′ such that

H(x) = H(x ′).

• Weak collision resistant: For a given x , it is hard to find an x ′ 6= x such that

H(x) = H(x ′).

• One-way : For a given c, it is hard to find an x such that c = H(x).

2.4. The Public Key Cryptosystem

Chapter 1 gave a high level introduction to the mathematics behind much of public key

cryptography. This section introduces three famous schemes in public key cryptography: the

Diffie-Hellman key exchange scheme, the RSA public key scheme, and the ElGamal public

key scheme.

2.4.1. The Diffie-Hellman Key Exchange Scheme

In 1976, Diffie and Hellman introduced the concepts of public key cryptosystems in their

pioneering paper “New Direction In Cryptography” [26], and proposed a key exchange scheme

based on this novel concept. The Diffie-Hellman key exchange protocol allows Alice and Bob
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to generate a session key for later communication in such a way that other parities can

not calculate this session key by observing the data exchange between Alice and Bob. The

protocol works as follows:

• Alice and Bob agree on a large prime number p and a primitive root g of p, which

is a generator of the group Z∗p. For security reasons, p− 1 should have at least one

large prime factor.

• Alice randomly picks x in (1, p−1), denoted by x ∈R (1, p−1), and calculates A =

gx (mod p); Bob randomly picks y ∈R (1, p − 1) and calculate B = gy (mod p).

Alice and Bob exchange A,B.

• Alice calculates

Bx = (gy )x = gxy (mod p),

and Bob calculates

Ay = (gx)y = gxy (mod p).

Since Alice knows her secret x , and Bob knows his secret y , Alice and Bob can com-

plete the above computation. It has become a widely accepted assumption that computing

gxy (mod p) given just A and B, known as the Computational Diffie-Hellman Problem, is

infeasible. A formal definition of the Computational Diffie-Hellman Problem will be given in

the next chapter. Thus, Bob and Alice share a common secret from which a session key can

be generated.

The Diffie-Hellman key exchange protocol elegantly solves the key exchange problem.

The pioneering work of Diffie and Hellman opened the door to research and applications of

public key cryptography. However, the protocol does not provide authentication, and suffers

a “man-in-the-middle” attack, in which a third party sitting in the middle of Alice and Bob

can pretend he/she is Alice to Bob, and Bob to Alice, without the awareness of Alice and
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Bob. The Diffie-Hellman key exchange protocol should be combined with other cryptographic

techniques to perform authenticated key exchange.

2.4.2. The RSA Scheme

In 1977, Rivest, Shamir and Addleman proposed the first, still widely used public key

cryptosystem [51]. The following gives a high level description of this famous construction.

Note that this is an abstract and high-level description - in practice, the use of RSA is quite

different.

Alice picks two large random prime numbers p, q. She computes n = pq, and Euler’s

totient function φ(n) = (p− 1)(q− 1). She further picks an e < n that is relatively prime to

φ(n), and computes d , the inverse of e modulo φ(n). While the original RSA paper suggested

a random e, no security weaknesses have been discovered with using small fixed e, as long

as p and q satisfy some additional properties. So in practice e is almost always either 3 or

65537, since this leads to much faster encryption operations. Then (d, n) is the private key

of Alice, and (e, n) is the public key. (d, p, q, φ(n)) are kept secret by Alice. If another user

Bob wants to send a message m < n to Alice, he computes the ciphertext

c = me (mod n),

and sends it to Alice. Alice decrypts the ciphertext as

m′ = cd (mod n).

If Alice and Bob follow the protocol, since Z∗n is a group with order φ(n), and ed = kφ(n)+1

for some integer k , then

m′ = cd = (me)d = med = m (mod n).

A digital signature scheme can also be implemented in the RSA scheme. Alice uses her

private key d to compute

sg = md (mod n),
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where sg is Alice’s signature on message m. Bob can verify

sge =? m (mod n).

If so, this shows sg is indeed Alice’s signature on message m, since it is supposed that only

Alice can compute sg based on her private key d .

2.4.3. The ElGamal Scheme

ElGamal proposed a public key cryptosystem based on discrete logarithms modulo a large

prime number in [27]. In this system, Alice has her private key x ∈R (1, p − 1), and public

key y = gx (mod p). p is a large prime number such that p − 1 has at least one large prime

factor. g is a generator of group Z∗p. Bob wants to send a message m (0 < m < p − 1) to

Alice. He randomly chooses k ∈R (1, p − 1), and computes the key

K = y k = gxk (mod p),

and the ciphertext is the pair (c1, c2), where

c1 = g
k (mod p), c2 = Km (mod p).

To decrypt the message (c1, c2), Alice calculates

K = cx1 = g
xk (mod p), m = c2K

−1 (mod p).

Since only Alice is supposed to know her private key, under appropriate assumptions only

she can decrypt the message to her. A digital signature scheme can also be implemented

using ElGamal’s techniques. Readers should refer to the original paper for details.

2.5. The Random Oracle Paradigm

The random oracle model is a common technique in cryptography, and was introduced

by Goldreich et al. [36, 37] and Fiat-Shamir [28], and explicitly formalized by Bellare and

Rogaway [6]. It has been widely used to prove security of cryptographic protocols, and many

24



famous cryptographic schemes have been proved secure in the random oracle model. For

example, the RSA scheme with the Optimal Asymmetric Encryption Padding (OAEP), which

is one way the RSA scheme is used in practice, has been proved secure in the random oracle

model [7, 55].

A random oracle is a mathematical abstraction, which answers a query x as follows:

• If it answered the query x before, it responds with the same value it gave the last

time.

• If it has not answered the query x before, it generates a random response which has

uniform probability of being chosen from anywhere in the oracle’s output domain.

The random oracle also records the answer for this x in case the same query is asked

later.

In the random oracle model, a public random oracle can be accessed by all parities, either

good or bad. A protocol is firstly proved correct in this model. Then the random oracle

is replaced by a hash function, as is common practice, but note there are some potential

problems with this substitution [19].

The schemes in this dissertation will be proved secure in the random oracle model.

2.6. Zero-knowledge Proof of Knowledge

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff in [38]. It forms

a central class of modern cryptographic protocols. Through a zero-knowledge protocol, a

prover can convince a verifier of the validity of a statement in an interactive mode, while the

verifier can not gain any information from the interaction with the prover except the truth

of statement itself. This section reviews some important definitions about zero-knowledge

proofs.
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2.6.1. Interactive Proof System

Traditionally, a proof of a statement is a sequence of statements. Anyone with knowledge

in this area should be able to interpret these statements and judge the validity of the statement

to be proved. In contrast, an interactive proof of a statement is an interactive protocol

between a prover and a verifier. The prover wants to convince the verifier of the validity of

a statement. For example, the statement can be of the form “Formula φ is satisfiable,” or

“Graph G is three-colorable.” Two requirements are necessary for a valid interactive proof

system: completeness and soundness. The completeness property deals with the ability of an

honest prover, i.e., if the statement is true, the prover should be able to convince the verifier

with high probability. The soundness property deals with the inablility of a cheater, i.e., if the

statement is false, no prover should be able to convince a verifier with significant probability.

Let’s recall the definition of interactive proof system that appears as definition 4.2.4 in [35].

In the following, 〈A,B〉(x) denotes the random variable representing the output of B when

interacting with A on common input x , when the random input to A and B is uniformly and

independently chosen.

Definition 2.6.1. (Interactive proof system). A pair of interactive Turing machines (P,V)

constitute an interactive proof system for language L if machine V is polynomial-time and

the following two conditions hold:

• Completeness: For every x ∈ L,

P r [〈P, V 〉(x) = 1] ≥ 2
3
.

• Soundness: For all x /∈ L and all interactive Turing machine B,

P r [〈B, V 〉(x) = 1] ≤ 1
3
.
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An interactive proof system can be of interest only if the verifier is probabilistic polynomial-

time, which is reflected in the above definition. Otherwise, a verifier with powerful compu-

tation capability may be able to make the decision alone without interacting with a prover,

i.e, it can determine whether x ∈ L alone. However, in practice, the prover and verifier

in general should both be probabilistic polynomial-time. Thus the question arises of how a

prover can have more capability than a verifier to complete an interactive proof. In reality,

the prover’s power comes from the fact that the prover also takes some auxiliary input. That

is, a polynomial-time machine P is equipped with some knowledge which is not known by a

verifier. Definition 2.4.2 from [42] reflects this situation.

Definition 2.6.2. (Interactive argument). A pair of interactive probabilistic polynomial-time

Turing machines (P,V) constitute an interactive proof system for language L if:

• Completeness: If x ∈ L, then there exists a witness w such that

P r [〈P (w), V 〉(x) = 1] = 1,

where the prover has additional input w .

• s-Soundness: For all x /∈ L and all interactive Turing machine B, Pr[〈B, V 〉(x) =

1] ≤ s(|x |).

2.6.2. Zero-knowledge Proofs

In the design of cryptographic protocols, it would be desirable for an interactive proof

system being “zero-knowledge.” Intuitively, a proof-system is zero-knowledge if a third party

alone can produce a transcript indistinguishable from the transcript produced between the

prover and the verifier. Precisely speaking [35]: Let (P, V ) be an interactive proof system

for some language L. If for every probabilistic polynomial-time interactive machine V ∗ there

exists a probabilistic polynomial-time machine M∗ such that for every x ∈ L random variables
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〈P, V ∗〉(x) and M∗(x) are identically distributed, (P, V ) is called a perfect zero-knowledge

proof system. Machine M∗ is called a simulator for the interaction of V ∗ with P .

This dissertation will use a weaker notion of zero-knowledge, called honest-verifier zero-

knowledge, to construct authentication protocol. This notion requires simulatability of the

view of only the prescribed (or honest) verifier, rather than simulatability of the view of any

possible verifier. Let’s first review the concept of computational indistinguishability. For two

probability ensembles {Rx}x∈Land {Sx}x∈L, if for every probabilistic polynomial-time algorithm

D, for every polynomial p(·), and for all sufficiently long x ∈ L, it holds that

|P r [D(x, Rx) = 1]− P r [D(x, Sx) = 1| <
1

p(|x |),

these two probability ensembles are called computational indistinguishable [35]. The following

is the definition of zero-knowledge proof with respect to an honest verifier (Definition 4.3.7

in [35]).

Definition 2.6.3. (Zero-knowledge with respect to an Honest Verifier). Let (P, V ) be a

pair of polynomial-time machines and L be a language. v iewPV (x) is a random variable

describing the content of the random tape of V ∗ and the messages V ∗ receives from P

during a joint computation on common input x . It is said that (P, V ) is honest-verifier zero-

knowledge if there exists a probabilistic polynomial-time algorithm M such that the ensembles

{v iewPV (x)}x∈L and {M(x)}x∈L are computationally indistinguishable.

2.6.3. Proofs of Knowledge

The previous section has reviewed the concept of interactive proof systems, and the

property of zero-knowledge. It is further interesting if a proof system can demonstrate that

a certain quantity w that satisfies some polynomial-time computable relation R is known to

the prover. This leads to a proof of knowledge. It should be noted that a knowledge proof is

not necessarily a zero-knowledge proof. Let’s review the definition for proof of knowledge in

[42].
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Definition 2.6.4. (Proof of knowledge). Let R(·, ·) be a polynomially computable relation.

Let u(x) be such that |w | ≤ u(x) for all w such that R(x, w) holds, and assume that

u(x) = poly(|x |) is efficiently computable. A verifier V is a knowledge verifier with respect

to R if:

• Non-triviality: There exists a prover P such that for all x, w , if R(x, w) = 1, then

P r [〈P (w), V 〉(x) = 1] = 1

• Extraction with knowledge error 2−u(x): There exists an extractor algorithm K and

a constant c such that for all x , for all adversaries A, if

p(x) = P r [〈A, V (x)〉 = 1] > 2−u(x)

then, on input x and with access to prover, K computes a value w such that R(x, w)

holds, within an expected number of steps bounded by (|x|+u(x))
c

p(x)−2−u(x)
.

2.7. Authentication Techniques

This dissertation will adopt two authentication techniques to construct authentication

protocols in different settings. The first technique is based on public key cryptosystems, while

the second technique is based on more powerful zero-knowledge proof systems. Generally

speaking, authentication based on public key techniques is more simple and efficient than

one based on a zero-knowledge proof system. However, a zero-knowledge proof system

can be more powerful for implementing a complex authentication system, especially for an

anonymous authentication system.

2.7.1. Authentication based on Public Key Technique

Two methods are available for implementing authentication based on public key tech-

niques: encryption and digital signature. To use an encryption scheme, Bob challenges Alice

using a ciphertext which is a random message encrypted using Alice’s public key. Only Alice

can decrypt the ciphertext and correctly answer Bob’s challenge. To use a digital signature
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scheme, Alice signs some one-time message (e.g., timestamps or a nonce) using her private

key and sends the result to Bob. Bob verifies that the message does originate from Alice

using Alice’s public key.

The procedure below is a specific procedure for authentication by public key encryption.

• Bob picks a random r . He computes a witness w = H(r) and a challenge c =

E(PubKeya, r), and sends (w, c) to Alice.

• Alice uses her private key to compute r ′ = D(P r iKeya, c). Alice checksH(r ′) =? w .

If not, Alice aborts the protocol. Otherwise, Alice sends r ′ to Bob.

H is a one-way hash function. w is called a witness, which is used to prevent chosen

message attacks from malicious challengers. In a chosen message attack, an attacker could

forge some special message m, and trick Alice to compute md . Potentially, this might reveal

certain information for Alice’s private key. With the help of a witness, Alice can detect such

attacks and abort the protocol. On the other hand, if Bob is honest, the response from Alice

is already known by himself. Therefore, nothing about Alice’s private key will be revealed.

2.7.2. Authentication based on a Zero-knowledge Proof of Knowledge

In constructing authentication scheme based on a zero-knowledge proof system, Alice

sends Bob a commitment to her secret. Then Alice proves to Bob that she knows the secret

in the commitment without revealing it, and that the secret satisfies certain properties.

This methodology will be demonstrated in the next chapter with a real example. In this

dissertation, this technique is extensively used to implement anonymous authentication in

different settings.
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CHAPTER 3

PRELIMINARIES

This chapter reviews the definitions, assumptions and building blocks which will be used

throughout this dissertation.

3.1. Definitions

Definition 3.1.1 (Special RSA Modulus[15]). An RSA modulus n = pq is called special if

p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ also are prime numbers. p, q are called

safe primes. A special RSA modulus is also called a safe RSA modulus in the literature (for

example, [2]).

Definition 3.1.2 (Quadratic Residue Group QRn). Let Z
∗
n be the multiplicative group modulo

n, which contains all positive integers less than n and relatively prime to n. An element

x ∈ Z∗n is called a quadratic residue if there exists an a ∈ Z∗n such that a2 ≡ x (mod n). The

set of all quadratic residues of Z∗n forms a cyclic subgroup of Z
∗
n, denoted by QRn. If n is the

product of two distinct primes, then |QRn| = 1
4
|Z∗n |.

Property 3.1.1. If n is a special RSA modulus, with p, q, p′, and q′ as in Definition 3.1.1

above, then |QRn| = p′q′ and (p′ − 1)(q′ − 1) elements of QRn are generators of QRn.

Proof : Consider the group Z∗p and corresponding subgroup QRp. Since p is prime, exactly

half of the elements of Z∗p are in QRp, so |QRp| = 1
2
(p − 1) = p′. Since p′ is prime, any

element of QRp generates a subgroup of size 1 or of size p
′, and since only the identity

element generates a subgroup of size 1, the remaining p′ − 1 elements of QRp have order

p′. Similarly, q′ − 1 elements of QRq have order q′. By the Chinese Remainder Theorem, if

element xp has order mp in Z
∗
p and element xq has order mq in Z

∗
q, then the unique element
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x ∈ Z∗n with xp = x mod p and xq = x mod q has order LCM(mp, mq) in Z∗n. Furthermore,

x ∈ QRn if and only if xp ∈ QRp and xq ∈ QRq. Therefore, (p′−1)(q′−1) elements of QRn

have order LCM(p′, q′) = p′q′ = |QRn| in QRn, and so are generators of QRn. ⊓⊔

The following two properties follow from basic properties of cyclic groups and quadratic

residues.

Property 3.1.2. If g is a generator of QRn, then g
a mod n is a generator of QRn if and only

if GCD(a, |QRn|) = 1.

Property 3.1.3. If x ∈R Z∗n is uniformly distributed over Z∗n, then x2 mod n is uniformly

distributed over QRn.

The concept of negligible function (Definition 1.3.5 in [35]) is defined as follows.

Definition 3.1.3 (Negligible Function). A function v(k) is negligible, if for any polynomial

p(·), there exist an N such that all k > N,

v(k) <
1

p(k)
.

3.2. Number-Theoretic Assumptions

The security of the techniques in this dissertation relies on the following assumptions,

which are widely accepted in the cryptography literature (see, for example, [5, 29, 8]).

Assumption 3.2.1 (Strong RSA Assumption). Let n be an RSA modulus. The Flexible RSA

Problem 1is the problem of taking a random element u ∈ Z∗n and finding a pair (v , e) such

that e > 1 and v e = u (mod n). The Strong RSA Assumption says that no probabilistic

polynomial time algorithm can solve the flexible RSA problem with non-negligible probability.

1The flexible RSA problem is also called the strong RSA problem in some literature (e.g. [2]).

32



The strong RSA assumption strengthens the widely accepted RSA assumption that finding

the eth-roots modulo n for an element in Zn, where e is the fixed public exponent. More

discussion can be found in the report by Rivest and Kaliski [50].

The following lemmas will be used intensively for the security proofs in the rest of this

dissertation. The first lemma is due to Shamir [53].

Lemma 3.2.2. Let n be an integer. For given values u, v ∈ Z∗n and x, y ∈ Zn such that

GCD(x, y) = 1 and v x ≡ uy (mod n), there is an efficient way to compute the value z such

that z x ≡ u (mod n).

Proof : Since GCD(x, y) = 1, one can use the Extended GCD algorithm to find a and b

such that ay + bx = 1, and let z = v aub. Thus

z x ≡ v axubx ≡ uay+bx ≡ u (mod n).

⊓⊔

Shamir’s lemma can be extended as follows.

Lemma 3.2.3. Let n be an integer. Given values u, v ∈ Z∗n and x, y ∈ Z such that

GCD(x, y) = r , and v x ≡ uy (mod n), there is an efficient way to compute a value z

such that zk ≡ u (mod n), where k = x/r .

Proof : Since GCD(x, y) = r , using the extended Euclidean GCD algorithm, one can obtain

values α and β such that αx/r + βy/r = 1. Thus

u ≡ uαx/r+βy/r ≡ uαx/ruyβ/r ≡ uαx/rvβx/r ≡ (uαvβ)x/r (mod n).

Therefore, setting k = x/r and z = uαvβ, one can have zk ≡ u (mod n). ⊓⊔

The following lemma is based on the strong RSA assumption.

Lemma 3.2.4. Under the strong RSA assumption, if there exists a probabilistic polynomial-

time algorithm that takes an RSA modulus n and a value u and succeeds with non-negligible

probability in finding values v , x , and y , such that v x ≡ uy (mod n), then x divides y .
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Proof : By contradiction. Assume that there exists a probabilistic polynomial-time algorithm

that takes an RSA modulus n and a value u and succeeds with non-negligible probability in

finding values v , x , and y , such that v x ≡ uy ( mod n), but for which x does not divide y . Let

r = GCD(x, y). Since x does not divide y one have r < x , and so x/r > 1. By Lemma 3.2.3

one can find a z such that zk = u (mod n), with k = x/r > 1, which is a solution to the

flexible RSA problem. However, this contradicts the strong RSA assumption, which says that

no such algorithm can exist. ⊓⊔

Some additional security assumptions are introduced as follows.

Assumption 3.2.5 (Computational Diffie-Hellman Assumption for QRn). Let n be a special

RSA modulus, and let g be a generator of QRn. Then given random g
x and gy , it is hard to

compute gxy (mod n).

Assumption 3.2.6 (Decisional Diffie-Hellman Assumption for QRn). Let n be a special RSA

modulus, and let g be a generator ofQRn. For two distributions (g, g
x , gy , gxy ), (g, gx , gy , gz),

x, y , z ∈R Zn, there is no probabilistic polynomial-time algorithm that distinguishes them with

non-negligible probability.

Kiayias et al. have investigated the Decisional Diffie-Hellman Assumption over a subset

of QRn in [40], i.e., x, y , z are randomly chosen from some subsets, truncation of QRn. They

showed that the Decisional Diffie-Hellman Assumption is still attainable over subsets of QRn

with the size down to at least |QRn|1/4.

The following lemma is a corollary of the decisional Diffie-Hellman assumption.

Lemma 3.2.7. Let n be a special RSA modulus, g be a generator of QRn, and three elements

a, b, c ∈ QRn. There is no probabilistic polynomial-time algorithm that can decide with

non-negligible probability whether there exists an integer x such that a = gx , c = bx .

Proof : Suppose there exists a probabilistic polynomial-time algorithm A(g, a, b, c) for

a, b, c ∈ QRn and g being a generator of QRn, which can decide there exist an integer x such
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that a = gx , c = bx . Consider two distribution distributions (g, gx , gy , gxy ), (g, gx , gy , gz),

x, y , z ∈R Zn. One can call A(g, gx , gy , gxy ), and A(g, gx , gy , gz) to recognize with non-

negligible probability which distribution is (g, gx , gy , gxy ) since this distribution can be recog-

nized by the algorithm A due to gxy = (gy)x , and gx = (g)x . However, this is infeasible

under the decisional Diffie-Hellman assumption. Therefore, no such algorithm A exits. ⊓⊔

3.3. Building Blocks

The main building blocks in Chapter 5 and 6 of this dissertation are statistical honest-

verifier zero knowledge proofs of knowledge related to discrete logarithms over QRn [29, 30,

16] which will be reviewed in this section. They include protocols for things such as knowledge

of a discrete logarithm, knowledge of equality of two discrete logarithms, and knowledge of

a discrete logarithm that lies in an interval, etc. These protocols have been proved secure

under the strong RSA assumption, and proofs can be found in the cited references.

3.3.1. Knowledge of a Discrete Logarithm

Fujisaki and Okamota proposed a zero-knowledge proof of knowledge of a discrete loga-

rithm [29] . Camenisch and Michels proposed a slight modification and provided a security

proof in [16].

Protocol 3.3.1. Let n be a special RSA modulus, QRn be the quadratic residue group modulo

n, and g be a generator of QRn. lg is the bit length of |QRn|. α and lc are security parameters

that are both greater than 1. A prover Alice knows x , the discrete logarithm of T (so gx = T ).

Alice demonstrates her knowledge of x as follows.

(i) Alice picks a random t ∈ ±{0, 1}α(lg+lc) and computes d = gt ( mod n). Alice sends

(T, d) to verifier Bob.

(ii) Bob picks a random c ∈ {0, 1}lc and sends it to Alice.

(iii) Alice computes

w = t − cx,
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and w ∈ ±{0, 1}α(lg+lc)+1. Alice sends w to Bob.

(iv) Bob checks w ∈ ±{0, 1}α(lg+lc)+1 and

gwT c =? d (mod n).

If the equation holds, Alice proves knowledge of the discrete logarithm of T .

Remark 3.3.1. The parameter α > 1 is used since the size of the group QRn is unknown,

and determines the statistical closeness of the actual distribution to the ideal one. In other

words, α determines the statistical zero-knowledge property of this protocol. This will be

illustrated more clearly in the proof for the protocol of knowledge of a discrete logarithm in

an interval (Protocol 3.3.3).

Remark 3.3.2. Using the Fiat-Shamir heuristic [28], the protocol can be turned into a non-

interactive “signature of knowledge,” which is secure in the random oracle model [6].

3.3.2. Knowledge of the Equality of Discrete Logarithms with Different Bases

The protocol given below was first introduced in [21]. It was adapted to work in a group

with unknown order in [16]. In this protocol, Alice proves she knows discrete logarithms

of two elements T1, T2 ∈ QRn with respect to generators g, h, respectively. That is, gx ≡

T1 (mod n), h
x ≡ T2 (mod n). The protocol works as follows.

Protocol 3.3.2. Let n be a special RSA modulus, QRn be the quadratic residue group modulo

n, and g be a generator of QRn. lg is the bit length of |QRn|. α and lc are security parameters

that are both greater than 1.

• Alice picks a random t ∈ ±{0, 1}α(lg+lc) and computes

d1 = g
t (mod n), d2 = h

t (mod n).

Alice sends (T1, T2, d1, d2) to verifier Bob.

• Bob picks a random c ∈ {0, 1}lc and sends it to Alice.
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• Alice computes

w = t − cx,

and w ∈ ±{0, 1}α(lg+lc)+1. Alice sends w to Bob.

• Bob checks w ∈ ±{0, 1}α(l+lc )+1 and

gwT c1 =? d1 (mod n), h
wT c2 =? d2 (mod n)

If the equation holds, Alice has proved knowledge of equality of two discrete loga-

rithms of T1, T2 with base g, h.

3.3.3. Knowledge of a Discrete Logarithm in an Interval

The protocol was first proposed for a group with known order by Chan et al. in [20]. Fu-

jisaki and Okamota extended the protocol to a group with unknown order in [30]. Camenisch

and Michels proposed a slight modification in [17].

Protocol 3.3.3. Let n be a special RSA modulus, QRn be the quadratic residue group modulo

n, and g be a generator of QRn. α, l, lc are security parameters that are all greater than

1. X is a constant number. A prover Alice knows x , the discrete logarithm of T , and

x ∈ [X − 2l , X + 2l ]. Alice demonstrates her knowledge of x ∈ [X − 2l , X + 2l ] as follows.

(i) Alice picks a random t ∈ ±{0, 1}α(l+lc ) and computes d = gt (mod n). Alice sends

(T, d) to a verifier Bob.

(ii) Bob picks a random c ∈ {0, 1}lc and sends it to Alice.

(iii) Alice computes

w = t − c(x − X),

and w ∈ ±{0, 1}α(l+lc )+1. Alice sends w to Bob.

(iv) Bob checks w ∈ ±{0, 1}α(l+lc )+1 and

gw−cXT c =? d (mod n).
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If the equation holds, Alice proves knowledge of the discrete logarithm of T that

lies in the range [X − 2α(l+lc )+1, X + 2α(l+lc )+1].

Remark 3.3.3. The asymmetry of this proof — that Alice must know a value in a more

restrictive range that Bob will be convinced of — seems unusual at first, but the following

proof will illustrate this is sufficient to prove the properties needed.

Proof : The proof for correctness is straightforward. A prover with the knowledge of discrete

logarithm can always convince a verifier.

The protocol can be proved statistical honest-verifier zero-knowledge for α > 1. A

simulator for protocol transcripts between the honest prover and the honest verifier works as

follows: it selects ĉ ∈R {0, 1}lc , and ŵ ∈R ±{0, 1}α(l+lc )+1, and computes:

d̂ = gĉT ŵ−ĉX (mod n).

The simulator outputs the transcript (T, d̂, ĉ).

It is needed to show that the simulated transcripts are statistically indistinguishable from

the transcripts that are generated between the honest prover and the honest verifier. With

the consideration that an honest prover uniformly selects t ∈R {0, 1}α(l+lc), the probability

distribution P (w) can be calculated as follows.

(i) For −X + 2α(l+lc ) < w < X − 2α(l+lc ) for each of the 2lc different c, there is a t

such that w = t − c(x − X). Thus, P (w) = 2lc/(2lc2α(l+lc )+1) = 1/2α(l+lc)+1.

(ii) For w ≥ X+2α(l+lc ) or w ≤ −X−2α(l+lc), since it is impossible to solve the equation

w = t − c(x − X), P1(w) = 0.

(iii) For the other selection of w ∈ Z, P (w) ∈ [0, 1/2α(l+lc )+1).

The simulator’s probability distribution of ŵ , P ′(ŵ), is 1/2α(l+lc)+1 for ŵ ∈ ±{0, 1}α(l+lc),

and 0 for other situation.

Therefore, the absolute difference between P ′(ŵ) and P (w) is 0 for case 1 and 2. For

case 3, P ′(ŵ) is either 0 or 1/2α(l+lc )+1. In the worst case the absolute difference between
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P ′(ŵ) and P (w) is 1/2α(l+lc )+1. The number of possibilities for w in case 3 is 2l+lc+2, thus

the statistical distance of P ′(ŵ) and P (w) is at most

2l+lc+2/2α(l+lc)+1 = 1/2(α−1)(l+lc)−1.

Due to the choice of l , lc , α (Note: α > 1), the probability difference between P (w) and

P ′(ŵ) is statistically insignificant.

To prove the protocol is a proof of knowledge, it is necessary to show that a knowledge

extractor is able to recover the group certificate when it has found two accepting tuples under

the same commitment and different challenges from a verifier. Let (d, w, c) and (d ′, w ′, c ′)

be two accepting tuples.

Since d ≡ gw−cXT c ≡ gw ′−c ′XT c ′ (mod n),

gw
′−w+(c−c ′)X ≡ T c−c ′ (mod n).

By Lemma 3.2.4, c−c ′ must divide w ′−w+(c−c ′)X. Otherwise an instance of the flexible

RSA problem can be solved, i.e., g ≡ v e (mod n) for some v , and 1 < e < (c − c ′), which

contradicts the strong RSA assumption (Assumption 3.2.1).

Therefore, a knowledge extractor obtains

x = X + (w ′ − w)/(c − c ′).

Since w ∈ ±{0, 1}α(l+lc )+1, x must be in the range of [X − 2α(l+lc)+1, X + 2α(l+lc )+1].

⊓⊔
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CHAPTER 4

AN EFFICIENT PUBLIC KEY CRYPTOSYSTEM FOR EMBEDDED SYSTEMS

This chapter presents an efficient public key cryptosystem for embedded systems, which

includes protocols for authentication, authenticated key exchange, encryption and revocation

1. The new system is proved secure under the strong RSA assumption, and the computational

Diffie-Hellman assumption.

4.1. Introduction

4.1.1. Background

Recall the requirements for embedded system scenarios given in Chapter 1: it would be

desirable for the devices in the system to use encrypted communication for confidentiality

and integrity, and to be able to securely recognize other devices with the same owner. A pair

of devices should be able to establish authenticated secure channels on their own, without

needing to interact with the owner or any other party at the time, and the system is dynamic,

meaning that new devices can enter the system at any time. Therefore, solutions based on

symmetric cryptography, whether requiring preloaded keys for all pairs of devices or using an

available authority (like in Kerberos), do not satisfy the requirements.

There are many known cryptographic solutions which can solve this problem, including

using X.509 certificates issued by the owner, using a group signature or credential system with

the owner as the group manager, or using identity-based encryption. However, the scenario

has some unique properties which allow for a more efficient solution, and the importance

of highly optimized protocols in embedded systems has led us to develop such an efficient

1Parts of this chapter have been accepted by ITNG06 [31]. Section 4.1, 4.2, 4.3.1, 4.3.2, Theorem 4.4.3,

Theorem 4.4.5, Paragraph 1,2,3,4 in section 4.5 use material in [31] with permission under IEEE copyright

policy.
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solution in this chapter. After defining a model capturing the specific characteristics of

embedded systems in the next section, a discuss will be given on how various aspects of the

model allow improvement upon these existing techniques.

4.1.2. The Model

This section defines a model which captures security requirements in a system with three

key properties: a small set of devices (typically a few devices up through a few thousand

sensors), a single completely trusted administrator (the owner of the devices), and no exter-

nally meaningful names that need to be linked to keys. To protect communication between

members of this set of devices, it is necessary to provide a security protocol to implement

authentication and key establishment. The following definition precisely specifies the security

requirements of the system. Terminology from the related area of group signatures has been

used, but keep in mind an important difference in embedded system: the group members are

not independent people, but rather devices ultimately controlled by the single owner. It is

also necessary to clarify here that any attacker is assumed to be a probabilistic polynomial

time algorithm, so references to things being impossible (such as forging a key) should be

understood to mean impossible for a probabilistic polynomial time algorithm.

Definition 4.1.1 (The Model). A group consists a single administrator, and at most several

thousand group members. The administrator holds a group master key while each group

member holds its group member key. A system supporting authenticated key exchange should

satisfy the following properties:

• (Forgery-resistance) A valid group member key can only be produced with knowledge

of the group master key, so if only the administrator has access to this key then

only the administrator can create valid group member keys.

• (Authentication Soundness) A party can prove membership in the group if and only

if it knows a valid group member key.
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• (Confidential Key Establishment) Any two members in the group can compute a

shared secret that cannot be deduced by outsiders. This shared secret can be used

with symmetric cryptography to support confidentiality and integrity of subsequent

communication.

• (Robustness) The compromise of a group member will not affect the security of

interactions between un-compromised group members. This is in contrast to the

shared-key scheme in which the compromise of one group member would reveal all

the communication in the system.

• (Forward Secrecy) If the administrator’s group master key is obtained, an attacker

still can not compromise operations between group members whose keys were estab-

lished prior to the administrator’s compromise. Note that forward secrecy property

defined here is a property of authenticated keys, not messages. The more basic

property of forward secrecy of messages applies to encryption systems, not key ex-

change, but it needs to point out that since the key exchange establishes random

session keys any larger system using our key exchange protocol will also exhibit

forward secrecy of messages.

• (Member Revocation) The administrator can revoke a group member in case it does

not belong to the group anymore, or it is broken by an attacker.

The last two properties are optional, whose importance depends on the likelihood of

compromise of the administrator or the group members, respectively. If the group master

key is kept on a general-purpose computer connected to the Internet, it is more important to

consider forward secrecy than in an environment in which the group master key is kept on a

dedicated device with highly controlled access. Similarly, in settings such as an unattended

sensor network in a hostile environment, it is almost inevitable that group members will be

compromised, so revocation is vital. In other settings, such as fixed devices in a physically
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controlled environment (like appliances in a home) the chances of member compromise is

low, so revocation is less important.

4.1.3. The Result and Related Works

This chapter proposes a simple and efficient authentication scheme which can be deployed

in applications which satisfy the above model. Its security is based on the strong RSA

assumption and the computational Diffie-Hellman assumption. This section shows how the

proposed scheme is related to other solutions for this problem, and describe which properties

of the proposed system enable us to improve upon these other solutions.

X.509 certificates [39] provide an obvious solution for authentication, which is what SSL

does for connections over the Internet. While this does provide the group member authenti-

cation needed, the primary purpose of X.509 certificates is to bind a meaningful identity and

other properties to a cryptographic key, which is unnecessary in our setting. To support the

flexible requirements of X.509 certificates, a typical certificate would be a separate object

that is several times as large as the key that it is authenticating. For example, the current

X.509 certificate authenticating the 128 byte (i.e., 1024 bit) key for www.amazon.com is

945 bytes long, so requires 738% overhead. By contrast, our authentication is implicit in the

key itself, so requires no overhead at all (although to attain forward secrecy it is necessary to

double the size of the key). Furthermore, a device which wants to authenticate itself using

an X.509 certificate must perform an RSA signature, using a private exponent that is as long

as the modulus, so an RSA signature with a 1024 bit key would require an average of 1536

modular multiplications. By contrast, the proposed scheme uses a short (160-bit) private

exponent, allowing a device with a 1024 bit key to authenticate itself with an average of 240

modular multiplications, roughly 15% of the number required by the RSA signature.

Identity-based encryption (IBE) [54, 11] can also be used to solve basic problems in

embedded system, but IBE is somewhat less efficient than the proposed construction in this

chapter. More important than efficiency in this case is the inability of IBE to support forward
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secrecy. Since the basis of IBE is the ability for the key manager to compute a private

key from the corresponding public key, if the group manager is compromised then all group

member keys are immediately compromised.

Self-certified public keys [34, 49], certificate-less public keys [1], and group signature

schemes [2] also provide the capabilities needed. However, the basic model for these systems

includes independent parties as the authenticated entities, and they do not trust the group

manager. In an embedded system, the group members are passive devices that are owned

by, and hence completely trust, the group manager. The effort that these techniques use to

protect against a malicious group manager is unnecessary in target scenarios, since everyone is

on the same team. In addition, properties such as anonymity and unlinkability, as supported by

group signatures, have no meaning in embedded systems, so are unnecessary complications.

The proposed system has a few additional properties which make it especially appropriate

for computation and memory constrained devices. First, while based on modular exponenti-

ation like RSA, short private exponents can be safely used, greatly improving the complexity

of authentication. While many parts of the proposed system map to standard RSA, the RSA

public key is hidden in the proposed system, so attacks on RSA with a small decryption expo-

nent [59, 10] do not work against our system. Second, keys are bound to short, unique tags,

that are typically 16 or 24 bits. Hence, if revocation needs to be supported, it can be done

through a very compact revocation list. In addition, an efficient secure re-keying scheme is

also proposed for highly dynamic environments.

4.2. The System Setup

The group administrator sets various parameters, the lengths of which depend on a security

parameter, denoted by σ.

4.2.1. Parameter Setting of the Group Administrator

A single administrator generates group member keys for the system, based on some public

and private values held by the administrator. The administrator’s values are:
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• n, g: n is a special RSA modulus such that n = pq, p = 2p′ + 1, and q = 2q′ + 1,

where p and q are each at least σ bits long (so p, q > 2σ), and p′ and q′ are prime.

g is a generator of the cyclic group QRn. n and g are public values while p and q

are kept secret by the administrator.

• ls : ls is the length of a group member private key, with the restriction that ls < σ−1

so that all member private keys are guaranteed to be less than min(p′, q′). ls also

needs to be large enough where a brute force search is not feasible.

• lt : lt is the length of the group member public key identifiers/tags, with the restric-

tion that lt < ls . The only lower bound on this parameter is that it must be large

enough so that every group member can be assigned a distinct prime number of

length lt . Some typical examples for this length might be 8 (for groups of up to 23

members), 16 (for groups of up to 3030 members), 24 (for groups of up to 513,708

members), or 32 (for groups of up to 98,182,656 members).

• One-way hash function: H : {0, 1}∗ → {0, 1}ls .

Based on the speed of current number theoretic algorithms and cryptanalytic attacks using

current hardware, for moderate sized groups of up to a few thousand members, settings of

σ = 512 (so n is 1024 bits), ls = 160, lt = 24 offer strong security.

4.2.2. Generation of the Group Member Key

The method for the creation of a group member key is straightforward. The administrator

picks two random prime numbers s and t with lengths ls and lt , respectively, where t has not

been previously used for a different group member. The administrator computes

E = gs
−1t−1 (mod n),

where s−1, t−1 are the inverses of s, t modulo |QRn| = p′q′, respectively. Note that since

lt < ls < σ − 1, both s and t are smaller then min(p′, q′), so are relatively prime to p′q′,

which guarantees that these inverses exist. s is the private part of a group member key, while
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(E, t) is the public part. t is the unique identifier, or tag, to represent a group member key.

To some degree, the tag t can be seen as a special identity as in self-certified public key

schemes, or certificate-less public key schemes [34, 1]. However, in practice, a prime number

is not treated as a meaningful identity such as email address, etc.

After the administrator delivers the group key to a group member through a secure

method, it stores (E, t) in its database and destroys private key s. Therefore, even if the

administrator is compromised, the private key for each group member remains secure.

4.3. Authentication Protocols

This section presents the authentication scheme, the authenticated key exchange, and

the encryption scheme.

4.3.1. Authentication Protocol

Suppose a group member Alice needs to authenticate herself to another party Bob (who

may or may not also be a group member). The authentication protocol works as follows.

(i) Alice sends (E, t) to Bob.

(ii) If the bit length of t is correct, Bob picks a random integer r ∈R {2, . . . , n − 1},

computes

E ′ = Etr (mod n) and W = H(gr (mod n)),

and sends E ′,W to Alice. Otherwise, Bob aborts the authentication.

(iii) Alice computes

E ′′ = E ′s (mod n).

If H(E ′′) = W , then Alice sends E ′′ to Bob; otherwise, she finds that Bob was

cheating, and aborts the protocol.

(iv) Bob checks

(2) E ′′ =? gr (mod n).

46



If equation (2) holds, this finishes the authentication of Alice to Bob.

The purpose of W is for Bob to prove that he knows the expected answer gr (mod n),

without giving away the answer. Since Bob knows gr (mod n) already, when Alice responds

with gr (mod n) it’s clear that Bob learns no new information. If H is a true one-way

hash function, then that makes the authentication protocol “zero-knowledge,” and prevents

chosen message attacks.

4.3.2. Mutual Authentication and Key Exchange

Based on the authentication protocol, Alice and Bob can complete a mutual authentica-

tion procedure to implement session key generation. The procedure actually implements an

authenticated Diffie-Hellman key exchange [26]. It works as follows.

(i) Alice and Bob exchange their public keys: (Ea, ta), and (Eb, tb).

(ii) Alice and Bob pick random numbers ra, rb, calculate challenges Ca = E
tbra
b , Cb =

Etarba and exchange challenges.

(iii) Alice calculates Csab which is g
rb if all parties follow the protocols. Then Alice can

get grarb which Bob is also supposed to obtain. Alice and Bob use this common

value to derive a session key.

(iv) Key confirmation step: Alice uses the session key to encrypt grb using a symmetric

encryption algorithm. Bob uses the session key to encrypt gra using same method.

Alice and Bob exchange the confirmation message. If Alice/Bob find the decrypted

value is equal to their own result, this finishes the key exchange protocol. Otherwise,

the protocol is aborted.

In a real application, the key confirmation step can be integrated into the subsequent

data transmission. Therefore, only two rounds of message exchange are needed for the

authenticated key exchange protocol.
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4.3.3. Encryption Scheme

An encryption protocol can be extended base on the authentication protocol, which is

similar to ElGamal encryption algorithm [27]. It works as follows.

(i) Using Alice’s public key (E, t), Bob encrypts a message m < n as a pair (c1, c2)

such that

c1 = E
kt (mod n), c2 = Km (mod n),

where K = gk (mod n) for a random k ∈ Zn.

(ii) When Alice receives the ciphertext, she decrypts it as

K = cs1 (mod n), m = c2K
−1 (mod n).

It should be noted that this version of encryption is an authenticated one. That is, when

Bob sends a ciphertext encrypted by Alice’s public key (E, t), he knows only authenticated

Alice can decrypt this ciphertext. This is in contrast to the ElGamal encryption scheme in

which encryption does not provide authentication.

4.4. Security Properties

This section introduces a slight variant of the Strong RSA Assumption, in which one does

not need to find the exponent e itself, but rather find a hidden version of it, ge . Note that

extracting the actual exponent from ge would require solving the discrete logarithm problem

over QRn.

Assumption 4.4.1 (Hidden Exponent Strong RSA Assumption). Let n be a special RSA mod-

ulus, and g be a generator of QRn. Let logg x denote the base g discrete log of x over QRn,

so glogg x ≡ x (mod n) for all x ∈ QRn. The Hidden Exponent Flexible RSA Problem is the

problem of taking a random element u ∈ Z∗n and finding a pair (v , w) such that w 6= g
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and v logg w ≡ u (mod n). The Hidden Exponent Strong RSA Assumption says that no prob-

abilistic polynomial time algorithm can solve the hidden exponent flexible RSA problem with

non-negligible probability.

Note that there is a one-to-one mapping between solutions to the flexible RSA problem

and the hidden exponent flexible RSA problem. Among other things, this means that if this

variant with a particular fixed hidden exponent can be solved efficiently, then the corresponding

“non-hidden” exponent is a weak encryption exponent for RSA. While such exponents do exist

(for example, corresponding to small decryption exponents), there is no algorithm that we’re

aware of that can produce a weak encryption exponent without knowledge of the factorization

of n (or, equivalently, the decryption exponent). Note that if one could find such weak

encryption exponents efficiently, then one could solve the (standard) flexible RSA problem,

so it is unlikely that an attacker could find such a weak exponent to exploit to solve the

hidden exponent flexible RSA problem.

Due to the strong RSA assumption, it is obvious that if no pairs (v , e) are known such

that v e ≡ g (mod n), then no one except the administrator can create a valid keypair

(E, s, t) such that Est ≡ g (mod n). However, the issue of keypair forgery needs to be

addressed when some existing keyparis are known. In practice, more than one sensor could

be compromised such that the keypairs are extracted, or some group members collude collude

with each other to expose their keypairs. Such a scenario is abstracted as an attack model in

which an attacker can collude with a set of legitimate parties, each with a legitimate keypair.

A successful attack is one in which a new keypair is generated, with an identifier t that is

valid and different from those of the colluding parties. The following theorem shows that,

assuming the Strong RSA Assumption, it is intractable for an attacker to forge such a keypair.
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Theorem 4.4.2 (Forgery-resistance). If there exists a probabilistic polynomial time algorithm

which takes a list of valid keypairs, (s1, E1, t1), (s2, E2, t2), . . . , (sk , Ek , tk) and with non-

negligible probability produces a new keypair (s, E, t) such that Est ≡ g (mod n) and t 6= ti

for 1 ≤ i ≤ k , then one can solve the flexible RSA problem with non-negligible probability.

Proof : Suppose there exists a probabilistic polynomial-time algorithm which computes a

new legitimate group key based on the available group member keys, and succeeds with some

non-negligible probability p(σ). Then one can construct an algorithm for solving the flexible

RSA problem, given a random input (u, n), as follows (the following makes sense as long as

u is a generator of QRn, which is true with non-negligible probability for random instances

— this will be considered more carefully below when analyzing the success probability of the

constructed algorithm):

(i) First, check if GCD(u, n) = 1. If it’s not, then one of the factors of n is obtained ,

and a solution is available for the flexible RSA problem. Therefore, GCD(u, n) = 1

is assumed in the following so u ∈ Z∗n.

(ii) Pick random distinct prime numbers s1, s2, . . . , sk and t1, t2, . . . , tk with the required

bit lengths, and compute

r = s1s2...skt1t2...tk ,

g = ur = us1s2...skt1t2...tk (mod n).

Note that since the si and ti values are primes with the appropriate length (con-

strained to be smaller than the lengths of p′ and q′), it must be the case that

GCD(r, |QRn|) = 1, so Property 3.1.2 says that g is a generator of QRn if and only

u is a generator of QRn.

(iii) Next, create k group member keys, using the si and ti values and Ei values calculated

as follows:

E1 = us2...sk t2...tk (mod n)
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E2 = us1s3...skt1t3...tk (mod n)

...

Ek = us1s2...sk−1t1t2...tk−1 (mod n)

Note that for all i = 1, . . . , k , raising Ei to the power siti “completes the exponent”

in a sense, giving Esi tii = u
s1s2···sk t1t2···tk = ur = g (mod n).

(iv) Use the algorithm for creating a new group member key to calculate (s, E, t), where

t has the required bit length and Est = g (mod n).

(v) If the forgery algorithm succeeded, then t will be different from all the ti ’s, but will

have the same length. Therefore, it is impossible for t to be an integer multiple of

any of the ti ’s, and since the ti ’s are prime then it follows that GCD(t, t1t2 · · · tk) =

1. Furthermore, since the si ’s are prime and all longer than t, it follows that

GCD(t, s1s2 · · · sk) = 1, and so GCD(t, r) = 1. Therefore, one can use the Ex-

tended GCD algorithm to find a and b such that

ar + bt = 1,

and let y = (Es)aub. Thus

y t = (Es)atubt = uar+bt = u (mod n),

so the pair (y , t) is a solution to this flexible RSA problem instance.

Let’s now analyze the probability that the above algorithm for solving the flexible RSA problem

succeeds. The algorithm succeeds in Step 1 if GCD(u, n) 6= 1, so let P1 represent the

probability of this event, which is negligible. When GCD(u, n) = 1, the algorithm succeeds

when the following three conditions are satisfied: (1) u ∈ QRn, which happens with probability
1
4
, (2) u is a generator of QRn, which fails for only a negligible fraction of elements of

QRn, due to Property 3.1.1, and (3) the key forgery algorithm succeeds, which happens
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with probability p(σ). Putting this together, the probability that the constructed algorithm

succeeds is P1 + (1− P1)14 (1− negl(σ)) p(σ), which is non-negligible.

⊓⊔

The proof only shows that the forgery of a tag t is intractable, without addressing the

possibility for the forgery of a new private key under an existing public label t. It is in fact

possible to forge a group keypair with a duplicated t as long as the legitimate owner of the

key with identifier t cooperates with the attack. Let’s see how to achieve such a forgery.

For two valid keypairs (E1, t1, s1),and (E2, t2, s2), one can have E
t1s1
1 ≡ g (mod n), and

Et2s22 ≡ g (mod n). One can further compute

Et1s1t2s21 ≡ gt2s2 (mod n), Et1s1t2s22 ≡ gt1s1 (mod n),

to obtain

(E1E2)
t1t2s1s2 ≡ gt1s1+t2s2 (mod n).

This equation can be solved to obtain E ′t1t2s1s2 ≡ g ( mod n) by Shamir’s lemma (Lemma 3.2.2).

This could be viewed as two valid keypairs (E ′, t1, t2s1s2), or (E
′, t2, t1s1s2), which can pass

the authentication.

However, such an attack is equivalent to key sharing, and if a group member is happy to

let someone use its group member key, there is no way to prevent it. In real applications, if

a group member key is found to be used by more than one party, it should be assumed being

compromised, and the identifier t should be revoked.

As for the question of soundness of the authentication protocol, loosely speaking, under

the hidden exponent strong RSA assumption, it can be proved that only parties with a le-

gitimate keypair (provided by the administrator) can succeed in the authentication protocol.

An attacker of the authentication protocol is abstracted as a pair of functions, which provide

the two protocol messages the prover needs to provide. Given the public parameters g and

n, function PublicKey(g, n) produces a purported public key (E, t) and (optionally) some
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private information p that it can use later (PublicKey can also use other publicly available

information, such as the public keys of legitimate parties). Function Respond(g, n, E, t, p, c)

takes the global public parameters g, n, the information E, t, p produced by the PublicKey

function, and a challenge c, and produces an answer a to the challenge. Note that an honest

verifier creates a challenge as c = Etr for a random r , and accepts the prover’s answer

if and only if a = gr which is true if and only if (raising both sides to the logg E
t power)

alogg E
t
= (gr )logg E

t

= Etr = c.

Theorem 4.4.3 (Authentication Soundness). If there exist probabilistic polynomial time al-

gorithms PublicKey and Respond that succeed with non-negligible probability in fooling the

verifier, then there exists a probabilistic polynomial time algorithm that solves the hidden

exponent flexible RSA problem with non-negligible probability.

Proof : Given an input (g, n, u) to the hidden exponent flexible RSA problem, using the

attacker’s algorithms, one can create a solution as follows:

• Call PublicKey(g, n) and get (E, t, p).

• Call Respond(g, n, E, t, p, u) to get answer a.

• Set v = a and w = Et and return (v , w) as an answer to the hidden exponent

flexible RSA problem.

Note that if the attacker succeeds in providing a valid (E, t) and a, then as noted before the

theorem one can have alogg E
t
= c, or using the v and w notation, v logg w = u. Therefore,

(v , w) is a valid solution to the hidden exponent flexible RSA problem if and only if the

attacker succeeded in the authentication protocol. Since the latter occurs with non-negligible

probability, by the condition of the theorem, the hidden exponent flexible RSA problem is

solved with non-negligible probability.

⊓⊔
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To prevent chosen message attacks from a malicious verifier, the verifier is required to

send the witness of E ′′, H(E ′′), to Alice. Thus, any malicious attacks from the verifier can

be prevented if H is a true one-way function.

The encryption protocol is an extension of the authentication protocol, and the authen-

ticated key exchange consists of two mutual authentication procedures. Therefore the au-

thenticity property of these additional operations are secure under the same assumptions.

However, it is also needed to show the confidentiality for the shared key, or plaintext are also

ensured in these two protocols.

Theorem 4.4.4 (Confidential Key Exchange). Under the computation Diffie-Hellman assump-

tion over QRn, Alice and Bob create a shared secret among themselves, which can be used

to generate a session key.

Proof : A third party can observe all exchanged messages between Alice and Bob, so breaking

the confidentiality of the shared secret between Alice and Bob implies that this third party

can calculate grarb based on (Ea, ta, Eb, tb, Ca, Cb, g).

Assume that for random sa, sb, ra, and rb, there is a probabilistic polynomial time algorithm

A that computes A(Etaa , Etbb , Ca, Cb, g) = grarb with non-negligible probability. Since Etaa =

gs
−1
a , Etbb = g

s−1b , Ca = g
s−1b ra , and Cb = g

s−1a rb , re-writing, this means that

(3) A(gs−1a , gs−1b , gs−1b ra , gs−1a rb , g) = grarb

with non-negligible probability.

Since sa, sb, ra, and rb are all independent, this means that s
−1
a , s

−1
b , s

−1
b ra, and s

−1
a rb (all

of the exponents of the parameters of (3)) are independent, so A can be viewed as solving

the following problem: Given values gA, gB, gC, and gD, where A, B, C, D are random

independent (and unknown) values, A(gA, gB, gC, gD, g) = gA−1B−1CD with non-negligible

probability.
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Now consider a random instance of the computational Diffie-Hellman problem, (gx , gy).

One can pick random p1 and p2, and compute parameters for A so that one can call

A(gp1, gp2, gxp1 , gyp2, g). Note that all the exponents are random and independent, so with

non-negligible probability A computes gp−11 p−12 xy . Since p1 and p2 are known, this result can

be raised to the p1p2 power, giving g
xy . Therefore, this technique solves random instances of

the computational Diffie-Hellman problem with non-negligible probability, contradicting the

assumption.

The above argument assumes that sa, sb are random and uniformly chosen over all possible

exponents, as well as that ra and rb are likewise random over the set of possible exponents,

and it requires picking p1 and p2 which are random over the possible exponents; however,

one can’t pick uniformly from the exponents since the size of the group QRn is unknown.

This difficulty can be resolved in the same way as the techniques that use groups of unknown

order (The protocols for knowledge of a discrete logarithm, knowledge of the equality of

two discrete logarithms, etc. See Chapter 3): instead of drawing p1 and p2 from the set of

possible exponents, they can be drawn from {0, 1}α×lQRn , for some α > 1, and lQRn denotes

the bit-length of QRn. The “goodness” of the approximation depends on the value of α > 1,

which determines the statistical closeness of actual distribution to the ideal one.

⊓⊔

In the encryption protocol, a plaintext is encrypted by a random key K, and similar

arguments as in the above proof can be applied to show confidentiality for this plaintext is

achieved under the computational Diffie-Hellman assumption.

Finally, the proposed protocol exhibits a nice forward secrecy property. Specifically, if the

administrator key is compromised, an attacker cannot use this knowledge to compute the

private keys of the parties who have previously had keys created by the administrator. This

is in contrast to recent work in Identity Based Encryption [11] where compromise of the

administrator secrets results in compromise of all party’s secret keys.
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Theorem 4.4.5 (Forward Secrecy). If the administrator secret (the factorization of n) is

discovered at some point, and σ is large enough so that discrete logs are difficult to compute

modulo a prime of σ bits, then all past and future key exchanges and authentications by

previously authenticated parties are still secure.

Proof : Recall that during uncompromised behavior, the administrator deletes any private

keys that it has access to. It has been proved that solving discrete logarithm problem modulo

a composite number is equivalent to factoring the composite number, plus extracting discrete

logarithm modulo the factors of the composite number [4]. Once the factorization of n is

known, computing a secret key s from the public key (E, t) is basically a discrete logarithm

problem (computing the logEt g in Zp and Zq. Since p and q are each at least σ bits long,

and the condition in the theorem requires that computing discrete logs modulo a prime of σ

bits is intractable, then operations with previously authenticated keys remain secure even if

the factorization of n is known.

⊓⊔

Note that since each of p and q need to be long enough to support a group with hard

discrete logarithm problems, if forward secrecy with a security level comparable to factoring a

1024-bit RSA value is required, then p and q need to be 1024 bits, which makes the modulus

2048 bits.

The property of forward secrecy makes the new construction more robust than the identity

based public key scheme in which compromsing the administrator means the whole system is

broken immediately. It should be pointed out if the administrator is compromised, an attacker

can create new legitimate group member keys. Therefore, forward secrecy can not prevent

any active attack.

4.5. Group Member Key Revocation

In case a group member does not belong to the group anymore, or it is compromised by

an attacker, the administrator should notify all the group members that a party holding a
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certain member key can not be regarded as a legitimate group member. In X.509 certificate

based public key cryptosystems, the revocation is implemented by a “revocation list” which

contains all the revoked certificates. This is a “black list” technique. In the proposed scheme,

a group member is revoked by its tag, which is typically only 2 or 3 bytes, so revocation lists

are quite compact. Therefore, operations on the revocation list will use less system resources.

In dynamic settings, with many membership changes, revocation lists can become large

and cumbersome even with short identifiers. To solve this problem, this section introduces

an efficient method for re-keying all group members. In this re-keying technique, only group

member public keys change, while the members retain their existing private keys without hav-

ing to communicate them in any form whatsoever to the administrator. Thus, this operation

is significantly less sensitive than the original key establishment step.

The re-keying techniques works as follows:

(i) When a group member leaves the group, or is found to be broken by an attacker,

or the administrator needs to update all the group member keys following certain

security policies, the administrator picks a random value r ∈ {2, . . . , |QRn|} with

GCD(r, |QRn|) = 1, and then computes

h = gr (mod n).

h will be used as a new generator for QRn.

(ii) For each group member that the administrator wants to retain, the administrator

computes the new public key based on the existing public key in its database as

follows:

E ′ = Er = (gs
−1t−1)r = (gr )s

−1t−1 = hs
−1t−1 (mod n).

(iii) The administrator publishes the new generator h and the new public key for each

group member. Later, all the group members can retrieve their new public keys.
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This mechanism does not require any computation by the group member. All the compu-

tation overhead is on the administrator’s side. For a small group with at most a few thousand

group members, it is a simple task. Furthermore, the administrator can pre-compute all the

new public keys, and only publish those are still valid. Therefore, the administrator can update

all the group member keys in nearly real time. At the same time, each group member still

keeps its private key and unique identifier. This technique can be combined with a revocation

list for an efficient combined black-list/white-list group management system.

For an excluded group member, with existing keypair (E, s, t) that uses generator g

over QRn, he has to solve the “re-keying problem” to obtain a new valid key: computing

E ′ = hs
−1t−1 = grs

−1t−1 (mod n) based on gs
−1t−1 (mod n) and h = gr (mod n) without

knowing r ,t−1 or s−1. The following theorem shows that re-keying problem is intractable due

to the strong RSA assumption.

Theorem 4.5.1. If there exists an algorithm that can compute an updated group member pub-

lic key without knowledge of the administrator’s secret value, then there exists an algorithm

that solves the flexible RSA problem with non-negligible probability.

Proof : Suppose there exist a probabilistic polynomial time algorithm A to solve the re-

keying problem with non-negligible probability. That is, for an input (E, s, t, g, h) such that

Est ≡ g (mod n), and h ≡ gr (mod n) for an unknown random r , A outputs a E ′ such that

E ′st ≡ h (mod n).

Let’s see how to solve a flexible RSA problem for a random instance (u, n) with non-

negligible probability. One picks a random v ∈R QRn, which can be done by squaring a

random element in Zn, and two random prime numbers s, t with the bit-length of ls , and lt ,

respectively. Then one can have

g = v st (mod n).

Due to the property 3.1.1, the probability of g not being a generator of QRn, denoted by

negl(σ), is negligible. Since n is a special RSA modulus, the probability of u ∈ QRn is 14 .

58



Therefore u ≡ gr (mod n) for some unknown r with the probability of 1
4
(1− negl(σ)). Now

one can call the algorithm A(v , s, t, g, u) for the “re-keying problem” to compute a v ′ such

that

v ′st ≡ u (mod n).

Thus an instance of flexible RSA problem has been solved with the probability of 1
4
(1 −

negl(σ)), which is a non-negligible probability. However, this is impossible under the strong

RSA assumption. Therefore, no probabilistic polynomial time algorithm A exists to solve the

re-keying problem. ⊓⊔

4.6. Summary

this chapter presents an efficient public key cryptosystem, which includes protocols for

authentication, authenticated key exchange and encryption, for applications of embedded

systems with a single trusted manager. The construction has been proved secure under the

strong RSA assumption, and the computational Diffie-Hellman assumptions. Finally, efficient

methods for key revocation and re-keying have been proposed.
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CHAPTER 5

GROUP SIGNATURE WITH VARIABLE LINKABILITY

The rest of this dissertation will introduce the results on anonymous authentication. This

chapter presents an efficient group signature scheme that supports signature claiming and

variable linkability. Based on this scheme, an efficient construction is furtherly proposed for

for direct anonymous attestation in a Trusted Computing Platform 1. These two schemes are

based on structures similar to the public key scheme in the previous chapter. The following

chapter presents a general construction to carry out anonymous authentication in additional

environments.

5.1. Introduction

Chaper 1 reviewed available techniques for anonymous authentication, i.e., group signa-

ture, traceable signature and direct anonymous attestation. Numerous constructions with

different features have been proposed to accommodate different settings. This raised the

question which will be addressed in this chapter: Can we devise a construction which com-

bines features from different authentication primitives? More specifically, can we have a group

signature scheme which also supports signature claiming and variable anonymity?

To understand one problem with signature claiming, consider that many group signature

schemes work by having the signer include their identity in the signature, encrypted using a

semantically secure encryption algorithm and the open authority’s public key. For example,

consider a system in which the open authority uses El Gamal encryption over a cyclic group

with generator g that provides semantic security (such as a subgroup of Z∗p of prime order),

where the open authority has public key y . Then the signature created by a party with identity

1Parts of this chapter have been accepted by IPCCC2006 [32]. Section 5.1, 5.2, 5.3 use materials in [32]

with permission under IEEE copyright policy.
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I could include the El Gamal encryption of the identity I using ciphertext (Iy r , gr ), where

r is a random exponent. The open authority can clearly open this to reveal the identity if

necessary. Furthermore, if the signer keeps a record of all the random r values that she used,

then a signature can be claimed by simply revealing the r value so that any user can decrypt

the identity. However, keeping the complete list of all used r values is both inefficient and

a security risk, so the challenge is to support signature claiming without requiring the group

member to keep a record of its random values.

As for the variable anonymity property, it is particularly important when group signatures

are used for anonymous authentication, since it is the only way key sharing violations can

be detected. More specifically, while the standard group signature scheme can use the open

authority to identify a user that performs malicious actions, consider what happens when

one authorized user shares his authentication credential with a set of co-conspirators. In the

scenario for a pay web site, a large set of users could share a single subscription. Since all

authentications are completely unlinkable in a group signature scheme, it would be impossible

to determine whether 1000 requests coming in during a day are from 1000 different valid users

or from 1000 people sharing a single valid credential. Introducing linkability for a limited time

period is the only way to detect this, and if an unusually high number of requests using the

same credential come in from different IP addresses during the same day, then this could

be flagged as potentially malicious behavior, and the open authority could then open the

signatures to determine the real owner of this credential for further investigation.

This chapter presents a construction for a group signature scheme that supports both

signature claiming and variable linkability. The proposed construction is built up from the

group signature scheme due to Camenisch and Michels [17], which will be referred to as the

CM scheme. The added capabilities do not adversely affect the time complexity of the various

operations, so we preserve the efficiency of the CM scheme while providing these additional

features.
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A method has also been presented to convert the proposed group signature scheme into

the construction that implements direct anonymous attestation in a Trusted Computing

Platform. The new scheme is much more efficient in the Sign and Verify protocols than the

current solution.

5.2. The Model

This section introduces the model for the proposed signature scheme, which is a variant

of the group signature model (e.g. [2]). Both these two models support procedures Setup,

Join, Sign, Verify, and Open. The proposed signature scheme supports linkability identifiers

in the sign protocol and supports additional procedures Claim (Self-trace) and Claim-Verify.

Definition 5.2.1. A group signature scheme with signature claiming and variable linkability

is a digital signature scheme with three types of participants: A group manager, an open

authority, and group members. It consists of the following procedures:

• Setup: For a given security parameter σ, the group manager produces system-wide

public parameters and a group manager master key for group membership certificate

generation.

• Join: An interactive protocol between a user and the group manager. The user

obtains a group membership certificate to become a group member. The public

certificate and the user’s identity information are stored by the group manager in a

database for future use.

• Sign: Using his group membership certificate and his private key, a group member

creates an anonymous group signature for a message. The signature incorporates

a linkability class identifier, LCID, which can be negotiated between the signer and

the verifier in an interactive setting.

• Verify: A signature is verified to make sure it originates from a legitimate group

member without knowledge of which particular one.
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• Open: Given a valid signature, an open authority discloses the underlying group

membership certificate.

• Claim (Self-trace): A group member creates a proof that he created a particular

signature.

• Claim Verify: A party verifies the correctness of the claiming transcript.

Similar to a group signature, the proposed signature scheme should satisfy the following

properties:

• Correctness: Any valid signature can be correctly verified by the Verify protocol

and a valid claiming proof can be correctly verified.

• Forgery-Resistance: A valid group membership certificate can only be created by

a user and the group manager through Join protocol.

• Anonymity: It is infeasible to identify the real signer of a signature except by the

open authority or if the signature has been claimed.

• Unlinkability: It is infeasible to link two different signatures made by the same group

member if they incorporate different LCIDs.

• Non-framing: No one (including the group manager) can sign a message in such a

way that it appears to come from another user if it is opened.

• Non-appropriation: No one (including the group manager) can make a valid claim

for a signature which they did not create.

5.3. A Group Signature Scheme with Signature Claiming and Variable Linkability

This section describes the implementation of a group signature scheme that supports

signature claiming and variable linkability. As mentioned earlier, this scheme is an enhanced

version of the Camenisch and Michels group signature scheme [17], the CM scheme.
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5.3.1. System Parameter Setting

The group manager picks a security parameter σ, and generates the system parameters

as follows:

• n, g, h: n is a special RSA modulus such that n = pq, where p and q are each at

least σ bits long (so p, q > 2σ), and p = 2p′ + 1, and q = 2q′ + 1, with p′ and q′

both being prime. g, h are random generators of the cyclic group QRn. n, g, h are

public values while p and q are kept secret by the administrator. The bit-length of

the order of QRn, lg, is also publicly available.

• α, lc , ls : Security parameters that are greater than 1.

• X: A constant integer, 2α(ls+lc)+2 < X < n.

• Two strong collision-resistant hash functions: H1 : {0, 1}∗ → Z∗n, andH2 : {0, 1}∗ →

{0, 1}lc .

An illustration of the system parameters is the setting of σ = 1024 (so n is 2048 bits),

lg = 2046, α = 9/8, X = 2
860, ls = 600 and lc = 160.

The open authority creates his ElGamal public keypair [27], i.e., a random private key x

and corresponding public key y such that y = hx mod n. Note that the open authority may

or may not be the same as the group manager.

5.3.2. Join Protocol

The same Join protocol is adopted as in the CM scheme. A group member obtains its

group membership certificate as a keypair (E, s), such that s is prime, s ∈ [X,X + 2ls ], and

Es ≡ g (mod n).

s is the group member’s private key and is kept secret by the group member. The Join

protocol works as follows.

A user sends T1 = ss
′, T2 = g

s (mod n), T3 = g
s ′ (mod n) to the group manager, where

s ′ is another prime number. The choice of s, s ′ should make it intractable to factor T1. While
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the special form of s makes this factorization problem easier than general factorization,

the suggested parameter settings are secure based on the work of Coppersmith, who has

investigated the factorization issue when the high bits are known for the factors of an integer

[24]. Readers may refer to the CM scheme paper for more details.

The user proves to the group manager that

• T1 is the product of two prime numbers by the protocol in [33].

• The discrete logarithms of T2 with respect to g, and gT1 with respect to T3, are

equal, and lies in the interval [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1].

After the group manager is convinced that (T1, T2, T3) are correctly formed, it computes

E = T
T−11
3 = (gs

′

)(ss
′)−1 = gs

−1

(mod n),

and sends E to the user.

5.3.3. Variable Anonymity Parameter

To achieve variable anonymity, each signature will belong to a “linkability class” that

is identified using a “linkability class identifier,” or LCID. All signatures made by the same

group member with the same LCID are linkable, and in an interactive authentication protocol

the LCID can be negotiated and determined by the two parties. For example, to link au-

thentications to a single server over a single day, the LCID could simply be the server name

concatenated with the date. If the same LCID is always used with a particular server (e.g.,

the server name), then the result is a pseudo-anonymity system. If complete anonymity

is desired, the signer can simply pick a random LCID (which is possible if the server isn’t

concerned with linkability and allows arbitrary LCIDs).

5.3.4. Sign Protocol

(i) Derive a random generator j of QRn by hashing the LCID of this signature.

j = (H1(LCID))2 (mod n).
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In the random oracle model, for different LCIDs, different and independent j values

will be computed. Due to Property 3.1.1, the probability that j is not a generator

of QRn is negligible.

(ii) Generate a random blinding integer b ∈R {0, 1}lg and compute:

T1 = Ey
b (mod n), T2 = h

b (mod n),

T3 = j
s (mod n).

(iii) Randomly choose t1 ∈R {0, 1}α(ls+lc), t2 ∈R {0, 1}α(lg+ls+lc), and t3 ∈R {0, 1}α(ls+lc).

• Compute (all computations done modulo n) d1 = T t11 /y t2, d2 = T t12 /ht2, and

d3 = j
t1;

• c = H2(g||h||y ||j ||T1||T2||T3||d1||d2||d3||m), where m is a message to be signed.

• w1 = t1 − c(s −X), w2 = t2 − csb.

(iv) Output the signature (c, w1, w2, T1, T2, T3) on message m.

Remark 5.3.1. Note that the main difference between the new method and the CM scheme

is the computed value T3 — the corresponding value in the CM scheme (denoted d in their

notation) is computed as hs jb, where j is a fixed generator in their scheme.

5.3.5. Verify Protocol

(i) Compute the same generator j , and

c ′ = H2(g||h||y ||j ||T1||T2||T3||gcT w1−cX1 /yw2||

T w1−cX2 /hw2||jw1−cXT c3 ||m)

(ii) Accept the signature if and only if c = c ′ and w1 ∈ ±{0, 1}α(ls+lc)+1, w2 ∈

±{0, 1}α(lg+ls+lc)+1.
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5.3.6. Claim and Claim Verify

A group member uses the protocol of knowledge of a discrete logarithm in an interval

(Protocol 3.3.3) to claim his signature by proving knowledge of the discrete logarithm s of

T3 w.r.t. base j , and proving that s lies in the range of valid private keys.

5.3.7. Open Protocol

For a valid signature, an open authority can open the signature to find its originator as

follows

E = T1/T
x
2 (mod n).

For the non-framing property, the open authority must also issue a proof that it correctly

revealed the group member. That is, the open authority proves that the discrete logarithms

of y , and T1/E (mod n) with respect to g and T2, respectively, are equal through Proto-

col 3.3.2.

5.3.8. Security Properties

The new scheme uses the same certificate as in the CM scheme, so properties that depend

only on the form of the membership certificate such as forgery resistance and non-framing

are unaffected by these changes.

The following lemma deals with the valid range of system parameters.

Lemma 5.3.2. If X > 2α(ls+lc)+2, α, ls , lc > 1, then (X − 2α(ls+lc)+1)2 > X + 2α(ls+lc)+1.

Proof :

(X − 2α(ls+lc)+1)2 − (X + 2α(ls+lc)+1) = X2 − X2α(ls+lc)+2 + 22α(ls+lc)+2 −X − 2α(ls+lc)+1

= X(X − 2α(ls+lc)+2 − 1) + 22α(ls+lc)+2 − 2α(ls+lc)+1

Since α, ls, lc > 1, and X > 2
α(ls+lc)+2, the equation is greater than 0.

⊓⊔
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The following theorem deals with the security of group membership certificate, which is

directly from the CM scheme.

Theorem 5.3.3. Under the strong RSA assumption, only the group manager with knowledge

of the factors of n can compute a legitimate keypair (E, s) such that Es = g (mod n), and

s ∈ [x − 2α(ls+lc+1), x + 2α(ls+lc+1)] through Join protocol.

The issue of keypair forgery must be addressed in case an attacker can obtain a set of

legitimate keypairs. A successful attack is one in which a new keypair is generated that is

valid and different from current keypairs. The following theorem shows that, assuming the

Strong RSA Assumption, it is intractable for an attacker to forge such a keypair.

Theorem 5.3.4 (Forgery-resistance). If there exists a probabilistic polynomial time algorithm

which takes a list of valid keypairs, (E1, s1), (E2, s2), . . . , (Ek , sk) and with non-negligible

probability produces a new valid keypair (E, s) such that Es ≡ g (modn) and s 6= si for

1 ≤ i ≤ k , then one can solve the flexible RSA problem with non-negligible probability.

Proof : Suppose there exists a probabilistic polynomial-time algorithm which computes a

new legitimate keypair based on the available keypairs, and succeeds with some non-negligible

probability p(σ). Then one can construct an algorithm for solving the flexible RSA problem,

given a random input (u, n), as follows (the following makes sense as long as u is a generator

of QRn, which is true with non-negligible probability for random instances — This will be

considered more carefully below when analyzing the success probability of the constructed

algorithm):

(i) First, check if GCD(u, n) = 1. If it’s not, one of the factors of n can be obtained,

and a solution can be easily calculated for the flexible RSA problem. Therefore,

GCD(u, n) = 1 is assumed in the following, so u ∈ Z∗n.
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(ii) Pick random prime numbers s1, s2, . . . , sk in the required range [X − 2ls , X + 2ls ],

and compute

r = s1s2...sk ,

g = ur = us1s2...sk (mod n).

Note that since the si values are primes strictly less than either p
′ or q′, it must be

the case that GCD(r, |QRn|) = 1, so Property 3.1.2 says that g is a generator of

QRn if and only u is a generator of QRn.

(iii) Next, create k group keypairs, using the si values and Ei values calculated as follows:

E1 = us2...sk (mod n)

E2 = us1s3...sk (mod n)

...

Ek = us1s2...sk−1 (mod n)

Note that for all i = 1, . . . , k , raising Ei to the power si “completes the exponent”

in a sense, giving Esii = u
s1s2···sk = ur = g (mod n).

(iv) Use the assumed forgery algorithm for creating a new valid keypair (E, s), where

s ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1], and Es = g = ur (mod n).

(v) If the forgery algorithm succeeds, then s will be different from all the si ’s. By

Lemma 5.3.2, s cannot be the product of si , sj , 1 ≤ i , j ≤ k . Therefore, either

GCD(s, s1s2 · · · sk) = 1, or GCD(s, s1s2 · · · sk) = si , 1 ≤ i ≤ k . In the first case,

due to Lemma 3.2.2, one can find a pair (y , s) such that

y s = u (mod n)

so the pair (y , s) is a solution to the flexible RSA problem instance.
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In the second case, assume s = v×si , then v < X−2α(ls+lc)+1, and GCD(v , s1s2 · · · sk) =

1 (or GCD(v,r) = 1). It can be obtained that

Es ≡ Evsi ≡ (Esi )v ≡ ur (mod n).

Again by Lemma 3.2.2, a pair (y , v) can be found such that

y v = u (mod n).

so the pair (y , v) is a solution to the flexible RSA problem instance.

Let’s analyze the probability that the above algorithm for solving the flexible RSA problem

succeeds. The algorithm succeeds in Step 1 if GCD(u, n) 6= 1, so let P1 represent the

probability of this event, which is negligible. When GCD(u, n) = 1, the algorithm succeeds

when the following three conditions are satisfied: (1) u ∈ QRn, which happens with probability
1
4
, (2) u is a generator of QRn, which fails for only a negligible fraction of elements of

QRn, due to Property 3.1.1, and (3) the key forgery algorithm succeeds, which happens

with probability p(σ). Putting this together, the probability that the constructed algorithm

succeeds is P1 + (1− P1)14 (1− negl(σ)) p(σ), which is non-negligible.

⊓⊔

Now let’s address the security of Sign and Verify protocol. The zero-knowledge property of

the protocol relies on two aspects: the random choice of the blinding number b, and random

generation of a generator j . E is “encrypted” in (T1, T2) through the ElGamal encryption

algorithm, while s is “hidden” as the discrete logarithm of T3 for a random generator j

produced from a strong collision-resistant hash function H1. Intuitively, the semantic security

property of ElGamal algorithm over QRn ensures that nothing about E will be revealed by

(T1, T2). As to s, since j is uniformly distributed over QRn, and the length of s guarantees

that GCD(s, p′q′) = 1, T3 is also uniformly distributed over QRn, and it can be imagined

that a simulator can generate this same distribution. Then the zero-knowledge property for
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s in the form T3 = j
s (mod n) follows from the decisional Diffie-Hellman assumption over

QRn. These arguments is formalized in the following theorem.

Theorem 5.3.5. Under the strong RSA assumption, and the decisional Diffie-Hellman as-

sumption over QRn, the interactive protocol underlying the signature scheme is a statistical

honest-verifier zero-knowledge proof of knowledge of a valid group certificate (E, s) such

that Es = g (mod n), and s lies in the correct interval.

Proof : The proof for correctness is straightforward. The protocol is statistical honest-

verifier zero-knowledge for α > 1. A random oracle can be accessed by all parties for the

creation of random generator j . A simulator for protocol transcripts between the honest prover

and the honest verifier work as follows: it selects ĉ ∈R {0, 1}lc , and ŵ1 ∈ ±{0, 1}α(ls+lc)+1,

ŵ2 ∈ ±{0, 1}α(lg+ls+lc)+1,γ ∈R Z∗n, and computes:

d̂1 = g
ĉT ŵ1−ĉX1 /y ŵ2 (mod n), d̂2 = T

ŵ1−ĉX
2 /hŵ2 (mod n),

ĵ = jγ (mod n), T̂3 = T
γ
3 (mod n),

d̂3 = ĵ
ŵ1−ĉXT̂ γ3 (mod n).

The simulator outputs the transcript (T1, T2, T̂3, d̂1, d̂2, d̂3, ĉ , ŵ1, ŵ2).

The simulated transcripts are statistically indistinguishable from the transcripts that are

generated between the honest prover and the honest verifier. With the consideration that

an honest prover uniformly select t1 ∈R {0, 1}α(ls+lc), t2 ∈R {0, 1}α(lg+ls+lc), and t3 ∈R

{0, 1}α(ls+lc). the probability distribution of P1(w1), P2(w2) can be computed as follows.

The probability distribution of P1(w1) is analyzed first.

(i) For −X+2α(ls+lc) < w1 < X−2α(ls+lc) for each of the 2lc different c, one can find a

t1 such that w1 = t1−c(s −X). Thus, P1(w1) = 2lc/(2lc2α(ls+lc)+1) = 1/2α(ls+lc)+1.

(ii) For w1 ≥ X + 2α(ls+lc) or w1 ≤ −X − 2α(ls+lc), since it is impossible to solve the

equation w1 = t1 − c(s −X), P1(w1) = 0.

(iii) For the other selection of w1 ∈ Z, P1(w1) ∈ [0, 1/2α(ls+lc)+1).
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The simulator’s probability distribution of ŵ1, P
′
1(ŵ1), is 1/2

α(ls+lc)+1 for ŵ ∈ ±{0, 1}α(ls+lc),

and 0 for other situation.

Therefore, the absolute difference between P ′1(ŵ1) and P1(w1) is 0 for case 1 and 2. For

case 3, P ′1(ŵ1) is either 0 or 1/2
α(ls+lc)+1. In the worst case the absolute difference between

P ′1(ŵ1) and P1(w) is 1/2
α(ls+lc)+1. The number of possibilities for w1 in case 3 is 2

ls+lc+2,

thus the statistical distance of P ′1(ŵ1) and P1(w1) is at most

2ls+lc+2/2α(ls+lc)+1 = 1/2(α−1)(ls+lc)−1.

Due to choice of ls , lc , P
′
1(ŵ1) and P1(w1) are statistical indistinguishable. Likewise,

P ′2(ŵ2) and P2(w2) are also statistical indistinguishable.

While T3 is uniformly distributed over QRn, so is T̂3. Due to the decisional Diffie-Hellman

assumption over QRn, it is infeasible to distinguish (j, ĵ , T3, T̂3) from another tuple (j, ĵ , T3, T
′
3)

with T ′3 ∈R QRn. Thus, the probability distance of P ′3(T̂3) and P3(T3) is 0.

So far, it is demonstrated that a simulator can successfully to create a transcript which

is indistinguishable from a valid transcript in the random oracle model.

Next, it is necessary to show a knowledge extractor is able to recover the group certificate

when it has found two accepting tuples under the same commitment and different challenges

from a verifier.

Let (T1, T2, T3, d1, d2, d3, c, w1, w2) and (T1, T2, T3, d1, d2, d3, c
′, w ′1, w

′
2) be such tuples.

Since d3 ≡ jw1−cXT c3 ≡ jw
′
1−c

′XT c
′

3 (mod n),

j (w
′
1−w1)+(c−c

′)X ≡ T c−c ′3 (mod n).

By Lemma 3.2.4, under the strong RSA assumption, c−c ′ has to divide (w ′1−w1)+(c−c ′)X.

Then one can define

(4) τ1 = (w
′
1 − w1)/(c − c ′) +X.
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Similarly, d2 ≡ T w1−cX2 /hw2 ≡ T w
′
1−c

′X

2 /hw
′
2 (mod n), so

hw
′
2−w2 ≡ T (w

′
1−w1)+(c−c

′)X

2 ≡ (T τ12 )c−c
′

(mod n),

where Lemma 3.2.4 again applies to show that c − c ′ must divide (w ′2−w2). Therefore, one

can define

τ2 = (w
′
2 − w2)/(c − c ′),

such that T τ12 ≡ hτ2 (mod n). Applying Lemma 3.2.4 once again to this formula, τ1 must

divide τ2, so one can compute τ3 = τ2/τ1.

Since d1 ≡ gcT w1−cX1 /yw2 ≡ gc ′T w
′
1−c

′X
1 /yw

′
2 (mod n),

gc−c
′ ≡ T w

′
1−w1+(c−c

′)X
1 yw2−w

′
2 (mod n).

Thus

g ≡ T τ11 /y τ2 ≡ T τ11 /y τ1τ3 ≡ (T1/y τ3)τ1 (mod n).

Since τ1 = (w
′
1 − w1)/(c − c ′) + X, w1, w ′1 ∈ ±{0, 1}α(ls+lc)+1, and c, c ′ ∈ {0, 1}lc , it

follows that (w ′1 − w1)/(c − c ′) ∈ ±{0, 1}α(ls+lc)+1. Therefore τ1 must be in the acceptable

range for private key values in the proposed system.

Finally, let E = T1/y
τ3 (mod n) and s = τ1. We have demonstrated the existence of

a knowledge extractor that can find (E, s), such that Es = g (mod n) and s lies in the

appropriate range, so (E, s) is a valid membership certificate.

⊓⊔

Unlinkability follows the same argument as the CM scheme for T1, T2. Since a new T3 is

defined in the proposed group signature, it is necessary to show this change still keeps the

unlinkability property. Similar to the case in CM scheme, the problem of linking two tuples

(j, T3), (j
′, T ′3) with j 6= j ′ is equivalent to deciding the equality of the discrete logarithms

of T3, T
′
3 with bases j, j

′ respectively. This is infeasible under the decisional Diffie-Hellman

assumption over QRn (Lemma 3.2.7).
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Theorem 5.3.6 (Unlinkability). Under the decisional Diffie-Hellman assumption over QRn,

and the strong collision property of hash function, there exists no probabilistic polynomial-

time algorithm that can make the linkability decision for any two arbitrary tuples (j, T3), (j
′, T ′3)

with non-negligible probability.

5.4. A Scheme for Direct Anonymous Attestation

To provide further flexibility, the propsed group signature scheme can be extended to a

DAA-like scheme for trusted computing platforms [13]. To do this, a group member can

simply use a value y for which no one knows the discrete log, effectively disabling the open

capability. This mirrors the DAA requirement in which opening is forbidden. Furthermore,

a variant of the claiming ability can be used for rogue TPM tagging. The current TPM

revocation method supported by DAA includes the use of a revocation list that includes any

discovered private keys of compromised TPMs. Later, a verifier can identify a rogue TPM

by checking the list. For the proposed construction, the private key s should be published on

the list. Verifiers can check whether

j s =? T3 (mod n)

for all revoked s on the list to identify rogue TPMs (group members).

This section proposes a more efficient way to implement direct anonymous attestation

based on the same group membership certificate structure, and shows the new construction

is much more efficient than current solution [13] on Sign and Verify protocols, which are the

most frequently used protocols in direct anonymous attestation.

5.4.1. More Background on Trusted Computing Platform

TPMs are tamper-resistant cryptographic chips. When a TPM is manufactured, a unique

RSA keypair, called the Endorsement Key (EK), is created and stored in the protected area of

the TPM. The EK might be generated internally inside a TPM, or imported from an outside

key generator. The public part of the EK is authenticated by the manufacturer, while the
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private part of the EK will never be revealed to the outside. A TPM independently performs

cryptographic computations inside itself. Even its manufacturer cannot obtain knowledge of

these computations. TPMs are embedded into computing devices by a device manufacturer,

and these devices are called trusted computing platforms when coupled with appropriate

software. At the heart of trusted computing platform is the assumption that TPMs should

independently work as expected, and be “trusted” by remote parties. Essentially, trusted

computing platforms are based on trust of TPMs. It is a hardware-assisted technique to

enhance computer security.

If the authentication of a TPM is directly based on its EK, all transactions by the same

TPM can be linked through the public part of the EK. Furthermore, if the TPM is associated

with a user’s identity, the user may suffer from loss of privacy. To protect the privacy of a

TPM owner, two solutions have been proposed in the TPM specifications.

Privacy in the TPM v1.1 specification is based on a trusted third party, called a Privacy

CA. A TPM generates a second RSA keypair called an Attestation Identity Key (AIK). The

TPM sends AIK to the Privacy CA, applying for a certificate on the AIK. After the TPM

proves its ownership using a valid EK, the Privacy CA issues a certificate for this AIK. Later,

the TPM sends the certificate for this AIK to a verifier, and proves it owns this AIK. This

way, the TPM hides its identity during the transaction. Obviously, this is not a completely

satisfactory solution, since each AIK creation needs the involvement of the Privacy CA, and

compromise of the Privacy CA (or a dishonest Privacy CA) can destroy all privacy guarantees.

An alternate solution added in TPM v1.2 is called Direct Anonymous Attestation (DAA),

implemented by what we refer to as the BCC scheme, adopting techniques from group

signatures: A TPM applies for a credential from an issuer, and later the TPM generate a

special signature using this credential. A remote verifier can verify the signature has been

constructed from a valid credential without the ability to recover the underlying credential.

Different signatures based on the same credential might be linkable or unlinkable depending
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on a verifier’s requirements. If the method implements unlinkable authentication, it is called

total anonymity.

Variable anonymity [58] is a conditionally linkable anonymous authentication, in which

the signatures signed by the same TPM in a certain time interval are linkable. However,

when the signing parameters change, the signatures across the different periods cannot be

linked. When the time interval becomes short, the method works like perfectly unlinkable

authentication. When the period never expires, this leads to pseudo-anonymity. A verifier

can adjust the time interval to detect suspicious attestation. If too many attestation requests

come from the same TPM in a period of time, it is likely this TPM has been compromised.

Rogue TPM tagging is about the revocation of the key of a corrupted TPM. When a

broken TPM is identified, its secrets (e.g, EK, credential) will be published on the revocation

list. A verifier can identify and exclude any rogue TPM on the list, and an issuer refuses to

issue new credentials to a TPM with a revoked EK.

The current solution, the BCC scheme, is quite a complex construction with high comput-

ing requirements. To expedite authentication, the computation has been distributed between

a TPM and the host into which the TPM is embedded. The TPM finishes the computa-

tion related to the signature, while the host finishes the computation related to anonymity.

The BCC scheme works fine with personal computers with powerful computing capabilities.

However, it is still an expensive solution for low end devices.

The following sections presents a new construction that can carry out all the features in

DAA and has much more efficient Sign and Verify protocols. However, the Join protocol is

less efficient than the BCC scheme. Therefore, the new scheme is more appropriate for low

end devices, and settings in which the Join protocol runs rather infrequently.
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5.4.2. System Parameter Setting

Besides the system parameter setting for the group signature scheme, additional defin-

itions for Y, lb and additional range restrictions need to be introduced. The importance of

these new parameters will be illustrated in the security proofs shortly (Section 5.4.7).

• lb: security parameter, greater than 1.

• Y : fixed value. Y > 2α(lc+lb)+1, and X > Y + 2α(lc+lb) + 2α(ls+lc)+2.

• (X − 2α(ls+lc)+1)2 > X2lc+1 + 2α(ls+lc)+2.

5.4.3. Authentication with Total Anonymity

The idea of the new method to implement authentication with total anonymity is: a TPM

picks a random blinding integer b, computes T1 = E
b = gs

−1b (mod n), T2 = g
b (mod n).

Then the TPM sends (T1, T2) to a verifier along with a proof that (T1, T2) is constructed

from a legitimate keypair.

For a message m, the TPM executes the following steps to complete the Sign protocol:

(i) Generate a random b ∈R [Y −2lb , Y +2lb ], t1 ∈R ±{0, 1}α(ls+lc), t2 ∈R ±{0, 1}α(lb+lc),

and compute

T1 = E
b (mod n), T2 = g

b (mod n); d1 = T
t1
1 (mod n), d2 = g

t2 (mod n); .

(ii) Compute:

c = H2(g||T1||T2||d1||d2||m);

w1 = t1 − c(s − X), w2 = t2 − c(b − Y ).

(iii) Output (c, w1, w2, T1, T2).

To verify a signature, the verifier computes

c ′ = H2(g||T1||T2||T w1−cX1 T c2 ||gw2−cY T c2 ||m),

and accepts the signature if and only if c = c ′, w1 ∈ ±{0, 1}α(ls+lc)+1, and w2 ∈ ±{0, 1}α(lb+lc)+1.
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5.4.4. Authentication with Variable Anonymity

The TPM derives a generator j of QRn by hashing the LCID of this signature.

j = (H1(LCID))2 (mod n).

To implement variable anonymity, the following computations are added to the Sign pro-

tocol, i.e., the TPM further computes

T3 = j
s (mod n), d3 = j

t1 (mod n),

c = H2(g||j ||T1||T2||T3||d1||d2||d3||m);

and outputs (c, w1, w2, T1, T2, T3, m). The verifier then computes

c ′ = H(g||j ||T1||T2||T3||T w1−cX1 T c2 ||gw2−cY T c2 ||jw1−cXT c3 ||m).

Since j will remain unchanged for a certain time interval, the same TPM will always

produce the same T3 during this interval. The frequency of T3 will be used by the verifier

to identify suspicious authentication, who may refuse to provide further services. Since j

changes in different periods of time, this ensures the unlinkability of the same TPM between

periods.

5.4.5. Rogue TPM Tagging

As described earlier, TPMs are manufactured to provide tamper-resistance. Otherwise,

the basic benefits of trusted computing platforms would become meaningless. However, in

extreme circumstances, a TPM may be compromised and its keypair exposed, so a verifier

should be able to identify the attestation request from rogue TPMs. To do so, the secrets

of a corrupted TPM (e.g., EK, E, and s) should be published on the revocation list. For a

keypair (E, s) on the revocation list, a verifier checks

T s1 =? T2 (mod n).

If the equation holds, the request comes from a revoked TPM.
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5.4.6. Performance Analysis

The computation complexity in the protocol is dominated by the modular squaring and

multiplications operations. To estimate the computation cost, it is sufficient to count total

modular squarings and multiplications in the protocol. For simplicity, the computation cost are

estimated based on techniques for general exponentiation [46]. Let m1 be the bit length of the

binary representation of exponent, and m2 be the number of 1’s in the binary representation.

Then the total computation cost can be estimated as m1 squarings and m2 multiplications.

For example, if y = gx (mod n), and x ∈R {0, 1}160, then the expected number of 1’s in x

is 80, so the total computation includes 160 squarings and 80 multiplications.

Suppose the group manager sets σ = 1024, so n is 2048 bits (p, q are 1024 bits). It

further chooses α = 9/8, lc = 160, ls = 540, lb = 300, and sets X = 2
792 (99 bytes),

Y = 2520 (65 bytes). This parameter setting conforms to the requirements of the decisional

Diffie-Hellman Assumption over subsets of QRn. It can be observed that most bits of s, b are

0’s. The computation with exponent b has 520 squarings and 151 expected multiplications.

For authentication with total anonymity, a TPM needs 2352 (520× 3 + 792) squarings, and

958 (151× 2 + 520/2 + 792/2) multiplications.

The total exponent bit-length in the BCC scheme is 25844 for authentication with total

anonymity. However, due to the computation distribution between a TPM and its host, an

efficient exponentiation algorithm has been used in the host part (Algorithm 15.2 in [44]).

In their method, the total exponent bit-length for the TPM is around 4088, and 12098 for

the host. So the total exponent bit-length is 16186 (4088 + 12098), which includes 16186

squarings and 8093 expected multiplications. Assume the cost of squaring is equal to that

of multiplication 2, the new scheme is about 7 (24279/3310) times more efficient than the

BCC scheme. Even if only the computation inside the TPM is considered, the new scheme

is almost 2 (6132/3310) times more efficient than the BCC scheme. For variable anonymity,

2Squaring can be at most two times faster than multiplication.
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the new scheme needs 5561 modular multiplications, which still can be carried out by the

TPM alone.

It should be noticed that distribution of the computation can also be deployed in the new

scheme. T1, T2, d2, w2 can be calculated by the host, and T3, d1, d3, w1 must be computed

inside the TPM. General speaking, this is unnecessary since all the computation can be done

by a TPM alone.

Without the distribution of computation, the system design can be greatly simplified.

Thus, the new method is more appropriate for mobile devices with low computing capabilities.

5.4.7. Security Properties

In step 5 of the proof about forgery resistance (Theorem 5.3.4), one can obtain a corollary

as follows.

Lemma 5.4.1. Under the strong RSA assumption, it is intractable to forge a keypair (E, s)

such that s lies in the interval (0, X − 2α(ls+lc)+1) or (X + 2α(ls+lc)+1, (X − 2α(ls+lc)+1)2), and

Es = g (mod n).

Proof : In step 5 of the proof for Theorem 5.3.4, if s ∈ (0, X − 2α(ls+lc)+1), since all

si ∈ [X − 2α(ls+lc)+1, X + 2α(ls+lc)+1] are prime, then GCD(s, s1s2 · · · sk) = 1, and one can

solve a flexible RSA problem.

If s ∈ (X + 2α(ls+lc)+1, (X − 2α(ls+lc)+1)2), due to Lemma 5.3.2, s can not be the product

of any sisj , i , j < k . Thus the proof is as before to solve a flexible RSA problem.

Therefore, under the strong RSA assumption, one can have the lemma as above.

⊓⊔

The following lemma will be used for the security proof of the new protocol.

Lemma 5.4.2. Let n be an integer. For given values u, v ∈ Z∗n and e, r ∈ Zn such that

e > r and v e = ur (mod n), there is an efficient way to compute the value (x, y) such that

x y = u (mod n).
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Proof : When e > r , there are three cases:

(i) Suppose GCD(e, r) = 1. Due to Lemma 3.2.2, one can find a pair (y , e) such that

y e ≡ u (mod n).

(ii) Suppose GCD(e, r) = r . Since e > r , e = kr for k > 1,

v e ≡ v kr ≡ ur (mod n), v k ≡ u (mod n).

(iii) Suppose GCD(e, r) = d such that 1 < d < r . Thus one can have e = kd for

k > 1. Due to Lemma 3.2.3, one can find (y , k) such that

y k ≡ u (mod n).

⊓⊔

Theorem 5.4.3. Under the strong RSA assumption, the interactive protocol underlying the

Sign and Verify protocol is a statistical zero-knowledge proof in honest-verifier mode that the

TPM holds a keypair (E, s) such that Es ≡ g (mod n) and s lies in the correct interval.

Proof : The proofs of completeness and statistical zero-knowledge property (simulator)

follow the same method as the proof for the group signature in this chapter. Here only the

existence of the knowledge extractor is outlined.

In the Sign protocol, the TPM proves T2 ≡ gb (mod n), and b ∈ [Y − 2α(lc+lb), Y +

2α(lc+lb)]. This is a statistical honest-verifier zero-knowledge protocol that is secure under the

strong RSA assumption. b can be recovered by a knowledge extractor following the standard

method.

It needs to show a knowledge extractor is able to recover the legitimate keypair once it

has found two accepting tuples. Let (T1, T2, d1, c, w1), (T1, T2, d1, c
′, w ′1) be two accepting

tuples. Without loss of generality, assume c > c ′. Then one can have

T w1−cX1 T c2 ≡ T
w ′1−c

′X

1 T c
′

2 ≡ d1 (mod n).
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It follows that

(5) T
(w ′1−w1)+(c−c

′)X

1 ≡ T c−c ′2 ≡ gb(c−c ′) (mod n).

By the system parameter settings, X > Y + 2α(lc+lb) + 2α(ls+lc)+2. Then

(c − c ′)X > (c − c ′)(Y + 2α(lc+lb) + 2α(ls+lc)+2).

Since Y + 2α(lc+lb) > b,

(c − c ′)X > (c − c ′)(b + 2α(ls+lc)+2).

Since w1, w
′
1 ∈ ±{0, 1}α(ls+lc)+1, w ′1 − w1 is at least −2α(ls+lc)+2. Since c − c ′ is at least 1,

finally

(w ′1 − w1) + (c − c ′)X > b(c − c ′).

Due to Lemma 5.4.2, Equation 5 can be solved to obtain a pair (E, s) such Es ≡ g (mod

n), s ≤ (w ′1 − w1) + (c − c ′)X.

In the parameter settings, (w ′1−w1)+(c−c ′)X < (X−2α(ls+lc)+1)2. Due to Lemma 5.4.1,

s must be a legitimate keypair in the correct interval. Therefore, (E, s) is a valid keypair,

which completes the proof.

⊓⊔

For variable anonymity, (h, T3, d3;T1, T2, d1) are used to prove equality of the discrete

logarithms of T3 with base h, and T2 with base T1. This is also a statistical honest-verifier

zero-knowledge protocol which has been proved secure under the strong RSA assumption.

Theorem 5.4.4 (Anonymity). Under the decisional Diffie-Hellman assumption over subset of

QRn, the protocol implements anonymous authentication such that it is infeasible to link the

transactions by a TPM with different LCID.
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Proof : To decide whether two transactions are linked to a TPM, one needs to decide

whether two equations are produced from the same E.

T1, T2 ≡ gb ≡ T s1 (mod n)

T ′1, T
′
2 ≡ gb

′ ≡ (T ′1)s (mod n)

Since T1, T
′
1 are random generators of QRn, By Lemma 3.2.7, it is infeasible to decide

whether or not there exist an s such that T s1 = T2, and (T
′
1)
s = T ′2. The same argument can

be applied to variable anonymity, in which case

T3 ≡ j s (mod n), T ′3 ≡ j ′s (mod n)

where j, j ′ are two random generators of QRn in different periods of time.

⊓⊔

5.5. Summary

This chapter presented a group signature scheme which is an enhancement of the CM

scheme [16] that supports additional features. The new construction supports signature

claiming, in which a group member can voluntarily remove the cloak of anonymity from

one of their signatures. The proposed scheme also supports the important property of vari-

able linkability, a property which comes from work on anonymous authentication for trusted

computing platforms, and is vital for detecting key sharing in an anonymous authentication

system. The “variable” part of this can be adjusted to provide a wide range of linkability

properties, from completely unlinkable signatures, to signatures linkable within a fixed time

period, to completely linkable signatures (giving what is essentially a fixed pseudonym sys-

tem). In practice, the amount of linkability would be determined by a risk analysis of the

application, balancing the goal of protecting a user’s privacy against a providers goal of de-

tecting inappropriate uses of keys. As the new scheme supports the full range of linkability

options, it provides the best available flexibility to users as well as providers.
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The methods to construct a DAA-like scheme for Trusted Computer Platforms has also

been introduced, i.e., an anonymous signature scheme without openability. The new DAA

scheme has much more efficient Sign and Verify protocols. This new scheme is significantly

more efficient than the current solution, making it more appropriate for the devices with lower

computing capabilities, and for settings in which the Join protocol is used rather infrequently,

which should be the case for most situations.

Finally, the proposed constructions are proved secure under the strong RSA assumption

and the Decisional Diffie-Hellman assumption over QRn.
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CHAPTER 6

TRACEABLE SIGNATURE

6.1. Introduction

6.1.1. A General Scenario for Anonymous Authentication

The previous chapter introduced a group signature scheme with variable linkability, and

showed how to extend it to a construction for direct anonymous attestation in Trusted Com-

puting Platforms. These constructions work fine in certain specific settings. However, one

feature not provided in these schemes is a tracing trapdoor, an important concept introduced

in traceable signatures [40]. The combination of traceability and variable anonymity to be par-

ticularly important for a more general anonymous authentication system: variable anonymity

provides a mechanism to detect key sharing violations, while traceability is an efficient and

fair way to reveal all malicious behaviors.

To illustrate the importance of this, recall the anonymous credential sharing problem in

the last chapter: a large set of users could share a single subscription to some pay web

site. The mechanism of variable anonymity provides a method to detect potential keypair

sharing. If during a limited time period an unusually high number of requests using the

same credential come in from different IP addresses, then this could be flagged as potentially

malicious behavior. The open authority can then reveal the identity of the malicious or

compromised group member. A further action would be an investigation of all behaviors by

this group member. However, the lack of a tracing trapdoor would make this task difficult:

the open authority has to open all signatures to identify all behaviors by this member. As

argued in [40], this is either inefficient (a centralized operation by the open authority), or

unfair (unnecessarily identifying all innocent group members’ signatures). Therefore, it would
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be better to integrate an explicit tracing trapdoor into an anonymous authentication system.

Unfortunately, the protocols in the last chapter do not provide such mechanism. In direct

anonymous attestation, the secrets of corrupted TPMs are used to revoke rogue TPMs if

these secrets can be somehow extracted out, which might not be always possible. In general

settings, an explicit tracing trapdoor is more desirable to overcome the difficulty of extracting

a group member’s secret. With knowledge of tracing trapdoors for all group members, the

group manager can output the tracing trapdoor for a malicious group member to trace

agents. Then trace agents reveal all behaviors associated with a trapdoor distributively, and

fairly. Also, this tracing trapdoor can be published on the revocation list for verifiers to identify

future requests by this corrupted member.

6.1.2. The Results

This chapter presents a construction for traceable signature that supports variable anonymity.

The new construction is built up from the well-known ACJT group signature [2]. The trace-

able signature due to Kiayias et al., which we refer to as the KTY scheme in this paper,

is also built up from the ACJT scheme. However, the new construction improves on the

KTY scheme in three aspects. First, the same group membership certificate is adopted as

in the ACJT scheme. The KTY scheme changes the group certificate in the ACJT scheme

to integrate the tracing trapdoor. It can be analyzed this change is unnecessary since tracing

trapdoors in fact are already available in the ACJT scheme. Second, the tracing mechanism

in the new construction is more efficient than the KTY scheme. The new scheme uses a hash

function to create generators while the KTY scheme uses expensive exponentiation compu-

tation. Finally, the new scheme supports variable anonymity while the KTY scheme does not.

Thus, the proposed scheme is more efficient and flexible than the KTY scheme.

6.2. The Model

This section introduces the model for traceable signature [40], which is a variant of the

group signature model (e.g. [2]). Both these two models have protocols for Setup, Join,
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Sign,Verify, and Open. Traceable Signature has additional protocols for traceability: Reveal,

Trace, Claim (Self-trace) and Claim-Verify.

Definition 6.2.1. A traceable signature is a digital signature scheme with four types of par-

ticipants: Group Manager, Group Members, Open Authorities, and Trace Agents. It consists

of the following procedures:

• Setup: For a given security parameter σ, the group manager produces system-wide

public parameters and a group manager master key for group membership certificate

generation.

• Join: An interactive protocol between a user and the group manager. The user

obtains a group membership certificate to become a group member. The public

certificate and the user’s identity information are stored by the group manager in a

database for future use.

• Sign: Using its group membership certificate and private key, a group member

creates a group signature for a message. The signature incorporates a linkability

class identifier, LCID, which can be negotiated between the signer and the verifier

in an interactive setting.

• Verify: A signature is verified to make sure it originates from a legitimate group

member without the knowledge of which particular one.

• Open: Given a valid signature, an open authority discloses the underlying group

membership certificate.

• Reveal: The group manager outputs the tracing trapdoor associated with a group

membership certificate.

• Trace: Trace agents check whether a signature is associated with a tracing trapdoor.

• Claim (Self-trace): A group member creates a proof that he created a particular

signature.

• Claim Verify: A party verifies the correctness of the claiming proof.
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Similar to group signatures, a traceable signature scheme should satisfy the following prop-

erties:

• Correctness: Any valid signature can be correctly verified by the Verify protocol

and a valid claiming proof can be correctly verified.

• Forgery-Resistance: A valid group membership certificate can only be created by

a user and the group manger through the Join protocol.

• Anonymity: It is infeasible to identify the real signer of a signature except by the

open authority or if the signature has been claimed.

• Unlinkability: It is infeasible to link two different signatures of the same group

member if they incorporate different LCIDs.

• Non-framing: No one (including the group manager) can sign a message in such a

way that it appears to come from another user if it is opened.

• Traceability: Given a tracing trapdoor, trace agents can reveal all signatures asso-

ciated with the trapdoor. A group member can claim (self-trace) his signatures.

6.3. Traceable Signature

The proposed construction is built upon the ACJT group signature scheme. The same

system parameters, group certificates, and Join protocol have been adopted in the new

scheme. The Sign and Verify protocols have been changed to support traceability and variable

anonymity. In the following presentation, the same notation is used as in the original paper

to make it easier for readers to see how the proposed method converts the ACJT scheme

into a traceable signature scheme.

6.3.1. The System Parameters

The following system parameters are set up when the system is initialized and the group

manager key is generated.

• A special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1, with p, p′, q, q′ all prime
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• Random elements a, a0, g ∈ QRn of order p′q′, i.e., these numbers are generators

of QRn

• Security parameters used in protocols: ǫ > 1, k, lp

• Length parameters λ1, λ2, γ1, γ2. λ1 > ǫ(λ2+ k)+ 2, λ2 > 4lp, γ1 > ǫ(γ2+ k) + 2,

and γ2 > λ1 + 2

• Integer ranges Λ =]2λ1 − 2λ2 , 2λ1 + 2λ2[ and Γ =]2γ1 − 2γ2, 2γ1 + 2γ2[

• Three strong collision-resistant hash functions: H1,H2 : {0, 1}∗ → Z∗n, and H3 :

{0, 1}∗ → {0, 1}k

• A message to be signed: m ∈ {0, 1}∗

• The public parameters are (n, a, a0, g).

• The secret parameters for the group manager are (p′, q′).

The open authority creates his ElGamal public keypair [27], i.e., private key x and public key

y such that y = gx (mod n).

6.3.2. Join Protocol

The same Join protocol is adopted as in the original scheme. A group membership

certificate is in the form of Ai = (a
xia0)

1/ei (mod n) where xi ∈ Λ is the secret of the group

member, and ei ∈R Γ is a random prime number that is known to both the group member

and group manager.1

In the new scheme, ei is treated as tracing trapdoor, and kept secret by the group member

and group manager. When an open authority reveals Ai for a signature, the group manager

sends the corresponding ei to the trace agents in order to trace all signatures associated with

ei .

1Kiayias et al. have showed the range of xi , ei can be much smaller without compromising the scheme’s

security [40]. For simplicity, we still follow the definition in ACJT scheme.
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xi is treated as self-tracing trapdoor, which is used by a group member to claim his

signatures. Since xi is the secret of the group member, only the group member himself has

the ability to claim his signatures.

6.3.3. Sign Protocol

In order to sign a message m, a group member does the following:

(i) Derive two generators i and j of QRn by hashing the LCID of this signature.

i = (H1(LCID))2 (mod n), j = (H2(LCID))2 (mod n).

In the random oracle model, with the hash functions modeled by random oracles,

each distinct LCID results in i and j being random generators of QRn with over-

whelming probability.

(ii) Generate a random value w ∈R {0, 1}2lp and compute:

T1 = Aiy
w (mod n), T2 = g

w (mod n), T3 = i
ei (mod n), T4 = j

xi (mod n)

(iii) Randomly (uniformly) choose r1 ∈R ±{0, 1}ǫ(γ2+k), r2 ∈R ±{0, 1}ǫ(λ2+k), and r3 ∈R

±{0, 1}ǫ(λ1+2lp+k+1), and compute

• d1 = T r11 /(ar2y r3) (mod n), d2 = T r12 /gr3 (mod n), d3 = i r1 (mod n), d4 =

j r2 (mod n).

• c = H3(g||i ||j ||y ||a0||a||T1||T2||T3||d1||d2||d3||d4||m);

• s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1), s3 = r3 − ceiw (all in Zn).

(iv) Output the signature tuple (LCID, c, s1, s2, s3, T1, T2, T3, T4).

6.3.4. Verify Protocol

To verify a signature (LCID, c, s1, s2, s3, T1, T2, T3, T4), a verifier does the following.

(i) Compute the same generators i and j , and then

c ′ = H3(g||i ||j ||a0||a||T1||T2||T3||T4||ac0T s1−c2
γ1

1 /(as2−c2
λ1
y s3)||
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T s1−c2
γ1

2 /gs3||i s1−c2γ1T c3 ||j s2−c2
λ1
T c4 ||m)

(ii) Accept the signature if and only if c = c ′ and s1 ∈ ±{0, 1}ǫ(γ2+k)+1, s2 ∈

±{0, 1}ǫ(λ2+k)+1, s3 ∈ ±{0, 1}ǫ(λ1+2lp+k+1)+1.

6.3.5. Open and Reveal Protocol

For a valid signature, the open authority opens a signature to find its originator by ElGamal

decryption:

Ai = T1/T
x
2 (mod n).

For the non-framing property, the open authority must also issue a proof that it correctly

revealed the group member. That is, the open authority proves that the discrete logarithms

of y , and T1/Ai (mod n) with respect to g and T2, respectively, are equal through Proto-

col 3.3.2.

The opened certificate Ai is submitted to the group manager, and the group manager

reveals the corresponding tracing trapdoor ei to the trace agents.

6.3.6. Trace Protocol

To trace a group member, trace agents use ei to reveal all the signatures by a group

member by checking whether

iei =? T3 (mod n).

To claim a signature, a group member proves its knowledge of discrete logarithm of T4 with

base j through Protocol 3.3.3.

6.4. A Comparison: the ACJT scheme, the KTY scheme and Ours

To better understand the scheme in this chapter, it would be appropriate to illustrate the

relationship among the ACJT scheme, the KTY scheme and the new scheme.
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As mentioned before, the new scheme directly adopts the same group membership cer-

tificate as in the ACJT scheme, which is a pair (Ai , ei) such that

Ai = (a
xia0)

1/ei (mod n),

where xi , ei should be in their required ranges, and ei is a prime number.

In the ACJT scheme, a group member hides (Ai , ei) by computing

T1 = Aiy
w (mod n), T2 = g

w (mod n), T3 = g
eihw (mod n).

Due to the semantic security property of the ElGamal encryption algorithm, it is intractable

to decide whether a tuple (T1, T2, T3) is constructed from a specific (Ai , ei). As argued by

Kiayias et al. in [40], the ACJT scheme does not provide certain important features for

a realistic anonymous authentication system. Since (Ai , ei) can not be used to reveal a

corrupted group member, the only way to do so is the opening of all signatures in the pool

by the open authority. Also, a group member has no way to claim his/her signature if he/she

does not record all random number w ’s in signatures. Obviously, this is not very practical,

either.

To overcome these shortcomings, Kiayias et al. introduced a tracing trapdoor into the

structure of a group membership certificate. In their scheme,

Ai = (b
x ′i axia0)

e−1i (mod n),

where b is a generator of Z∗n, and x
′
i is a secret shared by a group member and the group

manager, which is used as tracing trapdoor. A group member follows the same method as in

the ACJT scheme to compute T1, T2, T3, and further computes

T4 = g
xik (mod n), T5 = g

k (mod n), T6 = g
x ′i k
′

(mod n), T7 = g
k ′ (mod n),
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where k, k ′ are random elements in Zn. Obviously T5, T7 are two random generators of Z
∗
n.

Thus, a group member will always produce (T4, T5) such as

T4 ≡ T xi5 (mod n),

and (T6, T7) such as

T6 ≡ T x
′
i
7 (mod n),

no matter how k, k ′ are picked. Since x ′i is the shared secret between a group member and the

group manager, if the group manager decides to disclose all behaviors by a group member,

x ′i for this group member can be revealed to trace agents to carry out an efficient and fair

tracing mechanism by checking

T6 =? T
x ′i
7 (mod n).

At the same time, it also becomes trivial for a group member to claim his signature, i.e., he

simply issues a zero-knowledge proof for T4 = T
xi
5 for his secret xi .

The new scheme improves the KTY scheme by identifying that the introduction of x ′i

as a tracing trapdoor is unnecessary. Since tracing trapdoor is a shared secret between a

group member and the group manager, treating ei as tracing trapdoor would be the most

convenient way. In the ACJT scheme, ei could be publicly known. However, ei should be

kept secret in the new scheme. This adds a little complexity to the Join protocol, i.e., the

Join protocol should be confidential, which is not required in the ACJT scheme.

To carry out traceable mechanism, the same method is used as in the the KTY scheme:

create two random random generators i , j , and raise them to iei , and jxi , respectively. To

further support variable linkability, the hash function is used for the creation of i , j . Thus,

the linkability is controlled by the arguments for the hash function, i.e., LCID (linkability class

identifier). The randomness of i , j is achieved by the property of hash function, and the

scheme is secure in the random oracle model.
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Through these improvements, the new scheme greatly reduces computation cost in the

KTY scheme, and further supports variable anonymity, an important malicious behavior de-

tection mechanism in anonymous authentication.

6.5. Security Properties

The proposed scheme uses the same certificate as in the ACJT group signature. The Sign

and Verify protocols have been change in the new scheme. The security properties, such as,

forgery-resistance, anonymity, non-framing, are unaffected by these changes. In this section,

we only discuss the security properties affected by these changes.

The theorem is recalled for the coalition-resistance of group membership certificate in the

ACJT scheme. The original proof is quoted with a minor problem being fixed. To avoid many

quotation marks which may interrupt and confuse the presentation, explicit quotation marks

is not used to show the original work. Note that step 7 in game 1, step 3 and step 7 in game

2, have been re-written. The remaining part is exactly quoted from the original paper.

Theorem 6.5.1 (Coalition-resistance). Under the strong RSA assumption, a group certificate

[Ai = (a
xia0)

1/ei (mod n), ei ] with x ∈ Λ and ei ∈ Γ can be generated only by the group

manager provided that the number K of certificates the group manager issues is polynomially

bounded.

Proof : LetM be an attacker that is allowed to adaptively run the JOIN and thereby obtain

group certificate [Aj = (a
xja0)

1/ei ( mod n)], j = 1, · · · , K. The task is now to show that ifM

outputs a tuple (x̂ ; [Â, ê]), with x̂ ∈ Λ, ê ∈ Γ , Â = (ax̂a0)1/ê (mod n), and (x̂ , ê) 6= (xj , ej)

for all 1 ≤ j ≤ K with non-negligible probability, then the strong RSA assumption does not

hold.

Given a pair (n, z), one can repeatedly play a random one of the following two games

withM and hope to calculate a pair (u, e) ∈ Z∗n × Zn satisfying ue = z (mod n) fromM’s

answers. The first game goes as follows:
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(i) Select x1, · · · , xK ∈ Λ and e1, · · · , eK ∈ Γ .

(ii) Set a = z
Q
1≤l≤K el (mod n).

(iii) Choose r ∈R Λ and set a0 = ar (mod n).

(iv) For all 1 ≤ i ≤ K, compute Ai = z (xi+r)
Q
1≤l≤K;l 6=i el (mod n).

(v) Select g, h ∈R QR(n), x ∈ {1, · · · , n2}, and set y = gx (mod n).

(vi) Run the JOIN protocol K times withM on input (n, a, a0, y , g, h). Assume one is

in protocol run i . Receive the commitment C1 fromM. Use the proof of knowledge

of a representation of C1 with respect to g and h to extract x̃i and r̃i such that

C1 = g
x̃ihr̃i (this involves rewinding of M). Choose αi and βi ∈]0, 2λ2 [ such that

the prepared xi = 2
λ1 +(αi x̃i +βi mod 2

λ2) and send αi and βi toM. Run the rest

of the protocol as specified until Step 4. Then sendM the membership certificate

[Ai , ei ]. After these K registration protocols are done, M outputs (x̂ ; [Â, ê]) with

x̂ ∈ Λ, ê ∈ Γ , Â = (ax̂a0)1/ê (mod n).

(vii) If gcd(ê, ej) 6= 1 for all 1 ≤ j ≤ K the output ⊥ and quit. One can have Âê =

ax̂a0 = z
(x̂+r)

Q
1≤l≤K el . Because gcd(ê, ej) = 1 for all 1 ≤ j ≤ K, by Lemma 3.2.2,

one can find a v , such that v ê = z x̂+r . Due to the choice of x, r , ê > x̂ + r , and

1 < gcd(ê, (x̂ + r)) < ê. Thus, one can output ue = z (mod n), 1 < e < ê by

Lemma 5.4.2.

The previous game is only successful if M returns a new certificate [A(x̂), ê], with

gcd(ê, ej) = 1 for all 1 ≤ j ≤ K. Another game can be presented that solves the strong

RSA problem in the other case when gcd(ê, ej) 6= 1 for some 1 ≤ j ≤ K. (Note that

gcd(ê, ej) 6= 1) means gcd(ê, ej) = ej because ej is prime.)

(i) Select x1, · · · , xK ∈ Λ and e1, · · · , eK ∈ Γ .

(ii) Choose j ∈R {1, · · · , K} and set a = z
Q
1≤l≤K;l 6=j el (mod n).

(iii) Choose a prime number r ∈R Λ and set Aj = ar ( mod n) and a0 = Aejj /axj ( mod n).

(iv) For all 1 ≤ i ≤ K i 6= j , compute Ai = z (xi+ej r−xj )
Q
1≤l≤K;l 6=i ,j el (mod n).
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(v) Select g, h ∈R QR(n), x ∈ {1, · · · , n2}, and set y = gx (mod n).

(vi) Run the JOIN protocol K times withM on input (n, a, a0, y , g, h). Assume one is

in protocol run i . Receive the commitment C1 fromM. Use the proof of knowledge

of a representation of C1 with respect to g and h to extract x̃i and r̃i such that

C1 = g
x̃ihr̃i (mod n) (this involves rewinding of M). Choose αi and βi ∈]0, 2λ2 [

such that the prepared xi = 2
λ1 + (αi x̃i + βi mod 2

λ2) and send αi and βi to

M. Run the rest of the protocol as specified until Step 4. Then send M the

membership certificate [Ai , ei ]. After these K registration protocols are done, M

outputs (x̂ ; [Â, ê]) with x̂ ∈ Λ, ê ∈ Γ , Â = (ax̂a0)1/ê (mod n).

(vii) If gcd(ê, ej) 6= ej output ⊥ and quit. Otherwise, let ê = tej for some t. One can

have Âtej = ax̂a0 ( mod n). Following the definition of a, a0, Â
tej = z (x̂+ej r−xj )

Q
1≤l≤K;l 6=j el ( mod

n).

• If x̂ = xj , one can obtain (Âej )t = z r
Q
1≤l≤K el (mod n). Since t < ej for all

1 ≤ j ≤ K, r is prime, by Lemma 3.2.2, one can output ut = z (mod n).

• If x̂ 6= xj , due to the range restriction for ej and x , |x̂ −xj | < ej . Then gcd(x̂ +

ej r − xj , ej) = 1. One can obtain (Ât)ej = z (x̂+ej r−xj )
Q
1≤l≤K;l 6=j el (mod n). Again

by Lemma 3.2.2, one can output uej = z (mod n).

Consequently, by playing randomly one of the Games 1 or 2 until the result is not ⊥,

an attacker getting access to machine M can solve the strong RSA problem in expected

running-time polynomial in K. Because the latter is assumed to be infeasible, it follows that

no one but the group manager can generate group certificates.

⊓⊔

Next, the security of Sign and Verify protocol is described as the following theorem.

Theorem 6.5.2. Under the strong RSA assumption, the interactive protocol underlying the

group signature scheme is a statistical zero-knowledge (honest-verifier) proof of knowledge

of a membership certificate and a corresponding membership secret key.
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Proof : The proof for correctness is straightforward. The proof for zero-knowledge property

(simulator) follows the same method as the one for Theorem 5.3.5, demonstrating the exis-

tence of a simulator under the Decisional Diffie-Hellman assumption. A knowledge extractor

is able to recover the group certificate when it has found two accepting tuples under the same

commitment and different challenges from a verifier. Let (T1, T2, T3, d1, d2, d3, c, s1, s2, s3)

and (T1, T2, T3, d1, d2, d3, c
′, s ′1, s

′
2, s

′
3) be such tuples.

Since d4 ≡ j s2−c2λ1T c4 ≡ j ′s2−c
′2λ1T c

′

4 (mod n),

j (s
′
2−s2)+(c−c

′)2λ1 ≡ T c−c ′4 (mod n).

By lemma 3.2.4, under the strong RSA assumption, c−c ′ has to divide (s ′2−s2)+(c−c ′)2λ1.

Therefore τ1 = (s
′
2 − s2)/(c − c ′) + 2λ1 .

Since d3 ≡ i s1−c2γ1T c3 ≡ i s
′
1−c

′2γ1T c
′

3 (mod n),

i (s
′
1−s1)+(c−c

′)2γ1 ≡ T c−c ′3 (mod n).

Likewise, under the strong RSA assumption, c − c ′ has to divide (s ′1 − s1), and τ2 = (s ′1 −

s1)/(c − c ′) + 2γ1.

Since d2 ≡ T s1−c2
γ1

2 /gs3 ≡ T s
′
1−c

′2γ1

2 /gs
′
3 (mod n),

T
(s ′1−s1)+(c−c

′)2γ1

2 ≡ gs ′3−s3 (mod n).

Similarly, τ3 = (s
′
3 − s3)/((s ′1 − s1) + (c − c ′)2γ1).

Since d1 ≡ ac0T s1−c2
γ1

1 /(as2−c2
λ1y s3) ≡ ac ′0 T s1−c

′2γ1
1 /(as2−c

′2λ1y s3) (mod n),

as
′
2−s2+(c−c

′)2λ1ac−c
′

0 ≡ T s
′
1−s1+(c−c

′)2γ1

1 /y s
′
3−s3 (mod n).

Furthermore,

a(s
′
2−s2)/(c−c

′)+2λa0 ≡ (T1/y (s
′
3−s3)/((s

′
1−s1)+(c−c

′)2γ1))(s
′
1−s1)/(c−c

′)+2γ1 (mod n).

Finally, let Ai = T1/y
τ3 (mod n), a valid certificate (Ai , τ2, τ1) can be obtained such

that Aτ2i = a
τ1a0 (mod n), and τ1, τ2 lie in the valid range due to the length restriction on
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s1, s2, s3 and c. Therefore a knowledge extractor exist to be able to fully recover a valid group

certificate.

⊓⊔

Unlinkability follows the same argument in the ACJT group signature for T1, T2. Since

a new T3, T4 is defined in the proposed traceable signature, it needs to show this change

still keeps the unlinkability property (for different generators i and i ′). Similar to the case

in the ACJT group signature, the problem of linking two tuples (i , T3), (i
′, T ′3), is equiva-

lent to deciding the equality of the discrete logarithms of T3, T
′
3 with base i , i

′ respectively.

This is assumed to be infeasible under the decisional Diffie-Hellman assumption over QRn

(Lemma 3.2.7). (j, T4), (j
′, T ′4) also follows the same argument.

Theorem 6.5.3 (Unlinkability). Under the decisional Diffie-Hellman assumption over QRn and

withH1 andH2 as random oracles, there exists no probabilistic polynomial-time algorithm that

can make the linkability decision for any two arbitrary tuples (i , T3), (i
′, T ′3), or (j, T4), (j

′, T ′4)

with non-negligible probability.

6.6. Summary

This chapter presents a traceable signature scheme which is an enhancement of the

ACJT group signature scheme [2] that supports variable anonymity. The new scheme is a

more general solution to anonymous authentication, due to its support of traceability and

variable anonymity. Traceability provides an efficient and fair mechanism to reveal and revoke

corrupted group members, which is very important to a large, realistic anonymous authen-

tication system. Variable anonymity can be adjusted to provide a wide range of linkability

properties, from completely unlinkable signatures, to signatures linkable within a fixed time

period, to completely linkable signatures (giving what is essentially a fixed pseudonym sys-

tem). In practice, the amount of linkability would be determined by a risk analysis of the
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application, balancing the goal of protecting a user’s privacy against a provider’s goal of de-

tecting inappropriate uses of keys. As the new scheme supports the full range of linkability

options, it provides the best available flexibility to users as well as providers. Finally, the

new signature scheme is proved secure under the strong RSA assumption and the Decisional

Diffie-Hellman assumption over QRn.
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CHAPTER 7

CONCLUSION

As one of the five security services in the information assurance model, authentication

techniques play key roles for information systems. With ever-changing applications, numer-

ous authentication techniques have been proposed to accommodate different scenarios. This

dissertation investigates authentication techniques in some emerging areas. Specifically, au-

thentication schemes have been proposed that are well-suited for embedded systems, and

privacy-respecting pay web sites.

An efficient public key cryptosystem has been devised, which provides a complete solution

to an embedded system, including protocols for authentication, authenticated key exchange,

encryption, and revocation. The new construction is especially suitable for the devices with

constrained computing capabilities and resources. Compared with other available authentica-

tion schemes, such as X.509, identity-based encryption, etc, The new authentication provides

unique features such as simplicity, efficiency, forward secrecy, and an efficient re-keying mech-

anism.

This dissertation extensively discusses anonymous authentication techniques, such as

group signature, direct anonymous attestation, and traceable signature. Three anonymous

authentication schemes have been proposed which include a group signature scheme with sig-

nature claiming and variable linkability, a scheme for direct anonymous attestation in trusted

computing platforms with sign and verify protocols nearly seven times more efficient than

the current solution, and a state-of-the-art traceable signature scheme with support for vari-

able anonymity. These three schemes greatly advance research in the area of anonymous

authentication.
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The authentication schemes in this dissertation are based on common mathematical and

cryptographic foundations. More specifically, mathematical operations in these schemes are

over the quadratic residue group QRn, where n is a special RSA modulus. The security of

these schemes is based on well accepted assumptions related to a group QRn in cryptogra-

phy, such as the strong RSA assumption, the computational Diffie-Hellman assumption, and

the decisional Diffie-Hellman assumption. The anonymous authentication schemes use an

advanced cryptographic tool: zero-knowledge proof of knowledge. In the proposed schemes,

zero-knowledge proof of knowledge protocols related to discrete logarithms over QRn have

been intensively used, such as knowledge of a discrete logarithm, knowledge of the equality

of two discrete logarithms, and knowledge of a discrete logarithm that lies in an interval.

7.1. Future Research

Even though the schemes in this dissertation have lots of similarities, they are still distinct

schemes for different settings. This raises a question: Can we combine these schemes into

a unified authentication scheme in which users can be authenticated with different features,

either required by verifiers, or chosen by users themselves? For example, a user can adaptively

choose a full identification, or a DAA-like authentication in which identity can not be opened,

or a complete anonymous authentication in which a group user can not be opened, linked, or

traced.

Such a unified authentication scheme could greatly simplify implementation and deploy-

ment of an authentication schemes. For instance, this scheme can be implemented on a

cryptographic card. Using this card, a user can choose appropriate authentication features

under his/her control. This would provide great convenience to users, as well as verifiers.

Research on this comprehensive authentication scheme is underway.
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