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Current syndromic surveillance systems utilize centralized databases that are neither
scalable in storage space nor in computing power. Such systems are limited in the amount of
syndromic data that may be collected and analyzed for the early detection of infectious disease
outbreaks. However, with the increased prevalence of international travel, public health
monitoring must extend beyond the borders of municipalities or states which will require the
ability to store vasts amount of data and significant computing power for analyzing the data.

Intelligent mobile agents may be used to create a distributed surveillance system that will
utilize the hard drives and computer processing unit (CPU) power of the hosts on the agent
network where the syndromic information is located. This thesis proposes the design of a mobile
agent-based syndromic surveillance system and an agent decision model for outbreak detection.
Simulation results indicate that mobile agents are capable of detecting an outbreak that occurs at
all hosts the agent is monitoring. Further study of agent decision models is required to account

for localized epidemics and variable agent movement rates.
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CHAPTER 1
INTRODUCTION

Epidemiology is "the study of the distribution and deteramts of health-related states or
events in specified populations, and the application of $hisly to control of health problems”
[23]. In other words, epidemiology seeks to monitor and prethe spread of disease by studying
the causes and the spread of diseases. Unlike clinical meditich evaluates individual persons,
epidemiology focuses on studying diseases within popuriati

Epidemiologists require data such as the morbidity rates (o0& infection) and the mortality
rate (rate of death due to the disease) of a disease to batteratand how the disease spreads.
This data is collected from medical professionals repgrtiases of the disease to health organiza-
tions. Hence epidemiologist have to wait for live cases efdlisease. The field of computational
epidemiology may help improve data collection techniquegrovide the ability to simulate the
spread of diseases.

Mathematics and computer science have contributed to melag fof medical science. One
prominent example is the human genome project where thadédy of high performance com-
puting was used to help solve the large and complex problemapiping human genes [8]. This
is just one of the subfields of computational biology. Otheaa include bioinformatics which in-
volves the storage of biological data. Unlike computatidnalogy, computational epidemiology
is a recent field that employs techniques and algorithms rmmputer science to help analyze and
predict disease outbreaks. Stochastic cellular autorneata been used to simulate the outbreak
of a disease using the knowledge of known outbreaks as the dlathe simulation model [31].
By simulating outbreaks, the nature of how a disease spi@Ube studied without the need to
wait for the next live outbreak. State transition systemsehaso been used to analyze the control
and treatment alternatives of HIV/AIDS [16]. Another aspefcepidemiology that has not been
assisted by computational epidemiology is public healthiestiance.

1.1. Infectious Disease Surveillance

Outbreak investigation is a field of epidemiology where thieading of an infectious disease

is studied in order to control or prevent the further spregdf the disease. Infectious disease



outbreaks are detected through the surveillance of diagneses of the disease. National surveil-
lance of infectious disease started in 1878 to prevent tinedaction of infectious diseases in the
US from overseas [10]. Surveillance has expanded to inchatbidity and mortality reports from
state health organizations for diseases in the annuablistationally notifiable diseases published
by the Center for Disease Control and Prevention (CDC). NHeweeporting cases of a disease to
the CDC is voluntary [4]. Hence the data collected may notrpgran accurate status of the state
of public health.

State health organizations require health care providersgort confirmed cases of an infec-
tious disease. The health organizations publish lists enftifiable diseases similar to the CDC
including the time frame in which the disease must be regoi$®me diseases are required to be
reported immediately including anthrax, food born botulisebeola (measles), and the plague.
Other diseases are required to be reported within one wekasuasbestos exposure, chickenpox,
gonorrhea, or the mumps.

The CDC and state health organizations analyze trends ithéh@orbidity and mortality data
to determine if an epidemic may be occurring. However, thesels may be imprecise as the data
collected may be delayed. The first delay occurs in the timenndymptoms manifest and when
the infected person first sees a physician. For the casebaifition anthrax in the United States in
2001 the median duration between the onset of symptoms faitte healthcare visitation was 3
days [6]. The second delay occurs in the time when a patishifsits a physician and a diagnosis
is made. A physician will not report the disease until thegdisis has been confirmed through
examinations and diagnostics tests.

Misdiagnosis also causes delays as many severe infectiseiasgs have similar symptoms
as the more common influenza [29]. Physicians may also nogreze a disease as symptoms
may be similar to a patient’s pre-existing conditions. Fxaraple, a patient was being treated
for congestive heart failure in a Toronto hospital emergewom and was exposed to the severe
acute respiratory syndrome (SARS) virus [11]. After beielgased the patient returned four days

later with fever, trouble breathing, and fluid in the lungsebhs consistent with congestive heart



failure. However, the first two symptoms are consistent VRS, and the patient was mis-
diagnosed with recurrent congestive heart failure. A dmsghof SARS was never made before

the patient died 15 days later.

1.2. Syndromic Surveillance

Disease surveillance monitors the state of public healitigugiagnosed cases of a disease in
order to detect possible outbreaks. Another way to measibkcphealth is to monitor the effects
of disease which are discernible before a diagnosis is coeéif24]. Prior to going to a physician,

a person might miss days at work or school, purchase overdingter medications, or purchase
other items such as kleenex or juices high in vitamin c. Sgmgie surveillance typically will
use syndromes, also called chief complaints, or diagntssits to search for abnormal clusters
or areas where the occurrence of the syndromes are abovaliddh Time series analysis and
other statistical tools are used to locate the abnormas @t@ccurrence in syndromic data. By
monitoring the effects of a disease, syndromic surveibasystems may be able to detect possible
outbreaks earlier than disease surveillance systems asmahincreases in the rate of occurrence

of the effects should be detectable before abnormal inesgashe rate of a disease are identified.

1.2.1. Current Surveillance Systems

The Real-time Outbreak and Disease Surveillance (RODS)dB80 the Early Notification
of Community-based Epidemics (ESSENCE) system [22] stata dollected from participating
health systems in centralized databases. Outbreak aetedtjorithms are executed every 4 hours
on the data, and alarms are raise 3 d based on criteria seh with algorithms. These systems
have a number of shortcomings. A failure with the databasg prevent the surveillance system
from performing efficiently or result in the loss of data. Tdevelopers of RODS had to deal with
such an issue where data being transmitted to the databadestavhile the database was offline.
To solve this problem data is cached the until until the dadabs online, but this does not prevent
the potential delay in executing the detection algorithrouth the database be offline for longer

than 4 hours. Catastrophic database failures will alsdtr@sthe loss of all data if a sufficient



backup is not kept. Even with a backup, time must be takerstore the database before outbreak
detection can continue.

Another issue is scalability both in data storage space antpating power to process the
data. Current syndromic surveillance systems typicallytaim a set amount of storage with a
constant amount of computing power which limits the the amai data the system is able to
process. Monitoring larger geographical areas will regjléirge amounts of storage space and
more computing power, and a single computer system wouldt ithe cost of upgrading the hard
drive and central processing unit (CPU) as the amount of gietas too large. Advances have
been made that have increase the computing power of CPUseimgl &ble to store more data
on the same sized hard drives. However even a system with dlsepowerful processor and an
array of the largest hard drives is still constrained and thvill limited in the geographical size
of syndromic data that can be processed. Distributed cangpglystems provide the required
scalability using multiple computers to create a single gotimg system. To increase the storage
space and computing power more computers are added to tieensysn example of a distributed

computing system is the intelligent mobile agent system.

1.3. Intelligent Mobile Agents

The mobile agent paradigm is a shift from the traditionamliserver communication network.
In the client server paradigm, a stationary program on tieactransfers data to the server where
the data is processed or stored. In contrast, programs ofbdleragent systems that process or
collect data move to the location of the data [27]. Mobilerdgeare executed on the computing
resources within the agent network making the mobile agestém scalable in terms of computing
power and storage space. The mobile agent paradigm has twogoals. The reduction of
network bandwidth utilization, and asynchronous intecactvith the user [26].

Figure 1.1 depicts a mobile agent network with nodes whefi@rimation may be found and
computing power used to analyze the data. Nodes are coaratedata networks through which
agents travel and agents are autonomous programs that realkeods about where to move and
what actions to take. For example, the agents found in theddaAuction system are used to visit

eAuctionHouse sites to place bids on behalf of a user [18]ef\dnuser wishes to participate in



Hospital Laboratory Pharmacy

Agent

Network

FIGURE 1.1. Example agent network with connected hosts for syndrsarveillance.

an eAuction, a mobile agent is programmed with the user dpain@meters, and the agent travels
via the Internet to eAuctionHouse sites searching for anstthat match the user parameters. The
mobile agents are autonomous in that the agents place bidswinteraction with the end user.
In other words, the mobile agents make decisions using théefined user parameters and data
found at the eAuctionHouse sites.

Mobile agents may be used to control the amount of networkdwadth used for network
intensive systems. An example of mobile agents have beehtaskecrease network overhead is
agent-based distance vector routing (ADVR). In this systenbile agents move between routers
in a network analyzing and updating the routing table of theaers [2]. Agents take the place of
large network packets of traditional dynamic routing poaois that pass a router’s entire routing
table to neighboring routers. As networks grow in size, therloead of traditional routing protocols
would grow unbounded, but by bounding the number of ageetagitwork overhead of the ADVR

system is bounded given the amount of data contained by #r@sg not proportionate to the size



of the network. To control the amount of agent data, agentsat@arry the entire routing table

of all the routers in the network. Rather, the agents carly e data required to calculate a new
routing table at each router. The feature of agent systembeaised for syndromic surveillance
systems where agents contain only data required to maksiolesiregarding possible outbreaks.

This is important for protection of patient information.

1.4. HIPAA Privacy Rules

Syndromic surveillance systems that collect patient mition must comply with the HIPAA
privacy rules. Thedealth Insurance Portability and Accountability A@dIPAA) dictates the de-
velopment of standards to electronically exchange heafithmation between health providers and
health insurers. Included in the act are provisions for tieatton of privacy rules to limit the use
or exchange of individually identifiable health informatiby health care providers or health in-
surance companies. The the privacy rules requires a perpastected health information be kept
private while allowing the exchange of de-identified heatflormation to "promote high quality
health and to protect the public’'s health and well being” [@le-identified health information

includes but is not limited to

e Gender

e Age

e General Location (e.g. zip code)
e List of symptoms

e Diagnosis

Only the de-identified health information is required fondyomic surveillance as information
such as a patient’s name, social security number, or spedficess is not useful in detecting
outbreaks. In an agent based syndromic surveillance sytbtisndata may be kept in a separate

database from the database containing protected patfentiation.



1.5. Overview

An infrastructure for intelligent mobile agents will be debed in Chapter 2. Chapter 3 will
show how the intelligent mobile agent infrastructure carubed to perform syndromic surveil-
lance. A simulation of the syndromic surveillance systerd arperimental results will be dis-

cussed in chapter 4, and chapter 5 will summarize this relseard specify future work.



CHAPTER 2
AGENT BASED SYSTEMS

Agent based systems are made up of two primary entities:steosd agents. Hosts in the
agent network will require specialized software to receiméiate, and transmit agents. When
transmitting an agent, the host will send the agent codelandtate of the agent. The agent must
be transfered so as to facilitate the agent’s execution endgbeiving host in the same state the
agent left the transmitting host. The agent state can irdine value of the central processing unit
(CPU) registers and the execution stack or more simply hestvalues of the global data structures
[20].

One requirement of agent systems is that the receiving host Ioe able to verify that it is able
to run the agent to be received. To run the agent, the recehost must support the programming
language used to implement the agent. Even if the host stgijperagent programming language,
the agent may still need addition services from the host.sEn@ces may include access to specific
type of data or specialized code too large to be carried badleat.

When two agents are located on the same host, the agents madtld to interact. This
exchange of data provides agents with additional data wittihe need to visit all hosts in the net-
work. Complex problems may be divided into a set of less cemplib-problems using different
agents for each of the smaller problems. Agents interacshack the results of the individual sub-
problems to solve the overall problem in parallel similaatmultithreaded application running on
a single host. Consequently, an agent based solution walbltes to achieve faster results to the
overall problem.

Agent security has an important role in mobile agent systesigth. Mobile agent systems
pose additional issues not seen with traditional serventkystems such agent alteration by a
host. The forms of manipulation include removing all ageatacbr change agent data to make the
agent perform actions it would not have normally taken [SgeAt code can also be modified to
add functionality to the agent for carrying out maliciouseks on other hosts or agents.

The issues above will be discussed further in the followmgisns.



2.1. Agent System Security

Traditional server/client systems must be protected frttacks such as spoofing [17] where
an untrusted host claims to be a trusted host. A specific useaaffing is the "man in the middle”
attack where a malicious host captures data transmittedkeleet two other hosts by spoofing the
address of the receiving host. The hosts exchanging theadataot aware of the "man in the
middle” capturing the data. Hosts may also contain vulniétigls that remote hosts can exploit to
gain unauthorized access. After gaining access, the ma#itiost may collect data off the compro-
mised host or attack other hosts. Just like server/cliestesys, agent systems are also concerned
about data being captured by malicious hosts and shouldhesame protection mechanisms that
the server/client systems use. For example, the data tiediibetween two hosts encrypted using
either private-key or public-key encryption will protebetdata as long as the keys are kept secret
or secure key negotiation algorithms are used.

Encryption techniques may also be used to protecting thetdgmn alteration through the
use of cryptographic signatures derived from the agenti'e @nd data. A simple method is for
the transmitting host to create a checksum of the agent codlelaa using a private key and an
asymmetric algorithm. The agent will contain the public kepe used for verifying the checksum
on the receiving host.

Another form of attack is for a malicious host to deny an agenéxecution after receiving
the agent [15]. This form of attack prevents the agent fromfiopeaing its normal function and
may also prevent the agent system from functioning propedly attack may be prevented by
building a trust relationship between hosts. If the trarisng host trusts the receiving host and the
agent trusts the transmitting host, an implied trust existsveen the receiving host and the agent
[13]. Trust between two hosts can be established throudteatitation between the transmitting
and receiving hosts. Alternatively, the receiving host raathenticate itself with the agent before
receiving the agent thus constructing a direct trust betvilee agent and the receiving host.

In a server/client system agent code is stationary, ane teemn implied trust between the host
and the code as an authenticated user was responsible fatingsand running the code. Users

of a host are given privileges to run code on the host which bealymited to subset of resources



available on the host. In comparison, mobile agent code nlodsave the same implied trust as the
host will initiate the agent code itself after the agent asfered from a trusted host. An implied
trust could be construed if the receiving host trusts thestratting host and the transmitting host
trusts the agent, but direct trust [21] between the recgikimst and the agent is possible by requir-
ing the agent to authenticate with the receiving host. If daitaus agent were able to be transfered
to a host, then agent authentication before moving to anbtbe may be able to prevent the agent

from traversing the agent network.

2.2. Agent Construction

Conventional network communication involves the only tte@smission of data between two
hosts, and protocols are designed that specify how hostd$ownihat or interpret the data being
transmitted. However, with mobile agents the agent exéteitzode as well as the agent data is
transmitted between hosts. Figure 2.1 shows the two mamesets of an agent. Separate segments
for data and code simplifies the agent delivery system inttiaidelivery system transparently

transmits the data formatted by the agent.

Data Segment
- Agent State
- Collected Data
- Calculated Data

Code Segement
- Python Script
- Perl Script
- Java Byte Code

FIGURE 2.1. Segments of an agent.

The code segment contains the agent’s executable codetsAgenon a variety of platforms
with different types of CPUs and operating systems. Sergatatnguages such as Perl or Python are
best suited for agents as script interpreters exist for plagiorms. Java is also a good candidate

language as Java Virtual Machine implementations are alstable for most platforms. An agent

10



delivery system will have to provide a mechanism to deteenifira destination host supports the

language of an agent. This is described further in the netiose

2.3. Agent Transferal
2.3.1. Host Agent API

Agents are transfered to a new host upon an agent’s requesitdér to support this, hosts
must provide an interface to the agents, and a protocol gined) between hosts for the agent
transfer. The Distributed Agent Delivery System (DADS) iglscribes the agent delivery protocol
(ADP) which provides both of these interfaces. An applmafprogrammers interface (API) is
used by agent programmers to make requests to the agent&iogeenvironment. The ADP API

specification includes three methods:

Init(): called by the agent immediately after being executed on ahwsivto initialize the
agents variables.

Move(hostname): called by the agent when the agent wishes to move to a new Tiost.
agent should specify which host it wishes to move to, proitglauthentication set, what
programming language, and the services it requires

Event(event string): called by the agent to log an event at the local host.

Of this list, only the Move() operation is required. The hsisbuld be able to initialize the agent
prior to running the agent, thus not relying on individuaEaggimplementations to ensure that
Init() is called. Also, agents will require access to locatal However, hosts may not wish to
allow global access to all resources. The API should proaideterface for the agent to connect

to a resource or service. Then the host API would include tbhous described below.

Move(hostname): called by the agent when the agent is ready to move to a new Tiost
hostname is the host to transfer the agent to.
Connect(service name):called by the agent to attach to a local service. This is tonall

the agent access the data on the local host the agent retgupedorm its function

11



Send Host Receive Host

Agent Transfer Request

Agent Transfer Response

Agent Transfer Message

FIGURE 2.2. Sequence of messages for agent transfer.

Hosts will require a well known interface to the agents foemtgnitialization and activation.
The agent API contains the following functions. The exaciction prototypes will depend upon
the programming language being supported.

Init(data): called by receiving host to initialize the agent variablesg the data pointer
passed in.

GetData(data): called by sending host to retrieve the agent data. This idakee that will
be provided to the Init function on the receiving host.

Execute(): called by the receiving host to run the agent code.

2.3.2. Agent Transfer Protocol

To transfer an agent, hosts use a sequence of messagesgigeeZ2) which includes three
messages. Agent transfer is initiated when the agent ¢elMbve() host APl method. The host
will use the agent transfer request to determine if the végihost is able to receive the agent.
Figure 2.3 shows the contents of the agent transfer requesstage. The message type field should

contain a value that uniquely identifies the request messAgeequest ID is used to correlate

Message Type

Request ID

Agent Language

Agent Authentication Set

Requested Module List Length

Requested Module List

FIGURE 2.3. Agent transfer request message contents.
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Message Type

Request ID

Response

Host Authentication Set

Supported Module List length

Supported Module List

FIGURE 2.4. Agent transfer response message contents.

responses to a request as the transmitting host may be gemdire than one agent at any time
using individual request messages. The agent languagesfieldfies the agent’s programming
language for the receiving host to verify the language ipsued. Authentication sets are used by
the receiving host to authenticate the transmitting hodistf modules is provided by the agent
to inform the receiving host which modules the agent reguire

The agent transfer response shown in Figure 2.4 containssage type field which is set to
a value to uniquely identify the response message. Thewagenost must use the request ID
value from the request message in the response. The resfjpeldseill indicate if the receiving
host is able to receive the agent or specify the reason whaghet cannot be accepted. Possible
reasons for rejecting the agent transfer include the agpndgramming language is unsupported,
authentication failure, or an internal failure of the re@®ag host. The host authentication set
includes the credentials of the receiving host. A list ofmaed modules is generated from the
modules listed in the request message.

After receiving the agent transfer response, the transmitiost should authenticate the re-
ceiving host on behalf of the agent. The agent trusts thestnéting host since the host was
authenticated by the agent’s previous host. Once the liegehost is authenticated, the trans-
mitting host will construct an agent transfer message utfiegagent’s code and data segments.
Agent code is already available to the transmitting hostiarabpied directly into the message.
However, the agent data is retrieved by calling the GetDa&thod which returns a stream of
bytes in a format the agent code will understand after thesteat is completed. Java based agents

might use Java Object Serialization which calls a Java ngetti@n object for a byte stream that

13



Message Type

Agent Data Length

Agent Code Length

Agent Data
Agent Code

FIGURE 2.5. Agent transfer message contents.

Agentl

Spawn Thread Java
Thread

Receive
Agent Agent2
Receiving Perl

Thread Thread

Agent3
Python
Thread

FIGURE 2.6. Thread model for running multiple agents.

represents the object’s state. The transmitting host dhendrypt the agent code and agent data
before sending the agent code and data to protect the agembfing intercepted by a malicious
host. The transmitting and receiving hosts would use a kgptietion algorithm to determine the

encryption key.

2.4. Agent Execution

Once an agent has been transfered the receiving host detigpagent’s code and data seg-
ments. The agent code is passed to the appropriate intrjpoescript language based agents or
the Java Virtual Machine for Java based agents. In ordemostithe execution of multiple agents
the host should spawn separate threads of execution foagech (see Figure 2.6). The new thread
is responsible for initializing the agent data using thenigénit() method and executing the agent
using the agent'’&xecute(Imethod.

In order to better protect the host from rogue agents, thedtasild run the agent in a sandbox

environment which is an environment that restricts accededal resources. Unix based hosts

14



typically include thechroot utility which limits an application’s access to the hostle fsystem
an hardware devices. For each agent that arrives, the hostHas the interpretor or Java Virtual

Machine using thehrootutility.

2.4.1. Agent Injection

Agents are injected into the agent network by software amithat reacts to user input. For
example, agents are created by the Nomad eAuction softwlaes & user selects an item they
wish to find and how much they are willing to spend. User aggilbns are not the only trigger for
agent creation. Operating system or hardware events oro#fitestaich as a hard drive failure could
cause and agent to be created to check the health of hardodriverious hosts in the network.

To inject a new agent into the system, a trusted host shouldsbd that supports the agent
transfer protocol. Like any other transmitting host, theating host should call the agent’s Init()
method but should not pass in any data. This requires that dgéa structures have default values
set by the Init() method to ensure stable and robust agehen the injecting host calls the agent’s
Execute() method to have the agent determine the first hasvte to and call the host APl Move()

method.

2.5. Agent Access to Local Data

A primary goal of agents is to access or store data stored astaamd additionally alter the
running parameters of the host. One example is agent-bastatck vector routing where agents
access the host’s routing table, calculate the shortdsgmat update the host’s routing table. Agent
delivery systems will not know what access will be requirgaab agent types. Agent based solu-
tions will require the capability to extend the functiomalf the host’s delivery system. An agent
based solution will define the agent types and behaviors dsawéhe required host modules the
agent will use. The modules are included in the agent’s mmgnvironment, or more precise the
modules are contained in the script interpretor envirortroedava runtime environment. Hence

modules must be written in the same programming languadeeasgents.
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2.6. Inter Agent Communication

Inter agent communication increases the flow of informatimough an agent network by
sharing information that agents will have collected vigitifferent sets of hosts. Various forms of
agent communication are available from storing data at tsHosother agents to find, collabora-
tion using the knowledge of the location of other agents,iggatl agent interaction when agents
are collocated on the same host.

Agent-based distance vector routing includes an exampbgehts exchanging information
without the need for direct interaction. Two agents will @awuting table data based on various
sets of routers within the network. When one agent visitsigerthe agent will update the routing
table of the router with its knowledge of the network, and whige second agent visits the same
router the agent will incorporate the router’s routing éafdata that contains the first agent’s data.
Thus individual agent information is adjusted with routotega from other routers in the network
without having to have visited all of the routers.

On some mobile agent systems, agents that are not collooatélie same host are capable
of exchanging information. Concordia provides a mechari@mnagents to communicate or co-
ordinate with a group of agents. In other words, agents veaarents that group members send
to a central group manager object [32]. Interagent comnatioic between hosts requires more
complex agent delivery systems that include agent locatianagement. Location management
depends upon a central host that agents register with toveeoeessages or events from other
agents. Remote agent communication also contrary to oneeaigain benefits of mobile agent
systems which is reduced network utilization [25].

Agents will define the type and format of the information togxehanged similar to agent data
segments transfered between hosts. Hence the agent gedixstem does not need to know the
details of the data agents exchange. To facilitate intertag®mmunication, a list of agents present
at the host must be available which includes a unique agentifter assigned by the host upon
agent arrival. An agent type may also be provided by the afgerdther agents to use in their
decision to initiate communication. An agent would themate the list of agents to determine

which agents to communicate with.
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Interagent communication is initiated by an agent sendinggasage to another agent via the
host using the agent id provided. Prior to leaving a hosthegghould query the agent delivery
system for any messages sent to the agent. When the hogtrdelimessage to an agent, the agent
ID of the sending agent must be provided to the receiving agkith will establish the means for
the receiving agent to send a response message to the tirigiagent. Once both agents have the

agent ID of the other agent, messages may be exchangedhergigjent interaction is completed.

2.6.1. White Board

Another form of interagent communication uses the concepthiteboard where information
may be stored future use. Each host will provide a whiteb@drtiinterface for agents to store
information and access the next time the agent visits thé himsfact, any agent visiting the
host should have access to information left by other agehishwvill facilitate the ability for
agents to exchange data without being collocated on the baste To organize large amounts of
data, multiple whiteboards may be used each with a name tiigaely identifies the whiteboard.
Agents will require the ability to quickly find informatioricged on a whiteboard. To quickly find
information in a database, keys are used to differentisedbords of the database. This approach
may be used to store and locate whiteboard information usiagique identifier for a particular
set of information.

The name of whiteboards and data identifiers should be caetyplntrolled by the agents to
accommodate a versatile environment for storing diffetgmes of data that may be used by agents

that perform unrelated functions. This is realized by addg to the host API.

CreateWhiteBoard(wName): creates a whiteboard with the name if one does not already
exist

StoreData(wName, didentifier, data): stores the data on the whiteboard wName using
identifier as a key

FindData(wName, didentifier): return the data stored on the whiteboard wName with the

key didentifier
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Changes to the agent API are not necessary as the agentemisith interactions with the host

regarding whiteboard access.
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CHAPTER 3
AGENT BASED SYNDROMIC SURVEILLANCE AND SYSTEM DESIGN

An agent based syndromic surveillance system will use agertdollect and process informa-
tion from various sources of syndromic data to analyze theds in the data and make decisions
on whether an alarm should be raised. This chapter will show the concepts described in the
previous chapter may be used to construct the surveillaysters.

3.1. Data Sources

Data used by the agents will come in many forms includinggpatdata from hospitals and
clinics, medication sales from pharmacies, or tests otlatendependent laboratories. Patient
information is usually written on paper forms and will regudata entry into digital formats for
agents to collect. The digitized patient data can be frem text as used by the Early Notification
of Community-based Epidemics (ESSENCE) Il and Real-timtb@ak and Disease Surveillance
(RODS) syndromic surveillance systems. However, free fieschrequires filtering software to de-
tect the syndromes being monitored. Theernational Classification of Diseases, 10th Revision,
(ICD-10) and thdnternational Classification of Diseases, Ninth RevisiGtinical Modification
(ICD-9-CM) are used by the National Center for Health Statssto collect morbidity and mor-
tality data from health care providers. ICD codes providéaadard for classifying diseases and
symptoms to be used by the health care providers. Studiesdtawn that ICD codes can be used
for syndromic surveillance systems to detect outbreak® $undy performed at the University of
Pittsburgh gathered ICD codes for 669 patients to deterthim@bility to detect acute respiratory
illnesses [12]. This study showed the accuracy to be lowaar €xpected with a sensitivity of 44%.
The primary issue is the accuracy of assigning ICD codes hittheare providers. An additional
issue with ICD codes is that they may not be recorded in patemords until days or weeks later
[24]. Another study compared the accuracy of three metlogies for syndrome detection: Naive
Bayes classifier on free form text, bigram Bayes classifidremform text, and ICD coded emer-
gency department diagnosis classifiers [19]. This studwshddhat the Naive Bayes classifier had
the best sensitivity of the three with 69%. As in these stsidemobile agent based system must

use either ICD codes or free form text. An agent based systérhave to choose how to detect
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syndromes in the same manner as standard surveillancensysiéhe sensitivity percentages of
the studies indicate that free form text is better at datgdtie syndromes.

Syndromic data needs to be in a digital format for collechgran agent. For some diseases, a
large delay may prevent the system from detecting possiliteaks. Cases of inhalation anthrax
in 2001 showed an average of one to three days between whereatgaist sought health care
and when the patient was admitted to a hospital for inhalaitthrax [6]. Syndromic surveillance
systems have a small window of time to detect an outbreak deroto provide the benefit of
early detection. To improve the amount of time to make datlavle, syndromic surveillance
systems such as the resource reservation protocol (RSBPaf@ Lightweight Epidemiological
Advanced Detection Emergency Response System (LEADERS}hg/e been developed using
web-based or hand-held devices. The latter provides thedpg®rtunity for ensuring a timely
insertion of data, and if the hand held devices were wirgleasent data entered by physicians
could be transmitted to a central database as the data ieénfEhe devices would also improve
the accuracy of ICD codes as an interface would be preseoteddhysician to select appropriate
symptoms, enter a diagnosis, and order tests.

For non-patient related data such as the sales of over th&eromedication, the universal
product codes (UPC) assigned to these products can be usedgag classifiers. Sales data is
typically transmitted by cash registers to a central inggntdatabase that contains the number of
sales for items in the store. Prescription medication saikksequire a different for of identifica-
tion as they do not have UPCs like over the counter medicirte rlame of the medication will
be sufficient as a unique identifier as each medication imegugenerics have unique name. The
issues of transcription errors evident with patient infatimn are not a concern with medication
sales as the identification and counts are generated by sheegisters and inventory database.

Syndromic surveillance systems may use census informatidatermine how wide spread an
outbreak is within a population area. Census informatiamigue in that the data is updated every
10 years in the USA. It would not make sense for agents tolttagpecial hosts on a regular basis
to retrieve the data. Agents that will utilize census data part of their decision model could be

configured to retrieve the data from specialized hosts eél@mgears or as often as needed. Another
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. Laboratory
Clinic

FIGURE 3.1. Hosts connected via the Internet.

approach would be to use another type of agent (Census Atpanil responsible to disseminate

census data to the other agents in the network.

3.2. Network Hosts

There are two types of hosts within the agent network: daséshend maintenance hosts. The
hosts may be fully connected via the Internet or through ectliconnection between two hosts.
Connection via the Internet would be the most cost effeciw@rices for high speed broadband
Internet access has decreased significantly over the pastdars. However, the Internet also
poses a higher security risk as the agent network hosts posed to all hosts on the Internet. In
other words, any host on the Internet could attempt to crattkthe agent network host to gain
access to the host's database or attempt to send a maligeus @ the host. The Internet does
provide the most opportunity for agent mobility as the ag@merary is not limited to any specific
order. The hosts of the network can also store informati@utbther hosts on the network. The
information may include the location of the remote hosts Hiedtype of data contained at the
hosts. As an agent travels the network the agent will leacutthe other hosts and develop new

itineraries with the knowledge gained.
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Medical
Network 1

Medical
Network 2

FIGURE 3.2. Networks connected via a direct connection.

Direct connections may be used create a combined agent mefioo autonomous networks
such as private medical centers comprised of a hospital raiglidual physician offices (Fig-
ure 3.2). The exposure of the networks is limited to the gayswvhich can be used to protect
the hosts from attack originating in the other network. Bignnections for hosts are not as cost
effective as the Internet as each host would have multipteections as shown in Figure 3.3 to
ensure agent mobility. If a hosts only contains a singleallicennection, the agent will have trav-
elled from the remote host and is forced to travel back to ¢ineate host which may not contain a

significant amount of new data.

Hospital Pharmacy

Clinic Laboratory

FIGURE 3.3. Hosts connected via multiple direct connections.
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3.2.1. Data hosts

Data hosts are hosts located throughout the agent netwagkentd will visit the data hosts
to find the information needed to perform their functions.e3é& hosts are located at hospitals,
clinics, grocery stores, pharmacies, independent laboeat and many other possible locations.
For hosts that contain patient data, the HIPAA protected gdabuld be filtered into a separate
agent database as seen in Figure 3.4. Separating the pobpattent data from the agent network
will also provide more protection from host base attacksresjahe computer connected to the
agent network. While protecting patient data is import#nt not the only reason why filtered
data may be presented to the agents. Pharmacies and grameywill not want the sales of all
items in the store made available. Rather only the sale saifrihe items of interest are required
to be presented to the agents.

The separation of protected data and filtered data raisepustion of how the data is moved
to the agent database. The protected database could bewedfip send the required data to
the agent database in real-time. In other words the requiat¢al is sent to the agent database as
the protected database receives the data. However thisagtpwould result in large amounts of
network traffic. In a pharmacy, the protected database istaatly updated as sales data from cash
registers are received, and it is possible for the same itebe tupdated by different registers at
the same time. If the data is sent to the agent data base #imeglthen the same item could be
updated more than once in a relatively short period of time akernative would be for the agent
database to poll the protected database at regular inrdesvalave the protected database push the

required data to the agent database at regular intervals.

Patient Network Agent Network

Firewall

Patient Agent

Database |-~ /Filtered Patient Data Database

FIGURE 3.4. Separation of protected patient data and filtered madizta.
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3.2.2. Maintenance hosts

Maintenance hosts are needed for the maintenance and upkéle@ agent system. There
may be multiple maintenance hosts to perform the varioks{as a single host could be used to
perform all tasks. One task is to inject the initial agents ithe system when the system is first
deployed or inject new agents types after the system hasdpegating for some time.

Maintenance hosts can also be used to re-program agentsn svhagent visits the mainte-
nance host, either the host may detect that the agent is tpdr@aded or the agent may detect
it is located at a maintenance host and request availabledeg. The former solution provides
for simpler and smaller agent code sizes as agent code tct dietéemaintenance host type is not
required. However, this does require the agent types to aapecific signature that the host can
detect or the agent would have to provide its type to the hidsiving agents provide their own
type is the most robust solution as no heuristics would beired, and thus no possibility for error
in detecting the agent type. When a maintenance host recaivagent, the host does not run the
agent. Rather, the host will move the agent’s data to a newtagéh upgraded code. The new
agent is then injected into the network, and the old agentadded.

In a syndromic surveillance system, alarms are raised tolaalth officials when a possible
outbreak is detected. In an agent based system the ageméspomsible for raising these alarms.
However, the alarms cannot be raised on any host in the nletv&pecialized hosts are required
that will alert health officials based on the severity of therm. These alerts may include one or

more of the following.

e Send text messages to pagers or cell phones
e Play a sound file

e Send emails

The chosen alerts(s) would depend on the severity of thenaliom agents. For example a low
severity alarm might not require immediate attention anly an email would be sent, but for a
high severity alarm that requires immediate attention thet bould use all forms if alerts.

A data collection host may be used to track the state thetheéla population over time.

An agent based system is well suited to gather data from nmness than current surveillance
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systems. The agent will perform the processing of data dsctwr derive counts to be delivered
to the data collection host which then may be used for vigatbn or trend analysis. Seeing the
trends of disease factors is useful to update the agentsrardve the agent’s ability to accurately
detect outbreaks. Such improvements may decrease the nofflakse positives and decrease the

costs to health organizations in reacting to the false aarm

3.3. Data Agents

Data agents are agents that travel the network looking fpeaiic factors of disease. These
factors have been previously described as the symptomeniessby patients, over the counter
medication sales, laboratory tests ordered, or work absentA data agent will collect data one
factor such as those patients with a chief complaint of a ho&ggtistical analysis is used to detect
trends in the data collected by the agent as well as abnoreraig.

When a data agent visits a host, the agent will request ateéiss host’s database will search
for data records matching the factor the agent is monitorirgy example an agent looking for
the sales of over the counter allergy medicine would seapiteanacy’s database for records that
include the count of over the counter (OTC) allergy medarasales. The data collected by the
agent should be updated with an indication that it has beecegsed to prevent the agent from
double counting. Likewise, other agents can use the inditat only one agent is expected to

collect the data

3.3.1. Agent Movement

When an agent is ready to move, it will require a list of hostsniove to. Agents could be
configured to know about all hosts in the network when beifgcted into the network, but this
requires that the agents carry large amounts of data foedargtworks. A better mechanism is
for each host to store a list of remote hosts for the agentséo The list contains the number of
agents that have travelled to the remote host, and the agéidslect the remote host that has the
smallest agent count and is not the host where the agentlé@wem. This scheme will improve
the chances that all hosts within the network will be visitétbwever, this relies on the remote

host lists being setup such that all hosts appear on a rerostdist. If each host appears the same
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number of times on various remote host lists, then each hasiei network will have the same
probability of being visited.

The following example illustrates how each host in a rematst fist will be visited. A host
contains a list of three other hosts the agent will seleehfrand the agent count for a remote host
is initialized to zero when added to the list (see initialthasunts in Table 3.1). An agent travels
from the remote host 1 to the current host. As each host hasathe count the agent will choose
randomly between the remote hosts 2 and 3. Host 1 is not iadlag it is the agent’s previous
host. The agent chooses the second host, and the agent aotinatfhost is incremented (see after
first agent in Table 3.1). A second agent visits the host fioarémote host 3 and will select from
remote hosts 1 and 2. Host 1 will be selected as it has theeshaljent count. After the second
agent, remote hosts 1 and 2 will agent counts of 1. Then a #igetht moves from a host not in
the list. The agent will select from all three remote hostsaging host 3 with the smallest agent
count. As all hosts in list have the same counts, all agenttsan the list should be set to zero .

The movement paradigm just described depicts how an agémhawe through out the entire
agent network. When an agent begins to detect a possiblecalitthe agent’s movement should
be localized to the host where the first increase in the symptas found. As outbreaks tend to
be localized, the modified agent movement will improve thabpbility of the agent to detect the
outbreak. The agents will require a means for determininighvhosts are local to the current host.
A host’s list of remote hosts should also include the distandhe remote hosts which agents will
to ensure it does not move to far away from the initial hoste @istance allowed by the agent
should be sufficiently large to allow for the fact that theiadihost is on the edge of the epidemic

area.

3.3.2. Decision Model

To detect an outbreak an agent must learn the normal patievalaate, but the daily arrival
counts will vary too greatly to be used for outbreak detectiverages of the daily arrival counts
will be used to smooth the counts as the more historical deg@verage is based on the less the
average will be susceptible to large variances in the daiiya counts. Figure 3.5 shows two

averages for a single set of arrival counts. A running aweragalculated as
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Remote hos

t Agent Count

Initial host Counts

1 0
2 0
3 0
After first agent
1 0
2 1
3 0

After second agent

1 1
2 1
3 0
After third agent
1 1
2 1
3 1

largest integer type.

TABLE 3.1. Number of agents transfered to a remote host.

av g, = TPC/TAR

is the total agent runtime in days. Both val

the running average will have to take intege

TPC' is the total patient count which is the sum of all patientsaent has counted affdAR

ues are based erithire history of the agent and
will grow very large the longer the agent collects patienirds. Hence, an implementation of
r overflow intcoamt as the central processing unit

(CPU) registers will not be able to hold a value larger thes riiaximum integer value for the
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FIGURE 3.5. Comparison of the running and exponential averages.

An exponential average will be more responsive to the chamyéhe patient counts and is

based on the equation

AV Gerp[t] = PC % 0.4 + avgegp[t — 1] % 0.3 4+ avGeap[t — 2] * 0.2 + av0Geyy[t — 3] 0.1

where Avg is the exponential average and PC is the patiemit@uimet.

One caveat with this approach is seen in Figure 3.5 wherexganential average takes time to
reach the expected average. Although it is not visible irgtlagh, the running average also started
lower than the expected average but took less time to rea€huring this time, the averages will
have a large difference which must not raise any alarms. gkatawill detect that the variances

of the average has stabilized when the change in both agefaltjbelow the individual thresholds

davgezp
dt

< Oexponential andd“”d% < drunning- HOWeVer, if the patient arrival counts vary by a large
amounts the change in the averages may also fluctuate bydargents. Table 3.2 shows a large

change in the running average of 8.500 preceded by smalyelsamhere those small changes may
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Count|| Running Average  Change in Exponential Average Change in
Running Average Exponential Average

1031 1031.000 412.400

1039 1035.000 4.000 539.320 126.920
1040 1036.667 1.667 660.276 120.956
1032 1035.500 1.167 759.987 99.711
1078 1044.000 8.500 845.183 85.196
1032 1042.000 2.000 884.380 39.197
1062 1044.857 2.857 935.149 50.769
1073 1048.375 3.518 971.129 35.990
1036 1047.000 1.375 981.210 10.070
1032 1045.500 1.500 994.906 13.696
1046 1045.545 0.045 1010.228 15.322

TABLE 3.2. Changes in running and exponential averages.

fall below the threshold, ,...ng. Hence it will be necessary to require the change in the gedia
fall below ¢ for 2 or 3 consecutive time periods.

When the patient counts are stable, the difference betweeaverages is small. However
when the patient counts begin to increase the exponentahge will increase more quickly than
the running average. The difference between the two avenagebe used to detect a possible

outbreak when the difference exceeds the thresholthe agent will raise an alarm wheng,,, —

aVGrun > -
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CHAPTER 4
SIMULATION AND EXPERIMENTAL ANALYSIS

The simulation will model agents moving to data sources ¢batain patient data. This will
require a model to simulate arrival of patients at a physgiaffice, but before the patient arrival
model is described the simulation design will be presented.

4.1. Simulation Design

An event driven simulation framework will be used to simal#te movement of agents and
processing of data hosts. The main type of object in thiséwank are the events to be simulated
which are scheduled at a specific time. Hence the simulates dot run in real time, but rather

will skip time to the next scheduled event.

4.1.1. Simulation Components

An event driven simulation will require components thatresent real world entities. This

simulation will contain only three components.

¢ hosts

e patients

e agents

Host components will contain a list of patient componenjedted into the simulation, and

each patient includes a list of symptoms. The agent comgsrsgnulate the mobile agents that
move between hosts processing the patient records. As #me egmponent processes the list of
patients at a host, the agent will either remove the pateepte¢vent other agents from counting the
patient or mark it to prevent the agent itself from doublerdog but allow other agents to count

the patient.
4.1.2. Simulation Events

There are three event types that will be simulated.

¢ Inject Patient
e Agent Move

e Process Node
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During initialization, the first patient’s data is read frarfile, and an inject patient event is
schedule for the time specified in the file. When this eventixcthe patient is added to the list of
patients at the assigned host, and the next patient’s de¢adsfrom the file to schedule the next
inject patient event. The patient injection event will netdcheduled after the last patient in the
file has been injected.

The agent move event will notify an agent component thatii¢#ly to move to a new host.
Agent movement for most experiments will be random amortgstibsts which implies a com-
pletely connected network of hosts. After the agent has shave new host, a process node event
will be scheduled which will notify the agent to process tlst's list of patients. Once the list has
been process and the running and exponential averages éanwelipdated, an alarm will be raised
if the the thresholdy has been exceeded, and a new agent move event will be scthedalm to
have the agent move to another host. Unlike patient injeatibere a file controls then the events
are scheduled, agent move and process node events will bdudet by the agent component at

regular intervals of 1 minute.

4.2. Patient Injection

Patients are injected into the simulation using the Poiststnibution which models the prob-
ability thatn events will occur within a time intervad,_,, tx], k = 1,2, .. .. The inter-arrival time,
t, of the events is exponentially distributed whétg) = 1 — e~ [7]. A formula (1) may derived

from the exponential distribution to randomly generateitier-arrival times for patients.

_ —In(1-0)
(1) b= — "

U is a random real number uniformly distributed from O to 1, and the average arrival rate of
patients. A typical arrival rate at a single host might be tlgpdi every thirty minutes or 48 patients
per day which gives ug = 1/30 ~ 0.033 using minutes at the time unit. To generate patient
arrivals across multiple hosts, the value fors adjusted by the number of hosts. For example if
there are 1000 hosts, then= 1/30 « 1000 ~ 33.33. Patients are then randomly assigned to hosts

as they arrive.
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FIGURE 4.1. Daily patient arrival counts.

In a syndromic surveillance system, agents will be seagchin patients with a particular
symptom. Assuming each patient has a set of sympt®mas{sy, s,, ...} ands, is the symptom
the agents will be searching for, thétis, € S) = a.

Using 33.33 as the value forthe expected average daily arrival count\gy;;, is 48,000 pa-
tients. Figure 4.1 shows that the daily patient arrival ¢efirom data generated using equation (1)
are centered around the expecteg;, value.

To simulate an epidemic, the value faris increased for the hosts where the epidemic is to
occur. However the arrival rate during an epidemic does moply increase to a new value one
time. Rather the arrival rate increases over time until aimar value is reached, and then the
average arrival rate will decrease as the epidemic abatesh& purposes of the simulations, the
increase of the arrival rate will be simulated as we are @stid in how quickly agents detect an
increase in the arrival rate. Hengewill be increased over the span of the simulated epidemic, bu

will not be decrease. This is accomplished by splitting thielemic into time intervals, and the
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Model| M\.ormal Value fore Interval size| o

1 48 per day no epidemic no epidemiqg 5%
2 48 per day Increase by 1 patientperday 2days |5%
3 | 48 per day Increase by 0.5 patient per day 1 day 5%
4

48 per day| Increase by 1 patient perday 1 day 5%

TABLE 4.1. Epidemic models.

value for\ is increased for each interval. The arrival rate functiorirduthe epidemic is defined

as

)\i = )\normal + 2" x c

wherei = 1...m, m is the number of intervals, ands a constant value which contralg /dt. The
value ofc is an increment value to the arrival rate, the interval fac&q will cause an exponential
increase. The simulations in this chapter will use four epict models using two values for
The time unit used for should match the time unit used farabove which is days. To increase
the patient arrive by by 1 patient per day= 1. To increase the patient arrival by 0.5 patient per
dayc = 0.5. The four epidemic models are shown in Table 4.1.

Table 4.2 shows the average daily arrival rates that will feduwvith four simulation models.
The first model does not produce an epidemic, and the rengamodels produce epidemics with
increasing degrees of severity. Daily patient counts aepéd generated using the four models are
shown in Figure 4.2. Prior to the epidemic starting in weekh®, counts for all models average

48,000 patients per day for all 1000 hosts which equals theetrd value ,;;, * 1000.

4.3. No Epidemic Experiment

The first experiment shows how data agents perform with ndeepic (epidemic model 1).
The simulation includes 1000 hosts, and each host is coemheéotall other hosts. As a single
agent is able to move freely to and from any host, the agerpeaed daily patient count is

48 x 1000 * 0.05 = 2400 for symptom.
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Model 1 Model 2 Model 3 Model 4
Day | Rate Inc| Mgy || Rate INC| Aguiry || Rate INC| Agaiy || Rate Incl Agqiry
lton 0 48 0 48 0 48 0 48
n+1 0 48 1 49 0.5 48.5 1 49
n+2 0 48 1 49 1.0 49.0 2 50
n+3 0 48 2 50 2.0 50.0 4 52
n+4 0 48 2 50 4.0 52.0 8 56
n+5 0 48 4 52 8.0 56.0 16 64
n+6 0 48 4 52 16.0 | 64.0 32 80
n+7 0 48 8 56 32.0 | 80.0 64 112

TABLE 4.2. Daily patient arrival rates for four epidemic models.
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FIGURE 4.2. Daily patient counts for epidemic models.

Figure 4.3 shows the running and exponential averageslatdduby the agent. As expected

the running average has a small variance but falls shortefipected value 2400 due to the
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FIGURE 4.3. Patient arrival averages for single agent and no epadem

small initial daily counts collected at the beginning of sienulation. These initial values will
prevent the running average from reaching the expectece valhis is important to note because
the exponential average which uses a limited amount of ficsianformation is able to reach the
expected value. Hence the small initial values are agedfdhe@verage calculation. The fact that
the current daily count is given the most weight causes tigetavariance seen in the exponential
average.

The averages should increase when an epidemic occurs, éefonential average should
increase at a faster rate than the running average. Thehthidefor the difference between the
averages defined gan Section 3.3.2 should be larger than the differences séemwo epidemic
is occurring. Thresholds set slightly higher than the hifjlaerage difference should be chosen
to reduce the risk of false positives. The drawback of highersholds is the agent’s sensitivity
to increases in the average differences will diminish whigh result in the agent taking longer

to detect possible outbreaks. To properly setthbreshold requires analyzing the risks of false
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Single Symptom AgentTwo Symptom Agents

Week Difference | Week Difference

16 187 20 125
18 195 20 104
37 200 42 104

TABLE 4.3. Top average differences.

positives compared to the risk of longer response times tioreaks. This analysis is beyond the
scope of this Thesis.

Given the top differences in Table 4.3 the threshold for glsiagent searching for a symptom
would be setto 201. The alarms for this threshold are showigiare 4.3. Alarms occur during the
beginning of the simulation where the averages may be cereidunstable, but thethresholds
may be used to prevent the false alarms. '%be/alues for the exponential average during the
ramp-up period are not larger that the values later in thelsition. In fact the largest value of 405
.39 was seen day 286 during week 40. This is well beyond the wimere the average appears to
have stabilized in Figure 4.3. However, it is clear that tnening average will reach stability after
the exponential average and the Iarg%sﬂalues are seen during the ramp-up period.%lhfter
day 66 (week 9) are below 10, but there are average diffesdacger than the choseruntil week
12. To prevent these false alarms, the valuedfgy will be set to 0 and must be met two times
which will prevent the agent from raising alarms until day {@&eek 15).

If multiple agents searching for the same symptom are inized into the system and the
agents do not double count the same patient, the daily patoemts of the agents will decrease.
Table 4.3 also shows the top average differences for twotagand based on the differences the
threshold for two agents would be set to 126. An appropriateevfors,,,, will also have to be

chosen from the data for both agents.
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Model 2| Model 3| Model 4
One Agent per Symptom
Agent0| 7days | 5days| 3days
Two Agents per Symptom
Agent0| 6days | 5days | 4days
Agentl| 7days | 5days | 5days

TABLE 4.4. Agent response times.

4.4. Epidemic Experiments

Using the threshold determined above, six experiments were/ith one and two agents using
the epidemic models 2, 3, and 4 given in Table 4.2. The sinaumancludes 1000 hosts, and the
epidemic occurs simultaneously at all hosts while the agerave at a rate of 1 minute per host.

Table 4.4 shows the number of days before a single agent @eddbey threshold of 120.
As expected the agent was able to detect faster growing mpidanore quickly than the slower
growing epidemics, but increasing the number of agents didmprove the response time. With
two agents moving at the same rate and same probability oingde any host in the network, it
is expected that each agent will count approximately 50%efdatients injected in a day. Thus,
neither agent will have an advantage in detecting the oakbre

A single agent moves from host to host at 1 host per minute 40 hbsts per day. An agent
will visit most if not all of the 1000 hosts and will count mastot all of the patients injected
during that day. Hence more agents would not provide anyrddga over a single agent. Even
if the rate movement is slowed to once every 10 minutes, plalagents may still not show any
improvement. In this case a single agent may visit at mostibéts in a day and will not be able to
count all of the patients injected into the simulation withiday. However, over time the agent will
reach a daily patient count centered around the averagefratgient injection (See Figure 4.4).
Assuming the agent visits 144 unique hosts after the firstidathere will be 856 hosts that were
not visited each containing one days worth of uncounteeptgi On day/; the agent should visit

about 123 of the 856 hosts not visited on digyas each host has a 14.4% chance of being visited
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FIGURE 4.4. Daily patient counts for agents moving at differenésat

in a day. For each host the agent will count a full days wortpatfents for the previous day as
well as patients already injected for the current day. Adigy d, there will be about 733 hosts the
agent has not yet visited each with two days worth of uncalp&ients. Then on daj the agent
should visit about 105 of the hosts not visited in the pastdayws and will count two days worth
of patients or more. This trend will continue until all hoktsve been visited which may take up
to 37 days. When the agent visits the last unvisited hosetivdl be 37 days worth of patients to
count. Each of these larger patient counts continuallyease the agent’s daily patient count over
time until the the last unvisited host is visited where thigydaounts should be centered around the
expected value.

Daily patient count have a larger variance with 144 hostsdagrcompared with 1440 hosts
per day. If in one day an agent visits more hosts that haveew®st kisited in a long time, the daily
count will be high relative to if the agent visits more hosistthave been recently visited. This will
lead to larger variances in the exponential average evdroutitan epidemic which will produce

larger differences between the averages. Hence, a new faaltiee thresholdy will be required.
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FIGURE 4.5. Averages for model 1 and agents moving every 10 minutes.

Figure 4.5 shows the false alarms if the threshold is kegteabtiginal value of 201. The number

of false alarms decrease as the running average increases ttie real average, but there are still
too many. Another side effect of the slower agent movemehtisunning average takes longer to
approach to the expected value. When the agent was movimgpaneninute the running average
reached 2300 after about 19 weeks whereas the agent mowegoen 10 minutes reached 2300
after about 40 weeks. Many false alarms will be generatel thi¢ originaly value especially

during the ramp up time of the running average (see Figune 4.5

4.5. Localized Epidemic

It is reasonable to expect that an epidemic will not occutldtasts at the same time. Rather,
the epidemic will start at a single or a small number of host$ spread to other locations over
time or not at all. In the next experiment, the epidemic wdllbcalized to 50 of the 1000 hosts.
The patient arrival rate at the remaining hosts will remdin,g,.,..; during the epidemic and
will be increased at the 50 epidemic hosts. An additionahgedas included where multiple agents

searching for the same symptom will count the same patiémtsther words, patients will not be
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FIGURE 4.6. Averages for model 3 and agents moving every 10 minutes.

marked as counted per symptom which prevents other agemsdounting this patient. Rather,

the patients will be marked per per agent which will allowleagent to count the patient. If one

of the agents were to visit every epidemic host, the agentlmagble to detect an increase in the
daily arrival counts if the epidemic occurs at a large enaadd or number of locations.

As seen in Table 4.5 a large number of agent will not detectharease in the difference
between the exponential and running average more quichly éhsmaller agent population. The
largest difference was seen with 500 agents which is a veyg lagent population for 1000 hosts.
To understand why large agent populations do not see a laggage difference, one must take
into account the probability that a single agent will viditegidemic hosts one right after the other.
Overall there ard 000! possible paths an agent may follow, astd paths amongst the epidemic
hosts. The probability an agent will visit the epidemic Isast succession i50!/1000!, and the
probability will increase as the agent population increasdowever, an extremely large agent
population would be required raise the probability highwegtothat one of thé0! paths would be

traversed by an agent. Even if an agent were to visit the apaeosts, the patient arrival counts,
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Number | Day| Average
of Agents Difference
10 67 359
20 62 342
30 73 386
50 43 356
100 52 388
500 69 410

TABLE 4.5. Largest average difference for multiple agent popuiatizes.

although higher than the current averages, may not be largegh to increase the exponential
average to where thethreshold is exceeded. Given an agent will visit 144 hostgipg, the 50
epidemic hosts will only account for about one third of th&ga arrival counts collected that day.

When the epidemic is created at all hosts, the exponentaage will increase enough to detect
a possible outbreak. The same results should be achievaéiidesgent were to limit its movement
to the epidemic hosts during a localized the epidemic. Hewehe average daily patient count
of 2400 is based on all 1000 hosts. Therefor, the currentagesr must be normalized for the
decreased number of hosts to be visited. To accomplishhbiagent must know the number of
hosts the current averages are basedgnas well as the number of local hosts to be visited,
The normalized average is calculated using the equatigp,,,, = ‘wi—g xn; which may be used
to adjust both the running and exponential averages.

The ability to detect when to change the itinerary to loaiznovement as well as when to
resume movement amongst all hosts is left for future work. dew purposes, an epidemic using
model 3 will be created at epidemic hosts 1 through 50 duriegkwtO, and when an agents visited
one of the epidemic hosts the agent will move randomly batvietween the 50 hosts. The new
expected daily arrival value based on 50 hosts is 120 pgiemday.

Testing shows the exponential average does not normalee@sted. Instead the exponential

average, on the first day of localized movement, starts with\erage larger than the expected
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FIGURE 4.7. Local agent movement and epidemic model 3 during week 40

value and decreases for about 2 week before the expecteglisakached (see Figure 4.7). Most
likely, an agent will make the decision to begin localizedverment in the middle of the day. For
the first part of the day where the agent is moving amongstQflDlhosts, the agent will have
collected may daily patient counts larger than the norredliaverage which contributes to the
larger exponential average. A second factor is the locaishamntaining large patients counts as
these hosts may not have been visited for over 37 days as wastiepreviously. Each of the local
hosts will be visited during the first full day of local moventéf not the first day and will collect
the large patient counts. Afterwards, all hosts are guaeghto be visited multiple time every day
which is why the exponential average is able to stabilizeaddhe expected value. Also observed
in the Figure is the variance of the exponential averageladively small. The same result was

seen in Figure 4.3 where the agents were visited 1440 hostiage

42



CHAPTER 5
SUMMARY AND FUTURE WORK

5.1. Summary

The proposed mobile agent system design shows how mobitesagey be used to traverse
sources of syndromic data. A possible agent decision md@lto detect changes in patient
arrival rates over a set of patient data sources is alsomexteA key design issue for a syndromic
surveillance system is compliance with tHealth Insurance Portability and Accountability Act
Privacy Ruleswvhich is accomplished in the mobile agent system by the faadt patient data is
kept only at the sources of the data and agents contain tbdses patient data analysis. The
experiments in the previous chapter show that a mobile dogs#d system is able to detect an
increase in the occurrence of a symptom by using daily aesrafjthe number of patients who
have the symptom. One factor that may inhibit and agentlgytn detect an outbreak is the speed
at which an agent is able to move through the agent network.ekample, when agents were
limited to visiting 144 of 1000 hosts per day, the variancehi@ exponential average increased
making it more difficult to find ay threshold that will not cause a large number of false pastiv
The number of agents searching for the same data did not simpwrgprovement over a single
agent in the amount of time when an epidemic began to whergirgtsiraised the first alarm.

The primary contributions of this thesis are

e Design of an Agent Based Syndromic Surveillance system

e Described how an agent system may provide more privacy fBAKAIprotected patient
information

¢ Identified syndrome detection issues that may affect thetdgpsed system

e Described an agent movement scheme to ensure that all mestsiéed

e Proposed an agent decision model based on the running avemdgxponential average
of daily patient arrival counts

e Presented design of an event driven simulation for the dupged system

e Described how patients to be injected into the simulatieg@nerated
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e Experimented with agent responses to no epidemic and 3redavith increasing de-
grees of severity

Described the effects of the ramp-up threshbéthd the epidemic threshoid

Compared daily patient counts collected by agents moviniffarent rates

Experimented with agent responses to a localized epidemican epidemic occurring

at a subset of the hosts the agent will visit

Experimented with changing the agent movement to a subféetsts when a condition

is met

5.2. Future Work
5.2.1. Agent Alarm Handling

When an agent detects an alarmable condition in the datagiet will have to deliver the
alarm to a system that is monitored by health organizatiding issue with alarms is not neces-
sarily how to deliver the alarms, but rather how the alarnestendled by the receiving system
and the personnel who are monitoring the alarms. A singlerala and of itself may not be an
actionable event requiring the resources of the healtizgaon in conducting an investigation.
However, methods of analyzing the rate of the alarms raigeabents monitoring different types
of syndromic data may be developed to provide alarm seviawgis. A person monitoring the

alarms may then make more informed decisions regardingdtieneto be taken.

5.2.2. Dynamic Agent Populations

Two agents searching for the same symptom and visiting the st of hosts do not detect
an outbreak any faster than a single agent. However wheneart bggins to move local relative
to a host where an increase of patients was detected, thé mggrspawn new agents each with
a unique set of hosts local to the originating host to coverrgelr area. This will only be useful
given cardinality of the host set for each agent is relagigehall and each new agent is seeded with
the normalized averages discussed in the previous chajbst.sets may also overlap to counter
the possibility that an epidemic area spans two or more idisfmst sets such that each set does

not contain enough of the epidemic to cause an alarm.
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5.2.3. Disease Agents

Endemic diseases such as influenza are monitored by heglhipations to track the various
strains of the virus for new strains and to track the efficatyazcinations. The agent based
system may also track diseases by searching for patientbaxeobeen diagnosed with the disease
and like the symptom agents can detect irregular increasteioccurrence of the disease and
raise alarms when a threshold is exceeded. However not gatignt may have been properly
diagnosed thus preventing the patient from being includethe disease agent’s analysis. The
agents, symptom and disease agents alike, are not limitktéoting increases of occurrence. The
agents may be programmed with mathematical models to detetime probably of an epidemic
for the disease being monitored, and probability threshakkd to decide when to raise alarms.

Bayesian networks have been used to build probability nsddeldisease surveillance [1].

5.2.4. Aging of Syndromic Data

Data in the agent databases cannot be stored for an indegferited of time as the databases
size requirements would grow unbounded. Methods shouldekeloped for determining when
the data may be removed without adversely affecting thetyabil an mobile agent based system
to detect possible outbreaks. The simplest method of agit@gremove the data after a set period
of time, but it may be possible to remove the data when it isddnthe data is no longer required.
For example, if it is expected that a patient’s list of synmpsoneed only be counted by a single
agent, then as each symptom agent type processes the patigmt the symptom may be removed
the list. Once all symptoms have been removed the last aggntemoved the patient record from
the database. A new agent type may also be created to viainddes and analyze the database
records to determine which records will not, when removethdct the statistical models of the

other agents.

5.3. Conclusion

Syndromic surveillance systems collect data from manycesuand analyze the data for in-

dications of possible outbreaks. With the continued ineeeia international travel the need to
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analyze syndromic data across larger geographical arefsasuwhole continents becomes in-
creasingly important. Current syndromic surveillancetesys are limited to small geographical
areas such as municipalities. One limiting factor is theafsgentralized databases which would
require considerable amounts of hard drive storage to acwmtate health related data from an en-
tire state or country. An agent based system would provida fiecentralized syndromic surveil-
lance system where the health data remains at the sourcesapfashd the analysis of the health
data is performed at the source thus creating a scalablensyisat can process health data for large

geographical areas.
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