Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

PDF Version Also Available for Download.

Description

Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron ... continued below

Creation Information

Ogunsona, Emmanuel Olusegun December 2007.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 2495 times , with 26 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Ogunsona, Emmanuel Olusegun

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Micrographs of the samples from the SEM revealed that the cell size of the foams reduced and increased with increase in MB concentration and increase in the foaming temperature respectively. Mechanical tests; tensile, compression, shear and impact were performed on the foamed samples. It was noted that between the 20-25% wt. MB, there was an improvement in the mechanical properties. This suggests that at these compositions, there is a high interaction between PCL and MB at the molecular level compared to other compositions. The results indicate that green processing of polymer blends is viable.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2007

Added to The UNT Digital Library

  • May 2, 2008, 3:20 p.m.

Description Last Updated

  • June 23, 2008, 4:21 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 26
Total Uses: 2,495

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ogunsona, Emmanuel Olusegun. Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi., thesis, December 2007; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc5136/: accessed November 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .