Subdirectly Irreducible Semigroups

PDF Version Also Available for Download.

Description

Definition 1.1. The ordered pair (S,*) is a semi-group iff S is a set and * is an associative binary operation (multiplication) on S. Notation. A semigroup (S,*) will ordinarily be referred to by the set S, with the multiplication understood. In other words, if (a,b)e SX , then *[(a,b)] = a*b = ab. The proof of the following proposition is found on p. 4 of Introduction to Semigroups, by Mario Petrich. Proposition 1.2. Every semigroup S satisfies the general associative law.

Physical Description

i, 83 leaves

Creation Information

Winton, Richard Alan December 1978.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Member

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Winton, Richard Alan

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Definition 1.1. The ordered pair (S,*) is a semi-group iff S is a set and * is an associative binary operation (multiplication) on S. Notation. A semigroup (S,*) will ordinarily be referred to by the set S, with the multiplication understood. In other words, if (a,b)e SX , then *[(a,b)] = a*b = ab. The proof of the following proposition is found on p. 4 of Introduction to Semigroups, by Mario Petrich. Proposition 1.2. Every semigroup S satisfies the general associative law.

Physical Description

i, 83 leaves

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 1978

Added to The UNT Digital Library

  • May 10, 2015, 6:16 a.m.

Description Last Updated

  • June 7, 2016, 1:12 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 18

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Winton, Richard Alan. Subdirectly Irreducible Semigroups, thesis, December 1978; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc504365/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .