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Responses of periphyton and'phytoplankton productivity
in the lower Sulphur River (Texas-Arkansas) to bleach-kraft
mill effluent (BKME) were monitored using in situ 14C
incubation. Carbon assimilation rates measured downstream
of mill discharge were substantially reduced from upstream
levels. Periphyton and phytoplanktﬁn chlorophyll a -
concentrations reﬁained relatively unchanged by the presence
of BKME. Periph&ton ash-free dry weight increased near
the mill outfall, but decreased further downstream. Cal-
culated productivity efficiencies {(productivity:biomass)
varied with variations in 14C rates.

y:\ laboratory-bioassay was designed to determine the
effect of BKME light-attenuation on photosynthetic rates

of upstream Sulphur River periphyton and Selenastrum

capricornutum Prinz. Pooled results of bicassay runs

indicated a 20 per cent BKME concentration effectively

14

reduced control C-assimilation levels by 50 per cent.

The downstream reduction observed for in situ

productivity was ..5 per cent lower than that predicted

by the color bioassay.
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CHAPTER 1
INTRODUCTION

The southern United States is currently experiencing un-
precedented population and economic growth. Much of this
growth has been at the expense of the north-east and north-
central regions of the country (U.S. Bureau of the Census,
1980). Whether the successful absorption of this migration
is possible depends largely on the intelligent management
of the region's freshwater resources (MacNeil, 1981).

A principal factor considered in allécating water re-
sources for various societal needs is water guality (Teclaff
and Teclaff, 1973). 1In most cases, the better the water
gquality of an aquatié system, the wider its scope for potential
use; i.e., the concept of a multi-use resource. Therefore,
efficient and effective management of water quality would
necessitate the maintenance and possibly improvement of
aquatic system integrity for the benefit of society as a whole.

Water quality management can best be accomplished with
knowledge of an aquatic ecosystem's current gquality and assim-
ilative limitations (Cairns, .1976). Complexities of aquatic
ecosystems do not always allow these limitations to be easily
identified (Hynes, 1970). However, an assessment of an eco-
system's ability to resist alteration can be accomplished by

identifying and gquantifying its structural and functional

1



characteristics and monitoring responses of these character-
istics to a particular perturbation (Barret et al. 1976; Cairns,

1976).

The Pulp and Paper Industry

One of the largest demands on water resource allocation
and integrity in the southern United States is the pulp and
paper industry (Figure 1). Sixty-four per cent of the nation's
pulp is produced in this region, primarily via the kraft
process (Department of Commerce, 1981). The average water-use
rate for a typical southern kfaft mill is 190 m°® for every
metric ton of bleached pulp and paper produced. For a large
plant, this could be as high as 240,000 m> per day. Even
though present pulp and paper process technology recycles much
of the water used (Saltman, 1978}, waste effluent volumes are
typically 140,000 m> per day (Rainville et al. 1975).

The aquatic systems which are used to provide processing
waters usually receive the mills’ wastewéter discharge. Many
pulp mills in North America are situated hear estuaries.
Although these mills do not compete with other freshwater uses,
they typically do not empioy wastewater treatment and can have a
serious. impact on the estuarine environments to which they dis-
charge (Hodges, 1973; Parker and Sibert, 1973, 1976). 1Inland
pulp mills, typical of the South, necessarily compete with

other freshwater uses, e.g., municipal supply. Additionally,
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the potential exists to impair the water quality for other

uses downstream.

Kraft Processing and Waste Characteristics

The impacts of pulp and paper mill effluents on the qual-
ity of aquatic environments are complex and result from the
interaction of several potentially adverse waste character-
istics. These include toxicity, biochemical oxygen demand
(BOD), pH, suspended and dissolved solids, and color (Walden,
1976). The relative contribution of each aspect to the
overall impact varies considerably with the pulping process
and its efficiency, the species of wood pulped, the waste
treatment employed, and the physical-chemical characteristics
of the receiving streams (Hutchins, 1973).

The following description of the kraft processing method
is a simplified presentation of a highly complex and techno-
logicallf intense manufacturihg process (Davis, 1975; Saltman,
1978; Rainville et al. 1975; Hutchins, 1979). In southern
mills, conifers are the principal source of pulp. Kraft pulp
is produced by digestion of wood chips in sodium sulfide and
sodium hydroxide under heat and pressure (Figure 2). As a
result, lignins and other wood extractives are separated from
the cellulose fibers, and stain the pulping solution a black
color. A high percentage of the pulping chemicals can then
be recovered from this "black liquor" by evaporation and

burning. Washings of the impure pulp comprise most of the
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effluent volume. As shown in Figure 2, other contributing
waste streams originate from the recovery and bleaching pro-
cesses. A series of bleachings, extractions, washings, and
dryings of the impure pulp is then necessary to produce white
paper. Sodium hypochlorite and chlorine dioxide are the
common bleaching agents used, while caustic sodium hydroxide
is used in extracting solutions.

Present pulp and paper mill waste treatment includes pri-
mary and secondary methods (Saltman, 1978)., Primary stages
consist of settling basins and clarifiers that serve to de-
crease suspended solids concentrations. At this point, pH is
adjusted to neutral with lime which also precipitates sulfates
as calcium sulfate. Secondary waste treatment is typically
comprised of aerated-stabilization ponds. This biological
treatment method has shown the capacity to greatly reduce
toxiecity and BOD concentration (Seim et al. 1977; Rainville
et al. 1975).

The most extensively researched aspect of pulp and paper
mill waste has been its toxicity to aquatic organisms, par-
ticularly fish (Hutchins, 1979; Walden, 1976}. These studies
employed toxicity bioassays on species from all trophic levels
to determine their respective tolerances to various effluent
types. Likewise, identification of toxic chemical constituents
and their levels of lethality have been well studied (Leach
and Thakore, 1975). Potential toxicants found in kraft mill

wastes include chlorinated phenols, quinones, sulfides,



mercaptans, resins, and fatty acids. With the exception of
fish species, sub—lethal effects on aguatic organisms are
not well known (Hutchins, 1979). The results of these
investigations provide valuable information concerning
potential stress on the structure of aquatic biological
communities. However, effects on the integrity of system

functions can only be implied from these data (Mount, 1979).

Strategy of Impact Agsessment

As previously noted, assessments of water gquality or
environmental impacts are best accomplished when both
structural and functional aspects can be identified and
monitored (Barret, et al. 1976; Cairns, 1976). Aquatic
ecosystem structure and function are concepts well~-based
in the development of ecology as a scientific discipline
and evolved from efforts to describe and measure enerqgy
flow through levels of biological organization, i.e.,
trophic structure (Lindemann, 1942; Hutchinson, 1967; Odum,
1956; Margalef, 1963). Rodgers, et al. (1979) defined
structure as,

. . s any.characteristic of the abiotic or hiotic

components of the system at any point in time

that is related to the quantity, composition or

quality, arrangement, and distribution or pattern

of organization

and function as, ". . . any rate process of the system or

its components."



Some examples of structure include.

1) abiotic -~ suspended solids concentration,

temperature, and light attenuation;

2) biotic --biomass, species lists, and diversity

indices.
Examples of aquatic ecosystem function are:

1) abiotic -- sedimentation, reaeration coefficients,

and flushing time;

2) 'biotic—w~primary productivity, respiration, and

species colonization rate.

Methods for measuring biological structure and function
of aquatic environments provide information at two organi-
zational levels:

l) organism or species -- level analyses, e.g.,

diversity indices and species colonization rate;

2) community or systems --level analyses, e.d.,

chlorophyll a and primary productivity.

In actuality, a complete characterization of aquatic
ecosystem structure and function is improbable, if not
impossible. However, Odum (1977) has suggested that a
primarily systems-level approach can provide adeqguate
information for intelligent impact assessment. This
approach is twofold:

1) The measurement of functional, systems-level

variables should predominate. The justification

is that systems-level functions reflect the



integrated results of biotic and abiotic components
interactions and interrelationships, thus providing
the most insight to'system integrity for the least
effort. Odum (1977) stressed the measurement of
photosynthesis and respiration as the most infor-
mative of systems-level functions.

2) Concominant measurement of ecosystem structural
components should be made for specially selected,
site-specific interests. These analyses may be
systems% or species-level properties; e.g., levels
of chlorinated hydrocarbons or the diversity of
aquatic vegetation.

An example of the above approach is an impact assessment

of urban and commercial development on Lake Tahoe quality
by Tilzer, et al. (1976). In their study, system functions
of phytoplankton productivity and sediment inflow were
monitored with_changes in system structural components -
light attenuation and nutrient concentrations.

The systems-level strategy for impact assessment was
used in the following study of a southern river system
receiving waste effluent from a bleach~kraft pulp and
paper mill.

The International Paper Company -
Texarkana Mill
International Paper Company's (IP) Texarkana bleach-

kraft pulp and paper mill is located on the southern bank
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of the lower Sulphur River, 0.2 km upstream of the Arkansas
state line, in Cass County, Texas (latitude 33°18", longi-
tude 94°5') (Figure 3}, The mill has been in operation
since 1972 and pulps sixty per cent slash and short-leaf
pine and forty per cent mixed hardwoods to produce note-
book, butcher, and bathroom paper products (Phil White,
personal commﬁnication). Processing water for the mill is
taken from Wright Patman Dam, 33 km upstream of the plant.
Combined-stream waste effluents are 1.6 n3.sec™t from an
average production of 1270 metric tons of bleached pulp
daily. The bleach-kraft mill effluent (BKME) undergoes
secondary treatment in approximately 690 hectares of
aeration-stabilization lagoons. This treatment facility
has a holding capacity of 3.80 x lOg-m3 and is capable of
removing eighty per cent of the BOD (Phil White, personal
communication). The mill is permitted to discharge its
waste by the Texas Department of Water Resources. The
BKME water quality regulated by the agency include BOD,
total suspended solids, chlorides, sulphates, and pH (TDWR
permit #01339). In addition, minimum dissolved oxygen (DO)
levels are prescribed for the lower Sulphur River. Effluent
color is currently not regulated, and its possible effects
on the quality of aquatic environments are still relatively
unknown {Hutchins, 1979). Secondary treatment does not
signficantly remove effluent color since.organic compounds

respongible for coloring BKME, such as lignin sulfonates



11

and other wood extractives, are highly resistant to
bacterial degradation (Dugan, 1974; Wong and Prahacs, 1977) .
Tertiary, physical-chemical treatment methods, e.g., acti-
vated carbon and ozone, have proven effective, but are
cost-prohibitive to large scale mill operations (Wong and

Prahacs, 1977).

Sulphur River Basin
The Sulphur River system is part of the Red River Basin
(Figure 3) and has a drainage area of approximately 1.6 x

10% km?

(Texas Interagency Natural Resources Council, 1970).
It consists of the upper Sulphur River, Lake Wright Patman,
and the lower Sulphur River, |

The upper Sulphur River is composed of the North and
South forks, respectively originating in Fannin and Hunt
Counties, Texas. The North and South forks join in Hopkins
County, and the upper Sulphur River then flows east to
Wright Patman Dam, forming Lake Wright Patman, 14.4 km
southwest of Texarkana, Texas. Impoundment of the river
began in 1953 for flood control and as a municipal water
supply for Texarkana. Lake Wright Patman, maximum capacity

of 7.10 x 102 m°

, was built and is operated by the U.S.
Army Corps of‘Engineers. |

The lower Sulphur River flows southeast from Wright Pat-
man Dam for approximately 74 km until it joins the Red River

in Arkansas. This reach of the Sulphuf-River system is a
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regulated stream whose flow fluctuates greatly on a yearly
basis. Low flows are typically 0.28 to 8.5 m>.sec™?,
oceurring mainly during summer months. From October to
April, the Cofps releases larger volumes of up to and
exceeding 283 m3-sec_l. This large variation in regulated
flows characterizes the hydrology of the lower Sulphur
River as very dynamic and somewhat unusual (Leopold et al.
1964; Ward and Stanford, 1979). |

The Texarkana mill is the only-indusﬁry on this segment.
However, Days Creek, joining the Sulphur River 14.4 km below
the mill's outfall, carries municipal waste from the city

of Texarkana (Texas Department of Water Resources, 1981);

Primary Productivity

The Sulphur River's response to BKME was monitored by
measurement of primary productivity. Primary productivity
can be defined as the rate that radiant energy is stored
as chemical energy, in the form of organic substances, by
photosynthetic or chemosynthetic producer organisms (Odum,
1971). Net productivity is the total rate of organic matter
production (gross‘productivity) minus producer respiration
and represents the foundation of community trophic structure
and dynamics, i.e., the quantity of organic matter available
for consumers (Lindeman, 1942). In aquatic systems, the

producer community is dominated by one or the other following
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plant groups--phytoplankton, periphyton, and agquatic
macrophytes (Wetzel, 1964, 1975). |
studies of the relationships of primary productivity
to various environmental structural components--partic-
ularly light, temperature, nutrients, and photosynthetic
standing crop--have produced volumes of published literature
(Vollenweider, 1974; Goldman, 1969; Golterman, 1975; Wetzel,
1975). The knowledge of these interrelationships demon-
strates the usefulness of primary productivity as an
integrative tool fot supplying system information (Odum,
1977). Its use is particularly well suited to BKME impact
assessment for the following reasons:
1) BEME is known to have high concentrations of
dissolved organics and suspended solids (Hutchins,
1977). These characteristics suggest that strong,
and perhaps selective, light attenuation can be
.expacted by absorption and scattering (Talling,
1957; Golﬁerman, 1975; Spence, et al. 1971; Wetzel,
1975). Alterations in the Sulphur River light
regime by BKME should be indicated by changes in
primary productivity since photosynthetic rates
aré highly dependent on light availability
(Vollenweider, 1974).
2) Positive or negative responses of primary produc-

tivity rates and standing crop are possible from
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potential BKME nutrient enhancement or toxic
effects, respectively (Rainville, et al. 1975:
Bothwell and Stockner, 1980).
Pulp and Paper Mill Impacts on Primary
Prcductivity

Primary productivity studies have been shown to provide
valuable information for assessing impacts of pollution on
aguatic environﬁents (Rodgers, et al. 1979; Edmundson, 1970} .
However, very few studies have monitored the impact of miil
wastes on natural populations of primary producers (Stockner
and Cliff, 1976; Moore and Love, 1977).

The few studies of kraft pulp mill effects on primary
production have attiibuted their respective results to one
of three major impacts: 1) light attenuation from color;

2) phytotoxicity; 3) or eutrophication (nutrient enhancement).
It is also interesting to note that all but one of these
studies considered the effects of untreated, unbleached,

kraft mill effluent (KME) on primary producers, Parker and
Sibert (197€¢) and Stockner and Cliff (1976) investigated

in situ phytcplankton responses to KME in the coastal waters
of British Cclumbia. Stockner and Costella (1976) used
axenic cultures of marine phytoplankton in laboratory
toxicity studies of KME from British Columbia mills and

found high molecular weight lignin derivatives to be

inhibitory tc growth. However, it was the consensus
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conclusion of these marine studies that light attenuation
was the overriding factor for observed decreases in natural
phytoplankton photosynthesis. The results of a study by
Mechenich (unpublished thesis, 1980) on the éffect of color
on phytoplankton in Lake DuBay,_Wisconsin, concur with those
above. She found that photosynthetic rates increased when
lake water color was reduced, allowing higher light pene-
tration. Different conclusions were presented by Moore and
Love (1977), who tested KME effects on phftoplankton and
periphyton populations in Nipigon Bay, Lake Superior. They
determined that low concentrations of KME and low pH
depressed photosynthesis as a result of toxic effects rather
than light attenuation. Bothwell and. Stockner {1980}
assessed the influence of secondarily-treated BEME on
periphyton from the McKenzie River, Oregon. They used on-
site artificial streams and observed a.nutrient enhancement
effect; i.e., increésed growth with increasing wastewater
concentration. Apparently, light attenuation was not a
factor in this study as a result of very shallow flows
through their streams. Rainville, et al. (1975} used

Coccochloris elebans, an estuarine phytoplankter, in

laboratory bioassays to determine the toxicity of KME and

BKME. Coccochloris' growth in the waste effluents, before

and after various waste treatments, was plotted. From the

results, they determined that toxicity of KME and BRME is
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insignificant when appropriate waste treatement is used.
The KME and BKME tested in Rainville's study were collected
from several pulp and paper mills in the southern United
States. However, there are no known published assessments
of secondarily treated BRME impacts on in situ freshwater
primary productivity in this or any other geographic region.

In 1979, the Institute of Paper Chemistry assessed
the impact of the IP Texarkaﬁa mill effluent on Sulphur
River periphyton community structure (unpublished report,
1980). The results of two samplings indicated no signif-
icant alteration in periphyton community structure at
downstream sites relative to upstream reference sites.
However, during the first sampling, substrates downstream
of the mill outfall were not exposed to BKME for five days
prior to recovery. Five days is sufficient time for peri-
phyton to respond to a changed physical-chemical regime;
therefore, it is unlikely that these samples adequately
represent communities influenced by mill discharge (Patrick,
1971). Periphyton samples from the second sampling had
been exposed to continuous discharge; hbwever, the substrates
were poorly colonized and were not analyzed. Primary
productivity was not measured in:this study.

The literature indicates that impacts to primary
productivity by the pulp and paper industry are somewhat

site-specific. Applying this information to the IP
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Texarkana operation, one might expect-
1) the secondary waste treatement system lessens any
potential toxic impact; and
2) the light-attenuation from BKME color may have a
significant impact.
Results from Bothwéll and Stockner's study (1980) suggest
nutrient enhancement may also have an effect on primary
production in the Sulphur River. However, their experiments
monitored growth, not photosynthesis, Additionally, they
noted changes in species composition with increasing waste
concentrations and postulated compensatory species selection.
These observations leave unanswered the question of whether
photosynthetic levels are maintained below IP Texakrana's

discharge.

Objectives and Hypotheses

The objectives of this study were to assess the impact
of BKME on structure and function of in situ primary
production in the lower Sulphur River and to determine
whether laboratory light-attenuation biocassays were useful
in estimating BKME impact on in situ periphyton photo-
synthetic rates.

To accomplish these objectives, systems~level parameters
of primary productivity weremeasured in field and laboratory
experiments. Upstream-~reference versus downstream-experi-

mental sites wereused in field studies and modeled in
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labofatory bicassays. The purpose of the laboratory
bioassay studies was to develop an integrative, predictive
dose-response model of primary productivity. As suggested
by Barret. et al. (1976), such models should be a major end
result of perturbation studies.

The following hypotheses indicate the three possible
results of each parameter's upstream versus downstream
comparison; i.e., increased, decreased, or unchanged down-
stream relative to upstream (Odum, et al. 1979). In
addition, hypotheses of possible correlations of productivity

parameters with selected environmental variables are stated.

Field Studies

1. H : Primary productivity of periphyton (mgC-mnz-
hr™1) is not altered below the IP discharge
relative to upstream stations,

H_: Periphyton productivity is subsidized downstream
relative to upstream references.

Hb: Periphyton productivity is decreased downstream
relative to upstream references.

The use of periphyton in monitoring and assessing chem-
ical and physical impacts on waste quality is extensive and
well-documented (Patrick, 1973; Collins and Weber, 1975).
Species lists, diversity indices, and other taxonomic,

structural descriptions of periphyton communities have been
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used to determine the extent and directionality of pertur-
bations. Application of in situ measurements of periphyton
productivity rates to assess perturbations in lotic systems
are rare, presumably due to the difficulty in measuring
metabolic rates in flowing systems (Rodgers, et al. 1979;
Hynes, 1970; Benfield, 1981). However, recent advances in
methodology have adapted 14C—assimilatiou procedure to
measurement of periphyton productivity with much success
(Rodgers, et al. 1978; Rodgers and Harvey, 1976).

The measurement of periphyton 14C«photosynthetic rates
is particularly well-suited to the study of possible BKME
impact on Sulphur River primary productivity for the
following reasons:

1) The use of periphyton chlorophyll a as a measure
of productivity may not be valid since its
concentration is known to vary with light inten-
sities as well as nutrient regimes (Wetzel, 1975).

2] The results of a taxonomic study do not necessarily
reflect a change in functional levels.

3) 14C—producti’vitymethods have been shown to be
50 to 100 times more sensitive than dissolved
oxygen methods (Wetzel, 1975}.

4) Any sensitivity in the O, method would be seriously

reduced in the presence of BKME oxygen demand.
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5) Lack of consistent, natural sampling regimes in
hydrologically unusual systems like the lower
Sulphur River support the use of artificial
substrates for replicate samples of periphytic
communities.

2, HO: The ratio of periphyton productivity to unit

chlorophyll a (mgc.hr‘l/mg chl a) maintains
its proportionaiity‘below IP discharge
relative to upstream stations.

H_: The above ratio increases downstream relative
to upstream references as a result of increased
productivity rates and/or decreased chlorophyll
a.

Hb: The above ratio decreases downstream relative
to upstream references as a result of decreased
productivity rates and/or increased chlorophyll
a.

The purpose in calculating this productivity:biomass: ratio

is to obtain an indication of relative productivity efficiency

(McIntire and Phinney, 1965; Rosemarin, 1975; Platt and
Filion, 1973; Brylinsky and Mann, 1973). Justification for
calculating productivity efficiency (PE) lies in the
assumptions that periphyton chlorophyll a, at the time of

sampling:
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1) represents an integrated response to factors
controlling algal growth during substrate incu-
bation; and

2} estimates the biomass of the photoautotrophic
segment of the periphyton community.

Since a unit of time is included in the ratio (hr"l), PE
can represent a relative estimate of carbon turnover rates
between upstream and downstream sites. Also, insights into
community dynamics can be gained since variation in the
ratio can be identified as differences in function (produc-
tivity) or differences in structure (algal biomass).

3. H s The structural index (mg chl a/mg ash-free
dry weight) of the periphyton community main-
tains its proportionality below the TP
discharge relative to the upstream reference
stations.

H_: The structural index increases downstream
relative to upstream references as a result
of increased chlorophyll a and/or decreased
ash-free dry weight. .

Hy: The structural index decreases downstream
realtive to upstream stations as a result of
decreased chlorophyll a and/or increased ash-

free dry weight.
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The structural index is very similar to the Trophic Index
proposed by Clark et al. (1979} as an additional means of
water quality assessment. The only difference between the
two ratios is that Clark's Trophic Index is unitless since
both chlorophyll a and ash-free dry Weight are expressed
in g'-m“2 organic carbhon. | |

Increases or decreases in the indeﬁ represent compo-
sitional shifts in the community toward dominance by
autotrophs or heterotrophs, respectively. These shifts
can provide valuable systems information if correlated with
some abiotic factor. For instance, a decreésed index might
indicate an influx of allocthanous organic material, shifting
the index towards heterotrophic metabolism. High flows or
current speeds might scour the substrate of detrital buildup,
selecting for organisms with anchoring structures or stra-
tegies common to periphytic algae, thereby increasing the
index value.

4. H_: Phytoplankton primary productivity (mgc-m-3-

hr ~) is not altered below the IP outfall
relative to upstream reference stations.

H_: Phytoplankton productivity is subsidized down-
stream relative to upstream references.

Hb: Phytoplankton productivity is decreased down-

stream relative to upstream reference stations.
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The contribution of phytoplankton to lotic primary pro-
ductivity has been the subject of controversy (Cummins,
1974; Minshall, 1978). Proponents of the river continuum
theory suggest that free-floating plankten have little
influence on carbon cycling in a flowing system (Vannote,
et al. 1980). Phytoplankton biomass production is con-
sidered lost to stream processing as export except in high
order segments where current speeds slow and turbidity
shades benthic producers. However, a regulated stream

as temporally and spatially dynamic in its hydrology as the
Sulphur River defies general classification in the char-
acteristic terms of the river continuum concept. Therefore,
the unpredictable nature of this system seems to warrant

an assessment of in situ phytoplankton productivity.

5. H_: The ratio of phytoplankton productivity to

o
unit phytoplankton chlorophyll a (mgC-hrfl/mg
chla) maintains its proportionality below the
IP outfall relative to upstream stations.

Ha; The above PE ratio increases downstream

relative to upstream reference sites as a
result of increased productivity rate and/or
decreased chlorophyll a concentrations.

H,: The above phytoplankton PE decreases downstream
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compared to upstream reference sites as a
result of decreased productivity and/or
increased chlorophyll a concentrations.
The purposes and justifications for calculating a phyto-
plankton PE ratio are the same as those discussed for the

periphyton PE.

Labhoratory Studies

6., H : There is no significant difference between
periphyton 14C~productivity rates (mgC-m"Z-
hr_l) measured in control and wastewater
dilution groups.

H_: Periphyton l4c—productivity rates increase
relative to the control with increasing
wastewater concentration.

b} Periphyton 14C—productivity rates decrease
relative to the control with increasing
wastewater concentration.

These hypotheses refer to a biocassay modeling the
potential light-attenuating effect of BKME on stream photo-
synthesis (Dickson and Rodgers, 1980). In addition to

Sulphur River periphyton, the responses of Selenastrum

capricornutum Printz. were monitored in the biocassay.

Therefore, the above hypotheses are applicable to

Selenastrum 14C-productivity as well, In this particular
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biocassay, the above test organisms were not in direct
contact with BKME, but were exposed to the relative light-
absorption differences of diluted and undiluted wastewater
concentrations.

The potential stress of chemical toxicity is removed
in this design; therefore, only the effect of a BKME-
influenced light regime on photosynthetic rates was .
measured (see CHAPTER II}.

7. HO: Phytoplankton, sampled from respective
Sulphur River study sites and incubated
under standard conditions of temperature
and light, show no difference in measured

14 "l)

between upstream and downstream samples.

C-productivity rates (mgC-m >-.hr

H_: ©Standard incubation, phytoplankton rates

a
of downstream samples are significantly
higher relative to reference samples.

Hb: Standard incubation, phytoplankton rates

of downstream samples are significantly
lower relative to reference samples.
This procedure was performed as a check for normal
variations betweeﬁ stations due to possible differences
of temperature and shading. These experiments are

described in detail in the next chapter.
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8. H_: Physical-chemical environmental variables
are not correlated with primary productivity
parameters.

H : Productivity parameters decrease with in-

creasing light extinction.

Hy,: Productivity parameters decrease with in-
creasing concentrations of organics and
suspended particulates.

H : Productivity parameters decrease with in-

creasing color values.

Hd: Periphyton structural parameters decrease
with decreasing current speed.

The above relationships are those expectéd based on
the literature review of BKME impacts on primary producT
tivity. However, it is acknowledged that the converse
of each alternate hypothesis is possible.

Environmental factors of principal interest to this
study were those that indicate or influence the quantity
and quality cf photosynthetiéally available radiation

(PAR}. These included direct measurements of light energy

attenuation through the water column; commonly expressed
as an extinction coefficient, ¢ (Talling, 1957; Spence
et al. 1971: Golterman, 1975)., Also, water chemistry
parameters known to absorb or scatter light were selected

for correlation analysis. These were measurements of
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dissolved or suspended materials; e.g., total dissolved

and suspended solids, total and dissolved organic carbon,
turbidity, BOD, and true and apparent color (Wetzel,

1975; Tilzer et al. 1976; DiToro, 1978). These parameters
were considered indicative of BKME presence if their values
were found to be higher downstream during discharge
(Hutchins, 1979).

The relationship of periphyton structure to current
velocity was also tested. Current speed is known to
affect both the type and quantity of substrate colonization
(Whitton, 1975; Weitzel, 1979). The major assumption made
in performing this analysis is that velocities maintained
relatively constant levels at each site during the incu-
bation period.

Nutrients were not tested for significant correlations
in this study since appropriate uptake measurements were
not performed (Bothwell and Stockner, 1980).

9. Ho: Changes in primary productivity rates
measured in the light-attenuation biocassay
do not predict in situ rates changes observed
downstream during mill discharge.

H_: The changes in in situ primary productivity
rates observed at downstream sites are
gimilar in magnitudé and direction to those
predicted by the light attenuation bioassay

results.
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The percent dilution of mill discharge by the regulated
flow from Wright Patman Dam was the basis for comparing the
bicassay results with those ﬁeasured in the Sulphur River.
Probit analysis of the bioassay data produces a probability
curve from which the responses of the test organisms can
be predicted for any particular dose within the range of
doses tested (Finney, 1352; Sprague, 1973}, 1In this study,
the dose was the various dilutions of BKME with upstream
Sulphur River water, and the responses of the test algae--

Sulphur River periphyton and Selenastrum capricornutum

Prinz.--were their respective photosynthetic rates.

With,probit.analysis, a prediction can be made of in
situ rates downstream of mill discharge from the calculated
concentration of BKME to which the indigenous primary
producers were exposed. To test the above hypotheses,
statistical comparison of the predicted and ohserved rates
can be accomplished with Chi-Square analysis.

1f bioassay‘rates decrease with increasing BKME con-
centration, probit analysis can be used to calculate an
EDSQ; i.e., the dilution that effects a fifty per cent
reduction in photosynthetic rate. The purpose of calcu-
lating ED;, in similar to that of LC., determinations for
toxicity biocassays. This value serves as a descriptor of
the bioassay results and allows comparisons with other
tests for monitoring or hazard assessments (Sprague, 13973;

Maki, 1979; Kimerle et al. 1978}.



CHAPTER I1

MATERIALS AND METHODS

Primary productivity studies were conducted on the lower
Sulphur in July and October, 1980 and January, April, July,
and October, 1981, These studies included in situ and

laboratory experiments.
Field Experiments

Productivity Stations

In July of 1980, five stations were chosen as sites for
primary productivity studies (Figure 4). Two control stations
were located upstream to represent river conditions unaf-
fected by BKME. These were designated as Stations 2 and
2NT, 8.0 km and 0.8 km, respectively, upstream of the mill's
outfall. Two stations were chosen 0.5 km downstream of the
IP discharge. One each was located near the left bank and
the right bank, and were designated as Stations 3L and 3R,
respectively. The decision to assign left and right bank
stations was based on the results of preliminary water
guality surveys. The surveys had shown differences in
physical-chemical parameters between the left and right
banks and suggested that this section of the river repre-

sented the mill waste's mixing zone. Station 4 was placed

30
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5.0 km downstream of the outfall and represented river

conditions influenced by a thoroughly mixed BRME discharge.

Sampling Apparatus

One month prior to each sampling date, a periphyto-
meter (artificial substrates for sampling indigenous
periphyton) was set out at each of the five productivity
stations. Periphytometers consisted of fifteen, 7.6 om x
15.2 cm x 0.6 c¢m unglazed. porcelain plates to provide the
surface for algal colonization (Gerhardt, et al. 1977).

The two versions of the periphytometer used for this study
are shown in Figure 5A and 5B. The original periphytometer
(Pigure 5A) oriented the ceramic plates horizontally. How-
ever, this configuration accumulated an unmanageable amount
of silt, This design was replaced after the July 1980
sampling by one with_vertical plates (Figure 5B), thereby
reducing the high silt load.

Each periphytometer held fifteen replicate plates: six
replicates for in situ primary productivity measurements;
three replicates for chlorophyll a extraction and determin-
ation; three replicates for ash-free dry weight estimates
of biomass; and, three adenosine triphosphate (ATP) assay
replicates. After the July 1980 survey, the ATP assay was
dropped, and these three replicates were subsequently

omitted.
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Figure 5. Periphytometers used for in situ measurements
of periphyton productivity; A. original design; B. modified

design (from Dickson and Rodgers, 1980).
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The periphytometers were anchored at the respective
stations as shown in Figure 6. The lead float aided in
maintaining a level position in fast currents and in

screening the periphytometer from debris.

;E.Situ 140 Studies

Primary productivity at Sulphur River stations was

140 methods. Since

measured using in situ incubation and
approximately 13.0 km separate Stations 2 and 4, two boat
crews of two workers each were required to perform the
experiments. One crew was assigned the upstream stations,
and the.other was responsible for stations downstream of

the mill discharge. This arrangement allowed all stations

to start their incubations within one-half hour of each
other. At each station, both periphyton and phﬁtoplankton
samples were incubated simultaneously.

Six replicate ceramic plates with their complement of
attached periphyton were carefully removed from the peri-
phytometer, and each was placed into an incubation chamber
filled with 1.9 % of river water from the particular station.
Three of the chambers were clear polystyrene and designated
as light replicates, while the other three were opaque, dark
chambers. Figure 7 shows the chambers which were essentially
the same chamber designed by Rodgers, et al. (1978}. The
six chambers were then placed in an incubation rack that

floated the chambers at a depth of 10.0 to 20.0 cm below the
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Figure 6. Periphytometer anchorage,



QUICK_DISCONNECT CLIPS

CIRCULATION

MOTOR\

'D" SIZE

BATTERY INJECTION

PORT

CERAMIC PLATE

Figure 7. In situ periphyton l4C—incubation chamber
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surface. Circulation motors were started and two mi of

14

NaH™*Co., (Amersham} solution (approximately ten ﬁCuries

3
mﬁul) were injected into each chamber. The incubation

14

period began at the time of C injection and continued

for four hours.

The classical light and dark bottle C method
(Steeman-Nielson, 1952) of measuring planktonic produc-
tivity was performed at each station. Triplicate 300-mi
Wheaton light and dark bottles were filled at the re-
spective stations with river water and spiked with one

4C solution. The bottles were incubated in

mf of the 1
yet another floating incubation rack for the same photo-
period as the periphyton samples. Incubation depth for
the bottles was 5.0 cm.

One mi of 5N H2804 was injected into each phytoplankton
bottle, and five mf of the acid were sprayed on the peri-

14C experiments. In addition

phyton plates to terminate the
to halting the photosynthetic reaction, the lowered pH
converts unassimilated inorganic carbon, both radiocactive
and normal isotope, to free coz. Bubbling the samples
with air, as described later, drives out the gaseous COZ’

leaving only the radioactivity bound as organic compounds

for assay (Schindlexr, 1972).
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Light Measurements

To identify and correlate possible color effects of
BKME on primary productivity, a major effort was made to
measure the amount and character of light energy impinging
on the experimental stations and penetrating their re-
spective water columns. This was accomplished using several
light-measuring instruments. A LI-COR LI-1776 Solar Monitor
equipped with a LI-200SB Pyranometer Sensor recorded andi
stored total daily solar radiation data for the Texarkan%
mill area. Radiation recording began October 15, 1980 and
continued throughout the study. The LI-200SB measures |
total energy in watts.m 2 (W-m %) from a range of 400 to?
1100 nm wavelengths. A portable Belfort 5-3850 pyrano- ‘
graph measured the total light energy contributed by a 230
to 2000 nm wavelength range in units of Langleys»mih%l |
(ly-minml). This instrument was used to provide hourly l%ght
energy data on the river during in situ primary productivity
experiments. A Protomatic submarine photometer measured%

I
incident and reflected light intensities at each station

\
just below the surface and at 1.0 m depth. The photomet%r
measures a 300-to 800-nm wavelength range of light inten#ity
in foot-~candles units (ft-c). Finally, the guality of tﬁe
light energy penetrating the photic zone at each station

was determined with a specially designed International Light

(IL) 300 Research Radiometer., Ten individual light cell

LFH
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each measure a 10 nm range of wavelengths within the
ultraviolet—-infrared spectrum. The ten ranges are 344-
356 nm; 395-405 nm; 445-455 nm; 495-505 nm; 545-555 nm;
595-605 nm; 645-655 nm; 695-705 nm; 745-755 nm; and 795~
805 nm. The IL 300 records light energy in units of
Waﬂ:ts-c:m'“2 (W-cm_zj. Each of these ranges was measured
just beneath the surface and, when possible, at 1.0 m.

All of the above light measurements were made during the

primary productivity incubation period.

TABLE I

FACTORS USED TO CONVERT VARIOUS SOLAR
RADIATION UNITS TO WATTS
PER SQUARE METER

Instrument Units Conversion Reference
Factor

LI-200 SB Solar

Monitor Weom™ 2 —— -
Belfort - -2
- Pyranograph ly-cm = 698 W-m (Wetzel, 1975)
IL-300 Spectro- -z -2
radiometer W.om = .0001 Wem
Protomatic ft-c
sunlight = .04 W-m™®  (Talling, 1957;
Wetzel, 1975)
fluorescent :
(40 W, cool- (Bickford and
white = ,038¢ Dunn, 1972)
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Table I shows the factors used to convert the recorded
units for each light instrument to W-mgz. Protomatic and
spectroradiometer surface and depth readings were then used
to calculate vertical extinction coefficients for each
station. Extinction, or attenuation, coefficients are
calculated with the eqguation below and describe the rate
at which light disappears through the water column (Talling,
1957; Vollenweider, 1974; Golterman, 1975).

lnIO.m.lnIz_

€= Z (Wetzel, 1975)

1y

e = extinction coefficient (m
z = depth {m)
I = subsurface irradiance

I = irradiance at depth, =z

Additional Sampling

Water samples containing phytoplankton were taken at
the productivity stations and placed on ice. These samples
were used to measure primary productivity under standard
laboratory conditions.

Three replicate periphyton plates from each station
for ash-free dry weight estimates were placed individually
in plastic containers on ice and returned to the laboratory.
The remaining three periphyton samples also were placed in

plastic containers, and 10.0 m®& of 90 per cent acetone (v/Vv)
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added to the plate surfaces. These chlorophyll extractions
were immediately iced.

One hundred and seventy liters of Station 2 river
water and sixty liters of the mill's finished waste
effluent were collected in polypropylene carboys and
returned, at ambient temperature, to the laboratory. These
water samples were used in making a wastewater dilution

series for color bioassay experiments described later.

Laboratory Analyses

Water Chemistry

The importance of physical-chemical data to an investi-
gation of this system's primary productivity cannot be
overemphasized. Aside from the impact of BKME, temporal
variation in Sulphur River primary productivity can be
expected from seasonal and unusual hydrologic changes.

These variations may be quantified and correlated with
measured variations in the physical-chemical characteristics
of the system (Vollenweider, 1974). Knowledge of these
relationships is important for comparing variations in
primary productivity to the influence of BKME. Therefore,
water quality measurements were routinely performed for

each of the productivity stations. In addition, chemical
analysis was done on wastewater:river water dilutions for
chemical parameters considered to best indicate the

presence of mill effluent.



TABLE II

PHYSICAL AND CHEMICAL WATER QUALITY PARAMETERS

DETERMINED FOR EACH SURVEY AT EACH
SULPHUR RIVER STATION

4

2

Parameter Method Reference

DOC Combustion-IR Detection Standard Methods page 532
TGC Combustion-IR Detection Standard Methods page 532
BOD Incubation, 5 days Standard Methods page 543
Temperature ¥SI meter |
Conductivity YSI meter

pH YSI meter

Chloride Orion electrode

Sulfate Turbidimetric Standard Methqu prage 496
NHB—N Orion electrode

NOB-N Orion electrode

Ortho PO4—P Ascorbic Acid Standard Methods page 481
Total P04‘P Digestion Standard Methods page 424
Turbidity Turbidimeter Standard Methods page 132
Hardness Titration Standard Methods page 202
Acidity Titration Standard Methods page 273
Alkalinty Titraton Standard Methods page 278
Dissolved Oxyvgen .¥Y81 meter

Color, Apparent Vigual comparison Standard Methods page 64
Color, True Visual comparison Standard Methods page 64

Parameters underlined were determined in the field.
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River water was collected at each station in triplicate,
1.0 % surface grab samples and transported on ice to the
North Texas State University Water Quality Laboratory for
chemical analyses. Table II lists the physical-chemical
parameters measured and the reference of the method used

for each analysis.

Periphyton Biomass Estimates

Ash-free dry weight.--Each of three replicate peri-
phyton samplés collected at each station was scraped into
a tared, 35.0 mf porcelain crucible and weighed on a
Mettler H6 analytical balance for wet weight determination.
The crucibles were previously combusted at 500°C for one
hour in a Thermolyne muffle furnace, desiccated, and weighed.
The samples were dried at 103°C in a Blue-M drying oven and
desiccated to constant weight. The samples were then
ashed at 500°C for one hour in the muffle furnace, desic-
cated, and ash weight recorded. Ash-free dry weight was
calculated as follows: (Standard Methods, l4th edition)

-2 _ _(dry weight - ash weight)

gm 2
area of substrate {m”)

Chlorophyll a.=--The monochromatic method described in

rhe 13th edition of Standard Methods was used to estimate

chlorophyll a concentrations of replicate periphyton samples.
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Ten mi of 90 per cent acetone (v/v) was added individually
to three replicate plates for each station. Upon return

to the laboratory, the samples were frozen for 18 to 24
hours. After thawing, the acetone extract was poured off
into a 15.0 m% centrifuge tube and centrifuged at 3,000 rpm
(800 x g) for five minutes in a Precision Vari-Hi-Speed
clinical centrifuge. The clarified pigment extract was
measured for absorbance at 665 nm wavelength in 1.0-cm
pathlength quartz cuvettes in a Beckman Model 25 spectro-
photometer., Chlorophyll a content was calculated as follows:
(Standard Methods, 13th edition)

5 13.4 D

mg chl a.m * = 665 x volume of extract (1)

area of substrate (mz)

D665 = agbsorbance at 665 nm

Analysis 9£_14c Phytoplankton Samples
14

Assimilation of C by phytoplankton was determined by
liquid scintillation counting. As mentioned, the plankton
samples were acidified in the field. In the laboratory, a
5.0-m{ subsample was transferred from each replicate bottle
to a glass scintillation vial. The vial was then placed in
a bubbling chamber (modified from Wessels and Birnbarn,
1979), and the subsamples vigorously bubbled for thirty
minutes (Schlinder, 1972). Thirty~two subsamples could be

bubbled at a time. Fifteen mis of Aquascl-II (New England
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Nuclear) were added to each subsample, and the vials dark-
adapted overnight. The dark adaption allowed time to quench
chemical and/or light-stimulated scintillations before
counting the samples. The samples were counted three times,
for one minute each, in a Beckman LS-100 Liquid Scintillation
System. Counting efficiencies were determined for all
phytoplankton and periphyton samples. Three 14C-toluene
standards (New England Nuclear) for each type of scintil-
lation sample were counted with the respective samples.

The percentage of disintegrations per minute counted to the
known quantity in the standards was used as the counting
efficiency. Absolute phytoplankton productivity rates

were calculated with the following equation: (modified

from Standard Methods, l4th edition)

e, x 2c, x 1.064
P phytoplankton =
14C. x 7T
i
14Cf = (cpm light-cpm dark) x 103 mz-k“l
12Ci = jnitial dissolved inorganic carbon
(mgc-271)
14Ci = 140 initially available (cpm}
T = incubation time (hr)
1.064 = isotopic correction factor for 140

(standard Methods, l4th edition)



46

Analysis 9£'14C'Periphyton Samples

Wet-oxidation procedure.--A modified wet-oxidation

method was used to measure the amount of photosynthetically-
fixed 14 by attached algal communities (Shimshi, 1969).
Briefly, a combination of concentrated chromic acid and
100°¢ temperature mineralized the organic matter of a peri-
phyton sample to carbon dioxide and water vapor. Therefore,
any radioactive carbon assimilated into organic matter
during photosynthesis is then released as radioactive

carbon dioxide (14C02). Finally, the 14CO2 is trapped in

a 0.5N NaOH solution, Aguasol~II added, and the sample
counted.

The specific steps of the wet-oxidation procedure are

as follows:

1) the preserved periphyton samples were scraped off
the ceramic plates with a single-edge razor blade
into preweiéhed 50.0 mf beakers, and each sample's
wet weight determined; |

2) each beaker and its contents were placed into a
448 m? Mason jar;

3) a C02 trap, 3.5 mf% of 0.5 N NaOH in a glass scin-
tillation vial, was also placed in the jar;

4) concentrated chromic acid was added to the sample
in a 10.0 m% per gram-wet-weight ratio, and the

jar immediately sealed;
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5) the sealed samples were incubated for one hour in
an autoclave at 100°¢c without pressure (isothermal
technique) ;

6) the jars were allowed to cool, opened, and the NaOH
traps removed; and, |

7) fifteen mis of Aquasol-II were then added to each
vial-trap, and the contents of the vials counted
as previously described.

The precision of the method was established by assaying sub-
samples of a replicate periphyton plate and found to be

92 per cent.

Harvey Oxidizer procedure.--Beginning with the April

1981 survey, periphyton productivity samples were oxidized
for 14CO2 recovery with a R. J. Harvey 0X400 oxidizer.
Unlike the wet~oxidation technique, the oxidizer mineralizes
organic matter with exceedingly high temperatures (900001,
oxygen, and chemical catalysts in a combustion tube.

Instead of an NaOH trapping solution, the radiocactive and
normal isotopic 002 released by combustion was trapped in
OXIFLUOR—CO2 (New England Nuclear), a trapping-scintil-
lation mixture formulated for oxidizer use. A 0.5 to 1.0 g
subsample from each replicate plate was transferred tc a
preweighed, fused-quartz glass boat. Subsampling was

required as a result of sample volume limitations, and the

precision of the subsampling was determined to be 97 per
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cent. The boat and contents were then inserted into the
combustion tube of the oxidizer. An oxygen-nitrogen gas
mixture carried the resulting C02 and water vapor out of
the oxidizer and into a condenser-trap containing 15.0 m&

of OXIFLUQR-CO The end of the condenser was then rinsed

°
once into the scintillation vial with 3.0 ml of OXIFLUOR-

co These traps were modified to accept a scintillation

9°
vial on the end (Figure 8). This increased time efficiency
for running a multitude of samples and trapping efficiency
by reducing loss of counts from rinsing the entire trap.
Methanol was used to clean the traps and prevent carryover
of radiocactivity. Samples were counted as above on the
Beckman LS~100 after dark adaption.

The trapping efficiency with the Harvey Oxidizer was
twenty per cent higher than the wet-oxidation technique.
Periphyton rates determined by wet-oxidation were, there-
fore, corrected upward for comparability. Absolute

periphyton productivity rates were calculated with the

following eguation: (Rodgers, et al. 1978}

14Cf X lzci x Vx 1,064
P periphyton =
14C. XxAx T
i
14 _ . _
Cf = (ecpm light-cpm dark])
120. = initial dissolved inorganic¢ cargon

1

(mgC-+ 3 1)
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V = volume of chamber (&)-~volume of plate

(%)

14

C., = initial C (cpm) injected into

chambers
A = colonized area of plate (mz)
T = incubation time (hr)

14

1.064 isotopic correction factor for C

i

(Standard Methods, l4th edition)

14C Color Bicassay

In order to determine the effect of pulp mill effluent
on photosynthesis, a bioassay was designed to remove the
test organism from potential chemical toxicanﬁs but still
subject it to the light-attenuating properties of the darkly
stained wastewater (Dickson and Rodgers, 1980), Figure 9

shows a diagram of the bioassay design.

Dilution series.-~At eadh guarterly survey, wastewater

from the Texarkana mill's finished effluent lagoon was

diluted with Station 2, Sulphur River water for a series

of waste concentrations. The series included static 100,
56, 32, 18, 10 and zero per cent (v/v) waste effluent con-
centrations. Three, eight~liter replicates of each concen-
tration were each contained in twelve liter cépacity plastic
tubs. The dilutions, eighteen in all, were exposed to

artificial light to effect photosynthetic response in algal
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test organisms described below. Two additional zero per
cent wastewater diluticons were used for incubation of test

algae in the dark,

Physical parameters.--The light source for the bioassay

was a series of fourteen 40-W. Cool-White fluorescent light
bulbs. A dilution chamber containing eight liters of dis-
tilled water was used to identify eighteen positions
receiving 400 to 500 ft-c at the water's surface. These
light measurements were taken with the Protomatic submarine
photometer. Each replicate waste concentration was then
randomly assigned a permanent position beneath the light
banks. All incubations throughout the study were at room

temperature (23° td 26° C).

Test organisms.--Selenastrum capricornutum Printz.

and Station 2, Sulphur River periphyton were assayed for

14C—assimilation.in the biocassays described. Selenastrun

was chosen as a control algal species to allow comparison
of individual survey results and as a reference organism
whose photosynthetic capabilities under controlled con-

ditions are well—dbcumented (EPA, 1979). Selenastrum was

maintained in Bold's modification of Bristol's Medium
(Bold, 1949) in two liter stock quantities. Growth con-
ditions were room temperature and incident light from a

north window. The periphyton attached to ceramic plates
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were replicates of those cémmunities assayed in situ,
upstream of the mill's discharge. The periphyton were
brought back on ice to the laboratory. It was proposed
that by using naturally-occurring algal popuiations from
the Sulphur River, photosynthetic rates as affected by
BKME color might be predicted from bioassay results, given

known rates of river and mill discharge flows.

Procedure.--Eighteen light and two dark 300-mi
Wheaton bottles were filled with Station 2 river water

and spiked with Selenastrum to a final concentration of

1000 cells-mﬁ_l. Eighteen light and two dark periphyton
chambers (as used for in situ experiments) were also filled
with Station 2 river water, and a replicate, artificial
substrate with attached periphyton was placed in each.
River waterxr used‘to fill bottles and chambhers was passed
through 1.5 x 1.5 mm mesh screen to removelduckweed,
conglomerations of filamentous algae, and other large
particulates. OCne m{ of NaH;4CO3 solution (ten uCuries
m2 1) was injected into each bottle. Two mis of the
14C—labelled bicarbonate solution were injected into

the chambers. One bottle and one periphyton chamber

were then placed into each replicate dilution and allowed
to incubate four hours. One mf& of 3N H 804 per Selenastrum

2
bottle and five mis on each periphyton sample were used to
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14

stop photosynthesis. The extent of C-assimilation by

Selenastrum was determined as described previously for

phytoplankton. Periphyton productivity was assayed by
the oxidation method in use at the time the biocassay was
performed.

After the incubation period, light readings and water
chemistry samples were taken for each replicate waste
dilution. Surface and five cm-deep readings for total
incident light intensity were made with the Protomatic
submarine photometer. Light attenuation measurements
were also taken with the IL 300 Research Radiometer for
each of its ten wavelength ranges. Radiometer readings
were made inside a periphytoh chamber filled with Station
2 river water and submerged in each exposure chamber.
Extinction coefficients were calculated as previously
described. Water samples were analyzed for true and ap-
parent color,_tufbidity, total suspended and dissolved

solids, and total and dissolved organic carbon.

Water samples, with their respective photoplankton
populations, were collected at Stations 2, 2NT, 3L, 3R, and
4, and returned on ice to the laboratory. Triplicate
300~mf% Wheaton light and dark bottles were filled for

each station and allowed to equilibrate to 20O C. The
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bottles were injected with one mf{ of 14C~labelled bicar-
bonate solution (approximately ten uCuries-mR—l) and placed
in a Percival growth chamber. The assay incubated for

four hours in growth conditions of 22 + 1°C and 400 ft-c
light intensity furnished by four, 40 W, Cool-White fluo-

rescent lights., Addition of one m% of 3N H2804 to each

l4C—assimilation

bottle terminated the assay. The extent of
was determined as previously described for phytoplankton,
This assay represented a control procedure for in situ
phytoplankton productivity experiments. By providing
standard incubation conditions for each sample, rate
variations resulting from differences in in situ physical
growth parameters would be reduced. Therefore, any sig-
nificant differences between stations might be attributed

to variation in water chemistry or biomass and better

indicate a potential impact from BKME,.

Data Analysis
A National Advanced System (NAS) 5000 computer was
used for analysis of data. The Statistical Analysis System
(sAS) (Helwig and Council, 1979) and MUSIC (IBM, 1981)
interactive programs were used to perform all calculations,
non-parametric analyses of variance and correlation, and
probit analyses. The statistical tables iﬁ Zar (1974) were

consulted in tests for statistical significance.
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CHAPTER IIIX
RESULTS

July 1980 Experiments

The July 1980 gquarterly survey was only a partial
success. In situ operations were efficiently performed.

An error in sample preservation, however, resulted in the
loss of field samples, Therefore, no data for this survey
are presented.

Despite this loss of information, the first survey
experience did provide an opportunity to review and test
the efficacy of field and laboratory methods . Changes in
procedures made after this survey proved to be beneficial
for the remainder of the study. Aé previously mentioned,
artificial substrate orientation was changed from hori-
zontal to vertical. Problems with suitable sample
preservation and handling caused the periphyton ATP assay
to be discontinued. The first color bioassay was performed;
however, the samples were sacrificed to establish precision
and efficiencies for phytoplankton and periphyton 140—
recovery methods, For example, subsampling precision,
reaction time and temperature, sample-to-acid ratios, and
trapping volumes were determined for the.wet—oxidation

technique at this time.
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River and Wastewater Flows

The seasonal variation in the lower Sulphur River
flow is indicated in Table III. The extremes in flow
levels encountered during survey months ranged from
0.28 m3-sec-l in January and April, 1981 to 285 mB'sec—l
in July 1981. Although the magnitude of river flow
extremes was not unexpected, the absence of mill discharge
through most of the study was unforeseen (Table III}).

The lack of waste effluent was a consequence of
unusual climatic conditions and compliance with state
discharge regulations. A severe drought in the summer
of 1980 kept Wright Patman Lake levels helow-minimum,
which‘curtailéd dam releases during the subsequent winter.
Normally, winter months are periods of high river flow
when the mill discharges substantial amoﬁnts of its
treated waste. Permitted waste discharge volumes cannot
exceed 16.2 percent of Sulphur River flows (TDWR permit
#01339). River flow below 28.5 m°-sec ' is generally
not conducive to waste discharge because of the increased
potential for violation of prescribed.maximum water
chemistry levels downstream. In July 1981, unseasonal
rainfall brought flooding to the area and maximum discharge
from Wright Patman. However, the mill was still unable
to release its waste. Dissolved oxygen (DO) levels in

the river were at or below 4.0 mg-ﬁ-l, and the mill's
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TABLE IIT

WRIGHT PATMAN DAM AND THE IP TEXARKANA MILL
DISCHARGE LEVELS (m3.sec™l) TO THE LOWER
SULPHUR RIVER DURING QUARTERLY SURVEYS.

WASTE EFFLUENT EXPOSURE HTSTORY FOR
DOWNSTREAM ARTIFICIAI SUBSTRATES.

Survey - Wright Mill Percent  Incubation  Waste
Month Patman Effluent Dilution Period Exposure
FPlow (Days) Period
' (Days)
Oct 80  28.50 0 0 20 0
Jan 81 .29 0 0 28 9*
Apr 81 .29 0 0 29 22%%
Jul 81 285.00 0 0 28 0
Oct 81 3.96 1.6 29 22 22

* Mill discharge stopped 11 days before survey date

** Mill discharge stopped. 7 days before survey date
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discharge permit prevented discharge if river DO levels

L (TDWR #01339).

cannot be maintained at or above 5.0 mg-%
In August 1981, International Paper was granted their
request for a variance on their permit and began releasing
in September. The BKME discharge level during the October
1981 survey (Table III) represented approximately 41 per
cent of the river flow or a 29 percent (v/v) BKME con-
centration downstream. The extent of BKME impact on
primary productivity during this étudy, therefore, could
only be assessed from the results of the October 1981
monitoring. ‘However, data from non-discharge surveys
represented normal variation of river characteristics
between stations and were useful for general comparisons -
with Octcber 1981 results. As a result of the abnormally
high waste discharge, the October 1981 survey results
were assumed to represent a worst-case situation.

Table III also indicates the incubation history for
artificial substrates prior to and including each survey
date. Downstream artificial substrates and their attached
communities were exposed to BKME prior to the January and
April 1981 survey dates; however, mill discharge ceased
at least one week before each sampling date. Therefore,
January and April 19281 substrates were not considered as
representing periphyton communities influenced by BKME.

This conclusion was based on the following assumptions.
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1. One week was sufficient time to purge the
physical~chemical regime of a BKME environment
and replace it with one representing upstream
conditions. Water chemistry and light atten-
uation data for these surveys (Appendix A)
suggésted this assumption was valid.

2. Periphyton turnover rates were rapid enough to
significantly change the community to reflect

upstream conditions (Patrick, 1971).

Total Irradiance

Variations in solar irradiance bétween surveys are
shown in Table IV. These values were measured with a
Solar Monitor LI-200SB. The wavelength range from 300
to 800 nm is reported as defining the gquantity of light
energy available to the variocus photosynthetically avail-
able radiation (PAR) (Vollenweider, 1974). The LI-200SB
measures the ligh£ energy integrated for the 400 to 1100
nm rande and was assumed to approximate the PAR to the
Sulphur River system.

Fifty per cent of the above values wére taken as the
amount of incident radiation that occurred during respective
1000-1400 hr incubation periods (Rodgers, unpublished
thesis, 1974).



TABLE IV

SOLAR TRRADIANCE DURING ON-SITE
PRODUCTIVITY EXPERIMENTS

61

Survey Total Daily - PAR During
Irradiance (Wem ™) in situ

400 - 1100 nm Incubation

Oct 80 4791 2395

Jan 81 1513 756

Apr 81 4374 2187

Jul 81 5940 2970

Oct 81 2082 1041




62

Field Experiments

Periphyton -

Periphyton productivity, chlorophyll a, ash-free dry
weight, PE, and structural index were calculated for each
survey at each river station (Appendix B). Figures 10 -
14 illustrate the seasonal and between station differences
for each periphyton parameter, respectively. WNon-para-
metric analysis of variance for each parameter during the
October 1981 survey is summarized in Table V. The results
show no significant differences between upstream and down-
stream stations for any of the parameters. Kruskal-Wallis
statistics indicate significant differences for ash-free
dry weight and structural index (oo = ,05}. However, non-
parametric, multiple range tests do not show these dif-
ferences to exist between the reference and experimental
sites. Statistical analysis results_for non-discharge
periphyton productivity are summarized in Appendix C.

In situ rates and ash-~free dry weight were highest
at Station 3R. PE and chlorophyll a concentration were
greatest at Stations 2 and 3L, respectively. Values of
all periphyton parameters were lowest at Station 4.
Compared with the upstream stations, Station 4 productivity
rates were only 44 and 36 per cent of Station 2 and 2NT

rates, respectively.
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Phytoplankton

Phytoplankton parameters -- primary productivity,
chlorophyll a, and PE --were calculated for each survey
at each river station (Appendix B). The seasonal and
between station differences for each of the above
phytoplankton parameters are indicated in Figures 15 -
18. Table VI'summarizes analysis of wvariance results
for each parameter during mill discharge. No difference
between reference and experimental sites was found for
planktonic chlorothll a. However, upstream stations
were shown to be significantly different from downstream
Stations 3R and 4 for productivity rate and PE. Non-
discharge survey statistical results are given in
Appendix C.

A steady decrease in in gitu rates from upstream to
downstream stations was noted (Table VI)J. Station 4
rates were found to be only 36 and 39 per cent as fast
as those at Stations 2 and 2NT, respectively. Average
PE ratios and dhloroPhyll a concentrations were also
higher at upstream stations.

Water Quality and Environmental
" Parameters

The influence of BKME on water quality parameters
during the October 1981 survey is indicated in Table VII.

Substantial increases in almost every parameter were
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noted at Stations 3L and 3R relative to upstream stations.
Station 4 data show a subsequent reduction of these high
concentrations to near-upstream levels.

Figures 19 and 20 show the light-absorbing character
of BKME determined from on-site spectroradiometer measure-
ments and laboratory spectrophotometric analysis,
respectively (October 1981 survey). Strong light atten-
uation from absorption was found in the shorter wavelength
regions of the PAR spectrum.

Figure 21 illustrates the increased light attenuation
at downstream sites during mill discharge. Here also, the
ultra-violet ﬁo blue portion of the spectrum was strongly
absorbed, particularly at Station 4.

Total PAR attenuation measured during eaéhksurvey,
at each station and in wastewater is shown in Figure 22.
These coefficients were calculated from the Protomatic
photometer readings. These data indicate a farily con-
sistent light-absorption capacity of the BKME, while

river values are more variable,

Laboratory Experiments

Color Bioassay
Significant decreases in bioassay productivity rates
with increasing BKME concentration were found for both

Sulphur River periphyton and Selenastrum capricornulum -
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Prinz. (Figures 23 and 24, respectively). The values
shown in Figures 23 and 24 are the total mean rates for
the pooled results of the five runs. These data indicate
that productivity rates measured in 100 per cent waste-
water concentrations were approximately three orders of
magnitude less than those measured in the zero per cent
concentrations.

The reduction in total PAR through the biocassay
dilutions is illustrated in Figure 25 for the individual
bioassay runs. The data in this figure suggest the river
water accounted for most of the variation in light regime
between runs (note zero per cent wastewater concentration).
Figure 26 presents a representative example of the spectral
distributions of light absorbed by each BKME concentration
(Octobér 1981). Attenuation was strongest in the blue
region, similar to results shown in previous extinction
coefficient histograms for field data. Results of water
quality analyses on wastewater dilutiong for the July

and October 1981 runs are on file.

Standard Incubation

The October 1981 results of the laboratory 14C

incubation of indigenous Sulphur River phytoplankton are
included in Table VI for comparison with in situ rates,
Average rates decreased downstream from Station 2. How-

ever, the Newman-Keuls grouping of ranked sums does not



66

clearly indicate significant differences existing
between upstream and downstream stations. Non-discharge
survey results and statistical analyses are given in
Appendices B and C, respectively. Figure 18 illustrates
the results of the standard incubation assay for the
entire study.

Correlation of Productivity to
Environmental Parameters

Field

Tables VIII and IX are correlation matrices, pre-
senting Spearmans' rank correlation coefficients between
productivity parameterseﬂﬁiphysical—chemical variables.
Table VIII identifies which, if any, light attenuation
coefficients may account for the observed variatibns in
productivity. All significant correlations with light
indicated inverse relationships except for periphyton
strﬁctural index. The data suggest this was a result
of variations in ash-free dry weights rather than
chlorophyll a concentrations. In general, phytoplankton
in situ rates showed the highest correlation with light
measurements (r = .832, significance = .0001 with total
PAR extinction). Variations in current velocity appar-—
ently had no significant relationship to periphyton
structure.

Significant correlations of productivity with

selected water chemistry are shown in Table IX. Highest
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correlations were found for ash-free dry weight with
turbidity and dissolved organic carbon (DOC) (r = ~-.853
and .920, respectively). Phytoplankton productivity rates
were negatively correlated with color, total dissolved

solids (TDS), and total organic carbon (TOC).

Laboratory

Productivity rates of Selenastrum and Sulphur River

periphyton measured in the biocassay were tested for
correlation with light extinction and water chemistry

data (Table X). Significant correlations (o = .05) were
found between the rates and all chemical variables, with
the exception of turbidity. Producti&ity rates were
correlated with all light extinction data. Highest
correlation coefficients were found'with.thé attenuation

of 495-505 nm, 555-565 nm ranges, and total PAR. The
extinction of the 356-365 nm range was the least correlated

with productivity.

Model Prediction of In Situ Productivity
As shown in Figures 27 and 28, probit analysis on
pooled data predicts EDc values of 20 and 21 per cent
BKME concentration for Sulphur River periphyton and

Selenastrum, respectively. The slope for both probability

plots is 0.044.
The predicted reduction in photosynthesis from these

plots for a 29 per cent BKME concentration is approximately
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65 per cent. The observed in situ reductions in pro-
ductivity from Stations 2 and 2NT to Station 4 was roughly
60 per cent for both periphyton and phytoplankton. Chi-
square analysis to statistically compare the observed and
predicted results could not be done since data for only

one such comparison were available,
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CHAPTER IV

DISCUSSION

The results of in situ experiments indicate that peri-

phyton photosynthetic levels were maintained in the presence

of BEKME.

Obvious differences in light availability and

water quality downstream of discharge were found. The

consistency of periphyton productivity levels in the face

of a drastically altered physical-chemical environment

suggests several possible responses of the community to

this particular perturbation:

1.

If it is assumed that the methods used were
sensitive enough to measure actudl variation
existing between station, then the results do

not indicate that BKME was lethal to the peri-
phytic community in general;'

The quantity of light energy for chlorophyll a
absorption was equally available and sufficient .
to drive photosynthesis at all stations. Whether
or not this is true would depend on the species
composition of the community and the depth of
incubation., All incubations were at 5.0 to 10.0Q
cm below the surface; however, species compbsit%on

was not determined. Light energy at the absorbance

24
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maxima for chlorophyll a, 445 nm and 665 nm, did
decrease downstream and a decrease in productivity
at Station 4 was also noted. However, the lower
in situ ¢ rate at Station 4 was not shown to be
significantly different from upstream stations;
and,

Chromatic adaptation of periphyton species may have
occurred, or species with a better suited pigment
structure out-competed others less well-eguipped
or incapable of adaptation. As previously noted,
shifts in species composition were identified in
response to BKME by Bothwell and Stockner (1980).
Species selection and enhanced growth were attrib-
uted to increases in nutriehts; however, pigment
structure, e.g., chlorophyll a:carotenoid ratio,
was not measured. The periphyton in this study
were not identified nor were acceésory pigment
concentrations measured. Therefore, the question
of chromatic adaptation within species or by inter-
species competition in response to BKME remains
unresolved. The only data from this study that
provide: information in this regard were the
significant correlations of periphyton PE to the
extinction coefficient of the 545 to 555 nm wave-

length range (r = -.535, significance = .040).
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Algal accessory pigments that can absorb energy
from this range are phycobilin (blue-greens} and
fucoxanthin (diatoms) (Golterman, 1975).
Periphyton structural index values were highly variable
during discharge and non-discharge surveys alike. High
variability in periphyton structure when compared to
function was also found in artificial stream studies of
Rodgers.gg al. (1979). Their results did not, however,
- show this variability to be associated with perturbations.
In this present study, lower structural index values
{increased heterotrophic component) were highly correlated
to increased DOC concentration (r = -.740, significance =
.003). The lowest structural index value and highest DOC
concentrations during discharge were found at Station 3R,
the most proximate to the mill outfall.
Contrary to the periphyton results, phytoplankton
photosynthetic rates were significantly lower downstream

relative to upstream sites. Relatively equal chlorophyll

1o

concentrations were found for all stations. These data,
therefore, suggest that the decrease in productivity was

not the result of decreased biomass; i.e., BKME lethality.
Significant inverse relationships found with increased

light attenuation indicators (e and selected water chemistry)

may indicate that variations in light availability are
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associated with changes in phytoplankton 140 rates. This
result agrees with previous findings of BKME influence on
phytoplankton productivity (Parker and Sibert, 1975;
Mechenich, unpublished, 1980). Apparently, the phyto-
plankton community, originating from upstream sources,

was not capablé of adapting to the altered downstream light
regime as, perhaps, periphyton communities can. On the
other hand, free-floating populations sampled at Station

4 may not have had sufficient time to recover (retention
time), either by species succession or adaptation (Hynes,

1970).

Laboratory Experiments

The results of the color bioassay experiments ade-
quately demonstrated the effect of light attenuation on
photosynthesis. Problems or shortcomings in the predictive
ability of this method can not be entirely identified from
the results of only one, in situ discharge comparison.
However, the apparent potential of periphytic communities
to successfully adapt to a BEKME perturbation suggests some
other applications of the same experimental design, as
well as some other supporting studies:

1. 14

C productivity of replicate, downstream peri-
phyton communities exposed to BKME can be deter-

mined and compared to the upstream replicate
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raﬁes. Successful downstream chromatic adaptation
may then be indicated by higher rates;

Assay of upstream and downstream periphyton rates
from replicates incubated within wastewater di--
lutions may indicate possible BKME impacts on
photosynthesis other than light attenuation and
possibly account for deviations in model
predictions;

Pigment composition, particularly chlorophyll a:
carotenoid ratios, should be determined in future
biocassays and in situ studies (Welschmeyer and
Lorenzen, 1981); and

Identification of periphyton species and other
qualitative assessments may indicate whether

BKME exerts selective pressures between and/or

within species populations.



CHAPTER V

CONCLUSIONS

On the basis of the October 1981 survey results, the

following conclusions are presented:

1.

Primary productivity of periphyton in the lower
Sulphur River (mg Comﬂzﬁhrml) was not significantly
altered by the presence of the IP Texarkana Mill's
wastewater;

Periphyton productivity efficiencies (mg C-hr—l/

mg c¢hla) were not significantly altered by BRME
downstream. This was a reuslt of consistent
productivity rates and chlorophyll a concentrations
between stétions;

Periphyton community structure shifts significantly
toward heterotrophic populations in the immediate
vicinity of the mill outfall. Community structural
index recovers to upstream levels at Staticn 4;

Phytoplankton primary productivity (mg C-m“?-hr“l

)
was significantly reduced downstream of the mill
discharge relative to upstream sites. This

decrease is apparently associated with increased

light attenuation downstream;

a9



100

The phytoplankton PE ratio (mg C-hr_l/mg chla)

was reduced downstream of the mill discharge as

a result of significant decreases in phytoplankton
productivity rates;

Station 2 periphyton and Selenastrum capricornutum

Prinz. 14C—assimilation rates were significantly
reduced by BKME-dependent light attenuation;

The incubation of indigenous phytoplankton in
standard laboratory conditions may have application
for seasonal comparisons of primary productivity;
In general, decreases in light guantity and guality
were correlatéd with decreases in primary pro-
ductivity by in situ phytoplankton and color
biocassay test organisms. Water quality parameters
that indicated the light absorption capacity of

in situ and bioassay water columns (i.e., solids,

color, organics, but not necessarily turbidity)

were negatively correlated with in situ phyto-
plankton and biocassay productivity rates. Variations
in in situ periphyton productivity were not found to
be correlated with physical-chemical parameters; and
The ahility of the laboratory cclor bicassay pro-
cedure to predict in situ primary productivity
responses to BKME was not statistically determined

as a result of a lack of iﬂlsitu observations.
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However, the generally close agreement between
predicted and observed productivity reductions
indicate the potential use of the bioassay as
an impact management tool. In addition, this
design may be useful in elucidating possible
community mechanisms of adaptation to BKME

perturbations.
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