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The purpose of this thesis is to examine certain

questions concerning the Cantor ternary set. The second

chapter deals with proving that the Cantor ternary set is

equivalent to the middle thirds set of [0,1], closed,

compact, and has Lebesgue measure zero. Further a proof

that the Cantor ternary set is a locally compact, Hausdorff

topological group is given. The third chapter is concerned

with establishing the existence of a Haar integral on

certain topological groups. In particular if G is a locally

compact and Hausdorff topological group, then there is a

non-zero translation invariant positive linear form on G.

The fourth chapter deals with proving that for any Haar

integral I on G there exists a unique Haar measure on G that

represents I.
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CHAPTER I

INTRODUCTION

The purpose of this thesis is to examine certain

questions concerning the Cantor ternary set. A basic

knowledge of analysis, topology, measure theory, and algebra

is assumed.

The initial portion of Chapter II deals with defining

the Cantor ternary set by the ternary expansion of elements

of [0,1] and proving its equivalence with the middle thirds

set of [0,1]. This portion of Chapter II shows that the

Cantor ternary set is closed, compact, and has Lebesgue

measure zero. Also Chapter II deals with defining a

continuous function on the Cantor ternary set that maps onto

[0,1]; additionaly, this function is used to prove the

existence of a measurable set which is not a Borel set.

Finally Chapter II deals with proving that the Cantor

ternary set is a locally compact, Hausdorff topological

group.

Chapter III is concerned with establishing the

existence of a Haar integral on certain topological groups.

In particular if G is a locally compact and Hausdorff

topological group, then there is a non-zero translation

invariant positive linear form on G.
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Chapter IV deals with proving that for any Haar

integral I on G there exists a unique Haar measure on G that

represents I. Further the Haar measure can be scaled so

that the measure of G is one. Thus there exists a non-zero

translation invariant regular Borel measure on the Cantor

ternary set.

In this paper R, 1, and M denote the reals, integers,

and naturals respectively, the end of a proof is denoted by

*, the complement of a set A is denoted by A or ~A, the

closure of a set A is denoted by A, and the empty set is

denoted by 4. A ring R is a collection of sets such that if

A and B are sets in R, then A U B and A \ B are both in R,

and a a-ring S is a ring so that if (An) is a sequence of

W
sets in S, then UAi is in S. Also in this paper the Borel

class of sets, denoted by 3, is defined to be the a-ring

generated by the collection of all compact sets. By a

measure p we mean a non-negative and additive set function

on a ring 6t so that p(#) = 0 and

{U Ej = sup{ p(E) :i E IN }
i=1

where (E) is an increasing sequence of sets from the ring

A so that U Ej EA. Observe that a measure is monotone
i=1

and countably additive. The reader may consult Berberian

[1], O'Neil [2], or Royden [3] for any terms in this paper

that have been left undefined.



CHAPTER II

CANTOR TERNARY SET

In this chapter we establish some fundamental

analytical and topological properties of the Cantor ternary

set. In order to facilitate our definition of the Cantor

ternary set, we begin by establishing the existence of

ternary expansions for elements of the unit interval [0,1].

For x E [0,1] to have a ternary expansion means that there

exists a sequence (a.) so that a. E {0,1,2} for each n E M

and x = );
n=1

Theorem 2.1: If x E [0,1], then x has a ternary

expansion. Conversely if (a.) is a sequence so that

c a
an E {0,1,2} ffor every n E M, then 1' ;-E [0,1] . Further

n=1 3

if x E [0,11 so that x = P for some m E W and 0 < p < 3",

then x has 'two ternary expansions; otherwise, the ternary

expansion for x is unique.

Proof: Let x E [0,1]. Let

a, = max{ p E {0,1,2} 1 < x };

hence a < x. Let

a2 = max{ p E {0,1,2} j 1 2 (x - }a,

3
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note that { p E {O,1,2} I 2 < (x - a) } is not empty since

(x - gi) > 0. Now f or n EIN and n > 2, assume that

n -I
a,. .. ,an.. have been chosen, x -E 1a1 > 0 and let

i=i

an = max{ p E {0,1,2} 1 < (x - -1) }.

Hence (an) is a sequence so that an E {O,1,2} for every

n E M. Note that for each n E N,

0 (x - E ) .

Now (x- )-- 0 since + 0. Therefore =
Now= (x -ii nc (3n)

and x has a ternary expansion.

Clearly if (an) is a sequence so that an E {0,1,2} for

every n E N, then

OD 0 Ma M

0<= % 3E a 2

and E a [0,1].
j=1 g

Now let x E [0,1] so that x has two ternary expansions.

Let (an) be a ternary expansion of x; now let (b) be

another ternary expansion of x so that (an) * (bn). Since

(an) * (be), let m be the least i E N so that ai * bi.

Assume that am > bm. Now

a) b. -1b- bm *D2x =+b~r-

i=i i=1 a=M+i a
m-1aibm+1 m-1iai am OD0

i =1 3m - j 1 i + - +m i= m+1
OD

ai X.

=x1=

Hence bm + 1 = am, and, f or i > m, by = 2, ai = 0 ,and
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am E {1,2}. Clearly if (c.) is also a ternary expansion of

x, then (c.) = (a.) or (ca) = (ba). Thus x has at most two

ternary expansions. Note that x = a1; let p = 3'. E

Clearly p E M; also, 0 < p < 3" since 0 < a < 1. Thus
i=

X = Pm where 0 < p < 3".

Now let m,p E M so that 0 < p < 3" and GCD(p,3m) = 1,

where GCD means the greatest common divisor. Let x = &M-

Note that by the division algorithm there exists integers

bm-i 1 and pm-i so that

p = bm--13m + Pm--t

where 0< bm-1 -< 3 and 0 < pm-- < 3m-. Hence for i E M so that

2 < i < m, there exists integers bm-i and pm-i so that

pm--i+ = bm--i 3m-i + Pm-i)

where 0 < bm-i < 3 and 0 < pm-i < 3 '1. Thus

rn-I
p = p1 + E b- 3 -1"

and

m -1 bm-
mN = +

Note that p1 E {1,2} since GCD(p,3') = 1. Now let am = Pt,

and for i EM so that 1 < i < m let ai = bm-i. Thus

x = . _+aE-1 E2
1=1 3i - =1 a1=M +

Therefore x has two ternary expansions. *

We define the Cantor ternary set, denoted by E, to be

all elements x E [0,1] so that x has a ternary expansion
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(a.) where a. J 1 for each n E N. In the f ollowing theorem

we will show that the Cantor ternary set may be obtained

recursively by first removing the open middle third of [0,1]

and then removing the open middle third of the two remaining

closed intervals and then removing the middle third of the

four remaining closed intervals, etc. More specifically,

for a < b, define the "remove middle third" operator RT on

[a,b] by

RMT([a,b]) = [a, 2.a +.b] U ['-a + 2.b ,b];

n
if S = U[ai,bi] is a finite disjoint union of closed

intervals, define

n
RMT(S) = URMT([ai,bi]).

i=1

Denote n-fold composition of the operator RMT by (RMT)"

where n E W. Define the middle third operator NT on [a,b]

by

00
MT([a,b]) = n(RMT)"([a,b]).

n=1

Now MT([a,b]) is called the middle third set of [a,b].

Theorem 2.2: The Cantor ternary set t is closed, and

S= IT([0,1]).

Proof: For each n E N, let

C = { x E [0,1] j if (ai) is a ternary expansion

of x, then a = 1 };
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and let

D = { x E [0,1] x E ( i , 3i- 2) where i Eli

so that 0 < i < 3"~1 }

the middle third open intervals. Note that the C.'s need

not be disjoint and the Dn's need not be disjoint. Clearly

= [0,1] \ U C, and MT([0,1]) = [0,1] \ U Di.
i=1 i=1

Next we assert that Dn = C for each n E N. Let n E N.

Let x E Cn; and let (ai) be a ternary expansion of x, hence

= 1. Clearly a _ k for some k Eli so that

0 < k < 3"-1. Since an must be 1, some a =0 for i > n and

some a=2 for j > n. Thus

n ai + D a, n1 ai+ 1 +OD2

Let k be such an integer. Now

k-3+1 k 1 "I a 1

and

k-3+2 k 2 " na+ 1 002
= +1-ni+1 i

OD 2 1 (k-3+1 k-3+2
since - 1 Hence x E 1 k*3+2 ), and x E Dn.

Thus Cn C D.. Now if x E D. with ternary expansion (ai),

i-3+1 i-3+2n-
hence x E (- 13 -3n ) for some i E 9so that0( i < 3,

and a. must be 1. Thus Dn C,, and C = D. for every n E M.

Hence the assertion follows.

CO
Thus T = [0,1] \ UD.. Therefore the Cantor ternary

s1t

set is equal to the middle thirds set of [0,1]. Clearly the
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Cantor ternary set is closed since UD. is open.
j=1

Note that the Cantor ternary set is compact since it is

a closed subset of a compact set.

Theorem 2.3: The Cantor ternary set can be put into a

one-to-one correspondence with the closed interval [0,1].

Proof: Let f: [0,1] -+ E be a function so that

f(x)= fxif x E E
0 if X E

for x E [0,I]. Clearly f is a function from [0,1] onto (E.

Now similar to the ternary expansion of [0,1], there is

a binary expansion of [0,1]; i.e, for x E [0,1] there exists

a sequence (ba) so that bn E {0,1} for all n E W and

D b,
x = E ". Let g:E -+ [0,1] be a function defined by

n=i

g(x) = E,,

where (as) is the ternary expansion of x E (E so that a t 1

for all n E I. Clearly g is well-defined since there is

only one such expansion (an) f or each x E E, and g maps into

[0,1] since Jan E {0,1} f or each n E N. Let y E [0,1] and

let (b.) be a binary expansion of y. Now (2bn) is a ternary

expansion of some number in [0,1] so that 2b1 # 1 for every

n E [. Hence Ew2bn E (, and
n=1=y

n n =
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Thus g is a function from T onto [0,1]. Therefore there

exists a one-to-one correspondence between t and [0,1].

A set P is said to be perfect if the set of

accumulation points of P is the set P itself; hence P is

also closed.

Theorem 2.4: The Cantor ternary set is perfect.

Proof: Let ( be the set of accumulation points of E.

Clearly T T since T is closed. Let E > 0. Let x E (; let

(a.) be the ternary expansion of x so that a I 1 for every

n E w. Let m be the least n E M so that< c. Let (ba) be
3n

a sequence so that b. = a f or each n j m and

b =_1 0if am = 2
m = 2 if am =Q0

Hence (ba) is a ternary expansion so that b # 1 for all

M bnn E M. Thus E " Et .Now
n=1

I x-bn =an ~bn

amb - b 2

Thus x E T and T C C'. Therefore T = , and the Cantor

ternary set is perfect. *

Now for x E [0,1], let (an) be a ternary expansion of

x. Let N = w if an 0#1 for all n E M; otherwise let N be
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the least n E M so that an = 1. Let (bn) be a sequence so

that

b { anif n < N
" I otherwise*

Def ine f(x) = b" for x E [0,1]. We shall call f the
n=1

Cantor ternary function.

Theorem 2.5: The Cantor ternary function f is

well-defined, continuous, and monotone from [0,1] to [0,1].

Additionaly, f is constant on each open interval of the

complement of t, and f(E) = [0,1].

Proof: First we show that f is well-defined. Let

x E [0,1] so that x has two different expansions. Hence let

m,p E N so that x = where 0 < p <3" and GCD(p,3') = 1.

By the proof of Theorem 2.4, let (an) and (an) be ternary

expansions for x so that ai = ai for i < m, am = am - 1, and

ai = 0 and ai = 2 for i > m. Clearly am > 0 since

GCD(p,3m) = 1. Let N a be the least n E I so that an = 1, or

else let Na =w-if an f 1#for each n E M. Define N a'with

respect to (an). Let (bn) be a sequence so that

b _ j an if n < Na
= ~ otherwise

Define (bn) with respect to (a.). Clearly Na < m, or

N = ; likewise for Na'. If Na < M, then N a = Na < m, and

(bn) = (bn). Thus
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M N'b

f EN = E n= n]In i a] = I 2-n =na b2-n f [ n~li

If Na = m, then am =1, am = 0, Na' = O, b = b f or i < m,

bm = 1, bm = 0, and bi = b = 1 for i > m. Also,

f [ ]+]= + 0 +E

n = = [3f .l

If N a = w, then am = 2, am =1, Na = m, b = b for i < m,

bm= bm = 1, and

fnE E n n E n E n]n=1 n] ni -2n n=1 2n - = I2-= f 1 a=1

Na b
Therefore f is well defined. Clearly a E[0,1].

n=1

Now to show that f is continuous on [0,1], let

x E [0,1] with ternary expansion (an). Let E > 0, and let m

be the least n E IN so that 1 < c. Let 0 < 6 < I , and let

y E [0,1] with ternary expansion (cn) so that j x - y j < 5.

Assume that y < x. Let Na be the least n E IN so that

an = 1, or else let Na = w if a i#1 for each n E M; define

Nc similarly. Let (ba) be a sequence so that

b _ IJ an if n < Na;
= ~ 1 otherwise a

define (d,) similarly with respect to (cn).

Assume that m < Na (<Nc; then an = cn for n < m since

10 < x - y < fm. Thus bn = d. for n < m, and

If(x) -f(y) 1=1 ab "-E-"-
n=12 n=1 2n

= a bnc d
n=M+1 n m+1
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W 1 1

n =m +12 5

The case where m < Nc < Na is similar.

Assume that Na (<Nc (<m; then a = c for n < Na and

Na = N again since 0 < x - y < m. Thus b = d for

n < Na = Nc, and

aab c N N

I f(x) -_f(y) I = I E a-2 ~ C" d| 1-0< C.
=1 n=1

The argument is the same when Nc Na m.

Now assume that Na ( m < Nc; then a = c for n < Na
1

and cN = 0 andc n = 2 for Na < n < m since 0 < x - y < m.

Thus bn = d 1 for n < Na, bNa =1, dNa = 0, dn = 1 for

Na < n < m, and

~f(x)-f(y) I1= Ea b 1  Nc dn
n=1 -n=1

N - Nc d

2 a n=Na+i

M i 1

2 a n=Na+1

The case where N ( m < Na is similar. Therefore f is

continuous at x and on [0,1].

To show that f is monotone on [0,1], let x,y E [0,1]

with ternary expansions (as) and (c.) respectively so that

x > y. Since x > y, let m be the least n E M so that

an > cn. Define Na, Nc, (b), and (do) as before.

Assume that Na < m; then clearly Na = NC by the

definition of m. Hence bn = d for all n E I. Thus
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N C d N a I b X'y) = E d = E b = f(x).
n=I n=1

The argument is similar when Nc < m.

Assume that m = N a; then m < Nc, am = 1, and cm = 0.

Clearly b,:= d for n < m. Thus

N d n -1In 0 N cd
= = Y)=E-nb + + Em

Na-1 b 0 D1

n~t 2nn =Na+l

SEa b = f(x).
n=1

The case where m = Nc is identical.

Now assume that m < Na (<N; then am = 2 and cm = 0.

Clearly b-= d. for n < m, bm = 1, and dm = 0. Hence

E d "d - b+ 0 Nc d
AY n=12-n n= Tn+2-m n =M +25

m-i b+ 0 O1
2-1 n+2-m+ m;

M b Na b=f(x)< E -"- < E "=fx)
n=1 2 n=1

The argument for m < N < Na is identical. Therefore

f(y) f(x), and f is monotone on [0,1] .

Now to show that f is constant on each open interval of

the complement of E, let m E E, 0 0 i < 3m1, and

x,y E (i3+1 i3+2 ) with ternary expansions (an) and (c,)

respectively. Recall from Theorem 2.2 that each open

interval of the complement of t is of the form (i i-32

where m E M and0 < i< 3"' 1 . Define N a' Nc, (ba), and (d)

as before. Note that a. = cn for n < m, and am = CM = 1.
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Hence Na = Nc < m, and bn =dn forn Na =Nc. Thus

Na bn NC n fy
f(x) = Ib = d = y

Therefore f is constant on (i.3+1 i-3+2) and each open

interval of the complement of T.

To show that f() = [0,1], let y E [0,1] with binary

expansion (bn). Now (2.bn) is a ternary expansion of some

number in [0,1]; further 2-b, # 1 for each n E N. Hence

O 2b" EE. Thus
n=1i=

n I n=1

Theref ore f(E) = [0,1] .

.1Note that the Cantor ternary function is on the open

1 3middle third removed at the first stage, I and T,

respectively, on the open middle thirds removed at the

1 35 7
second stage, and 1, ., 5, and 7, respectively, on the

middle thirds removed at the third stage. Let v be Lebesgue

measure for the remainder of this paper.

Theorem 2.6: The Cantor ternary set has Lebesgue

measure zero.

Proof: Clearly T is measurable since E is closed. Let

/ 2
D= (g.~~3); for n E IN so that n > 1, let

D/= { x E [0,1] x E Ln 1,12 Dj forn j=1 J
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i E E so that 0 < i < 3 "- }
, , D

Note that T = [0,1] \ U Dn since U Dn = U D where each D
n=i n=i n=i

is as defined in Theorem 2.2. Hence v(E) = 1 - E v(Dn)
n=1

since all the Dn are disjoint. Now define a sequence (d)

so that da is the number of intervals in Dn. Clearly

di = 1; and for n E M so that n > 1, d = 3 "~i - .nEd-3"~-~-
j=i

since

'3 -1 i-3 + 1 i-3 + 2
D, = 3 Ui1[i3+ 3n

i 3 - -n-U1 0 U 1-[3"J(i-3 + 1) 3"-3(i.3 + 2)

j=1 i=O3L n + P 3n +

Note that dn = 2"-i for each n E N. For suppose not,

and let m be the least n E I so that d. 2"11. Clearly

m > 1. Hence

dm = 3 1-1 _mtld -3m-1-j
rn-Ij =i

= 31-i - r 3m--j(2j-)
j=1

3rn-i M-i r J
= 3 -1 _ - .

T j=

= -1 3 -1 2-3m-1_ 2D 2 -1
- 3rn-i -2 3m-1 =2

which is a contradiction.

Clearly f or each n E IN, the measure of D is the length

of each interval in D1 times the number of intervals in D1 .

1 1 2"~IHence v(D.) = d 2-- n- Thus

CD 0 n-

E v(Dn) = E 2 = 1.
n=1 n=1 3

Therefore v(t) = 1 - 1 = 0. *
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Let f1 be the function defined by

f1(x) = f(x) + x

for x E [0,1], where f is the Cantor ternary function.

Theorem 2.7: The function f1 is a homeomorphism

between [0,1] and [0,2], v(fl(e)) = 1, there exists a

Lebesgue measurable set A so that f (A) is not Lebesgue

measurable, and there exists a Lebesgue measurable function

h so that h a fI is not Lebesgue measurable. Further there

exists a Lebesgue measurable set that is not a Borel set.

Proof: To show that fI is a homeomorphism, let

x,y E [0,1] so that x < y. Hence

f1(x) = f(x) + x <f(y) + y = f1 (y),

and f 1 is strictly increasing. Clearly f 1 is continuous and

one-to-one; since f 1 (0) = 0 and f 1 (1) = 2, f 1 is onto [0,2]

by the intermediate value theorem. Now since f1 is strictly

increasing and continuous, f1 is open. Hence f' is

continuous. Thus fI is a homeomorphism from [0,1] onto

[0,2].

Now to show that v(f1(T)) = 1, note that

v(f I(T))= 2 - v(f ((t))

and

v(f1 (E)) = v(f1(UDN)) = E v(f 1(D,)),
w=h n=1

where Dn is as defined before. Since f is constant on the
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intervals of Dn and Lebesgue measure is translation

invariant, v(f 1(D)) = v(Dn). Hence

V(f1( = 00 E v(D) = I.
n=1

Thus v(f 1()) = 2 - I = 1.

To show that there exists a Lebesgue measurable set A

so that f1(A) is not Lebesgue measurable, let P C f1(T) so

that P is not Lebesgue measurable. (Recall that

V(fl(T)) = 1.) Now let A = f-'(P). Hence A C T, and A is

Lebesgue measurable since v(T) = 0. Thus

f (A) = f1 (fJ1(P)) = P

and f1 (A) is not Lebesgue measurable.

Now to show that there exists a Lebesgue measurable

function h so that h o f i is not Lebesgue measurable, let h

be the characteristic function of A. Clearly h is Lebesgue

measurable. Now

(h o f 11)-1(1) = f 1(h-1(1)) = f (A) = P,

which is not Lebesgue measurable. Thus h o f,' is not

Lebesgue measurable.

To show the existence of a Lebesgue measurable set

which is not a Borel set, we first have a lemma to prove.

Lemma: If g is a Lebesgue measurable function and B is

a Borel set, then g-'(B) is Lebesgue measurable.

Proof Of Lemma: Let g be a Lebesgue measurable
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function (Recall that 3 is the class of Borel sets). Let

M = { E g R | g-'(E) is Lebesgue measurable },

and let (E) be a sequence of sets from 9). Now

g-1( U EJ) = U g-1(E,)
n=1 n=1

is Lebesgue measurable, and

g9-(E1 \ E2) = g-1(E1) \ g-1(E 2)

is Lebesgue measurable. Hence UEn E 9)1, (El \ E2) E 9), and
n=1

9) is a a-ring. Also g-1[(a,b)] is Lebesgue measurable for

a,b E R so that a < b since g is a Lebesgue measurable

function. Now 9) contains every open set; hence 9R contains

every closed set and every compact set. Thus 9 91, and

the lemma is true.

Now f1 is a Lebesgue measurable function and A is

Lebesgue measurable set, but f f(A) = P is not Lebesgue

measurable. Therefore A is not a Borel set. *

A function g is said to be absolutely continuous on

[0,1] if for E > 0, there exits a 6 > 0 such that

n

. g(x)- g(yi)I < E

when { (xi,yi) j 1 < i < n } is a finite collection of

non-overlapping open intervals from [0,1] so that

n

.N lxi - yj8 < 6. Observe that an absolutely continuous
i= 1

function on [0,1] is continuous on [0,1].
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Proposition 2.8: An absolutely continuous function on

[0,1] maps a set of measure zero to a set of measure zero.

Proof: Let g be an absolutely continuous function on

[0,1]. Let S C (0,1) so that the measure of S is zero. Now

before continuing, we need the following lemma on absolutely

continuous functions.

Lemma: If h is absolutely continuous on [0,1], then

for c > 0 there exists a b > 0 so that

00

E |h(xi) - h(yi)j < ei=1

when { (xi,yi) j i E IN } is a collection of non-overlapping

OD

open intervals so that Elxi - yij < 8.

Proof of Lemma: Let h be absolutely continuous on

[0,1]. Let e > 0; and let 6 > 0 so that

n
.EI|h (xi) - h (yi)| <

1= 1

f or { (xi,yi) | 0 ( i ( n } non-overlapping and
n
.E xi - yi| < S. Now let { (xi,yi) i e IN } be
1= 1

C

non-overlapping so that E Ixi - yJ < S. Hence

[ih(xi) - h(yi)| n is an increasing sequence bounded by .

Thus

.E Ih(x ) - h(yi) < E,
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and the lemma is shown to be true.

Now let c > 0; and let b > 0 so that

.Ijg(xi) - g(yI c<

whenever { (xi,yi) j i E IN } are non-overlapping and

.E lxi - yJ <z 5. Since the measure of S is zero, let
j= I

{ (xi,yi) i E IN } be non-overlapping so that E lxi - Yil <
i= 1

and S C U (xi,yi). Now

g(S) C.U g[(xiyi)] .U g([xi~yi]
i= 1i= 1

Since g is absolutely continuous, g is also continuous.

Hence g attains its maximum and minimum on each [xi,yi].

For each i E I let xi,yI E [xi,yi] so that x < yi,

g[(xiyi)] g(Exi,yi]), and Ig(xi) - g(yi)j is a maximum.

Now { (xi,yi) j i E I } is non-overlapping and

g(S) Q U g([xyi]).
1= 1

Hence

V~g (S)] <.E Vfg [(xi, yi)]

5 Ig(xi) - g(yi)l < E

since

. lxj - yjj . 1Ixi - yj < 5.
i= 1 1

Therefore the measure of g(S) is zero.

Recall from Theorem 2.7 that fI = f + Id, where f is the
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Cantor ternary function and Id is the identity map on [0,1],

and that v[f 1(T)] = 1. Thus f1 is not absolutely continuous

on [0,1]; hence the Cantor ternary function is also not

absolutely continuous on [0,1] since the identity function

is absolutely continuous on [0,1].

Def ine the set 2 W as follows:

2W = { (ba) I (b.) is a sequence where

bnE {0,1} for each n E I }.

In the next theorem, we demonstrate yet another realization

of the Cantor ternary set. This realization will be

particularly important in the subsequent construction of a

non-trivial translation invariant measure on T.

Theorem 2.9: The Cantor ternary set is homeomorphic to

2".

Proof: Let h:T -+ 2w be a function so that

h(x) = (Ia.), where (a.) is the ternary expansion of x E T

such that a. # 1 for each n E M. Clearly h is well-defined

and bijective.

Now the topology on E is the relative usual topology

inherited from the real line, and the topology on 2W is the

product of the discrete topology on {0,1}. Observe that 2w

is compact since it is the product of compact sets. For

m E M let lrm : 2W - {0,1} be a function so that for
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y = (b.) E 2',v7r(y) = bm. By definition, the product

topology on 2W is the weakest topology on 2W so that each ?rm

is continuous for m E M. Hence for y0 = (ba) E 2"' and k E M,

a neighborhood of yo may be described as

k
N(yok) = .nIrif(bi)

i=1

= { yE 2"' | ri(y) = iri(yo) for 1 < i < k

Clearly 2"' with the product topology is Hausdorff.

To show that h is continuous, let x0 E C ,and let (a)

be the ternary expansion of x0 such that a t 1 f or each

n E W. Let N(h(xo),k) be a neighborhood of h(xo), let

x E (xO 1 1 Cxo + ) n , and let (c) be the ternary

expansion of x such that c. I 1 f or each n E I. Note that

1 1
(xO - axo + a) n E is a neighborhood of xO. Hence

GD OD

Ix- Xo I=anN n~l~X-X0 n 1 n

i n- an 1

Thus ai = ci and ri(h(xo)) = r (h(x)) f or 1 ( i < k.

Therefore h(x) E N(h(xo),k), and h is continuous.

Since both 2W and C are compact Hausdorff spaces and h

is a continuous bijection, h-' is continuous. Therefore h

is a homeomorphism between 2w and C, and 2W is homeomorphic

to the Cantor ternary set.

The statement that the ordered triple (G,*,J7) is a

topological group means that G is a set and * is a binary
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operation on G so that (G,*) is a group, 3' is a topology on

G so that * is continuous, and the function g on G defined

by g(x) = x~ is continuous. Now define * : 20 x 2"W - 2 w by

(an) * (ba) = ( (a + bn) mod 2 )

for (a.),(bn) E 2". Clearly (2W,*) is a group with identity

(on) and with (a)-' = (as) for all (a) E 2. Let P denote

the product topology on 2".

Theorem 2.10: The ordered triple (2,*,P) is a

topological group.

Proof: First to show that * is continuous, let

(an),(b.) E 2", and let N((an) * (b),k) be a neighborhood

of (an) * (ba). Now let

< (c),(d) > E N((an),k) x N((bn),k).

Hence (cn) E N((an),k), (d4) E N((bn),k), and ai = ci, b =di

for 1 < i k. Further

(ci + di) mod 2 = (ai + bi) mod 2

for 1l< i < k. Thus

(cs) * (do) E N((an) * (bn),k)

and * is continuous.

Now let g be a function defined on 2"' such that

g[(an)] = (a)- for each (an) E 2. Clearly g is continuous

since (a,)-' = (as) for all (a) E 2w. Therefore ( 2W,*,P) is

a topological group. *
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Hence if h is the homeomorphism between C and 2W from

Theorem 2.9 and * :CT x C - C is defined by

x * y = h-(h(x) * h(y))

f or x,y E E, then clearly * is continuous and (E,*) is a

group since * is continuous, h is a homeomorphism, and

(20,*) is a group. Now to show that (E,*,Usual) is a

topological group, define g Ct x C - E by g(x) X-1.

Clearly g is continuous since x-1 - x for all x E C. Thus

(C,*,Usual) is a topological group.



CHAPTER III

HAAR INTEGRAL

In this chapter we establish the existence of a Haar

integral on locally compact and Hausdorff topological

groups. For the remainder of this paper, let G be a locally

compact and Hausdorff topological group, and denote the

binary operation on G by + and the identity element by 0.

Observe that a locally compact and Hausdorff topological

group is also completely regular; a proof of this fact may

be found in O'Neal [2, p. 160]. Before proceeding, we

establish some notation and terminology. A real valued

function f on G is said to have compact support if there

exists a compact C C G so that f(G \ C) = {0}. Define the

set d to be

{ f: f is a continuous real valued function

on G with compact support },

define the set .9 to be

{ g : g E X so that g > 0 but g j 0 },

and for f E and s E G, define the real-valued function f

on G by fs(x) = f(x - s). A Haar integral I on G is a

linear real-valued function defined on X so that I j 0,

I(g) 0 for g E Y, and I(fS) = I(f) for all f E e and

s E G. A set V E G is said to be symmetric if V contains

25
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the inverse of each of its elements, and a real-valued

function f on G is said to be symmetric if f maps each

element in G and its inverse to the same real number.

Theorem 3.1: If f E e and E > 0, then there exists a

neighborhood V of 0 so that I f(x) - f(y) < when

x - y E V.

Proof: Let f e and E > 0. Note that given

x,y E G, there exists z E G so that x - y = z and x = z + y.

Let E > 0, and let

V = { z E G : f(z + y) - f(y) I< e ffor all y E G }.

Clearly 0 E V since

I f(O + y) - f(y) I = j f(y) - f(y) | = 0;

and | f(x) - f(y) E< whenever (x - y) E V. All we need

now is to show that V is a neighborhood of 0.

Let h : G x G -- R be a function so that

h(z,y) = I f(z + y) - f(y) |;

hence h is continuous since addition is jointly continuous

in G and 1.1,f are continuous. Since f has compact support,

let C C G be compact so that f(G \ C) = {0}; and since G is

locally compact, let V be a compact neighborhood of 0; and

let S = V n (-V). Clearly S is a symmetric compact

neighborhood of 0.

Now let D = S + C. Note that D is compact since D is
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the continuous image of the compact set S x C. Since

h(O,y) = 0 for all y E G, for each x E D let N be a

neighborhood of (O,x) so that h(z,y) < E for all (z,y) E N .

Note that N ;) Ux x Ax for some neighborhood Ux of 0 and

some neighborhood AX of x. For some n E I, let
xn

{x1 , ... ,x } g D so that D C U A since D is compact. Now
!=I Xi

n
let U = (nU ) n S. Clearly U is a neighborhood of 0.

i=1 Xi

Now we assert that U C V; for if z E U and y E G, and

if y E D, then for some 1 j < n, y E A . Also

n
z E fU C U, and thus (z,y) E N . Hence

j=1 Xi iX

I f(z + y) - f(y) I = h(z,y) < E,

and z E V. Now if y % D, then y 0 C and f(y) = 0. Also

(z + y) C; for if (z + y) E C, then

y E (-z) + C C S + C C D,

which is a contradiction. Hence f(z + y) = 0 and

I f(z + y) - f(y) I = 0 < E.

Thus z E V, and U C V. Therefore V is a neighborhood of 0.

U

Before establishing the existence of a Haar integral on

G, we will establish the existence of a non-zero translation

invariant positive linear real-valued function defined on

9. We will extend the function on Y in order to obtain a
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Haar integral on G.

Theorem 3.2: If J0 is a real-valued function on .9 so

that

i) 10(g) > 0,

ii) 10(g + h) = 10(g) + 10 (h),

iii) 10(c-g) = c-10 (g), and

iv) J0(gs)=10(g)

for g,h1E 9, c > 0, and s E G, thenlI, can be extended to a

unique Haar integral on G.

Proof: Let f E , and let g,h E Y so that f = g - h.

Clearly there exists such g and h since

f = (f, + fo) - (f- + fo)

for any f0 E Y. Now define I : e-R by

I(f) = 10(g) - 10(h).

Suppose g',h' 9' so that f = g - h; hence

g + h =g + h. Thus

I0 (g) + I0(h) = IO(g) +IO(h),

and

10(g) - 10(h) = 10(g) - I0(h).

Hence I is well-defined. Now

I(g) = 10(2-g) - 10(g) = 2.10 (g) - 10(g) = 10(g)

and I extends I0. Clearly I is translation invariant on e

since I0 is translation invariant on Y, and
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J(0.f) = IO(g) - IO(g) = 0-I(f).

Now

I(-c.f) = I(c.h) - IO(c-g)

= c.-O(h) - c-I(g)

= -c.[ 0 (g) - IO(h)]

= -c-I(f).

Let f1 ,f 2 E , and let g1 ,h1 ,g2 ,h 2 E 2 so that f1 = gl - h1 and

f2 = g2 - h2 . Note that

I(f 1 + f2 ) = 10 (g 1 + g2 ) - 10 (hi + h2 )

= 10 (g 1) + 10 (g2 ) - IO(h1 ) - IO(h2 )

= I(f1 ) + I(f2 ).-

Thus I is linear. Therefore I is a Haar integral on G.

Clearly I is unique since every f E % can be decomposed as

f = g- h for some g,h E 2.

For f,g E 2, the statement that g covers f means that

there exists elements {sO,...,sj G and positive numbers

n n

cl,. . so that f < ESci-g for some n E I. Now )Jc-g is
i=1 Sii=1 Si

said to be a covering of f by g.

Theorem 3.3: If f,g E 2, then g covers f.

Proof: Let f,g E 2, and let C C G be compact so that

f(G \ C) = {0}. Let M > 0 be a bound for f. Now since g is

continuous and not zero, let U be open so that g is bounded
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away from zero on U, and let y1 > 0 be such a bound. Let

V = { U + {s} : s E G}.

Clearly V is an open covering of C; hence let

n

{si, ... ,snj c G so that C C (U + {si})

for somenEN. Let c1 =MfortI < i < n.

n
We assert that f (x) E c.gs(x) for all x E G. The

assertion is clearly so if x E G \ C. Now if x E C, then

x E (U + {si}) f or some 1 < i < n. Hence (x - si) E U,

g(x - sj) r, and gsi(x) y. Now

ci.g(x) My -= M > f(x).
i 77

Thus f(x) < *Yci-g (x) f or all x E G. Theref ore g covers f

n
and .E ci-g is a covering of f by g.

i=1 Si

Now for f,g E Y, define (f : g) to be

n n

inf{ .ci ).ci-g is a covering of
i= =1 Si

f by g for some si,...,s, E G }.

We call (f g) the ratio of f to g.

Theorem 3.4: If f,g E Y, then (f : g) -where

N

N = sup{f(G)}, and N = sup{g(G)}.

Proof: Let f,g E Y. Let M = sup{f(G)}, and let
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N = sup{g(G)}. Clearly 0 < M,N < w since f and g are

n
non-zero and bounded. Now let ISci-g be a covering of f by

j=1 s

g. Hence

n n
f <.E ci-g 5N,.E co;i=1 Si i=1

n 1W n M
thus M < N-.Eciand - <Eci. Therefore (f g) >-.

1=1 N i=1 N

Observe that (f : g) > 0 for all f,g E Y. Next we will

show that (a : h) is translation invariant, linear, and

monotone for any h E 5.

Theorem 3.5: If f ,g,h E .9, c > 0, and s E G; then

i) (fS : h) = (f h),

ii) (cf :h) = c.(f:h)

iii) (f + g : h)= (f :h) + (g:h),

and

iv) if f < g, then (f : h) < (g : h).

Proof: Let f,g,h E 5, c > 0, and s E G. Now let

n M
S ai-h be a covering of f by h, and let Ebi-h be a
j=1 Si i=1 ti

covering of g by h. Note that

n n
f < E ai.(hE) = Sa.-hs -i= I Si s i= (si + S)

hence (fS : h) (f : h). Now (f(s - s) : h) (fs : h)

since f = (f_)-s; hence(s-S) )*
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(f1%: h) = (f : h) < (f :h).

Thus (fs h) = (f :h).

n n
Now note that c-f < E c-ai-h thus E (c.ai)-h is a

~i=1 a sh5  i=1 s

covering of c-f by h. Hence (cf: h) cEaj, and

(c-f h) < c-(f : h). Now

(f h) = (1-c-f h) {(c.-f :h),

and c-(f h) (c.f h). Thus (c-f : h) = c(f :h).

Note that

n m
f + g .Ea-h + Ebi-h

1=1 Si =1 tj

n m
hence (.E ai-h + E bi-h ) is a covering of (f + g) by h.

1=1 Si 1=1

Thus

n n
(f + g h) .Eaj+.Eb

:1=1 i=1

and

(f + g :h) (f : h) + (g : h).

Now if f < g, then

n n

{ .Eci c.ECih is a covering of g by h }1=1 i=1 Si

is a subset of

n n

{ .Eci | .ECih is a covering of f by h }.1=1 1=1 Si

Thus (f h) (g : h).

Lemma 3.6: If f,g,h E 9, then

(f : h) (f : g)-(g : h).
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n
Proof: Let f,g,h E 51, let Eci-g be a covering of f

by g, and let jld *h be a covering of g by h. Hence
j13 tj

n n M
f < E ci-g < E ci-( E d .

-1=1 Si -11 j=1 ht s

n M
=E ( Eci-d-h)

i=1 j=1 h(Si + t ))

n in

and E(Ec i-d .h + )) is a covering of f by h. Thus
i=1 J=1 (Si + t)

n inn i

(f : h) E(Eci-d) = (E ci) - ( d).
i=1 j=1 i=1 j=1)

Therefore (f : h) (f : g) - (g : h) .

Lemma 3.7: If f,g,h E Y, then

1 <(f:gf(f:1h).
(h : f) (h: g)

Proof: Let f,g,h E Y. Hence

(h : g) (h : f).(f :g),

and

(f : g) < (f : h).(h : g).

Thus <,and { g (f : h) . Therefore
(h:f) (h:g) (h:g)

1 ( (f : h).
(h : f) (h : g)

For the remainder of this chapter fix f0 e 9A. Now for
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f ,g E Y, define Af(g) to be ; hence
(f0: g)

1 < Af(g) (f : f0).
(f0: f)

For each f E 5, let

X [(f : f].
(fo: f)

Clearly Af(g) E Xf for each g E 5. Define the set X to be

H Xf; hence X is compact by the Tychonoff product
f E Y

theorem. Define A(g) E X by (A(g))f = Af(g) for each f E 5.

Now for each neighborhood V of 0, define Fv to be

{ A(g) j g E 5 so that g is symmetric

and g(G \ V) = {0} }.

Lemma 3.8: For each neighborhood V of 0, Fv is not

empty.

Proof: Let V be a neighborhood of 0, and let V be a

compact and symmetric neighborhood of 0 so that V C V.

Since G is completely regular, let f E 5 so that

f(G \ V) = {O}; and let g(x) = f(x) + f(-x) for x E G.

Clearly g E 5 and g is symmetric. Now g(G \ W) = {0} since

V is symmetric and f(G \ W) = {O}; hence g(G \ V) = {O}

since V C V. Therefore A(g) E FV. U

Theorem 3.9: There exists I E X so that if n E IN,



35

{f ,..., ,} gY, V is a neighborhood of 0, and E > 0, then

I Af(g) - If I < C

for 1 i < n and some symmetric g E .9 so that

g(G \ V) = {0}.

Proof: Let

5 = { P : V is a neighborhood of O}.

Now if U,V are neighborhoods of 0, then

F(U V) C FU n Fy

since if g E :Y is symmetric so that g(G \ (U n V)) = {0},

then

g(G \ U) = g(G \ V) = {0}.

Hence

F(U n V) FU nflV'

and FlU nFv is not empty. Thus 5 has the finite

intersection property. Let I E n 5 since X is compact.

Now let n E and {fY,...,f,} ( Y, let Vbe a

neighborhood of 0, and let e > 0. Since n 5 Y CF, I E F.

Let N(I,fi,..., fj,) be a neighborhood of I; note that

N(I ,fi,...,fE) = { x E X : x If < e for1 < i < n}.

Now let A(g) E FV so that A(g) E N(If1,...,fac); hence

I Af (g) - I if <

for 1 i < n. By the definition of A(g), g E 9, and
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g(G \ V) = {0}.*

For the remainder of this chapter, let I be an element

of X that satisfies the conclusion of Theorem 3.9. Note

that for f (: .', If is the f-th coordinate of I.

Theorem 3.10: If ff E Y, c > 0, and s E G, then

i) If > 0

ii) I(f + f') f + If,

iii) Ic-f =c-If,

and

iv) If =
S

Proof: Let f,f E 9, c > 0, and s E G. Clearly since

if E Xf, If I > 0. Let c > 0, and let symmetric
(f0: f)

g E Y so that

Af(g) - fIf < <,

Af'(g) - I 6<,

SAC-f(g) ~Ic-f <

Af (g) If j < < ,
s s

and

| A(f + f')(g) ~ I(f + f') <

Note that Ac-f(g) = c-Af(g), Af (g) = Af(g), and
s
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A(f + f')(g) A (g) + Af'(g)

by the ratio properties of Theorem 3.5.

Now

I(f + f') A(f + f')(g) + f

Af(g) + Af'(g) + E

< I + I + 3-

and

Sc-If - Icf < c-E + C;

also

I - if| < 2-c

by the triangle inequality. Thus I(f + f ) I f + If,

Ic.f = c-If, and If = If.

Lemma 3.11: If f,h,h E .9 so that h + h ( 1, then

1fh + Ifh' < If,

Proof: Let f,h,h E ' so that h + h < 1, and let

c > 0. Now by Theorem 3.1, let V be a neighborhood of 0 so

that

| h(x) - h(s) < e and I h'(x) - h'(s) j < f

whenever (x - s) E V. Let g E Y so that g(G \ V) = {0},

n
and let .Ec-g be a covering of f by g. Hence for x E G,

n
f(x).h (X) *Eci.g (x)-h(x)



n

f Ocigs(x)h-(h(si) + c)

n
fh < .E ci- (h(si) + c) -g- 1=1 Si

since for 1< i <1n, g s(x) =0 if (x - si) 0V.

Hence

(fh : g) + (fh

Likewise

, n,
fh < Eci- (h (si) + E)gs

n
g) < ci-(h(si) + h (si) + 2-E)

n
SE ci-(1 + 2-0).

i=l

Thus

(fh g) + (fh g) (f : g).(1 + 2-E),

and

Afh(g) + Afh'(g) Af(g)

for all g E Y so that g(G \ V) = {0}.

Let symmetric g E Y so that g (G \ V) = {0},

I A (g) - If < e,

JAfh(g fh I E

and

-Afh fh ( E
Thus

fh + Ifh' < Afh(g ) + Afh'(g) + 2-E

< Af(g ) + 2-E < If + 3-E

again by the triangle inequality. Therefore

and

38
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1 fh + Ifh s Tf'

Lemma 3.12: If f,f E Y, then

I(f + f) = + If'

Proof: Let f,f E Y, and let C C G be compact so that

f(G \ C) = f (G \ C) = {O}. Before continuing, we need to

establish the following sublemma.

Sublemma: If D C U C G so that D is compact and U is

open, then there exists g E Y so that g(D) = {1} and

g(G \ U) = {o}.

Proof of sublemma: Since G is completely regular, for

each x E D there exists gX E Y so that (gX)(x) = 2 and

(gX)(G \ D) = {0}. Now for each x E D, let

Ux = (gx)-1[(1,3)]. Clearly each U is open and contains x.

Hence { U : x E D } is an open cover of D. For some n E N,

n , n

let {x1 ,...,x}9Dso that D C UU . Now letg =.E g',
i=1 Xi i=1

and let g = min{g,1}. Clearly g E 9, g(D) = {1}, and

g(G \ U) = {o}. Thus the sublemma is true.

Now let f' E Y so that f(C) = {t}. Let c > 0 and

F = f + f e-f. Clearly F E Y, and F(x) >e for x E C.

Let h be a function on G so that
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h(x) = F(x) if x E C

L 0 otherwise

clearly h is continuous on C. Let A = f-1(0); hence

G \ C C A and G = A U C. Now h is continuous on A, and A is

closed since f is continuous. Note that C is closed since G

is Hausdorff; hence h is continuous on G, and h E 9. Define

h similarly; likewise h E 9.

Clearlyh(x) +h (x) =0< 1 forxE G\ C. Now

hi(x) + h'(x) - f(x) + f'(x)

F(x)

f(x) + f'(x)
f (x) + f (x) + -f (x)

for x E C. Thus h + h < 1. Note that f=Fh and f=Fh.

Hence

If + If' = Fh + Fh' F'

and

'F I(f + f') + efI .

Thus I, + If' < I(f + f). Therefore I(f + f) =I 1f + I f

since we already had that I(f + f') <f + If'

Now we are ready to show the existence of a Haar

integral on G.

Theorem 3.13: There exists a Haar integral on G.
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Proof: Def ine the function I on 9 so that

IO(f) =if >0 for f E Y. Now

I 0(f + g) = I(f + g)=if +1I = IO(f) + I1(g)

IO(c-f) = Ic-f = C.If =C-IO(f),

and

IO(f s=If =f= 1(f)

f or all f ,g E Y, c > 0, and s E G. Thus I can be extended

to a Haar integral on G. *

Observe that given any f E Y, there exists a Haar

integral Jon G such that if n E IN and {f1, .. , ,Vis

a neighborhood of 0, and E > 0, then there exist a symmetric

g E Y so that g(G \ V) = {O} and

(f : g) - J(f) j <
(f : g)

for I < i < n.

Theorem 3.14: If C C G is non-empty and compact,

n

n E l, and U1,. .. ,U are open so that C C U U, then there
i=1

exists continuous functions f ,...,fn E d such that

E f] (C) = -{1}, each 0 < f1 5 1, and each U1 supports fj.[1=1

Proof: Let C C G be non-empty and compact. Let n E IN,

n
and let U1,...,U. be open and non-empty such that C g .UUP.

-=1

Before cont inuing the proof, we establish the following
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lemmas.

Lemma 1: If D is compact and V1,...,Vn are open so

n
that D C U Vi, then there exists continuous functions

i=1 ~

g1,--- ,gn on D such that [gj(D) = {1}, and for 1 < i n,

0 gi 1 and gi(x) = 0 for x ED \ Vi.

Proof of Lemma 1: Let D be compact, n E IN, and

n
V1,...,V, be open so that D C U Vi. We assert that if U and

Vi=1

V are open so that D C U U V, then there exists compact E

and F so that E C U, F C V, and D C E U F. In fact, if U

and V are open so that D C U U V, let A and B be open so

that D\U[A, D \ VCB, and A n B is empty. Let

E = D \ A and F = D \ B; hence E and F are compact. Note

that:

E = D \ A CD \ (D \ U) = U n D CU;

likewise, F C V. Also

E U F = D \ (A n B) = D

since A n B is empty. Thus the assertion follows.

Hence, by using induction, we let D1,...,D1 be compact

n
so that D = U Di and D. [ Vi for 1 < i n. Further, for

j=1

1 < i n, (using the sublemma in the proof of Lemma 3.12)

let hi be continuous so that 0 < hi 1, hj(Dj) = {1}, and

n
hi(x) = 0 for x E X \ Vi. Leth= .E hi; clearly h is

i=1



43

r h-continuous and h(x) > 1 for x E D. Now let gi = -for
h

1 ( i < n. Hence each gi is continuous, and gi(x) = 0 when

x E D \ Vi for 1(<i < n. Note that

gi(x) = h(x)
i=1 h(x) h(x)

for x E D. Thus lemma 1 is true.

Lemma 2: If D is compact, C is a closed subset of D,

n
and V,... ,V1 are open so that C C UV, then there exists

continuous functions g,. . . , gn on D such that

Ijngi](C) = {1}, and for 1 < i < n, 0 < gi 1 and gi(x) = 0

for x E D \ Vi.

Proof of Lemma 2: Let D be compact, C be a closed

n
subset of D, and V1,... ,V be open so that C C .UVi. Let V,,

i=1
n+1

be open so that V,+, n D = D \ C; hence D CU V1. Now by
- 1=1

lemma 1, let gi, ... ,gn+i be continuous on D such that

[1gi](D) = {1}, and for 1 i n + 1, 0 O gi 1 and

gi(x) = 0 for x E D \ V. Hence EgiJ (C) = {1} since[i=1
gn 1+(x) = 0 for x E D \ Vn+ 1 = C. Thus lemma 2 is true.

n
Now let C1 , ...,C be compact so that C C *UCi and each

Ci C Uj. For each 1 <i < n, let hi E Y so that hi(C) ={1}
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and hi(X \ U) = {O}, Vi = h-h[(J,2)], and Di = hil([,2]).

Hence for 1< i < n, C C Vi g Di g Uj, Vi is open, and Di is

n
compact since hi has compact support. Let D = .U Dj; clearly

1=1
n

C C UVC gD. Now by lemma 2, let functions g1,....,g be
1=1

continuous on D such that [)gi] (C) = {1}, and f or 1 < i < n,

0 gi 1 and gi(x) = 0 for x E D \ Vi.

Now for each I < i < n, define fi by

_f gi(x) if x E D
iW = to otherwise'

thus Efi](C) = {1}, and for I i n, 0 f land

fi(x) = 0 for x E G \ Uj. Note that fi is continuous on D

since gi is continuous on D, and fi is continuous on G \ Vi

since f i(G \ Vj) = {0}. Hence f i is continuous on G since

G = (G \ Vj) U D and both D and G \ Vi are closed. Clearly

each fi has D as compact support.

Lemma 3.15: If C is a non-empty compact subset of G

and V is an open neighborhood of 0, then for some n E IN,

there exists elements s, ... ,s E G and functions

n

fig . .. ,f E 0so that C c UW +s}i=1

f [G \ (V + {s})] = {O}

for 1 ( i < n, and Ef}(C) = {1}.
Pi=t

Proof: Let C C G be compact and non-empty, and let W



45

be an open neighborhood of 0. Clearly { V + {s} I s E C }

is an open covering of C. Let m be the least n E IN so that

n
SC UV + {sj} where sj, ... 'sn E C. Hence let f,, ... ,fM

i=1

be continuous functions with compact support so that

0 < f1  1 and

fi[G \ (W + {sj})] = {0}

for 1 < i < m and Efi](C) = {1}.
11=1

Now suppose that for some 1 j m, f = 0; assume

that j = 1. Let x E C; hence for some 1 < i < m such that

n
i > 1, fi(x) > 0 and x E W + {s1}. Thus C ; UW + {sj,- =2

contradicting the definition of m. Therefore fi J 0 and

fi E Y for 1 < i < m. U

Next we would like to show that a Haar integral on G is

unique up to a positive scalar. We will first establish the

following lemmas.

Lemma 3.16: If J is a Haar integral on G, then

< (f : g) for all f,g E Y.
J(g)

Proof: Let J be a Haar integral on e, and let

f,g E Y. We claim that J(g) > 0. To see this let f' E Y

n
s o that J (f ) > 0, and let N C.g5 be a covering of f by g.
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/ n
Clearly f 0, and ci > 0. Now

I [n ncij(g
0 < J(f ) < J Eci.g] =E

i=1 S i=1

m
Thus J(g) > 0. Now let .E a.-g. be a covering of f by g.

j=1 ti

Hence J(f ) [ai.J(g) ,and <f) . a.Therefore
H e f J(g) =1

J(g)

Lemma 3.17: If C is non-empty and compact and f,f E 9

so that C supports f and f'(C) = {1}, then for any c > 0,

there exists a neighborhood U of 0 so that

(f g) s e(f: g) + Jg
J(g)

for any Haar integral J on G and any symmetric g E 9 such

that g(G \ U) = {0}.

Proof: Let C C G be non-empty and compact, and let

f,f E 9 so that C supports f and f (C) = {1}. Let e > 0,

and let U be a neighborhood of 0 so that

| f(x) - f(y) | E

whenever (x - y) E U. Now let symmetric g E Y so that

g(G \ U) = {0}, and let J be a Haar integral on G. We claim

that [f(x) - E].gx fgx for all x E G. For if x E G and if

y E G so that (y - x) E G \ U, then g (y) = g(y - x) = 0,

and the claim holds. Now if y E G so that (y - x) E U, then

f(x) - e < f(y), and
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[f(x) - eJ] -g(y) f(y) -g(y)

Thus this claim is true; hence

J([f(x) - e-g) J(fgj,

and

If W ] <J(f gx)
(*) [f(x) - e]5

J(gx)

Now let 6 > 0, and let V be an open neighborhood of 0

so that

I g(x) - g(y) I 5
whenever (x - y) E V. Now as concluded in Lemma 3.15, for

some n E E, let si,...,s n E C and h1,...,hn E 9 such that

n n
C g.Uw+ Isj} EhiJ (C) = {1} and W + {siJ supports hi f or

n
1 ( i ( n. Since C supports f , f = Shif; hence

n

fg = E hifg and
n

(**) J(fg) = J(hifg).

Now we assert that for X E G and 1 i < n,

higx [gx(si) + g].hi.

For if 1 K i < n and x E G and if y E G so that

y E G \ (W + {siJ), then hi(y) = 0, and the assertion holds.

Now if y E G so that y E V + {si}, then (y - s) E V. Hence

(y - x) - (si - x) = (y - si) E W,

and

g(y - x) - g(si - x) = g(y) - g(si) | 5.

Thus gx(y) g(si) + 6, and the assertion is true. Hence
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fhjg [g,(si) + ].fhi,

and

J(fhigX) [g,(si) + 6].J(fhi).

Now note from (*) and (**) that

n

.f [gx(si) + 6] .J(fhi)

J(g )

= . J(fhi)-g (x) + 6.
i=1J(g) 1 J(g)

n
for all x E G since g is symmetric and f = Eh f. Hence

i=1

f e + 6-~i)-f' + J(fhi).
J(g) j=1 J(g) Si

since C supports f and f (C) = {1}. Now

(f : g) e + S-)-.(fn: g) + . J(fhi).(g
(f g) JJgf)

Jgg)=1 
J(g) Si

= [E + 6.-LI](f': g) +
J(g) J(g)

since (gs g) = (g : g) = 1. Therefore
Si

(f :g) s E-(f': g) + J~)
J(g)

since 6 is arbitrary. *

Lemma 3.18: If J is a Haar integral on G and f E Y,

then there exists a neighborhood U of 0 and a bound

0 < N < w so that

(f : g).J(g) ( I

for all symmetric g E .9 such that g(G \ U) = {0}.
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Proof: Let J be a Haar integral on G, and let f E A.

Let C C G so that C supports f and is compact and non-empty.

Let f' E 9 so that f'(C) = {1}, and let 0 < e <
(f : f)

Now let U be a neighborhood of 0 so that

(f : g) E(f: g) +(f)
J (g)

for all symmetric g E Y such that g(G \ U) = {0}. Hence

(f : g)-J(g) E-(f': g).J(g) + J(f),

and

(f : g)-J(g) < E-(f': f).(f : g).J(g) + J(f).

Now

[1 - C.(f : f)].(f : g).J(g) J(f);

thus

(f : g).J(g)
[1 - c-(f :f)]

Clearly 0 < J<.
[1 - E.(f f)]

Now we are ready to establish the uniqueness, up to a

positive scalar, of a Haar integral on G.

Theorem 3.19: If J and J are a Haar integrals on G,

then J = c-J for some c > 0.

Proof: Let J and J be a Haar integrals on G. Now as

a consequence of Theorem 3.13, let I0 be a Haar integral on

G so that if nE M, f1i...,i9n E , V is a neighborhood of 0,
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and c > 0, then there exists a symmetric g E 9 such that

g(G \ V) = {0} and

( g) 1(f) < e
(f0: g)

for 1 < i < n. Let CO G be compact so that C0 supports f0 ,

and let f0  9E so that f 0 (CO) = {1}. Let f E Y with

compact support C, and let f E Y so that f (C) = {1}.

Now let E > 0, and let V be a neighborhood of 0 and let

M > 0 such that

(fo: g)-J(g) M,

(f g).J(g) 1 H,

(f 0: g) e-(f0: g) + 0)
J(g)

and

(f g) S -(f): g) +
J (g)

for all symmetric g E Y such that g vanishes

Since Jg)0  (f : g) and J(f) (f:),
J(g) 1 J(g)

(*) J(f0) S (fo: g)-J(g) S e-(f0e: g)-J(g) +

and

(**) J(f) (f :g)'J(g) S e-(f: g)NJ(g) +

for all symmetric g E 9 such that g vanishes

Now fix symmetric g E ' so that

{f:m)I - 10(f) <
(f: g)

and g vanishes outside of V.

Note that

outside of V.

J(f0)

J(f)

outside of V.
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J(f) (< :g)
E(f;: g)-J(g) + J(f0) (f0: g)

and

(f: g) E(f': g)-J(g) + J(f)

(f0: g) J(f 0 )

by combining (*) and (**). Hence

< IO(f) + E
f-M + J(f0 )

and

IO(f) - E E-M + J(f)

J(f 0 )

by the triangle inequality. Thus

IO(f) f,
J(f 0) J(f 0 )

and J(f) = J(f).-Io(f) for all f E Y and all f E c.

Likewise J = J (f0)-Io; hence -J f=0) -J. Clearly
J (f0 )

0) > 0.
J (f0 )

Observe that since the Cantor ternary set is a

Hausdorff and locally compact topological group, there

exists a Haar integral on t.



CHAPTER IV

HAAR MEASURE

In this chapter, given a Haar integral I on G, we will

establish the existence of a Haar measure on G which

represents E. For the remainder of this paper, let I be a

Haar integral on G. A Borel measure p on G is a measure

defined on the class of Borel sets of G so that p(C) < w for

all compact C. A set E E 93 is said to be regular with

respect to a Borel measure p if

p(E) = inf{ p(U) E C U where U is open and Borel }

= sup{ p(C) C C E where C is compact }.

Further a regular Borel measure A on G is a Borel measure on

G so that E is regular with respect to A for all E E 93.

Now a Haar measure on G is a non-zero regular Borel measure

SonG so thatjt(E+ {s}) = (E) for allEE 93ands E G. A

set B is said to be bounded if there exists a compact set C

so that B g C, and a set S is said to be o-bounded if there

exists a sequence (Cn) of compact sets such that S CgU Cj.
11

A content p on G is a set function defined for all compact

sets so that:

i) 0 <p(C) <,

ii) if C C D, then p(C) < <p(D),

52
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iii) p(C U D) o(C) + W(D)

and

iv) if C n D is empty, then

V(C U D) = (C) + V(D)

for compact sets C and D. Observe that p(4) = 0. Further a

content p on G is said to be regular if

W(C) = inf{ o(D) : C C U CD where U is open

and D is compact }

for all compact C. In this paper, the characteristic

function of a set A is denoted by RA. Now define the set

function A by

A(C) = inf{ I(f) : f E Y and k f }

for all compact C ; G. This set function A is important in

constructing a Haar measure on G.

Theorem 4.1: The set function A is a regular content.

Proof: Clearly A(t) = 0. To show that A is

non-negative, let C be compact; now let f E .9 so that

RC f; clearly there is such a function (by the sublemma in

Lemma 3.12). Note that I(f) > 0. Thus 0 < A(C) < w.

Now to show that A is monotone, let A be compact so

that A C C. Hence RA RC and RA f. Thus A(A) I(f) and

A(A) < A(C).

To show that A is subadditive, let B be compact and
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g E V so thatRB S g. Hence RC + RB N f + g, and

R(C U B) f + g. Thus A(C U B) I(f) + I(g), and

A(C U B) A(C) + A(B).

Now to show that A is additive, let D be compact so

that C n D is empty. Since G is Hausdorff and both C and D

are compact, let U and V be open such that C C U and D C V

and U nlv is empty. Let f,g e S so that

f'(C) = g'(D) = {1}, 0 f 1, O g 1, and

f (G \ U) = g'(G \ V) = {0}. Clearly N f' and RD g

Hence f + g'< t since U n V is empty. Now let h E Y/so

that R(C U D) < h; clearly RCND h. Note that

h(f' + g') h, RC < hf, and RD < hg'. Hence

A(C) + A(D) I(hf') + I(hg')

= I[h(f + g)] I(h).

Thus A(C) + A(D) A(C U D) and A(C) + A(D) = A(C U D).

To show that A is regular, let c > 0 and f E e so

that N0  f and I(f') A(C) + e. Now for each 0 < t < 1,

let

U= { x E G : f (x) > t }

and

Et= { x E G : f (x) t }.

ClearlyCC Utg Et, Ut is open, and Et is compact. Note that

NE 4 -f', and

A (E) 'JI(f ') (A(C) +
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for all 0 < t < 1. Now choose t so that

'.(A(C) + E) A(C) + 2-E.

Thus A(E) A(C) + 2.E, and

A(C) = inf{ A(E) C C U C E where U is open

and E is compact }.

Now define the set function A, by

A,(U) = sup{ A(C) : C is a compact subset of U }

for all open Borel sets U.

Theorem 4.2: The set function A, has the following

properties:

i) A,(*) = 0,

ii) A,(U) < w for every bounded open set U,

iii) A* is monotone,

and

iv) A, is countably additive.

Proof: Clearly A,j) = 0 since A(4) = 0. Let U be

open and bounded, and let D be compact so that U C D.

Clearly U is Borel since U = D \ (D \ U) and D \ U is

compact. Now for every compact C C U, C C D and

A(C) A(D). Thus A,(U) A(D) < w.

Now to show that A is monotone, let U and V be open
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Borel sets such that U g V. Let C be compact so that C C U;

hence C C V. Thus A (C) A,(V) and A,(U) A,(V).

To show that A, is countably additive, first let us

show that A, is subadditive. Let UJ,V be open Borel sets,

and let C be compact so that C C U U V. Now let D,E be

compact such that D g U, E C V, and C = D U E. Hence

A(C) A(D) + A(E) A(U) + A,(V)

A,(U U V) A(U) + A,(V)

and A* is subadditive. Now let (U.) be a sequence of open

Borel sets; hence

A U U < E A*,(Ui) E A*,(Ui)

for each m e N. Thus A4UU< .XA,(Ui), and A is countably
i=1 i=1

subadditive.

Now to show that A* is countably additive, let us first

show that A is additive. Let U and V be Borel open and

disjoint, and let C and D be compact such that C C U and

D C V. Clearly C n D is empty. Hence

A,(U U V) A(C U D) = A(C) + A(D),

A*(U U V) A(U) + A,(V) ,

and A* is additive. Now let (U.) be a sequence of disjoint

CD

open Borel sets. Clearly U U is an open Borel set. Hence

A~.u~] [.I Ui] =

Af eac I sn A is moU n. A(Us)

f or each m E M since A, is monotone . Thus A, U U > N.EA*,(Ui),
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and A*[U US = . A,(U) .
Ii= 1 1 =1

A hereditary C-ring A is a c-ring so that if A E .

and B C A, then B E A. An outer measure p on a hereditary

c-ring 9 is a set function defined on A so that p is

non-negative, monotone, countably subadditive, and p(#) = 0.

For the remainder of this paper, define the set M to be

{ A C G : A is a-bounded },

and define the set function A* by

A*(A) = inf{ A,(U) A C U where U is Borel open }

for all A E M.

Theorem 4.3: The collection X and the set function

A* have the following properties:

i) X is a hereditary a-ring,

ii) A* is an outer measure on X,

iii) A*(A) < w for all bounded A E X,

iv) A* extends A,

and

v) if U C D where U is open and D is compact,

then

A* (U) = A (U) A (D) < A* (D).

Proof: Clearly M is a hereditary c-ring since the

countable union of c-bounded sets and a subset of a
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a-bounded set is a-bounded.

To show that A* is an outer measure on M, first note

that A*(A) 0 for all A E M since A,(U) 0 for all open

Borel set U, and A*(4) = 0 since A,(1) = 0. Let A,B E M so

that A C B, and let U be an open Borel set so that B C U.

Hence A ; U and A*(A) A,(U). Thus A*(A) A*(B), and A* is

monotone. Now let (A) be a sequence from X, and let

e > 0. For each n E IN, let U be Borel open such that

A CU, and A,(U) A*(A) + . Hence UA UQ, and

A*[.UAi] S A4.UUi] S .EA(Ui)
i=1i=1 j=1

ci,
< E + .EA*(A)

i=1

r* i * *
Thus A* LU AiJ EA (A), and A is an outer measure on M.

Now let A E M so that A is bounded, and let C be

compact so that A C. Since G is locally compact, let U be

open and bounded so that C C U. Thus A Q U, and

A*(A) A,(U) < <.

To show that A* extends A*, let U be Borel open.

Clearly A*(U) S A,(U). Now AJ(U) < A(V) for all open Borel

V such that U C V. Hence A,(U) A*(U). Thus A*(U) = A,(U)

and A* extends A*.

Now let U be open and D be compact such that U D;

hence U is bounded and Borel, and A*(U) = A,(U). Now

A(D) S A,(V) for all open Borel V such that D C V; hence

A(D) A (D). Also A(C) S A,(U) and A(C) < A(D) for all
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compact C C U; hence AJ(U) A(D). Thus

A*(U) = A,(U) A(D) A*(D).

A set E C M is said to be A*-measurable if

A*(A) = A*(A n E) + A*(A n E)

for all A E M. Let 9JA be the collection of all

A* -measurable sets in M.

Theorem 4.4: The collection 9JA is a a-ring.

Proof: First to show that 9)1 is a ring, let E,F E 9)1

and A E .Now

A* [A n (E U F)] = A*[A n (E U F) n E] + A*[A n (E U F) n E]

= A*(A n E) + A*(A n E n F).

Hence

A*[A n (E U F)] + A*[A n (E n F)]

= A*(A n E) + A*(A n E n F) + A*(A n E n F)

= A*(A n E) + A*(A n E) = A (A),

and (E U F) E 9R1. Note that E \ F = E n F, and

-(E \F) =EUF. Now

A* [A n (E U F)] = A*[A n (E U F) n F] + A*[A n (E U F) n F]

= A(An F) + A(An En F)

= A*(A n F n E) + A*(A n F n E)

+ A*(A n IE n F).



60

Hence

A*[A n (E n F)] + A*[A n (E U F)]

= A*(A n E n F) + A*(A n E n F)

+ A*(A n E n F) + A*(A n E n F)

= A*(A n E) + A*(A n E) = A*(A).

Thus (E \ F) E 9R1, and 9N1 is a ring.

Now to show that 9)1 is a a-ring, let (E.) be a sequence

of disjoint sets from 9R1. Note that

A*[A n (El U E2 )] = A* [A n (EU E2) n EJ]

+ A*[A n (E, U E2) n E 1

= A*[A n E1] + A*[A n E2]

since El and E2 are disjoint. Hence for each n E N,

Sn n *

A*[A n UEi] =SEA (A n E1).

Now

A*(A) = A*[A n fUEi]] + A*[A n ~[UEi]

n a

.EA (A n Ei) + A*[A n 4UE ]
i=1 i=1

for all n E M since ~ UE] C UEi]. Hence
Go W

A*(A) .EA* (A n EJ) + A*[A n~UE ]
1=1 i=1

A*[A n UEil] + A*[A n ~UEi]]

Therf ore U Ei E 91, and 9)1 is an --ring.
O =a

Observe that A* is a countably additive measure on 9)1.
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Lemma 4.5: If A E X so that

A* (u) = A* (u n A) + A*(u n A

for all open Borel sets U, then A E 9A .

Proof: Let A be such a set in M, and let B E M. Now

AJU) = A*(U) = A*(U n A) + A*(J n A

> A* (B n A) + A*(B n A)

for all open Borel sets U such that B g U. Hence

A*(B) A*(B n A) + A*(B n A).

Thus A E M.*

Theorem 4.6: Every Borel set is A*-measurable.

Proof: Clearly 93 C M since every Borel set is

a--bounded. Let C be compact, and let U E 93 so that U is

open. Now U n C is Borel open since C is closed. Let

D c U n so that D is compact; hence U n D is also Borel

open. Let E c U n D so that E is compact. Clearly D n E is

empty, D U E [ U, and U n C c U n D. Hence

A*(U) = A,(U) A(D U E) = A (D) + A (E) .

Now

A,(U) A(D) + A,(U n D)

since E :is an arbitrary compact subset of U n D, and

A,(U) A (D) + A*(U n C)

since A* extends A* and is monotone. Thus
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A*(U) A(U n c) + A*(U n C)

since D is an arbitrary compact subset of U n C and A*

extends A*. Therefore C E 9)1, 3 C 93, and every Borel set is

A*-measurable. *

Note that A* is a Borel measure since A*(C) < w for all

compact sets C. For the rest of this paper, define 1 to be

A* and define the set 91 to be

{ A E 93 : A is regular with respect to A}

Clearly ya is a Borel measure.

Theorem 4.7: If (En) is a sequence from 91 so that

j(E) < m for each n E II and (F) is a sequence from 91, then

Go W

U Fj E 91, nE E 91, and (E, \ E2) E 91.
i=1 i=1

Proof: Let (E.) be a sequence from 91 so that

(E.) < m for each n E M, and let (Fn) be a sequence from 91.

Let E > 0.

To show that (E, \ E2) E 91, let U and V be Borel open

such that E E U, E 2 9 V, A(U) A(E 1) + ., and

A(V) < p(E 2) + -, also, let C and D be compact such that

C C El, D C E2 , j(E 1) A(C) + ', and p(E 2) p(D) + . Hence

p(U) - A(D) - < A(E1) - A(E 2) +

and

A(U \ D) t(EI \ E2) + c.
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Also

I - - (C) - +

and

p(E1 \ E2) (C \ V) + E.

Thus (El \ E2) e .

Now to show that the intersection of (E.) is in 9,

first let us show that a finite intersection of (En) is in

91. Let U andV be Borel open such that E, C U, E 2  V,

p(U) < pA(E ) + , and p(V) g(E2) + f. Hence g(U \ E1) j,
and p(V \ E2) 5 j. Note that (E n E2) E (U n V) and

(U n V) \ (E n E2) (U \ E1) U (V \ E 2)-

Thus

p(U n V) - (E n E 2) = [(U n V) \ (E1 n E2 )]

< p(U \ E1) + g(V \ E2) C.

Now let C and D be compact such that C C E, D C E2,

p(Eu ) ( p(C) + -g, and jt(E2) pA(D) + (. Note that

(C n D) (E1 n E2) and

(E1 n E2) \ (C n D) C (E \ C) U (E2 \ D).

Hence

pt(E1 n E2 ) - k(C n D) = p[(E n E 2) \ (C n D)]

< p(E Q \ C) + (E 2 \ D) ( e.

Thus (E1 f B2) E 91, and [fE] E i for each n E N.

Now since EnEil E for each n E M, we may assume that

(En) is a decreasing sequence. Let m E M so that
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/(Em) in Ed +6, and let U be Borel open so that E. C U
-Li= IU+

and p(U) p(Em) + j. Hence A(U) A E + e, and .flE i U.i=1 1=1

Now for each n E W, let C, be compact such that C E and

M 0000 ODp(E ) p(C,) + j. Clearly nCi is compact, nCi nE, and

o O 0

n Ej \ . C U (E \C)
ji=1 !=I 1=O1

Hence

IL[ 0O001 ( O OD

n Ei\ n < .E (Ei \ C) 'Ei<.i=1 i1 =1 1=1

Thus nE E N.

To show that the union of (F) is in 91, let us first

show that a finite union of (F.) is in 91. Now if p(F1 ) = O

or p(F2) =00, then clearly

p(FI U F2) = sup{ p(C) C ; (F, U F2) where C is compact }

= inf{ A(U) (FI U F2) 9 U for Borel open U }

Hence assume that p(F<) <w and p(F2) < w. Let U and V be

Borel open such that F1 g U, F 2 9 V, (U) iA(F1 ) + j, and

A(V) p(F2 ) + c, and let C and D be compact such that

C C F, D C F2 , (F) p(C) + ", and p(F2 ) A ,(D) + j. Note

that (F, U F2) C (U U V) and

(U U V) \ (FI U F2) C (U \ F1) U (V \ F2)

Hence

4[(U U V) \ (FI U F2)] (U \ F1) + g(V \ F2) .
Also note that (C U D) C (FI U F2) and
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(F IU F2 ) \(C U D) (F,\C) U (F2 \D).

Hence

p[(F1 U F2) \ (C n D)] p(FI \ C) + t(F2 \ D) s E.

Thus (F1 U F2 ) E 91, and U F] E 91 for each n E W.
[ni=

Now since UFi E 91 for each n E N, assume that (F) is

an increasing sequence. Note that

P{UF] = lim p (Fi).

1=1i -

If = , then clearly

IL UF = sup{ t(C): C tUuFi where C is compact }

= inf{ p(U) : UF C U for Borel open U }
=[oi=1

Thus assume that AU Fi] <w. Let m E M so that
i=1 i

iu4.' F] ip(FM) + and let C be compact so that C C Fm and
ODo

/(Fm) p(C) + . Hence A U F ]<p(C) + e, and C c .UFi. Now
i=1j=1

for each n E N, let Un be Borel open such that F. U and

O OD

(U,) up(F.) + E Clearly U Fi .U U, and
-n i=1 i=1

00 CO 00

UU \ UFi = U (Ui \ Fj).
i=1 1=1 i=1

Hence

.U U\ .U F] .)E(Ui \ F1) . 2E =
=1 *

Thus U Fi, j E N.
oi=1
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Furthermore note that the class of bounded regular

Borel sets form a ring. A monotone class A is a class of

sets so that if (E.) is an increasing sequence of sets in A

and (Fn) is a decreasing sequence of sets in A, then

U Ej E X and nFj E A.
1=1i=11

Theorem 4.8: If R is a ring, then A(R) = o(R); in

other words, the monotone class generated by R is the u-ring

generated by R.

Proof: Let R be a ring; clearly A(R) u(R) since

o(R) is a monotone class. Now for E,F C G, "E collaborates

with F" means that E \ F E A(R), F \ E E A(R), and

EUFE A(R). ForeachEC G, let

K(E) = { F : E collaborates with F };

clearly F E K(E) if and only if E E K(F). Now we assert

that if F C G so that K(F) is not empty, then K(F) is a

monotone class. Clearly if A E R, then R C K(A), and K(A)

is not empty; hence let F C G so that K(F) is not empty.

Let (En) be an increasing sequence of sets from K(F), and

(D.) be a decreasing sequence of sets from K(F). Now for

each n E M, E. \ F E (R), F \ E. E (R), and En U F E (R).

Hence

0CO

U (Ei \ F) =U E] \ F E A(R),
i=1 11=1
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OD rC

.U (Ei U F) = U E' U F E A(R)

and

00 C

n (F \ Ej) = F \ U EI E A(R)
i=1 Li=I

since (E, \ F) and (E. U F) are increasing sequences in A(R)

and (F \ E.) is a decreasing sequence in A(R). Thus

UEi E K(F). Similarly n D] E K(F). Hence K(F) is a

monotone class, and our assertion is true.

Thus A(R) g K(A) f or every A E R. Let E,F E A(R);

hence E E K(A) and A E K(E) for every A E R. Then R C K(E)

and A(R) 9 K(E). Thus F E K(E), and E \ F E 3(R),

F \ E E A(R), and E U F E 1(R). Therefore A(R) is a

a-ring and a(R) = A(R). *

Further if M is any monotone class so that R M, then

a(R) = 1(R) C M.

Theorem 4.9: The Borel measure p is a regular Borel

measure.

Proof: Let C be compact. Clearly

g(C) = sup{ g(D) : D C C where D is compact }

since p is monotone. Now

A(C) = A*(C) = inf{ AJ(U) : C C U for open Borel U }

= inf{ g(U) : C Q U for open Borel U }.
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Thus C is regular with respect to A, and C E 91.

Let W be the ring generated be the class of compact

sets; hence gC91 since the class of bounded regular Borel

sets form a ring that is contained in 91. Now let

91' = { EE93 : C n E E N for all C E }.

Clearly 6 C91 and 91 is not empty. Now we claim that 91

is a monotone class. For let (E.) be a decreasing sequence

from 91 , and let (Fn) be an increasing sequence from 91.

Clearly n E. e 93 and .UF F 93. Note that

c nUFiJ = .U,(C n F) E 91
i=1 i=1

f or all C E(F 'and that

C n nEil = 'nD(C n Ej) E 91

Go/

for all C E since each p(C fn E.) < o. Thus .nE E E91,

U F E 91 , 91 is a monotone class, and the claim holds.

Hence 9 = 93 since a monotone class that contains a

ring also contains the a-ring generated by the ring. Now

let E E 8; clearly E is c-bounded. Hence let (C) be a

sequence of compact sets such that E g UC. Note that
1i=1

E =U (E n Ci). Thus E E 91 since each (Efl C.) E91.
i=1

Therefore 93 = 91, and A is a regular Borel measure.

Theorem 4.10: The set function A is the unique regular

Borel measure that extends A.
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Proof: Let C be compact and E > 0. Now let D be

compact and U be open so that C C U C D and A(D) A(C) + 6

since A is a regular content. Hence

A*(C) A*(U) A*(D)

since A* is monotone. Note that A(C) A*(C) and

A(D) A*(D) as shown before. Thus, by Theorem 4.3,

A* (C) A(C) + e, and A(C) A(C). Theref ore

A(C) = A*(C) = pC)

and A extends A.

Now to show that p is unique, suppose that p is also a

regular Borel measure that extends A, but p t j1. Let E E 93

so that p(E) # p(E). Assume for now that p(E) < A(E) < w;

let b = p(E) - p(E). Now let A C E be compact so that

g(E) <j(A) + 6. Hence

A(E) < g(A) + p(E) - p(E),

and

p(E) < g(A) = p(A);

which is a contradiction since A C E. We attain a similar

contradiction if we assume that A(E) < p(E) < w.

Now assume, without loss of generality, that

p(E) < A(E) = x. Let B ; E be compact so that p(B) > p(E)

since p(E) = c. Hence p(E) < A(B) = p(B); which is a

contradiction. Therefore A is unique. *

The statement that a real-valued function f on G is
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measurable means that

f -1[(a,o)] \ f-'(0) E93

for all a E R. Observe that every function in e is

measurable. For a measurable function g so that g 0,

define J g dp by

n n
J g d = sup{ .E ai(Fi) :E aF g where n E ,

1=11=1 i

{a1,..., a} n R, and

{F1,...,F} is a collection

of disjoint Borel sets }.

Clearly if g = 0, then J g dA = 0, and if f is measurable,

then f' and f~ are measurable, f > 0, and f > 0. Further,

if f E e, then f E ' and f E e. Now for a measurable

function f, define J f dA to be

J fdy - J f-dy.

A measurable function f is said to be integrable if

J f d < w. Clearly if f E e, then f is integrable since f

has compact support. Observe that f - dg is linear on e,

e.g., see Royden [3, p. 267]. We now begin in the process

of establishing that A represents I.

Lemma 4.11: If C is compact and c > 0, then there

exists f E Y so that HC <f and

I(f) f f dp + e.

Proof: Let C be compact and E > 0. Now let f E Y so
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that RC f and I(f) A(C) + c. Hence

I(f) A(C) + c = A(C) + e 5 J f dA + E

since A extends A and RC 5 f. U

Lemma 4.12: If f E 9, then

J f fd S I(f).

Proof: Let f E Y and c > 0. Now let n E IN,

{aO, . . ., aj} G R such that each ai > 0, and {F1,...,F} be a

finite collection of Borel sets so that SaiRF 5 f and

n
J f dp .ENap(F) +.

1=1

Note that each Fi is bounded since f has compact support.

Before continuing, we need the following result.

Sublemma: There exists a finite collection {C1, ... ,C}

of compact sets so that each Ci Fi and

n n

Eapi(Fi) - Eai(C ) i ~2i=1 i=1

Proof of sublemma: Let

d = I + max{ a < : 1 i m

Since A is regular, let each Ci be a compact such that

Ci Fi and g(Fi \ Ci) 2 Clearly the Ci's are disjoint.

Thus

n n n

E aip(Fi) - E ai(Ci) = E as(Fi \ C)1=1 1=1 i=1
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i d-d-n-2

and the sublemma is true.

Now let {C1,...,C.j be a collection of disjoint compact

sets that satisfies the conclusion of the sublemma; clearly

n

f > .EaiRCi andi=1 d

n

J f dL .Eaaip(C ) +i=1

Now let {U,....,U.J be a collection of disjoint open sets so

that each Ci Ui, and let h,...,hE so that < hi< 1,

hi(Ci) = {1}, and hi(G \ Ui) = {0} f or 1 < i < n. Hence

n
.Ehi < 1 since the Ui's are disjoint. Note that aiRC. hif
i=1 1

for 1 i < n. Thus aiA(Ci) I(hif), and aip(Ci) I(hif) for

1 ( i ( n. Hence

n n I[in

.E aiA(C.) .EI(hif) =IEhi I(f).
i=J i=1 =1

Therefore J f dt I(f) + E, and J f dA I(f) since E is

arbitrary.

Theorem 4.13: The regular Borel measure A uniquely

represents I; in other words, A is unique so that

I(f) =ff d

for all f E .

Proof: Let f E Z Since J- dp and I are linear on ,
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we may assume that 0 < f < 1. Hence j f dg I(f). Let

E > 0, and let C be compact so that C supports f. Now apply

Lemma 4.11 and let g E Y 0so that % g and

I(g) < j g dp +e. Clearly f1RC g; hence g - f = 0 or

g-f E 59. Thus J(g -f)dg I(g -f),

J g dp - J f dAt I(g) - I(f),

and

I(f) I(g) - J g dp + J f dg

J f dg + E.

Hence I(f) = J f dg.

To show that 1z is unique, suppose that p is a regular

Borel measure so that I(f) = J f dp for all f E J, but

p f A. Since A and p are regular, let A be compact so that

p(A) j g(A); and let e = Ip(A) - p(A) |. Now let U be an

open Borel set so that A C U, p(U) pA(A) + je, and

p(U) p(A) + 4c. Let h E 9' so that 0 < h < 1, h(A) = {1},

and h(G U) = {0}. Hence R A h < RU. Now

A(A) J h d = I(h) <p(U),

and

p(A) 1f h dp = I(h) p(U).

Hence 1 I(h) - A(A) j < j, and I(h) - p(A) | *e. Thus

I A(A) - p(A) < < e, contradicting the definition of E.

Therefore A is unique. U

Now we are ready to show that p is a Haar measure on G.
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Theorem 4.14: The regular Borel measure A is a Haar

measure on G.

Proof: Since I is not zero, A is not zero. Suppose

that A is not a Haar measure; thus A would not be

translation invariant. Since A is regular, let C be compact

and s E G so that p(C + {s}) # (C). Let

E = I (C + {s}) - A(C) I > 0.

Note that C + {s} is compact. Let g,h E Y so that RC < g,

C + {s} < h, I(g) A(C) + je, and I(h) A(C + {s}) + c.

Now let f = min{ g,h(_s) } Clearly R C + {s} s

I(f) A(C) + +e, and I(fs) A(C + {s}) + iE. Since

I(f) = I(fs),

I A(C) - A(C + {s}) I < C,

and

I A(C) - g(C + {s}) I < C;

contradicting the definition of e. Thus A is translation

invariant. Therefore A is a Haar measure on G. *

Finally we are ready to show that A is unique up to a

positive scalar.

Theorem 4.15: If p is a Haar measure on G, then

p = c-M for some c > 0.
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Proof: Let p be a Haar measure on G. Let J be a

positive linear form on- e so that J(f) = J f dp for all

f E Y Clearly J is linear, positive, and not zero since p

is not zero. Let f E e, and s E G. Now we assert that

J fSdp = Jf dp. For if not, then assume without loss of

generality that J f dp > J fsdp, and let

E = J f dp - J fsdp;

further we may assume that f > 0. Now let n E I,

{aa,..1.9,j R, and {F,,...,F} be a collection of disjoint

Borel sets so that EaiR F f and
Fi

n
f f dp < .E ap (F i) + e

i=1

since p is translation invariant . Thus

n

f f dp <.aip(FI + {s}) + J f dp - J f dp,

and

n

j fdp < .E aip(Fi + {s})S 1=1

which is a contradiction. Hence J fsdp = Jfdp, and

J(fs) = J(f). Thus J is a Haar integral.

Now let c > 0 so that J = c-I. Hence J(g) = c.I(g),

J g dp = c-J g dt,

and

J g dp = J g d(c-A)
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for all g E e Therefore p = c-li since p is the unique

regular Borel measure so that J(g) = J g dp for all g E .

Observe that Lebesgue measure v is certainly a Haar

measure on R, but vIT = 0. The construction in chapters III

and IV produces a translation invariant regular Borel

measure p on E so that p(t) = 1. Note that

p({ x E T: a = 0 where (an) is the ternary

expansion of x so that each an j 1 }) =

p({ x E T: a1 = 2 where (an) is the ternary

expansion of x so that each an t 1 }) =

and

p(x E a1 = 0 and a2 = 0 where (as) is the ternary

expansion of x so that each a 4 1 }) = +

since p is additive and translation invariant.
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