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The purpose of this thesis is to examine certain
questions concerning the Cantor ternary set. The second
chapter deals with proving that the Cantor ternary set is
equivalent to the middle thirds set of [0,1], closed,
compact, and has Lebesgue measure zero. Further a proof
that the Cantor termary set is a locally compact, Hausdorff
topological group is given. The third chapter is concerned
with establishing the existence of a Haar integral on
certain topological groups. In particular if G is a locally
compact and Hausdorff topological group, then there is a
non-zero translation invariant positive linear form on G.
The fourth chapter deals with proving that for any Haar
integral I on G there exists a unique Haar measure on G that

represents 1.
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CHAPTER I
INTRODUCTION

The purpose of this thesis is to examine certain
questions concerning the Cantor ternary set. A basic
knowledge of analysis, topology, measure theory, and algebra
is assumed.

The initial portion of Chapter II deals with defining
the Cantor ternary set by the ternary expansion of elements
of [0,1] and proving its equivalence with the middle thirds
set of [0,1]. This portion of Chapter II shows that the
Cantor ternary set is closed, compact, and has Lebesgue
measure zero. Also Chapter II deals with defining a
continuous function on the Cantor ternary set that maps onto
[0,1]; additionaly, this function is used to prove the
existence of a measurable set which is not a Borel set.
Finally Chapter II deals with proving that the Cantor
ternary set is a locally compact, Hausdorff topological
group.

Chapter 111 is concerned with establishing the
existence of a Haar integral on certain topological groups.
In particular if G is a locally compact and Hausdorff
topological group, then there is a non—zerc translation

invariant positive linear form on G.



Chapter IV deals with proving that for any Haar
integral I on G there exists a unique Haar measure on G that
represents I. Further the Haar measure can be scaled so
that the measure of G is one. Thus there exists a mnon—zero
translation invariant regular Borel measure on the Cantor
ternary set.

In this paper R, Z, and N denote the reals, integers,
and naturals respectively, the end of a proof is denoted by

. the complement of a set A is denoted by A or A, the

closure of a set A is denoted by A, and the empty set is
denoted by ¢. A ring R is a collection of sets such that if
A and B are sets in R, then A U B and A \ B are both in R,

and a g-ring S is a ring so that if (A)) is a sequence of

sets in S, then j;#i is in S. Also in this paper the Borel
class of sets, denoted by B, is defined to be the ¢—ring
generated by the collection of all compact sets. By a
measure p we mean a non-negative and additive set function

on a ring % so that p(¢) = 0 and

W 3B = sup{ w(E) : i em)

where (E;) is an increasing sequence of sets from the ring

m
% so that l“EiE %. Observe that a measure is monotone
1=
and countably additive. The reader may consult Berberian
[1], O0’Neil [2], or Royden [3] for any terms in this paper

that have been left undefined.



CHAPTER II
CANTOR TERNARY SET

In this chapter we establish some fundamental
analytical and topological properties of the Cantor ternary
set. In order to facilitate our definition of the Cantor
ternary set, we begin by establishing the existence of
ternary expansions for elements of the unit interval [0,1].

For x ¢ [0,1] to have a ternary expansion means that there

exists a sequence (a,) so that a, € {0,1,2} for each n € N

oo
an
nd x = % .
and 021 gn

Theorem 2.1: If x € [0,1], then x has a ternary

expansion. Conversely if (a,) is a sequence so that

o
a, € {0,1,2} for every n € N, then El %ﬁ € [0,1]. Further
n=
if x € [0,1] so that x = gh for some m €¢ N and O < p < 3",
then x has two ternary expansions; otherwise, the ternary

expansion for x is unique.

Proof: Let x € [0,1]. Let
a, = max{ p € {0,1,2} | % <x b
hence %1$ x. Let
max{ p € {0,1,2} | %2 < (x - %i) }s

#

aq



note that { p ¢ {0,1,2} | g—2 < (x - %—1) } is not empty since

(x — %Q 2 0. Now for n ¢ N and n > 2, assume that

n -1
a;,...,a, have been chosen, x —11 312 0 and let

a, = max{ p € {0,1,2} | B, < (x —% 3D }.
Hence (a,) is a sequence so that a, € {0,1,2} for every

n € N. Note that for each n € N,

1
o< (x-3% 8 <3,

Now (x — 2 %}) - 0 since (f;n) — 0. ThereforeE %} = X,

and x has a ternary expansion.
Clearly if (a,) is a sequence so that a, € {0,1,2} for

every n € N, then

and E; 2i ¢ [0,1].

New let x € [0,1] so that x has two ternary expansions.
Let (a,) be a ternary expansion of x; now let (b,) be
another ternary expansion of x so that (a,) # (b,). Since
(a,) # (b,), let m be the least 1 € N so that a, ¥ b,.

Assume that a, > b,. Now

© ®
b; b; 2
x =X 3¢ b iR B3
m-1 ba+1 o
= -121 %1 Sm: $ E %: * %m * 1§+1 i
1]
ai
¢ i2=:1 3T

Hence b, + 1 = a,, and, for i > m, b; = 2, a; = 0, and



a, € {1,2}. Clearly if (c,) is also a ternmary expansion of
x, then (c,) = (a,) or (c,) = (b,). Thus x has at most two
. .y ai, _ aqm, 3 i
ternary expansions. Note that x = }% 33 let p = 3 -}a i
1= 1=

Clearly p € N; also, 0 < p < 3" since O ¢ ii:ll g—} < 1. Thus
X = gm where 0 < p < 3".

Now let m,p € N so that 0 < p < 3" and GCD(p,3") = 1,
where GCD means the greatest common divisor. Let x = gm.
Note that by the division algorithm there exists integers
b, , and p,_, so that

P = by 3" + pyy,
where 0 < by, < 3 and 0 < p,, < 3", Hence for i € N so that
2 ¢ i < m, there exists integers b, and p,; so that
Puist = Ppid™ + Posgs

where 0 < b,; < 3 and 0 < p,; < 3", Thus

et m-i
pl -+ iEI bm-i3

p

and

|
+
b1

m-1 D
1 m-i
g-m - m i:]_ _B_i_.
Note that p, € {1,2} since GCD(p,3") = 1. Now let a, = p,,
and for i ¢ N so that 1 { i < m let a; = b;ﬁ. Thus
oom gy milas o an-1 0 Q2
x'_i§1§i“'i§1§i+- 3 +h§qgr
Therefore x has two ternary expansions. [}

We define the Cantor ternary set, denoted by €, to be

all elements x € [0,1] so that x has a ternary expansion



(a,) where a, # 1 for each n € N. In the following theorem
we will show that the Cantor ternary set may be obtained
recursively by first removing the open middle third of [0,1]
and then removing the open middle third of the two remaining
closed intervals and then removing the middle third of the
four remaining closed intervals, etc. More specifically,
for a < b, define the "remove middle third" operator RMT on
[a,b] by

RMT([2,b]) = [a, 3-a + 5b] U [3a + 3:b ,b];

if S = ﬁlhq,bﬂ is a finite disjoint union of closed
i=
intervals, define
RMT(S) = _SIRMT( [a,,b.]) -
1=
Denote n—fold composition of the operator RMT by (RMT)"

where n € N. Define the middle third operator MT on [a,b]
by

[t4]
MT([a,b]) = 0 (RHT)"([a,b]).
Now MT([a,b]) is called the middle third set of [a,b].

Theorem 2.2: The Cantor ternary set ¢ is closed, and

¢ = ¥T([0,1]).

Proof: For each n € N, let
C, ={x¢€ [0,1] | if (a;) is a ternary expansion

of x, then a, = 1 };



and let

={xe€e [0,1] | x€ (1 g:l,l 3+2) where i € Z
so that 0 < i < 3*! },
the middle third open intervals. Note that the C,’s need

not be disjoint and the D ’s need not be disjoint. Clearly

® ®
= [0,1] \ UG, and MT([0,1]) = [0,1] \ UD.
Next we assert that D, = C, for each n € N. Let n € N.
Let x € G ; and let (a;) be a ternary expansion of x, hence

a, = 1. Clearly E] %; 3%3 for some k € 7 so that

0 <k < 37, Slnce a, must be 1, some a; = 0 for i > n and

some a; = 2 for j > n. Thus
n-1 w n-1
ai 1 ai ai 1
PR RE R A RIS B N-F 2
Let k be such an integer. Now

k+3+1 k 1 nel ay 1
gi- = §u1 T gn = igl '3': + 7

and
k-3+2  k 2  ngl a; 1
3o 7 3n-t * 3n 7 1231 gi 3n +1 §+1 i
©
. 2 1 k+3+1 k- 3+2
since h?u ;i = g5 Hence x € (Z—%5-, ), and x € D,.

Thus C, C b,. Now if x € D, with ternary expansion (a;),
i- 3+1 i 3+2) for

hence x € ( some i € 7 so that 0 € i < 37,
and a, must be 1. Thus D, ¢ C,, and C, = D, for every n € N,

Hence the assertion follows.

®
Thus € = [0,1] \ lﬁDn. Therefore the Cantor ternary
1=
set is equal to the middle thirds set of [0,1]. Clearly the



®
Cantor ternary set is closed since l&Dn is open. [
i=

Note that the Cantor ternary set is compact since it is

a closed subset of a compact set.

Theorem 2.3: The Cantor ternary set can be put into a

one—to—one correspondence with the closed interval [0,1].

Proof: Let £:[0,1] — € be a function so that
_xifxegec¢
) = {53t ge
for x € [0,1]. Clearly f is a function from [0,1] onto €.
Now similar to the ternary expansion of [0,1], there is
a binary expansion of [0,1]; i.e, for x € [0,1] there exists

a sequence (b;) so that b, € {0,1} for all n € N and

4]
X =n§1 gﬁ. Let g:¢ — {0,1] be a function defined by

g(x) = ni 5o
where (a,) is the ternary expansion of x € € so that a, ¥ 1
for all n € N. Clearly g is well-defined since there is
only one such expansion (a,) for each x € ¢, and g maps into
[0,1] since 4a, € {0,1} for each n ¢ N. Let y € [0,1] and
let (b,) be a binary expansion of y. Now (2b,) is a ternary

expansion of some number in [0,1] so that 2b, # 1 for every

®
2b
H§I—§§ € €, and

® ®
2bs] _ 2 ba
g[n§1 E] “n§1 Eg = Y-

n € K. Hence



Thus g is a function from ¢ onto [0,1]. Therefore there

exists a one—to—one correspondence between € and [0,1]. [l
A set P is said to be perfect if the set of
accumulation points of P is the set P itself; hence P is

also closed.

Theorem 2.4: The Cantor ternary set is perfect.

Proof: Let ¢’ be the set of accumulation points of €.
Clearly ¢ C ¢ since € is closed. Let ¢ > 0. Let x € €; let
(a,) be the ternary expansion of x so that a, # 1 for every
n € N. Let m be the least n ¢ N so that %i < €. Let (b,) be

a sequence so that b, = a, for each n # m and

_J 0 if a
b = { 2 if az

2
0

n

Hence (b,) is a ternary expansion so that b, # 1 for all
neN Thus 3 D2 ec. Now
. ney .3_1_1- .

m b o W b
|an§13-3-| ln{}]%%mn.elg%l

= | zm— 3w | =35 < e
Thus x € € and € C ¢ . Therefore ¢ = ¢ , and the Cantor

-

ternary set is perfect. ||

Now for x € [0,1], let (a;) be a ternary expansion of

x. Let N =w if a; # 1 for all n € N; otherwise let N be



the least n € N so that a, = 1. Let (bn) be a sequence so
that

b. = { #3n if n < N
n = 1 otherwise °

Define f(x) =3 B2 for x € [0,1]. We shall call f the
n=
Cantor ternary function.

Theorem 2.5: The Cantor ternary functiom f is

well-defined, continuous, and monotone from [0,1] to [0,1].

Additionaly, f is constant on each open interval of the

complement of €, and f(€) = {0,1].

Proof: First we show that f is well-defined.

Let
x € [0,1] so that x has two different expansions.

Hence let
m,p € N so that x = where 0 < p < 3™ and GCD(p,3") = 1.
m

By the proof of Theorem 2.4, let (a,) and (a;) be ternary
expansions for x so that a

a; for i < m, a; a, — 1, and
a; = 0 and a; = 2 for i > m. Clearly ay, > 0 since
GCD(p,3™) = 1.

Let N, be the least n € N so that a;, = 1, or
else let N, = o if a; # 1 for each n € N. Define N * with
respect to (a,). Let (b,) be a sequence so that

ba = jay if n < N,
no= 1 otherwise

Define (b;) with respect to (a;). Clearly N, < m, or

Na = w; likewise for Na’.

If Na < m, then Na’ = Na < m, and
(b,) = (b,). Thus

10
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HU"'

]

U

h I
(=

H

pde

A

=

If Na = w, ther a, = 2, a, =1, N/ = m
b, = b; = 1, and

18
o
=]

15 - ﬁxﬁgﬁ:’fz%ﬁ:fﬁgﬁ].
n=t n=1 n=1 n=1 n
Therefore f is well defined. Clearly n%? g% € [0,1].

Now to show that f is continuous on [0,1], let
x € [0,1] with ternary expansion (a,). Let € > 0, and let m
be the least n € N so that %h <e. Let 0 <6< %m, and let
y € [0,1] with ternary expansion (c,) so that | x —y | < .
Assume that y < x. Let Na be the least n € M so that
a, = 1, or else let N, = w if a; # 1 for each n € N; define

N, similarly. Let (b;) be a sequence so that

_ [ %ap if n < N_
bn = { 1 gtherwise a3

define (d,) similarly with respect to (c,).

Assume that m < Na £ NC; then a, = ¢, for n ¢{ m since

0<x -y« %m- Thus b, = d, for n { m, and

Na NC
| fx) - f3) | =1 3598 — 30 g2



T 1 1
Sn:E-ﬁlgﬁ_ﬁ(e.

The case where m < NC < Na is similar.

Assume that Na < Nc < m; then a;, = ¢, for n < Na and
N, = N, again since 0 < x —y < %m- Thus b, = d, for

n < Na = Nc’ and

Ya b ¥e d
| () - fw) 1 =1 8- s g =-0c<e
The argument is the same when Nc < Na {m

Now assume that N, < m < N_; then a, = c, for n < N,
1

and ¢, = 0 and ¢, = 2 for Na <n<msince 0 < x —y < T

Na

Thus b, = d;, for n < N, bN =1,d =0,d, =1 for

3 a
N, <n<m, and
o 3t ba_ 3¢ da
| ) - ) 1 =1 30 5n— 5 gn
1 "1 Sedy
= 2Na n=N§+1§n n=§n;+1 n
1 no1 1
_<_—N - E 75=§-ﬁ<€

The case where Nc <{m< Na is similar. Therefore f is

continuous at x and on [0,1].

To show that f is monotone on [0,1], let x,y € [0,1]

with ternary expansions (a,) and (c,) respectively so that

X >y. Since x > y, let m be the least n € N so that
a, > ¢,. Define N_, K, (b;), and (d,) as before.
Assume that Na < m; then clearly Na = NC by the

definition of m. Hence b, = d, for all n € N. Thus

12



13

NC a
fyy = 30 g8 = 30 38 = fx).

The argument is similar when Nc < m.
Assume that m = Na; then m < Nc, a, = 1, and ¢

Clearly b, = d, for n < m. Thus

2 dp _ "l by, O e d

) =2 m= Tt mrm* g
Yasl by 0 S 1
S n§[ 2% + Tﬁ+ E QE

Na.
5= f(x).

The case where m = Nc is identical.
Now assume that m < N, < N ; then a, = 2 and ¢, = 0.

Clearly b, = d, for n < m, by = 1, and d;, = 0. Hence

N . N
dy _ "¢l by 0O cd,
f(y) n§ n - n§1 n * Q—D—l * n:§+1§ﬁ
sl by O o1
¢ T omtmt 2o

m
< B

The argument for m < Nc < Na is identical. Therefore
fly) € f{x), and f is monotone on [0,1].

Now to show that f is constant on each open interval of
the complement of &, let m e N, 0 < i < 31, and

X,y € (1 g;l,l 3+2) with ternary expansions {a,) and (c,)

respectively. Recall from Theorem 2.2 that each open

i-3+1 i- 3+2
3m )

where m € N and 0 ¢ i ¢ 3"!. Define N, N, (by), and (dn)

interval of the complement of € is of the form (

as before. Note that a;, = ¢, for n <{ m, and a, = c;, = 1.
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Hence Na = Nc <m, and b, = d, for n < N, = N.. Thus
a b c d
fx) = 3 5= 5 s gy,
Therefore f is constant on (1 g;l,l 3+2) and each open

interval of the complement of €.
To show that f(¢) = [0,1], let y € [0,1] with binary
expansion (b ). Now (2-b,) is a ternary expansion of some

number in [0,1]; further 2-b, # 1 for each n € N. Hence
S 2.b
n{]l“‘s"ﬁﬂ € €. Thus
m2'bn — . bn_
f|:n§1 3n:|_n§1 n =¥

Therefore f(¢) = [0,1]. |

Note that the Cantor ternary function is % on the open
middle third removed at the first stage, i and %,
respectively, on the open middle thirds removed at the
second stage, and %, %, %, and %, respectively, on the
middle thirds removed at the third stage. Let v be Lebesgue

measure for the remainder of this paper.

Theorem 2.6: The Cantor ternary set has Lebesgue

measure zero.

Proof: Clearly € is measurable since ¢ is closed. Let
D; = (%,%); for n € N so that n > 1, let

_ 1-3+1 i-3+2 )
={xe [0,1] | x¢€ [ 35> gW ] \ ngnl for
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i €7 so that 0 ¢ i < 31 }.
o, ©n ®
Note that € = [0,1] \ U Dy since nngn = nE1D“ where each D/

is as defined in Theorem 2.2. Hence v(€) =1 — nglv(D;)
since all the D; are disjoint. Now define a sequence {(d,)
so that d, is the number of intervals in D;. Clearly

d, = 1; and for n € N so that n > 1, d, = 3" - ?g:(%,3n4ﬂ

since

, g0 1yl .
D = [1 3+1i-3 + 2] \

1=0 311 ? 31]

not 37 13RI 4 1) 3%9(i-3 + 2)
j=1 i=0 3n ? 3n ’

Note that d, = 2°! for each n € N. For suppose not,
and let m be the least n € N so that d, # 2%-1, Clearly
m > 1. Hence

_ m-1 g
d, = 301 — % d;-3nH

i=t
-1 .
= 3m-1 — szi 3m-1-3(21-1)

_ _1_3mf1 m-1 2j
=¥ 2 'ja.&ﬂ

4 3m-l 2.30-1_ om ]
= gu-l _ 5 _[ TaT ]=2m1

which is a contradiction.

Clearly for each n € N, the measure of D; is the length
of each interval in D; times the number of intervals in D;.

’ 1 an-1

Hence v(D,) = dy-35 = =gy~ Thus
5 oD = 3 2
n=1y( “) B n=

Therefore v(€) =1 —1 =0. [N



16

Let f, be the function defined by
fi(x) = f(x) +x

for x € [0,1], where f is the Cantor termary function.

Theorem 2.7: The function f, is a homeomorphism
between [0,1] and [0,2], v(f,(€)) = 1, there exists a
Lebesgue measurable set A so that f,(A) is not Lebesgue
measurable, and there exists a Lebesgue measurable function
h so that h o f]! is not Lebesgue measurable. Further there

exists a Lebesgue measurable set that is not a Borel set.

Proof: To show that f, is a homeomorphism, let
x,y € [0,1] so that x < y. Hence
£,(x) = f(x) + x < fly) +vy = 1,(y),
and f, is strictly increasing. Clearly f, is continuous and
one—to—one; since f,(0) = 0 and £,(1) = 2, f, is onto [0,2]
by the intermediate value theorem. Now since f, is strictly
increasing and continuous, f, is open. Hence f' is
continuous. Thus f, is a homeomorphism from [0,1] onto
[0,2].
Now to show that »(f,;(¢)) = 1, note that
v(£,(€)) = 2 ~ u(£,(6)),

il

V(1) = w(£,(UD,) = 3 v(£,(D;)),

where D; is as defined before. Since f is constant on the
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intervals of D; and Lebesgue measure is translation

invariant, u(fI(D;)) = u(D;). Hence

W(£,(®) = 3 v(D,) = 1.
Thus v(£{(C)) =2 — 1 = 1.

To show that there exists a Lebesgue measurable set A
so that f,(A) is not Lebesgue measurable, let P C f (€) so
that P is not Lebesgue measurable. (Recall that
v(£,(€)) = 1.) Now let A = £f{}(P). Hence A C ¢, and A is
Lebesgue measurable since v(€) = 0. Thus

£,(4) = £,(1{(P)) = P,
and f (A) is not Lebesgue measurable.

Now to show that there exists a Lebesgue measurable
function h so that h o f;' is not Lebesgue measurable, let h
be the characteristic function of A. C(Clearly h is Lebesgue
measurable. Now

(h o £1)7(1) = £,(h(1)) = £,(A) = P,
which is not Lebesgue measurable. Thus h o f;' is not
Lebesgue measurable.
To show the existence of a Lebesgue measurable set

which is not a Borel set, we first have a lemma to prove.

Lemma: If g is a Lebesgue measurable function and B is

a Borel set, then g'(B) is Lebesgue measurable.

Proof of Lemma: Let g be a Lebesgue measurable
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function (Recall that B is the class of Borel sets). Let
M ={ECR| g'(E) is Lebesgue measurable },

and let (E,) be a sequence of sets from M. Now

i ®

g'( UE,) = Ug'(E,)
is Lebesgue measurable, and
g'(E; \ Ey) = g”(E) \ g7(Ey)

is Lebesgue measurable. Hence n;ﬁ% e M, (E,\ E;) ¢ M, and
M is a o-ring. Also g'[{a,b)] is Lebesgue measurable for
a,b ¢ R so that a < b since g is a Lebesgue measurable
function. Now 9% contains every open set; hence 9 contains
every closed set and every compact set. Thus B C I, and

the lemma is true.
Now f, is a Lebesgue measurable function and A is
Lebesgue measurable set, but f£;!(A) = P is not Lebesgue

measurable. Therefore A is not a Borel set. ||

A function g is said to be absolutely continuous on

[0,1] if for ¢ > 0, there exits a § > 0 such that

IL
2 le(x) — sy < e
when { (x;,y;) | 1 ¢ i <n } is a finite collection of

non—overlapping open intervals from [0,1] so that

i
Xilxi—-yﬂ < §. Dbserve that an absolutely continuous
1=

function on [0,1] is continuous on [0,1].
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Proposition 2.8: An absolutely continuous function on

[0,1] maps a set of measure zero to a set of measure zero.

Proof: Let g be an absolutely continuous function on
[0,1]. Let S ¢ (0,1) so that the measure of S is zero. Now
before continuing, we need the following lemma on absolutely

continuous functions.

Lemma: If h is absolutely continuous on [0,1], then

for € > 0 there exists a § > 0 so that
o
I Ih(x) - h(y)] < ¢
when { (x;,y;) | i € N} is a collection of non-—overlapping

o
open intervals so that Eilxi—-yﬂ < 4.
1=

Proof of Lemma: Let h be absolutely continuous on

[0,1]. Let ¢ > 0; and let § > O so that

T €

2 [h(x) = h(y)| < 3
for { (x;,¥;) | 0 ¢ i ¢ n } non-overlapping and
n
_)_31|xi —y;l <& Now let { (x4,y;) | L €N} be

m .

non—overlapping so that .glfxi-— yil < 6. Hence

n
[Ellh(xa — h(y)| ]n is an increasing sequence bounded by %.
i=
Thus

4 4]
I h(x) —h(z)| < § <6
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and the lemma is shown to be true.

Now let ¢ > 0; and let § > O so that

n b8

llg(xﬂ - gyl < ¢

1

whenever { (x;,y;) | i € N } are non—overlapping and

W8

1|xi-~-yi| < §. Since the measure of S is zero, let

w
{ (x;5y;) | i € N} be non—overlapping so that i¥1|xi-— vil < ¢
®m
and S Q_Ul(x“3q). Now
i=
0. w
g(8) ¢ gl(x»y)] € U &([x,vi])-
Since g is absolutely continuous, g is also continuous.
Hence g attains its maximum and minimum on each [x;,y;].
For each i € N let x;,y; € [x;,¥;] so that X; < Vi
gl(xpyi)] € g([x5,y5]), and [g(x;) — g(y;)| is a maximum.

Now { (x;,y;) | 1 € N} is non—overlapping and

8(S) ¢ U g([xi.vil).

Hence
PITHCRA,

m ’ Is
3 g(x}) ~ g < ¢

v[g(S)]

(PN

1A

since

o ; , ®
Zolx =yl €8x -yl <4

Therefore the measure of g(S) is zero. |}

Recall from Theorem 2.7 that f, = f+ Id, where f is the
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Cantor ternary function and Id is the identity map on [0,1],
and that v{f (€)] = 1. Thus f, is not absolutely continuous
on {0,1]; hence the Cantor ternary function is also mnot
absolutely continuous on [0,1] since the identity function
is absolutely continuous on [0,1].

Define the set 2% as follows:

2¥ = { (b,) | (b,) is a sequence where
b, € {0,1} for each n € N }.

In the next theorem, we demonstrate yet another realization
of the Cantor ternary set. This realization will be
particularly important in the subsequent construction of a

non—~trivial transliation invariant measure on €.

Theorem 2.9: The Cantor ternary set is homeomorphic to

2”

Proof: Let h:¢€ — 2% be a function so that
h{x) = (4a,), where (a,) is the ternary expansion of x € €
such that a, # 1 for each n € N. Clearly h is well-defined
and bijective.

Now the topology on € is the relative usual topology
inherited from the real line, and the topology on 2¥ is the
product of the discrete topology on {0,1}. Observe that P
is compact since it is the product of compact sets. For

meNlet x, : 2¥ — {0,1} be a function so that for
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y = (b,) € 2¥, 7.(y) = b,. By definition, the product
topology on 2% is the weakest topology on 2¥ 50 that each Ty
is continuous for m € N. Hence for y, = (b,) € 2* and k ¢ N,

a neighborhood of y, may be described as

N(yok) = i3 (by)
={ye2?| @) =my) for 1 <i<k}.

Clearly 2Y with the product topology is Hausdorff.

To show that h is continuous, let x, € € ,and let (a,)
be the ternary expansion of x; such that a, # 1 for each
n € N. Let N(h(x,),k) be a neighborhood of h(x,), let
x € (x, — %ero + %‘k) n €, and let (c,) be the ternary
expansion of x such that ¢, # 1 for each n ¢ N. Note that

(x, — %—k,xo + %k) n € is a neighborhood of x;,. Hence

- v a
IX—Xo|—|n§13'%“‘n§13%|
m

= | ERogtn | < %

Thus a; = ¢; and m(h(x,)) = m(h(x)) for 1 < i < k.
Therefore h(x) ¢ N(h(x,),k), and h is continuous.

Since both 2 and € are compact Hausdorff spaces and h
is a continuous bijection, h! is continuous. Therefore h
'is a homeomorphism between 2% and ¢, and 2% is homeomorphic

to the Cantor ternary set. |

The statement that the ordered triple (G,*,7) is a

topological group means that G is a set and * is a binary
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operation on G so that (G,*) is a group, J is a topology on

G so that * is continuous, and the function g on G defined

by g(x) = x! is continuous. Now define * : 2¥ x 2% — 2% py
(32) * (b)) = ( (3, + by) mod 2 )

for (a,),(b,) € 2¥. Clearly (2“,+) is a group with identity

(0,) and with (a,)! = (a,) for all (a,) € 2¥. Let P denote

the product topology on 2v,

Theorem 2.10: The ordered triple (2“,#,P) is a

topological group.

Proof: First to show that # is continuous, let
(a,),(b,) € 2“, and let N((a,) * (b,),k) be a neighborhood
of (a,) * (b,). Now let

< (en)s(dy) > € N((ay),k) = N((b,),k).
Hence (c,) € N((a,).k), (d,) € N((b,),k), and a; = c;, b; = d;
for 1 < i < k. Further
(c; + dy) mod 2 = (a; + b;) mod 2
for 1 < i < k. Thus
(ca) * (d) € N((a) # (by),k),
and # is continuous.

Now let g be a function defined on 2% such that
g[(a,)] = (a,)! for each (a,) € 2¥. Clearly g is continuous
since (ay)! = (a,) for all (a,) € 2¥. Therefore (2“,%,P) is

a topological group. JJ}
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Hence if h is the homeomorphism between € and 2% from

Theorem 2.9 and * : € x € — € is defined by
x *y = hi(h(x) * h(y))

for x,y € €, then clearly * is continuous and (¢,*) is a
group since % is continuous, h is a homeomorphism, and
(2¥,4) is a group. Now to show that (&,*,Usual) is a
topological group, define g : € x € — € by g(x) = x'L
Clearly g is continuous since x?! = x for all x € €. Thus

(¢,*,Usual) is a topological group.



CHAPTER III
HAAR INTEGRAL

In this chapter we establish the existence of a Haar
integral on locally compact and Hausdorff topological
groups. For the remainder of this paper, let G be a locally
compact and Hausdorff topological group, and denote the
binary operation on G by + and the identity element by 4.
Observe that a locally compact and Hausdorff topological
group is also completely regular; a proof of this fact may
be found in 0°Neal [2, p. 160]. Before proceeding, we
establish some notation and terminology. A real valued

function f on G is said to have compact support if there

exists a compact C C G so that f(G \ C) = {0}. Define the
set ¥ to be

{f : f is a continuous real valued function

on G with compact support },

define the set 2 to be

{g:8€¢ & sothat g> 0O but g # 0},
and for f € ¥ and s € G, define the real-valued function fs
on G by £f_(x) = f(x — s). A Haar integral I on G is a
linear real—valued function defined on £ so that I # 0,
I(g) 2 0 for g € # and I(f ) = I(f) for all f ¢ ¥ and

s € G. A set We G is said to be symmetric if W contains

25
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the inverse of each of its elements, and a real-valued
function f on G is said to be symmetric if f maps each

element in G and its inverse to the same real number.

Theorem 3.1: If f ¢ .# and ¢ > 0, then there exists a

neighborhood V of @ so that | £(x) — £(y) | < ¢ when

x —y€V.

Proof: Let f € .¥ and ¢ > 0. Note that given
x,y € G, there exists z € G so that x —‘y =z and x =z + Y.
Let ¢ > 0, and let

V={zeG: | f(z+y)-1f(y)]| <efor all y e G }.

Clearly # € V since

| £(0 + y) —1(y) | = | £(y) - £(y) | = 0;
and | £(x) — £{y) | < ¢ whenever (x — y) € V. All we need
now is to show that V is a neighborhood of 4.

Let h : G x G — R be a function so that

h(z,y) = | £(z +y) - £(¥) |3

hence h is continuous since addition is jointly continuous
in G and |-|,f are continuous. Since f has compact support,
let C C G be compact so that £(G \ C) = {0}; and since G is
locally compact, let W be a compact neighborhood of #; and
let S = Wn (-W). Clearly S is a symmetric compact
neighborhood of 4.

Now let D = S + C. Note that D is compact since D is
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the continuous image of the compact set S x C. Since
h(f#,y) = O for all y € G, for each x € D let N, be a
neighborhood of (4,x) so that h(z,y) < ¢ for all (z,y) € N_.
Note that Nx b) Ux X Ax for some neighborhood Ux of # and

some neighborhood Ax of x. For some n € N, let

n
{x;, ... »,x,} €D so that D C Y A, since D is compact. Now
i= i

let U = (ﬁﬁ%ﬁ) n S. Clearly U is a neighborhood of 4.

Now we assert that U C V; for if z ¢ U and y € G, and

if y € D, then for some 1 < j < n, y € Ax_. Also
i

z € iﬁﬁgﬁ C ij, and thus (z,y) € ij. Hence
| £(z + y) — £(y) | = h(z,y) < ¢,

and z € V. Now if y ¢ D, then y ¢ C and f(y) = 0. Also

(z +y) £ C; for if (z + y) € C, then
vyve(—=z)+CcCcS8S+CcD,

which is a contradiction. Hence f(z + y) = 0 and
| f(z +y) —£(y) | = 0 < e.

Thus z ¢ V, and U ¢ V. Therefore V is a neighborhood of 4.

Before establishing the existence of a Haar integral on
G, we will establish the existence of a non—zero translation
invariant positive linear real-valued function defined on

#. Ve will extend the function on % in order to obtain a
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Haar integral on G.

Theorem 3.2: If I, is a real-valued function on % so
that
i) I,(g) > O,
ii) I(g + h) = L(g) + L,(k),
iii) TI,(c-g) = c-Iy(g), and
iv)  I(g,) = I(g)
for g,he % ¢ > 0, and s € G, then I; can be extended to a

unique Haar integral on G.

Proof: Let f € % and let g,h ¢ # so that f = g — h.
Clearly there exists such g and h since
f=(f+ £,) — (£ + £,)
for any f, ¢ £ Now define I : ¥ — R by
I(f) = I(g) — I,(h).
Suppose gl,h’ € # so that f = g’ - h’; hence
g + n = g’ + h. Thus

I(g) + Iy(h') = I(g') + Ly(h),

and

i

I(g) — I(h) = I (g ) — Ly(h ).
Hence I is well-defined. Now
I(g) = I(2:g) - Li(g) = 2-1(g) — Li(g) = L,(8),
and I extends I,. Clearly I is translation invariant on .¥

since I, is translation invariant on %, and
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1(0-£) = I,(g) ~ Ly(g) = 0-I(f).
Now

I(—c-f) = Iy(ch) = Iy(c-g)
= c¢-I,(h) — c-I,(g)
= —c-[I,(g) = I,(h)]

= —c.I{f).

Let f,,f, € .4 and let g;,h,,g,,h, € & so that f = g, — h, and
f, = g, — h,. Note that
I(f, + £5) = Li(g, + 82) — To(h; + hy)
= I,(g) + To(gy) — Io(hy) — Iy(hy)
= I(f) + I(f,).

il

Thus I is linear. Therefore I is a Haar integral on G.
Clearly I is unique since every f € ¥ can be decomposed as

f =g —h for some g,h ¢ 2 |}

For f,g € % the statement that g covers f means that

there exists elements {s,,...,s,} C G and positive numbers
Il n .
Cis..+.5C, 80 that £ ¢ Yc;rg_ for some n ¢ N. Now Xc;-g_ is
' i=1 S i=1 S

said to be a covering of f by g.

Theorem 3.3: If f,g ¢ % then g covers f.

Proof: Let f,g € % and let C C G be compact so that
(G \ C) = {0}. Let M > 0 be a bound for f. Now since g is

continuous and not zero, let U be open so that g is bounded
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away from zero on U, and let % > O be such a bound. Let
% ={ U+ {s} : s € G}.
Clearly % 1is an open covering of C; hence let
n
{s, ... 8} C G so that C ¢ j“(U + {s;})
1=

for some n € N. Letci=%f0r1§:i.5n.

We assert that f(x) ¢ iﬁlci-gs (x) for all x € G. The
= i
assertion is clearly so if x € G \ C. Now if x € C, then
x € (U + {s;}) for some 1 < i ¢ n. Hence (x — s;) € U,

g(x = s;) 2 7, and gg (x) 2 7. Now

2=

Ci'gsi(x) > == M2 £(x).
Thus f(x) < iElci-gs (x) for all x ¢ G. Therefore g covers f,
= i

1l
and _Zici-gs is a covering of f by g. |}
i= i

Now for f,g € % define (f : g) to be
inf{ ﬁ c; | ﬁ ¢;°g., 1is a covering of
i=1 i=1 5y

f by g for some s,,...,s, € G }.
We call (f : g) the ratio of f to g.

=3

heorem 3.4: If f,g ¢ # then (f : g) > L vhere
N

=
Il
]

up{f(G)}, and N = sup{g(6G)}.

Proof: Let f,g e £ Let M = sup{f(G)}, and let
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N = sup{g(G)}-

Clearly 0 < M,N < o since f and g are
n
non—zero and bounded. Now let }ﬂcfg
i=

_be a covering of f by
1
g. Hence

n

I
£ hf%'gsis Nﬁgfi;
L M
thus M ¢ NgEﬁa and =

Gz

g_ﬁfg. Therefore (f : g) 2
N ¥

= |=

Observe that (f : g) > 0 for all f,g ¢ £ Next we will
show that (-

h) is translation invariant, linear, and
monotone for any h € £

Theorem 3.5: If f,g,h € # c > 0, and s € G; then

i) (fg : h) = (£ : h),
ii) (c-f : h)

=c-(f : h),
iii) (f + g

: h) = (f

and

h) + (g : h),

iv) if £ < g, then (f : h) < (g : h).

Proof: Let f,g,h e # ¢ > 0, and s € G.

i et

Kow let

1

a;-h. be a covering of £ by h, and let Ib.h
118 ji=1 1t

~be a
covering of g by h.

1

Note that

Si)s = i§
hence (f, : h) < (f : h).

hY g *
since f(s ~8) = (fs)_s; hence



(fy: b) = (£ : b) < (£, : h).
Thus (fs : h) = (£ : h).

n n
Now note that c¢-f < Yc-a;-h_; thus ¥ (c-a;)-h_ is
i=1 8 i1 8;

covering of c-f by h. Hence (c-f : h) ¢ c}%fﬁ’ and
(c:f : h) < c-(f : h). Now
(f : h) = (2-cif : h) ¢ 1(cf : ),
and ¢-(f : h) ¢ (c-f : h). Thus (¢c-f : h) = ¢c-(f : h).
Note that

n m
£+g¢ Bagh + Bbrh

i

-t ,

n n
hence (i{jlai.hsi + i);;lbi.hti) is a covering of (f + g) by h

Thus

Ea + Eb

’
111

(f + g : h)

IA

and

(f +g:h) <(f:h)+ (g :h).
Now if £ < g, then

n Il
{ i§1ci | iglci-hsi is a covering of g by h }
is a subset of
1| n
{ i{)lci | i{llci-hsi is a covering of f by h }.

Thus (f : h) < (g : h). [

Lemma 3.6: 1f f,g,h ¢ # then
(f : h) < (f : g)(g : h).

a
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Proof: Let f,g,h € £ let .ﬁlci-gs be a covering of f
1= i

by g, and let Eldj'ht be a covering of g by h. Hence
1= ]

£<3 < S (3
= i=1ci'gSi i=1ci'( -

i§1(j§1ci'dj'h(si + tj)) ?

il

Il m
and % (¥c;-di-h

2 erdihg tj)) is a covering of f by h. Thus

A

Il m Il n
(£ s 1) ¢ B(Beran = (Fen-(Ea.

Therefore (f : h) < (f : g)-(g : h).

Lemma 3.7: If f,g,h € % then

L {(£:8) ¢ (£ :n).
(h - ) (h:g)

Proof: Let f,g,h ¢ £ Hence
(h : g) < (h: £)-(f :g),

A

and
(f : g <(f:h)(h:g).

Thus —2— ¢ £ 2 8) g (£ 8 ¢ (f : h). Therefore
(h : £) (h : g) (h : g)

1 g(f‘g)g(f:h).
(h : £) (h : g)

For the remainder of this chapter fix £, ¢ £ Now for
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f,5 ¢ &, define Ag(g) to be {£ 1 E); hence
(fy: 8)
1
L age) < (F : £y).
£ ]
(£4: 1)

For each f € 2 let

I N S .
X, = [(fo= f),(f . £,)].

Clearly Af(g) € X, for each g € # Define the set X to be

. I jﬁxf; hence X is compact by the Tychonoff product
€

theorem. Define A(g) € X by (A(g)); = A;(g) for each f € 2
Now for each neighborhood V of #, define Fv to be
{ A(g) | g € # so that g is symmetric

and g(G \ V) = {0} }.

Lemma 3.8: For each neighborhood V of 4, FV is not
empty.

Proof: Let V be a neighborhood of #, and let W be a
compact and symmetric neighborhood of # so that W C V.
Since G is completely regular, let f ¢ & so that
f(G \ V) = {0}; and let g(x) = f(x) + f(—=x) for x € G.
Clearly g € # and g is symmetric. Now g(G \ W) = {0} since
V is symmetric and f(G \ W) = {0}; hence g(G \ V) = {0}
since W € V. Therefore A(g) ¢ Fy. W

Theorem 3.9: There exists I € X so that if n € N,
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{f;,...,£,} € # V is a neighborhood of ¢, and ¢ > 0, then
| Afi(g) - Ifi | < e
for 1 { i < n and some symmetric g € 2 so that

g(6¢ \ V) = {0}.

Proof: Let

F = { Fy : V is a neighborhood of f}.
Now if U,V are neighborhoods of 4, then
Fuonvy STy nFy
since if g € # is symmetric so that g(G \ (U n V)) = {0},
then
g(6 \ U) = g(G \ V) = {0}.
Hence

Funy € FynFy,
and Fﬁ n FV is not empty. Thus & has the finite
intersection property. Let I ¢ n & since X is compact.

Now let n € N and {f,,...,f,} C # let V be a

neighborhood of 4, and let ¢ > 0. Since n & ¢ Ty, I ¢ FV‘
Let N(I,f,,...,f,,¢) be a neighborhood of I; note that

N(I,f,,...,f,,¢) ={xeX : | xf{— Ifil < € for 1 < i < n}.

Now let A(g) € Fy so that A(g) € N(I,f;,...,f,,¢); hence
| Afi(g) - Ifil <€

for 1 < i { n. By the definition of A(g), g € & and
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g(¢\ V) ={0}. W

For the remainder of this chapter, let I be an element
of X that satisfies the conclusion of Theorem 3.9. Note

that for f € % If is the f-th coordinate of I.

Theorem 3.10: If f,f’ € ? c>0, and s € G, then
i) I, >0,
ii) I(f N f’) < If + If’,
iii) I, ¢ = c-Ig,

and
s
Proof: Let f,f’ € # ¢ >0, and s € G. Clearly since
T, ¢ Xg, I, 2 S > 0. Let ¢ > 0, and let symmetric
f f2 °f (£,: £)

g € £ so that
| Ag(8) — I | < e
| Agr(g) — Ig7| < e
| A, ¢(8) - gl <e

| Ay (8) = Ip | < ¢
s s

LA 4 £)(8) —Ip 4 gyl < e

Note that A  .(g) = c-Ac(g), Afs(g) = A;(g), and
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A(f + f')(g) < Ap(g) + Ay ()
by the ratio properties of Theorem 3.5.

Now
Lg gy S8 4 £Y(8) * €
< Ap(g) + Ap7(g) + ¢
< If + If’ + 3¢,
and
| eIg =TI ¢ | <cre+ g
also

| If - Ifsi < 2'6

by the triangle inequality. Thus I(f + f') < If + If',
IC‘f = C'If,, a;ﬂd Ifs= If. .

Lemma 3.11: If f,h,h' € # so that h + h’ < 1, then

T + I

th * Len” < Tg-
Proof: Let f,h,hf ¢ # so that h + h’ <1, and let
¢ > 0. Now by Theorem 3.1, let V be a neighborhood of ¢ so
that
| h(x) — h(s) | < € and | h’(x) —h'(s) | < ¢
whenever (x — s) € V. Let g € & so that g(G \ V) = {0},

and let ﬁfﬁ-gs be a covering of f by g. Hence for x € G,
i=1 - T8y

£(x)-h(x) ¢ 3crgg (x)-h(x)



<
and
fh <

since for 1 < 1 < n, g  (x)
1

r

fh <«

Hence
(fh : g) + (fn’ : g) <
£

Thus
(fth : g) + (fh’ 1 g)

and

i~

1A

Aep(8) + Agp i (8)

for all g € # so that g(G

Let symmetric g’ € 7

| Ag(g)

|Ag, (8 )
and

| Afh’(g
Thus

3ergs (0 (h(s)) + o),

1

n
Borms) + 0gg

=0 if (x — s;) ¢ V. Likewise

n ’
i§;&-(h (sy) + f)'gsi-

B (h(s) + b (sp) + 2:¢)

E)Ici- (1 + 2-¢).
(f : g)(1+ 29,

Af(g)

\ V) = {o}.
so that g’(G \V) = {0},
- I, | < e,

) - Ifh, | < €.

Lo + I’ < Afh(g’) + A (g8) + 20

< Af(g’) + 2.6 < Ip + 3¢

again by the triangle inequality. Therefore

38
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Lep + I ¢ 1g- M

Lemma 3.12: If f,f' € %, then

I(f + f') = If + I:E'.

Proof: Let f,f’ € % and let C C G be compact so that
f(G \ C) = f’(G \ C) = {0}. Before continuing, we need to

establish the following sublemma.

Sublemma: If D C U C G so that D is compact and U is

open, then there exists g € £ so that g(D) = {1} and

g(¢ \ U) = {0}.

Proof of sublemma: Since G is completely regular, for

each x € D there exists g~ € £ so that (g%)(x) = 2 and
(g)(6 \ D) = {0}. Now for each x € D, let
U, = (g°)*[(1,3)]. Clearly each U, is open and contains x.

Hence { U_: x € D } is an open cover of D. For some n € N,

n ’ n
let {x;,...,x,} C D so that D C }“Ux. Now lJet g = ¥ g'i,
1= H =

1 1
and let g = min{gl,l}. Clearly g € #, g(D) = {1}, and
g(G \ U) = {0}. Thus the sublemma is true.

Now let £ € £ so that f”(C) = {1}. Let ¢ > O and
F=f+f +¢ef . Clearly F ¢ # and F(x) > ¢ for x € C.

Let h be a function on G so that
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f(x)
0

h(x) = [

otherwise
clearly h is continuous on C. Let A = £7(0); hence
G\CCAand G=AUC. Nowh is continuous on A, and A is
closed since f is continuous. Note that C is closed since G
is Hausdorff; hence h is continuous on G, and h ¢ £ Define
h’ similarly; likewise h € &2

Clearly h(x) + hl(x) =0<1 for xe G\ C. Now

h(x) + h (x) = f(X)szj (x)
) f(x) + £ (x) <1

TE(x) + £ (x) + ef (x)
for x € C. Thus h + h < 1. Note that f = Fh and £ = Fh .
Hence
+ I

Ip + Igr = Iy + Iy < Ips

and

IF S I(f + f,) + E'If,’.

Thus If + If’ < I(f N f')‘ Therefore I(f N f') = If + If’

since we already had that I(f 4 f’) T+ Ler. ]

Now we are ready to show the existence of a Haar

integral on G.

Theorem 3.13: There exists a Haar integral on G.
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Proof: Define the function I; on & so that
I (f) = Iz > 0 for f ¢ £ Now
I(f + g) = I(f +g) Ie + Ig = L(f) + I(g),
Li(cf) =T, p=cl;= c-IL,(f),
and
Io(fs) = Ifsx If = I,(f)
for all f,g ¢ # ¢ > 0, and 8 € G. Thus I, can be extended

to a Haar integral on G. [Jj

Observe that given any f € % there exists a Haar
integral J on G such that if n € N and {f,,...,f,} € & V is
a neighborhood of #, and ¢ > 0, then there exist a symmetric

g € # so that g(G \ V) = {0} and

,!.f_i:_El_J(fi)|<e
(f: g)
for 1 < i < n.

Theorem 3.14: If C C G is non—empty and compact,

n
n €N, and U,...,U, are open so that C C ﬂ}k, then there
1=

exists continuous functions f,,...,f € ¥ such that

[ii:}lfi] (C) = {1}, each 0 < f; < 1, and each U; supports f,.

Proof: Let C C G be non—empty and compact. Let n € K,

n
and let U,,...,U, be open and non—empty such that C Q.UJQ.
1=

Before continuing the proof, we establish the following
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lemmas.

Lemma 1: If D is compact and V,,...,V  are open so
n
that D C AHV“ then there exists continuous functions
1=

g(5--+:8, on D such that [_Eigi] (D) = {1}, and for 1 < i ¢ m,
i=

Proof of Lemma 1: Let D be compact, n € N, and

Vis...,V, be open so that D gigﬁﬂ. Ve assert that if U and
V¥V are open so that D C U U V, then there exists compact E
and F so that EC U, FCV, and DC E UF. In fact, if U
and V are open so that D C U U V, let A and B be open so
that D\ UCA, D\ VCB, and A n B is empty. Let
E=D\ A and F =D \ B; hence E and F are compact. Note
that:

E=D\ACD\ (D\NU) =UnDCTU;
likewise, F C V. Also

EUF=D\ (AnB) =D

since A N B is empty. Thus the assertion follows.

Hence, by using induction, we let D, ...,D, be compact

n
so that D = pﬂ% and D; ¢ V. for 1 ¢ i { n. Further, for
1=

1 <i < n, (using the sublemma in the proof of Lemma 3.12)

let h; be continuous so that 0 ¢ h; < 1, h(D,) = {1}, and

hi(x) = 0 for x e X \ V,. Let h = é}g; clearly h is
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continuous and h(x) > 1 for x € D. Now let g; = hi for
h

1 ¢ i< n. Hence each g; is continuous, and g;(x) = 0 when

x €D\ V;for 1 {i<n. Note that

So(x) = phi(x) _ h(x) _
S8 T 8 The

for x € D. Thus lemma 1 is true.

Lemma 2: If D is compact, C is a closed subset of D,

n
and V,,...,V, are open so that C C .UIVi, then there exists
i=

continuous functions g,,...,g, on D such that

[-Elgi] (C) = {1}, and for 1 < i ¢ mn, 0 ¢ g; <1 and g;(x) =0
iz
for x e D \ V,.

Proof of Lemma 2: Let D be compact, C be a closed

subset of D, and V,,...,V, be open so that C C .BIVi. Let V_,,
i=

n+l
be open so that V,,, N D =D \ C; hence D ¢ 'U1 V.. Now by
iz

lemma 1, let g, ...,g,, be continuous on D such that

+1
[Ilegi](n) = {1}, and for 1 ¢ i <n+ 1, 0 < g; <1 and
i=

gi(x) = 0 for x € D \ V;. Hence [ii_l}lgi] (C) = {1} since

gue(x) = 0 for x e D\ V,,, = C. Thus lemma 2 is true.

Now let C,...,C, be compact so that C C ,ﬁlCi and each
i=
C; CU;. For each 1 < i< n, let h; € & so that h;(C,) = {1}
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and hy(X \ Uy) = {0}, V; = bi'[(4,2)], and D; = hi’([},2]).
Hence for 1 ¢ i < n, C;C V,CD, CU, V, is open, and D; is

n

compact since h; has compact support. Let D = ,UlDi; clearly
i=

; € D. Now by lemma 2, let functions g,,...,g, be

continuous on D such that [_Elgi] (C) = {1}, and for 1 ¢ i < m,
1=
0¢<g; <1 and gy(x) =0 for xe D\ V,.
Now for each 1 ¢ i { n, define f; by

_J g(x) if x €D
£(x) = { ' otherwise’

thus [éifi] (C) = {1}, and for 1 ¢ i ¢ n, 0 < f; <1 and
f,(x) = 0 for x € G \ U;. Note that f; is continuous on D
since g; is continuous on D, and f; is continuous on G \ V;
since f;(G \ V;) = {0}. Hence f; is continuous on G since
= (G\V,) UD and both D and G \ V; are closed. Clearly

each f; has D as compact support. [}

Lemma 3.15: 1If C is a non—empty compact subset of G

and W is an open neighborhood of #, then for some n € W,

there exists elements s,, ... ,s8; € G and functions
fi, ... sf, € P 50 that C C UV + {5},
i=
£:[6 \ (W + {s;})] = {0}

for 1 < i < n, and [.i_lllfi] (C) = {1}.

Proof: Let C C G be compact and non—empty, and let W
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be an open neighborhood of #. Clearly { VW + {s} | s € C}

is an open covering of C. Let m be the least n ¢ N so that

n

Cc Ahw + {s;} where s,, ... ,s, € C. Hence let £, ... ,f,
i=

be continuous functions with compact support so that

0$fi$1and

£;06 \ (W + {s;})] = {0}

for 1 ¢ i ¢ m and ['gffi] (C) = {1}.
i=
Now suppose that for some 1 < j < m, f; = O; assume

that j = 1. Let x € C; hence for some 1 < i < m such that

i>1, f;(x) > 0 and x € W+ {s;}. Thus C ¢ I%W + {s;},
1=
contradicting the definition of m. Therefore f; # O and

f;e 2 for 1 <¢i<¢m. |}

Next we would like to show that a Haar integral on G is
unique up to a positive scalar. We will first establish the

following lemmas.

Lemma 3.16: If J is a Haar integral on G, then

lﬁ)—g(f : g) for all f,g € &
I(g)

Proof: Let J be a Haar integral on .%4 and let
f,g € £ Ve claim that J(g) > 0. To see this let £ € 2

pl n ’
so that J(f ) > 0, and let Ffa-gs be a covering of £ by g.
= i
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Clearly ' + 0, and i)1~i1ci > 0. Now

’ n n
0<I(E) < J[iglci-gsi] - [iglci]-J(g).
Thus J(g) > 0. Now let Ea. By, be a covering of f by g.

Hence J(f) ¢ [Ea] -J(g), and —E—%— < _'Inllai. Therefore
g)
IE) ¢ (£ :9). W

Lemma 3.17: If C is non—empty and compact and f,f’ € 7

so that C supports f and f'(C) = {1}, then for any ¢ > O,

there exists a neighborhood U of # so that

(f : g) ¢ e-(f': g) + i(f)
I(s)
for any Haar integral J on G and any symmetric g € £ such

that g(6 \ U) = {o0}.

Proof: Let C C G be non—empty and compact, and let
£,f € # so that C supports f and :E’(C) = {1}. Let ¢ > 0,
and let U be a neighborhood of # so that

| £(x) — £(y) | € ¢

whenever (x — y) € U. Now let symmetric g € & so that
g(G \ U) = {0}, and let J be a Haar integral on G. We claim
that [f(x) ~ ¢]-g, ¢ fg, for all x € G. For if x € G and if
y € G so that (y —x) € G \ U, then g _(y) = g(y — x) = 0,
and the claim holds. Now if y € G so that (y — x) € U, then
£(x) ~ ¢ < £(y), and
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[£(x) — €]-8,(¥) € £(3) -8, (¥)-
Thus this claim is true; hence
J([£(x) — e]-g,) < I(fg,),
and
J(fg,)
(*) [f(x) — €] ¢ —.
J(g,)
Now let 6§ > O, and let W be an open neighborhood of 4
so that

| g(x) —gly) | ¢ 6

whenever (x — y) € W. Now as concluded in Lemma 3.15, for

some n € N, let s;,...,s;, € C and h;,...,h, € # such that

an}
Ul

ilw + {si}, Lg}H](C) = {1} and V + {s;} supports h; for

I
1 ¢i<n. Since C supports £, f = ﬁﬂhf; hence
i=

(**) I(te,) = 33(hite,).

Now we assert that for x € G and 1 < 1 ¢ n,
hig < [g.(sy) + 6] h;.
For if 1 { i {nand x ¢ G and if y € G so that
vy € G\ (W + {s;}), then h;(y) = 0, and the assertion holds.
Now if y € G so that y € W + {s;}, then (y — s;) € W. Hence
(y =x) = (85 -x) = (y —5) €V,

and

| (v —x) —g(s; —x) | = | g (y) — g, (1) | < 6.

Thus g (y) ¢ g,(s;) + &, and the assertion is true. Hence
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1gx

I

(g, (s;) + &]-fhy,
and
J(fhg, ) < [8,(s;) + &]-J(fhy).
Now note from (*) and (**) that

(74N

3 g, (s) + 6]-3(fhy)

f(x) — ¢] ¢ =L
[£(x) ] ¢ (&)
= §3(fhs) o (X) + 53E)
=1 J(g) J(g)

for all x ¢ G since g is symmetric and f = @EHf. Hence

£ < [E + 5-§li)]-f’ , 33(Ehs) o
J(g) U j(g) %

since C supports f and f’(G) = {1}. Now

f : € + 6 " » pd(fhy
(£ : ) ¢ | JJJ(g)} &) + SH(g ol (s ®)
= [6 + 6—L)-] : g) + I(£)
J(g) J(g)

since (gsi: g) = (g : g) = 1. Therefore

(f:g) Cee(f:g) + I(f)
J(g)
since § is arbitrary. ||}

Lemma 3.18: If J is a Haar integral on G and f € %,

then there exists a neighborhood U of 4 and a bound
0 < M < w so that

(f : g)-J(g) < M
for all symmetric g € # such that g(G \ U) = {0}.

48
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Proof: Let J be a Haar integral on G, and let f ¢ A

Let C C G so that C supports f and is compact and non—empty.
Let £ € £ so that f’(C) = {1}, and let O < € < Eg—é—;;.

Now let U be a neighborhood of # so that

(f : g) < e-(f’: g) + ‘_]_(i':l
J(8)
for all symmetric g € 2 such that g(G \ U) = {0}. Hence

(f : g)-3(g) < e(f: g)I(g) + I(F),
and
(f : g)-3(g) ¢ e(f: £)-(f : g)-J(g) + I(£).
Now
[1 — e (£ : £)]-(f : g)-I(g) ¢ I(£);
thus
f : J < J(f), .
( g)-J(g) [ (£ D]
Ir J(f) .
Clearly O < o E-(ff: ] < ]

Now we are ready to establish the uniqueness, up to a

positive scalar, of a Haar integral on G.

Theorem 3.19: If J and J are a Haar integrals on G,

then J’ = ¢-J for some c > 0.

Proof: Let J and J be a Haar integrals on G. Now as
a consequence of Theorem 3.13, let I, be a Haar integral on

G so that if ne N, £,,...,f € &% V is a neighborhood of 4,
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and ¢ > 0, then there exists a symmetric g € £ such that

g(6 \ V) = {0} and
| it 8 g | <.
(fg: g)

for 1 < i < n. Let C; ¢ G be compact so that C, supports f,,
and let f, € 2 so that f,(C,) = {1}. Let f € £ with
compact support C, and let f € 2 so that f’(C) = {1}.

Now let ¢ > 0, and let V be a neighborhood of # and let
M > 0 such that

(£,: €)-3(g) < M,

(£': g)-3(s) <M,
f. : e (£ + lﬁiﬁl,
(fy: 8) < e(fy: g) 1(e)

and

(f:g) <e(f:g) + &)
J(8)
for all symmetric g € # such that g vanishes outside of V.

ince (Lo : nd 35 ¢ (¢ . ,
S wﬁz;% < (f,: g) and 1e) < ( g)

(*) I(£,) ¢ (£ 8)-I(g) ¢ e (fo: g)-I(g) + J({,)

and

(**) J(£) < (£ : g)-J(&)

Fal

e(f: g)-I(g) + I(£f)

1A

for all symmetric g € # such that g vanishes outside of V.

Now fix symmetric g € £ so that

{£f:8g) _ I.(f €
I (. o) o) | <

and g vanishes outside of V.

Note that
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’ J(f) ¢ :g)
e-(fy: g)-J(g) + J(£y)) (f,: &)

(f:8) (e(f: g)-I(g) + I(F)
(fo: 8) J(f,)

by combining (*) and (**). Hence

J(£) f) +
eM + J(f)) ¢ T{f) v e

I,(f) — ¢ ¢ EM+ I(£)
J(f,)
by the triangle inequality. Thus
.ﬂﬂ < Io(f) < i(il,
J(f,) J(£,)
and J(f) = J(£,)-I,(f) for all f ¢ 2 and all f ¢ «

Likewise J = J'(£,)-I,; hence J = §$i&l-J'. Clearly

J (f,)
J(fy)
J'(fﬂ) > 0. R

Observe that since the Cantor ternary set is a
Hausdorff and locally compact topological group, there

exists a Haar integral on C.



CHAPTER IV
HAAR MEASURE

In this chapter, given a Haar integral I on G, we will
establish the existence of a Haar measure on G which

represents 1. For the remainder of this paper, let I be a

Haar integral on G. A Borel measure p on G is a measure
defined on the class of Borel sets of G so that p(C) < o for
all compact C. A set E € 8 is said to be regular with
respect to a Borel measure p if
p(E) = inf{ p(U) : E ¢ U where U is open and Borel }
= sup{ p(C} : C C E vhere O is compact }.

Further a regular Borel measure g on G is a Borel measure on

G so that E is regular with respect to p for all E ¢ ‘B.

Now a Haar measure on G is a non—zero regular Borel measure
# on G so that u(E + {s}) = u(E) for all E ¢ B and s € G. A
set B is said to be bounded if there exists a compact set C

so that B ¢ C, and a set S is said to be g—bounded if there

exists a sequence (C,) of compact sets such that S Qigfh.
A content ¢ on G is a set function defined for all compact
sets so that:

i) 0 ¢ ¢(C) < w,

ii) if C ¢ D, then ¢(C) ¢ ¢(D),

52
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iii) (C U D) ¢ ¢(C) + (D)
and
iv) if C n D is empty, then
9(C U D) = (C) + o(D)
for compact sets C and D. Observe that ¢(¢) = 0. Further a
content ¢ on G is said to be regular if
¢(C) = inf{ (D) : C C U C D where U is open
and D is compact }
for all compact C. In this paper, the characteristic
function of a set A is denoted by RA. Now define the set
function A by |
A(C) = inf{ I(f) : £ € £ and Ro € }
for all compact C ¢ G. This set function ) is important in

constructing a Haar measure on G.
Theorem 4.1: The set function A is a regular content.

Proof: Clearly A(¢) = 0. To show that A is
non—-negative, let C be compact; now let f ¢ £ so that
NC < f; clearly there is such a function (by the sublemma in
Lemma 3.12). Note that I(f) > 0. Thus 0 ¢ A(C) < w.

Now to show that ) is monotone, let A be compact so
that A ¢ C. Hence X, < Ry and ¥y < f. Thus A(A) < I(f) and
AA) < A(C).

To show that A is subadditive, let B be compact and
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g € £ so that Rg ¢ g- Hence “C + Ry ¢ f + g, and
N(C U B) <f+g. Thus A(CUB) < I(f) + I(g), and
A(C U B) < A(C) + A(B).

Now to show that X is additive, let D be compact so
that C N D is empty. Since G is Hausdorff and both C and D
are compact, let U and V be open such that C C Uand DC V
and U NV is empty. Let f’,g’ € ¥ so that
£7(C) =g'(® ={1}, 0¢¢1,0¢g¢1, and
£(6\U) =g (6\V)={0}. Clearly Ry ¢ f and ¥ ¢ g .
Hence £ + g'g 1 since U NV is empty. Now let h e ¢ so
that R(C u D) < h; clearly'RC,ND < h. Note that
h(f + g ) < h, NC < hf , and RD < hg . Hence

I(hf') + I(hg )
I[h(f +g')] < I(h).

A(C) + A(D)

i~

H

Thus A(C) + A(D) ¢ A(C U D) and A(C) + A(D) = X(C u D).

To show that A is regular, let ¢ > 0 and £ € # so
that Ry < £ and I(f ') ¢ A(C) + e. Now for each 0 < t < 1,
let

It

Uy={xeG: £ (x) >t}
and

E,={xe€eG: f,’(x) >t }.

Clearly C € U, € E,, U, is open, and E, is compact. Note that

L

ME) < +I(£7) < +(A(C) + ¢
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for all 0 < t < 1. Now choose t so that
3 (A(C) + €) < A(C) + 2-e.
Thus A(E,) ¢ A(C) + 2-¢, and
A{(C) = inf{ AME) : C C U C E where U is open

and E is compact }.

Now define the set function A, by
A (U) = sup{ X(C) : C is a compact subset of U }

for all open Borel sets U.

Theorem 4.2: The set function A, has the following
properties:
i) A@) =o,
ii) A, (U) < » for every bounded open set U,
iii) A, is monotone,
and
iv) A, is countably additive.
Proof: Clearly A, (¢) = O since A($) = 0. Let U be
open and bounded, and let D be compact so that U C D.
Clearly U is Borel since U=D \ (D \ U) and D \ U is
compact. Now for every compact C C U, C C D and
A(C) < A(D). Thus A (U) ¢ A(D) < o.

Now to show that A, is monotone, let U and V be open



56

Borel sets such that U C V. Let C be compact so that C C U;
hence C C V. Thus A(C) < A(V) and A (U) < A.(V).

To show that A, is countably additive, first let us
show that A, is subadditive. Let U,V be open Borel sets,
and let C be compact so that C C U U V. Now let D,E be
compact such that D C U, ECV, and C = D U E. Hence

A(C) < A(D) + A(E) < A (U) + A(V),
AU U V) <AU) + A(V),
and A, is subadditive. Now let (U,) be a sequence of open

Borel sets; hence
m m m
A KA PRCARS INCA

for each m € K. Thus ,\*[_ﬂlUi] <
1= 1

TR e B =

1A*(Ui), and A\, is countably
subadditive.

Now to show that A, is countably additive, let us first
show that A, is additive. Let U and V be Borel open and
disjoint, and let C and D be compact such that C C U and
DcCV. Clearly Cn D is empty. Hence

AU U V) > A(CuD) = A(C) + X(D),
AU U V) 2 A0 + V),

and A, is additive. Now let (U,) be a sequence of disjoint

W
open Borel sets. Clearly psh is an open Borel set. Hence
iz
W w mn
oo 2 oafuu) = Ea

w
for each m € N since )\, is monotone. Thus A*Luﬂh] > Y¥A.(Up),
i=



a7

o 1)
and A, [00;] = EA(U). W

A hereditary o—ring £ 1is a o-ring so that if A € £
and B C A, then B € % An outer measure p on a hereditary
o-ring # is a set function defined on & so that p is
non-negative, monotone, countably subadditive, and p(9) = O.
For the remainder of this paper, define the set # to be

{ACG : A is o-bounded },
and define the set function A" by

A*(A) = inf{ A, (U) : A C U where U is Borel open }
for all A ¢ &.

Theorem 4.3: The collection # and the set function

A" have the following properties:
i) # 1is a hereditary o—ring,
ii) )" is an outer measure on ¥,
iii) A"(A) < o for all bounded A € ¥,
iv) )" extends A,
and
v) if U C D where U is open and D is compact,
then
X (U) = A,(0) < A@) < X'(D).

Proof: Clearly & is a hereditary o-ring since the

countable union of s—bounded sets and a subset of a
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c—bounded set is ¢—bounded.

To show that A is an outer measure on #, first note
that )\*(A) > 0 for all A ¢ & since A, (U) 2 O for all open
Borel set U, and X (¢) = O since A, (¢) = 0. Let A,B € # so
that A C B, and let U be an open Borel set so that B C U.
Hence A C U and A (A) ¢ A,(U). Thus A"(A) < A'(B), and A" is
monotone. Now let (A ) be a sequence from %, and let

¢ > 0. For each n ¢ N, let U, be Borel open such that

AL C U and A(U) ¢ A(A,) + 57 Hence uA_ C LJU and

A*[ElAi]g [ ] § A (U)

[ 7N

o
€ + i§1A (4;).
Thus A*[iEIAi] < :él)\*(Ai), and A" is an outer measure on J.

Now let A € & so that A is bounded, and let C be
compact s0 that A ¢ C. Since G is locally compact, let U be
open and bounded so that C C U. Thus A C U, and

AT(A) € A(U) < w.

To show that A" extends )\,, let U be Borel open.
Clearly A*(U) < A(U). Fow A (U) < A, (V) for all open Borel
V such that U ¢ V. Hence A (U) < A(U). Thus A (U) = A (U)
and A" extends A, -

Now let U be open and D be compact such that U C D;
hence U is bounded and Borel, and A (U) = A (U). Now
A(D) < A, (V) for all open Borel V such that D C V; hence
A(D) ¢ AY(D). Also A(C) ¢ A (U) and A(C) ¢ A(D) for all
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compact C C U; hence 2 (U) < A(D). Thus
A'(U) = A,(U) < A(D) < A'(D).
H

A set EC # is said to be \ —measurable if
A(8) = (A 0 E) + A(A n E)
for all A ¢ # Let I be the collection of all

* [}
A —measurable sets in .

Theorem 4.4: The collection M is a o-ring.

Proof: First to show that M is a ring, let E,F ¢ M
and A ¢ # Now
MAN(EUF)] =A[An(EUF) nE] + A'[An (EUF) nE]
=A(ANE) + X(AnEnEF).
Hence
NIAN (EUTF)] + A[An (En F)]
MANE) + ANENnF) + A"(AnEnF)
(A NE) + 2 (ANnE) = A(4),
and (E U F) ¢ M. Note that E\ F = E n F, and
“(E\F) =EUF. Now
MIAN((EUF)] =A[An((EUF) nF] + A'[An (EUF) nF]
=A(ANnTF) + A"(AnEnF)
=A(ANFNE) + A(AnFnE)
+ XANEnTF).



Hence
XTAN (EnF)] + A'[An (EUF)]
= NANENF) + A"(AnEnF)
+ X ANENTE) + A"(ANEnF)

= A(ANE) + A(ANE) = A(A).

Thus (E \ F) € M, and M is a ring.
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Now to show that 2 is a o—ring, let (E,) be a sequence

of disjoint sets from M. Note that
ATADN (B, UE)] = A [An (E UE) nE]
+ A'[An (B UE) nEJ
= A'[ANE] + A[AnE)]
since E, and E, are disjoint. MHence for each n ¢ K,
* n oy
XA n [_UlEi]] = 5N (A nEy.
1= i=
Now
AT(A) = XA n {,ﬁlEi]] s AT[A D "[iﬁlEi]]
- * W
> EXN(AnE) + X[An ”[_UlEi]]
1= 1=
o n
for all n ¢ N since "[il_JlEi] c ”[.L_JlEi] . Hence
* w * * ®
N(A) 2 SA(ANE) + N[An "[ilglEi]]
* [11] * o]
> A"[A n [,ulEi]] + A[A “[.UlEi]].
Iz 1=

[11]
Therfore UE; € MM, and M is an o—ring. [N

i=1

Observe that A" is a countably additive measure on M.
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Lemma 4.5: If A € # so that
A5(U) = AT(U N A) + A°(U n A)
for all open Borel sets U, then A € M.

Proof: Let A be such a set in %, and let B ¢ #. Now
A, (U) = A(U) = A"(Un A) + AU n A)
> (B nA) + A"(B nA)
for all open Borel sets U such that B C U. Hence
AT(B) > A'(BnA) + A(BnA).
Thus A € M. R

Theorem 4.6: Every Borel set is A -measurable.

Proof: Clearly B C # since every Borel set is
oc-bounded. Let C be compact, and let U € 8 so that U is
open. Now U n 6 is Borel open since C is closed. Let
bcUn 6 so that D is compact; hence U n D is also Borel
open. Let E C U n D so that E is compact. Clearly D n E is
empty, DUE CU, and Un C C Un D. Hence

A(U) = A(U) » A(D U E) = x(D) + A(E).
Now
A.(0) 2 A(D) + A(U n D)
since E is an arbitrary compact subset of U n ﬁ, and
A, (U) 2 A(D) + AT(U n C)

- * .
since A extends A, and is monotone. Thus
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2U) > AU C) + AU A C)
since D is an arbitrary compact subset of U n EJ and X"
extends A,. Therefore C € MM, B C M, and every Borel set is

*
A —measurable. |JJ

Note that A" is a Borel measure since A (C) < o for all
compact sets C. For the rest of this paper, define g to be
\'|gg, and define the set % to be

{ A e B : A is regular with respect to yu }.

Clearly p is a Borel measure.

Theorem 4.7: If (E,) is a sequence from R so that

p(E,) < o« for each n € N and (F,) is a sequence from R, then

1) m
il.l.llFi € .‘ﬁ, iElEi € m, and (El \ Eg) € R.
Proof: Let (E,) be a sequence from R so that
u(E)) < o for each n ¢ N, and let (F;) be a sequence from {R.
Let ¢ > O.
To show that (E, \ E,) € R, let U and V be Borel open
such that E,; C U, E, ¢ V, u(U) < u(E) + 5, and
p(V) € p(E) + %, also, let C and D be compact such that
C CE, DCEy, uE,) ¢ p(C) + %, and p(E)) < pu(D) + % Hence
p(U) — p(D) — 5 < w(E) — u(E) + 3,

and

w(U\ D) € u(E \ Ep) + e
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Also

A

#(E) — u(E) — 5 < p(0) — w(V) + 5,
and
M(E1 \ Ez)
Thus (E, \ E,) € R.

i

p{C\ V) + .

Now to show that the intersection of (E,) is in R,
first let us show that a finite intersection of (E ) is in
R. Let U and V be Borel open such that E, C U, E, C V,
#(U) < w(E) + 5, and p(V) < p(E;) + 5. Hence u(U \ E) < =,
and p(V \ E;) ¢ 5. Note that (E, nE,) ¢ (Un V) and

(U V) \ (B nE)c (U\E)U (V\E).
Thus
(U n V) — u(E; n Ey) = p[(UnV)\ (E nEp)]
Cu(UNE) + pu(VNE) <e.
Now let C and D be compact such that C C E,, D C E,,
p(E) € p{C) + %, and u(E,) < u(D) + %. Note that
(Cnb) c (E,nE,) and
(E;nE) \ (CnD) c (E, \C)u (E, \ D).
Hence
p(E, 0 E)) — p(C n D) = u[(E; n E) \ (Cn D)]
< u(E, \ C) + u(E; \ D) < e.

Thus (E, n E,) € R, and [}iEJ € R for each n € N.
1=

n
Now since [IHEJ € R for each n ¢ N, we may assume that
i=

(E;) is a decreasing sequence. Let m € N so that
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1]
p(Ey) < ,u[_nlEi] + 5—, and let U be Borel open so that E, ¢ U
1=

3] 1)

and u(U) < u(E) + % Hence p(U) < ,u[‘nlEi] + €, and in1Ei ¢ U.
1= =

Now for each n € N, let C, be compact such that C, C E, and

m m 1 1]
u(Ey) € p(C,) + %T:‘- Clearly iQ;Ci is compact, ig1ci g ingi’ and

1] 1] 11}
[iQIEi \ iQICi] ¢ U (E\ Cp.

Hence

[PaN

" m @ o 1] @ P
MLQIEi \ iDICi] Z (B \ G < Z o3 e

Thus [E1Ei] € R.

To show that the union of (F ) is in R, let us first
show that a finite union of (F,) is in ®. Now if u(F,) = o
or u(F,) = o, then clearly
p(F U Fy) = sup{ u(C) : C ¢ (F, UF,) where C is compact }
inf{ u(U) : (F, U F,) C U for Borel open U }

i

= .
Hence assume that u(F,) < o and u(F,) < 0. Let U and V be
Borel open such that F, C U, F, ¢ V, u(U) < p(F) + %, and
(V) < w(F,) + 5—, and let C and D be compact such that
CCF, DcF,, uF) < pC) + %: and p(F,) < p(D) + 5‘ Note
that (F, UF,) ¢ (U U V) and
(UUuV) \ (FuF,) ¢ (U\F)u (V\F,).

Hence

WU U VY \ (B UFY] € w(U\ B + u(V \ B ¢ e
Also note that (C U D) ¢ (F, u F,) and
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(F, U F;) \ (CuD)

1

(F,\ C) u (Fy \ D).

Hence
pE(F, U Fy) \ (CnD)] € p(F \ C) + p(F, \ D) <.

Thus (F, U F,) ¢ R, and [-BIFi} € | for each n € N.
1=

1A

n
Now since [ﬁhFJ € R for each n € N, assume that (F,) is
i=

an increasing sequence. Note that
w
p,[_UFi] = lim u(F,).
1=1 i =+ o

If u[UFJ = w, then clearly

1 1] w
M[LKFJ = sup{ u(C) : C ¢ [$LFJ where C is compact }

L}

inf{ p(U) : [#QFJ ¢ U for Borel open U }

I

= m.
L1}
Thus assume that u[;”FJ < w. Let m € N so that
is
L1 1)
p[}“FJ < p(Fy) + %; and let C be compact so that C C F and
1=

1] [t1]

u(F) <€ u(C) + %. Hence u[}“FJ < p(C) + ¢, and C C ;UF}. Now
1= i=

for each n € N, let U, be Borel open such that F, C U, and

m o
#(Uy) < p(Fy) + 55. Clearly UF; ¢ UU;, and

Hence
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Furthermore note that the class of bounded regular

Borel sets form a ring. A monotone class A4 is a class of

sets so that if (E,) is an increasing sequence of sets in 4

and (F,) is a decreasing sequence of sets in ., then
w m

UE; € # and -ani € A.
1=

j=1 !

Theorem 4.8: If R is a ring, then #R) = o(R); in

other words, the monotone class generated by R is the &-ring

generated by R.

Proof: Let R be a ring; clearly #(R) € o(R) since
g(R) is a monotone class. Now for E,F C G, "E collaborates
with F" means that E\ F ¢ #R), F\ E € #R), and
EUFe #4R). For each E C G, let

K(E) = { F : E collaborates with F };

clearly F € K(E) if and only if E € K(F). Now we assert
that if F ¢ G so that K(F) is not empty, then K(F) is a
monotone class. Clearly if A ¢ R, then R C K(A), and K(A)
is not empty; hence let F C G so that K(F) is not empty.
Let (E,) be an increasing sequence of sets from K(F), and
(D,) be a decreasing sequence of sets from K(F). Now for
eachneN, E.\ Fe #4R), F\E ¢ #4R), and E, UF ¢ #R).

Hence

o

UENF) = [UB] \ Fe m),
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g8

m '
(B UF) = [_UiEi UF e AR),
i=1

w

.

1

and

8

(F\E) =F\ [UE] e )

since (E, \ F) and (E, U F) are increasing sequences in (R)

iI'D

i=1

and (F \ E)) is a decreasing sequence in #(R). Thus

[ElEi] € K(F). Similarly [iEIDi] ¢ K(F). Hence K(F) is a
monotone class, and our assertion is true.

Thus #(R) C K(A) for every A € R. Let E,F ¢ #(R);
hence E € K(A) and A € K(E) for every A ¢ R. Then R € K(E)
and #(R) C K(E). Thus F € K(E), and E \ F ¢ #(R),

F\Ee #4R), and EUF ¢ 4R). Therefore 4(R) is a
c-ring and o(R) = #R). I

Further if M is any monotone class so that R C M, then

o(R) = #(R) C M.

Theorem 4.9: The Borel measure g is a regular Borel

measure.

Proof: Let C be compact. Clearly
#(C) = sup{ p(D) : D € C where D is compact }
since y is monotone. Now
p(C) = A*(C) = inf{ A, (U) : C C U for open Borel U }
= inf{ p(U) : C ¢ U for open Borel U }.
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Thus C is regular with respect to u, and C € R.

Let # be the ring generated be the class of compact
sets; hence ¥ C B since the class of bounded regular Borel
sets form a ring that is contained in . Now let

" ={Ee®B:CnEeR forall Ce % }.
Clearly ¢ C % and | is not empty. Now we claim that %’
is a moneotone class. For let (E,) be a decreasing sequence

from %, and let (F,) be an increasing sequence from R .

o @
Clearly "nlEi € B and -UIFi € B. Note that
1= 1=

H
ne 8

1]
i [,u Fi]
1=1
for all C € ¥ and that
@
¢ [‘n Ei]
1=1

® /!
for all C € ¢ since each p(C N E,) < . Thus _nlEi € R,
i=

(CnF)eR

i=1

I

o
_nl((} nE)en

1=

Y I 7
.UlFi € R, R is a monotone class, and the claim holds.
i=
Hence % = % since a monotone class that contains a
ring also contains the ¢o-ring generated by the ring. Now

let E € %B; clearly E is o-bounded. Hence let (C,) be a

@®
sequence of compact sets such that E ¢ UC;. Note that

i=1
w
E = il_JI(E n C;). Thus E ¢ & since each (E n C)) ¢ RA.

Therefore %6 = R, and y is a regular Borel measure. [

Theorem 4.10: The set function g is the unique regular

Borel measure that extends A.
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Proof: Let C be compact and ¢ > 0. Now let D be
compact and U be open so that C C U C D and A(D) ¢ A(C) + ¢
since A is a regular content. Hence

X' (€) € X(U) < A(D)
since \* is monotone. Note that A(C) < A" (C) and
A(D) < A*(D) as shown before. Thus, by Theorem 4.3,
A*(C) < A(C) + ¢, and A (C) < A(C). Therefore
A(C) = A7(C) = w(C),
and p extends M.

Now to show that p is unique, suppose that p is also a
regular Borel measure that extends A, but p # p. Let E € B
so that p(E) # p(E). Assume for now that p(E) < p(E) < u;
let § = pu(E) — p(E). Now let A C E be compact so that
p(E) < p(A) + 8. Hence

p(E) < p(A) + u(E) — p(E),
and

p(E) < u(A) = p(A);
which is a contradiction since A C E. Ve attain a similar
contradiction if we assume that p(E) < p(E) < .

Now assume, without loss of generality, that
p(E) < p(E) = 0. Let B C E be compact so that u(B) > p(E)
since u(E) = w. Hence p(E) < p(B) = p(B); which is a

contradiction. Therefore u is unique. |}

The statement that a real—valued function f on G is
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measurable means that

f1[(a,0)] \ £1(0) € B
for all a € R. Observe that every function in ¢ is
measurable. For a measurable function g so that g 2> O,

define [ g dp by
n n
[ g du = sup{ i§1ai,u(Fi) : i);}loziRFi < g where n € N,

{a;,...,0,} CR, and

{F,...,F,} is a collection

of disjoint Borel sets }.
Clearly if g = O, then [ g du = 0, and if f is measurable,
then f* and £ are measurable, f* > 0, and £~ > 0. Further,
if f € % then f*¢ ¥ and £~ ¢ £ Now for a measurable
function f, define [ f dpu to be

J £*dp — [ £dp.

A measurable function f is said to be integrable if
| £ du < w. Clearly if f € % then f is integrable since f
has compact support. Observe that [ - dug is linear on .4
e.g., see Royden [3, p. 267]. We now begin in the process
of establishing that u represents I.

Lemma 4.11: If C is compact and ¢ > 0; then there
exists f € 2 so that RC < f and

I(f) <[ £ dp + €.

Proof: Let C be compact and ¢ > 0. Now let f ¢ 2 so
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that R, < f and I{f) < A(C) + ¢. Hence
I(£) < A(C) + e =p(C) + e < [ £ du+ ¢
since y extends A and R, < f. B

Lemma 4.12: Xf £ ¢ 2, then
[ £ dp < I(£).

Proof: Let f € 2 and ¢ > 0. Now let n ¢ N,

{a;,-.-,a,} C R such that each a; > 0, and {F,...,F } be a

I
finite collection of Borel sets so that -ElaiNF < f and
i= i

n
£
J £ dp < i{;laiﬂ'(Fi) + 5.
Note that each F; is bounded since f has compact support.

Before continuing, we need the following result.

Sublemma: There exists a finite collection {C,...,C,}

of compact sets so that each C; C F; and

n I €
| i{}iaiﬂ(Fi) - iglaiﬂ'(ci) | < 5.

Proof of sublemma: Let

d=1+max{ oy : 1 <i¢m}.
Since p is regular, let each C; be a compact such that
C; ¢ F; and p(F; \ C;) < a—h Clearly the C;’s are disjoint.
Thus

Il o] n
| Elai#(Fi) - i{:laiﬂ'(ci) | = i{}laiﬂ(ri \ Gy
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I

n
€
S i{}ld'a'n'g -2

and the sublemma is true.

Now let {C,,...,C,} be a collection of disjoint compact

sets that satisfies the conclusion of the sublemma; clearly

n
f2 Zofg and

- i
I
[ £du < Bap(Cy) + e
Now let {U,,...,U,} be a collection of disjoint open sets so

that each C; ¢ U;, and let h,...,h, € .¥ so that 0 < h; < 1,
h(C;) = {1}, and hy(G \ U;) = {0} for 1 < i < n. Hence

i§1hi < 1 since the U;’s are disjoint. Note that aiNCi < hf
for 1 < i < n. Thus A(C) < I(h;f), and eu(C;) < I(h;f) for
1 < i < n. Hence

Bap(C) ¢ $I(hyt) = T[eEn] < 1(H).

Therefore | f du ¢ I(f) + ¢, and [ f dp < I(f) since ¢ is
arbitrary. |

Theorem 4.13: The regular Borel measure u uniquely
represents I; in other words, g is unique so that
I(f) = [ f dp
for all f € X

Proof: Let f € £ Since [ - dyg and I are linear on .%
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we may assume that O ¢ f ¢ 1. Hence [ f dy ¢ I(f). Let
e > 0, and let C be compact so that C supports f. Now apply
Lemma 4.11 and let g € £ so that NC < g and
I(g) < J g du + e. Clearly f ¢ R, < 83 hence g — £ = 0 or
g—fec P Thus [(g— £f)du ¢ I(g — 1),

Jgdu~ [ £ dug I(g) ~ I(f),
and

I(f)

[ 74N

I(g) — fgdu+ [ £ du
| £ dp + e

A

Hence I(f) = [ £ du.

To show that u is unique, suppose that p is a regular
Borel measure so that I(f) = | £ dp for all f € % but
p t p. Since p and p are regular, let A be compact so that
p(A) # p(A); and let ¢ = | u(A) — p(A) |. Now let U be an
open Borel set so that A C U, p(U) < u(A) + ie, and
p(U) < p(A) + 3¢. Let h € # so that 0 ¢ h <1, h(A) = {1},
and h(G \ U) = {0}. Hence ® < h ¢ R . Now

p(A) < J hdp

I(h) < u(U),

and
p(A) ¢ [ h dp = I(h) < p(U).

Hence | I(h) — p(A) | < ¢, and | I(h) —~ p(A) | < 4e. Thus

| u(A) — p(A) | < €, contradicting the definition of e.

Therefore p is unique. [

Now we are ready to show that p is a Haar measure on G.
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Theorem 4.14: The regular Borel measure ug is a Haar

measure on G.

Proof: Since I is not zero, p is not zero. Suppose
that y4 is not a Haar measure; thus p would not be
translation invariant. Since g is regular, let C be compact
and s € G so that u{C + {s}) # p(C). Let

e = | u4(C+ {s}) —u(C) | > 0.
Note that C + {s} is compact. Let g,h € # so that RC < g,
Re & {s} < h, I(g) ¢ A(C) + $e, and I(h) < A(C + {s}) + ie.
Now let f = min{ g,h(_s) } Clearly Ry < £, Ro | {s} g
I(£) ¢ AMC) + 4¢, and I(f ) < A(C + {s}) + je. Since
I(f) = I(f),

i

| A(C) = AC + {s}) | <6

and
| #(C) — u(C + {s}) | < ¢

contradicting the definition of e¢. Thus g is translation

invariant. Therefore g is a Haar measure on G. [

Finally we are ready to show that x is unique up to a

positive scalar.

Theorem 4.15: If p is a Haar measure on G, then

p = c-p for some ¢ > 0.
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Proof: Let p be a Haar measure on G. Let J be a
positive linear form on ¥ so that J(f) = [ £ dp for all
f e 4 Clearly J is linear, positive, and not zero since p
is not zero. Let f € % and s € G. Now we assert that
J £4dp = | £ dp. For if not, then assume without loss of
generality that [ f dp > | f dp, and let

e=[fdp— [ £f.dp;

further we may assume that f > 0. Now let n € N,

{a,...,00} C R, and {F,,...,F,} be a collection of disjoint

Borel sets so that Ef%RF ¢ f and
i i

n
I ; dp < Elalp(Fi) + €.

1
Note that Ef%N(Fi+-{S}) ¢ £y, and

n n
Zap(F) = Fap(F; + {s})
since p is translation invariant. Thus
n
| £ dp < igﬁﬁp(Fi +{s}) + [ £ do — | £ _dp,
and
13
[ £4dp < Zap(F; + {s});
which is a contradiction. Hence | fsdp = [ £ dp, and
J(f5) = J(f). Thus J is a Haar integral.
Now let ¢ > O so that J = ¢:I. Hence J(g) = c-I(g),
[ g dp

C'I g df""’

and

| g dp

[ g d(c-p)
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for all g € % Therefore p = c-u since p is the unique

regular Borel measure so that J{(g) = [ g dp for all g ¢ %

Dbserve that Lebesgue measure v is certainly a Haar
measure on R, but u|€ = 0. The construction in chapters III
and IV produces a translation invariant regular Borel
measure p on € so that p(¢€) = 1. Note that

p({ x € € : a; = 0 where (a;) is the ternary

expansion of x so that each aj # 1 }) = {,
p({ x € € : a, = 2 where (a,) is the ternary
expansion of x so that each a, # 1 }) = 4,

and
p({ x € € : a, =0 and a, = 0 where (a,) is the ternary
expansion of x so that each a; # 1 }) =1}

since p is additive and translation invariant.
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