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This thesis describes regression analysis and shows

how it can be used in account auditing and in computer

system performance analysis. The study first introduces

regression analysis techniques and statistics. Then, the

use of regression analysis in auditing to detect "out of

line" accounts and to determine audit sample size is dis-

cussed. These applications led to the concept of using

regression analysis to predict job completion times in a

computer system. The feasibility of this application of

regression analysis was tested by constructing a predictive

model to estimate job completion times using a computer

system simulator. The predictive model's performance for

the various job streams simulated shows that job completion

time prediction is a feasible application for regression

analysis.



PREFACE

This investigation is concerned with the techniques

of regression analysis and their applications in the

fields of account auditing and computer systems. Chapter I

presents a nonmathematical description of regression analy-

sis techniques and of the statistics calculated by most

computer programs that perform regression analysis. This

chapter provides background information for the regression

techniques discussed in the remainder of the thesis.

Chapter II describes two ways that regression analy-

sis can be used in the field -of auditing. These are the

detection of "out of line" account balances; and the deter-

mination of audit sample size. This chapter is included in

the thesis to expound upon the techniques presented in

Chapter I by describing some actual applications of regres-

sion analysis. The ideas presented here led to the concept

of using regression analysis in computer systems as shown

in the following chapter.

Chapter III describes how regression analysis might be

used to predict the exit times of jobs running in a computer

system. In this context, the "exit time" of a job refers to

the time that the computer finishes procesSing the job. This

use has practical application in that many computer users
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request computer center personnel to make such a prediction.

The chapter describes how the feasiblity of this regression

analysis applicati-on was tested by the construction of a

predictive model to estimate job exit time.
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CHAPTER I

INTRODUCTION TO REGRESSION ANALYSIS

Regression analysis is a method of developing a

mathematical equation to describe the relationships among

a number of variables. This regression equation is for-

mulated such that the value of one variable (called the

dependent variable) can be estimated when the values of

the other variables (called the independent, or predictor,

variables) are known. Thus, the independent variables are

used to estimate a value for the dependent variable. Re-

gression analysis employs past period, or historical, data

to build this regression equation. The equation is "built"

by solving mathematical formulas involving the past period

data. In using the equation, it is assumed that future data

will act in much the same manner as the historical data.

According to Mason (2, p. 485), the word "regression"

was introduced by Sir Francis Galton in 1877 during his

study of heredity. He found that the heights of descendants

of tall parents tended to regress (meaning to go back) to-

ward the average height of the population. He developed a

mathematical line, called the line of regression, to describe

this tendency. The term "line of regression" is commonly

used but, according to Mason, a "predictive equation," or
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an "estimating equation," seems to be more appropriate

(2, p. 485). The notion of regression analysis has not

changed since Galton's time. It still means to develop a

mathematical line that describes the tendency of one vari-

able to regress toward another.

The variables mentioned may come from many different

areas. In financial applications, selling expense may be

estimated using the number of invoices processed, net sales

dollars, number of salespeople, and their average hourly

wage as predictor variables. In medical applications, the

weight of a person's liver may be predicted based on his

body weight, his height, and his age. Any number of other

examples could be given. The point is that the variables

in a regression analysis application are simply numbers,

and it is the user's duty to assign meaning to them.

Types of Regression Analysis

There are four general types of regression analysis:

(1) simple linear regression analysis; (2) multiple linear

regression analysis; (3) simple nonlinear regression analy-

sis; (4) multiple nonlinear regression analysis. The fac-

tors which distinguish the types from one another are the

number of predictor variables in the equation and the power

to which the predictor variables are raised. In the "simple"

cases, a single predictor variable is used, and in the

"multiple" cases, numerous predictor variables are used.
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Furthermore, the predictor variables are all raised to the

first power in the "linear" cases, and raised to a power

greater than one in the "nonlinear" cases.

In all four types of regression analysis, the regres-

sing equation is found by "regressing" upon the historical

data to determine specific values to be used as the coeffi-

cients of the predictor variables in the equation. By

calling X1, X,23,3 - - " k the predictor variables, Yp
the estimate of the dependent variable, and b0 , b1 , b21 . . -

bk the regression coefficients, general equations for the

four types of regression equations can be given as follows:

a. Simple linear regression analysis:

Y = b +b -X
P . 0 1

b. Multiple linear regression analysis:

Yp = b0 +b1 -Xi+b2 -x2 +.. +bk-

c. Simple nonlinear regression analysis:

Y = b +b xn

p 1
d. Multiple nonlinear regression analysis:

Y = b +b *X+b *xm+ .++b.-Xn
p 01 22 k k

The two linear methods of regression analysis will be

most important in the discussion that follows.

Prior to the introduction of the electronic computer,

regression analysis was limited to about three independent

variables because of the large number of calculations neces-

sary to find the regression equation. Presently, most re-

gression analysis programs available on large computers
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will accept over twenty independent variables (2, p. 514).

In the cases of nonlinear regression analysis, computational

complexities are so immense that there are serious diffi-

culties in solving them even with computers (3, p. 439).

Least' Squares Method

The most popular way of finding the regression equa-

tion is called the least squares method. This method gives

what is commonly referred to as the "best fitting" straight

line based on the given historical data (2, p. 485). The

best fit line for any set of data points depends upon how

the user states his best fit criteria. In some applications

the best fitting line may pass through each historical data

point, while in other cases, such as with least squares, the

best fitting line need not pass exactly through any of the

points. In regression analysis the least squares method is

said to produce the best fitting straight line because it

minimizes the sum of the squares of the vertical deviations

about the line. This least squares concept of best fit will

be used in this paper.

In the simple linear regression case, this "best fit"

line can be easily demonstrated, but the multiple linear

regression case is more difficult to picture. The simple

linear case will consist of one dependent and one indepen-

dent variable, and the historical data will be given as two
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sets of numbers. These sets of numbers can be thought of

as x,y pairs in a cartesian plane. Then, the object of

regression analysis is to find the equation of the straight

line which comes closest to going through all the given

points. In least squares, this means minimizing the sum of

the squares of the vertical deviations about the line. As

an illustration, assume the outside diameters and tensile

strengths of three pieces of wire are measured, and the out-

side diameters are .3 inches, .4 inches, and .5 inches, and

the tensile strengths are 8,000 pounds, 18,000 pounds, and

16,000 pounds. The results of plotting this information

along with the least squares line are shown in Figure 1. In

this example, the sum of the squares of the vertical devia-

tion from the regression line can be calculated as

2.02+4.02+2.02=24.0. Since this is a small example with

few data points, it would not be difficult to verify that

twenty-four is indeed the smallest possible sum of squared

deviations. By drawing some other line to represent the

three points, say by a freehand method, the sum of the

squared deviations would be greater than twenty-four, The

formulas used to find this "best fitting" line by the least

squares method will be discussed later.

The meaning of the least squares method has been dis-

cussed with regard to the simple linear regression analysis
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Figure 1--Plot of Outside Diameter and Tensile
Strength of Wire, and Regression Line

case. For the multiple linear regression analysis case,

the theory is the same, but graphical representation of the

least squares line is very difficult. The object is still

to minimize the sum of the squares of the vertical devia-

tions about the regression line, but the multiple case

involves one dependent variable and more than one indepen-

dent variable.
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Regression Analysis Formulas

The formulas for finding the least squares line in

both the simple and multiple linear regression analysis

cases will now be discussed. Because this is a nonmathe-

matical discussion, proofs of the methods will not be

given. These proofs are described in many statistics and

econometrics texts, and involve using the calculus of par-

tial derivatives to minimize certain mathematical equations.

In the simple linear case, the values of the regression co-

efficients, b0 and b1 , are found by using the following

formulas:
n (iXY) - ( X) (SY)

b= SY b -X
Y 1-j -n n n

In these formulas, n is the number of historical data cases

we have, and X and Y represent the actual historical data.

(Recall that the general form of a simple linear regression

equation is Yp=b 0 +b1 -X, where Yp is a prediction of the

value of the dependent variable, Y.) Using the data for

tensile strengths of wires as shown previously, the above

calculations can be demonstrated.
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b= n(iXY) - ( X) (IY) b = Y b 1 X
1 0 -jj-

n (..X2I) - (sX) 2 n n

3 (17. 6)-(l.2) (42) 42 42 40-. 2

(3) (. 5) - (1. 2)2

2.4 .14-16
.06

=40 -- 2

Thus, the regression equation is Y =-2+40.X. The

graph of this line was shown in Figure 1, and can easily be

verified by substituting the values three, four, and five

for X in the equation. These formulas may be used to find

the regression coefficients in any simple linear regression

analysis problem that uses the least squares method.

Finding the regression coefficients in multiple linear

regression analysis is a little more difficult. The least

squares estimates of the coefficients in the multiple linear

regression case are given by a=(X'-X)~I-X'-Y (1, p. 52).

Here a is a vector of the estimates of the regression coef-

ficients, X is a matrix containing the historical observa-

tions and XI is its transpose, and Y is a vector containing

the historical observations of the dependent variable Y.

The symbol -1 above (X'X) indicates the inverse of this matrix.
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An example of how the above formula can be used will

now be given. Assume the set of values shown in Table I is

given and the sums and sums of cross products for the data

have been calculated. The object is to find a regression

equation of the form Y =b -X +b -X +b -X that describes
p 0 0 1 1 2 2

the relationships between the dependent variable, Y, and

the independent variables, X and X
1 2

TABLE I

DATA FOR EXAMPLE OF MULTIPLE
LINEAR REGRESSION ANALYSIS

Variables

Y X x

66.0 38.0 47.5
43.0 41.0 21.3
36.0 34.0 36.5
23.0 35.0 18.0
22.0 31.0 29.5
14.0 34.0 14.2
12.0 29.0 21.0
7.6 32.0 10.0

Sums and Cross Products

JY=223. 6

Y2=8911.8

X 1 =274. 0

EX2=9488.0

X 2:=1.98.0

2

EX -Y=8049.2 IX2 6954,7 X12=6875.612
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(To facilitate matrix representation, X is a dummy variable

whose value is always unity.) The process begins by sub-

stituting the given data into the formula for finding the

estimates of the coefficients in the regression equation.

a = (X'-X)~ 1 -X'.Y

a 0

a =

a2

1.0 1.0 1.0 1.0 1.0 1.0 1.0

38.0 41.0 34.0 35.0 31.0 34.0 29.0 32.0

47.5 21.3 36.5 18.0 29.5 14.2 21.0 10.0)

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0\
38.0 41.0 34.0 35.0 31.0 34.0 29.0 32.0
47.5 21.3 36.5 18.0 29.5 14.2 21.0 10.0

1.0 38.0
1.0 41.0
1.0 34.0
1.0 35,0
1.0 31.0
1.0 34.0
1.0 29.0
.0 32.0

- -1
47.5
21.3
36.5
18.0
29.5
14.2
21.0
10.0

66.0
43.0
36.0
23.0
22.0
14.0
12.0
7.6

The multiplication of these matrices yields:

a0  8.0

a = (274.0

a2) K198.0

274.0

9488.0

6875.6

198.0k

6875.6

5979.1 /

-1

223.6

8049.2

6954.7

Continuing, any method available can be used to find the

inverse of the above 3 by 3 matrix, When this is done, and

the multiplication performed, the result is:

a0 -94.6

ai = 2.8

a 2 )-l
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Thus, the regression equation is given by;

Y = -94.6 + 2.8 - X + 1.1 - X
p 12

The preceding method can be used to find the regression

equation for any linear multiple regression problem. How-

ever, because of the many calculations involved, this method

is impractical for problems using more than three independent

variables.

When these matrix calculations are performed by a com-

puter, they are not carried out using exactly the method

shown above. One reason for this is the large rounding

errors that may occur when this sequence is followed (1,

p. 107). Rather than spend time discussing how electronic

computers solve regression analysis problems, it is better

to assume that packaged programs by computer manufacturers

such as IBM are able to do so. With this assumption, the

interpretation of certain statistics vital to regression

analysis will be discussed.

Regression Statistics

Earlier it was stated that the least squares method

yields the "best fit" regression line. The least squares

method of linear regression analysis attempts to find a

straight line that best describes the historical data that

is given. Some sets of data values can be described very

well by a straight line, but others cannot. There are
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statistics that indicate how well this "best fit" straight

line describes a particular set of data values. There are

three such statistics that are of prime importance in this

paper. These are: (1) the Pearson product moment correla-

tion coefficient, (2) the standard error of the estimate,

and (3) the F value of the equation. Each of these statis-

tics will now be discussed.

The Pearson product moment correlation coefficient,

symbolized by R, is a measure of the relationship between

the dependent and independent variables. This measure is

usually squared, R2 , to take on a value from zero to one

proportional to the goodness with which the dependent vari-

able, Y, can be predicted from a knowledge of the indepen-

dent variables, X. For example, if R2=.92, then 92 percent

of the variation in Y is explained by X. If R2 =.20, then

only 20 percent of the variation in Y is explained by X,

and the remaining 80 percent is unexplained. This corre-

lation coefficient, R2 , is printed out for most regression

analysis- problems solved by a computer. An examination of

this statistic shows how well the regression equation fits

the historical data.

The standard error of the estimate is a measure similar

to the standard deviation normally encountered in statistics.

The standard error is symbolized by SE and measures the dis-

persion of points about the regression line. As an example,
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assume a regression equation that predicts amount of sales

(in millions of dollars) based on several predictor vari-

ables has been developed, and that the computer run shows

the standard error of the estimate to be 1.24. When the

equation is used to predict sales, YP, the following state-

ments can be made:

a. The probability is .68 that the sales are in

the range YPt$1,240,000.

b. The probability is .95 that the sales are in

the range Y - 1.96- ($1,240,000).

c. The probability is .997 that the sales are in

the range YP 3- ($1,240,000).

These probabilities are based on the characteristics of the

normal curve as described in many statistics books.

Another important use of the standard error of the

estimate is apparent when computers use a "stepwise"

method of finding a multiple linear regression equation.

Most popular computer programs use this method, and it

simply means that the predictor variables, X1, X2 , . . . Xk'

are entered into the regression equation one at a time. As

each variable is entered, a regression "step" is completed.

The computer program determines which variable to enter at

each step by computing the correlation between each of the

independent variables and the dependent variable. The
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independent variables showing the highest correlation with

the dependent variable are entered into the regression

first. A matrix of these correlations is shown at the

first of most stepwise multiple regression programs.

A regression equation and statistics about the regres-

sion are printed out at each step described above. The

equation at each step includes all the predictor variables

that have entered the regression thus far. This way, a user

may decide at any step that the regression equation is "good

enough" and obtain an equation that contains only the vari-

ables entered so far. The standard error can be used to tell

when the regression equation is "good enough," because it

indicates whether the estimation is getting better or worse.

Since a small standard error is desirable, a predictor vari-

able should be used in the regression equation only if the

step in which it enters shows a smaller standard error than

was shown at the previous step.

The F value of the equation is the final measure to be

discussed. This is the ratio of the explained variance to

the residual or unexplained variance. This ratio can be

used in much the same way as the standard error of the esti-

mate in a stepwise regression problem. If a variable entered

into the regression at a step adds to the explained variance,

that is, increases the F value, then it should be used in
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the regression equation. For example, assume a stepwise

regression analysis program has calculated the F values for

each step in the regression as shown in Table II.

TABLE II

F VALUES FROM A STEPWISE REGRESSION PROGRAM

Step Variables Used (Xk F Value Calculated

1 4 106.630

2 4,2 207.485

3 4,2,5 345.369

4 4,2,5,1 217.546

5 4,2,5,1,3 140.404

The predictor variable X and X would probably not be used
1 3

in the final regression equation. This is because when they

were entered, at step four and step five, they decreased

rather than increased the F value, thus indicating that

these two variables decreased the explained variance at

their respective steps.

Another way the F value can be used is in testing the

"statistical significance" of the regression (1, p. 64).

Stating that a regression is "statistically significant,"

means that the portion of variance observed in the data,
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and accounted for by the regression equation, is greater

than would be expected by chance in 100-(1-o4) percent of

the similar sets of data with the same number of observa-

tions and predictor variables. Here, g is a risk level

specified by the user of the regression equation.

To further explain this statement, another statistic

normally appearing on a computer printout of a regression

run must be mentioned. This is the "degrees of freedom"

(d.f.) in the regression and in the residual of the equa-

tion. These are two numbers determined during the computer

run that relate to how many sets of historical data were

used in a regression problem. For the purposes of this

paper, it will be best to use these numbers without for-

mally explaining their origin. (For further information,

the reader may consult any introductory statistics text.)

Assuming this, an example of testing the statistical signi-

ficance of a regression equation can be given. Suppose a

risk level, c , of .05 is chosen and that the degrees of

freedom (d.f.) calculated in the regression is 10 and in

the residual is 20. By consulting a statistical table

giving F Distributions, it can be found that F(10,20.,.95)=

2.35. This means that the F value calculated from the

regression equation must exceed 2.35 in order for the re-

gression to be considered statistically significant. In

other words, the F value will exceed 2.35 if the regression

equation does a better job of explaining the variances in
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the data than could be done by mere chance. Studies have

indicated that the F value should not merely exceed the

selected percentage point of the F-distribution, but should

be four times the selected percentage point (1, p. 64).

Thus, the F value in this example would have to exceed 9.4

for the regression equation to be considered a better pre-

diction tool than mere chance.

Conclusion

Regression analysis is a mathematical tool used to

build an equation that describes the relationship among

several variables. This equation is based upon the histori-

cal values of the dependent and independent variables in the

equation. The least squares method is the most popular way

to find the regression coefficients to be used in the equa-

tion. There are four types of regression analysis, and the

two types most important to this paper are simple linear re-

gression analysis and multiple linear regression analysis.

These two types differ only in the number of independent, or

predictor, variables used. Almost all regression analysis

problems are solved by a computer, and most computer programs

use a stepwise method to determine the regression equation.

This enables the user to observe the values of certain sta-

tistics, such as the correlation coefficient, the standard

error of the estimate, and the F value of the equation at

each step and thus decide when the regression equation is

satisfactory for his application.
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CHAPTER II

REGRESSION ANALYSIS IN AUDITING

This chapter outlines how regression analysis has been

applied in the field of auditing. More specifically, it

shows how this tool has been used in auditing to predict

sample size and to detect out of line accounts. These ap-

plications have special significance to this thesis in that

they were the stimuli for the application of regression

analysis in computer systems, as shown in Chapter III.

Business managers today retain more financial infor-

mation about the activities of their companies than ever

before. The need for keeping this large amount of infor-

mation has always existed, but only recently has technology

provided cost effective methods of doing this. As this re-

tained information increases in amount, the independent

auditor faces an increasingly difficult task when forming

his opinion regarding the financial statements of a business.

Auditors characteristically express this opinion after ex-

amining only a small portion of the underlying financial

data. Often the auditor relies only on his informed judge-

ment as to which specific data he should review. Two pro-

cedures that have been helpful in this selection process

are statistical sampling and ratio analysis.

19
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Statistical sampling allows the auditor to review a

small number of transactions (called the sample size) and,

based on the results of this examination, make a statement

regarding.all similar transactions (called the universe or

population). This technique is used most notably in the

examination of inventory and accounts receivable. Ratio

analysis is performed by calculating percentages and ratios

between account balances, and investigating those showing

significant deviations from those of past periods. In this

way, the auditor can direct more audit effort toward "out-

of-line" accounts. Both of these procedures have disadvan-

tages, however, In statistical sampling, the auditor usu-

ally has no quantifiable guidance as to whether he should

increase or decrease the level of confidence (and thus the

sample size) he specifies for his tests. Ratio analysis is

not based on an understanding of the behavior of the indi-

vidual accounts, and therefore can often be misleading.

Multiple linear regression analysis can be used along

with statistical sampling and ratio analysis to make these

procedures more effective. The use of regression analysis

to detect "out-of-line" accounts will now be discussed.

Following that, the use of regression analysis in conjunc-

tion with statistical sampling will be described,



21

Ratio Analysis

The first step in this application of regression analy-

sis is the selection of independent variables (the X values)

that can be used in predicting the value of the dependent

variable (Y). For this application, the dependent variable

represents the account balance the auditor wishes to test.

The predictor variables chosen would normally be based, at

least initially, upon the auditor's judgment. They could

be derived from many different areas: internal or company

data, industry statistics, or general economic indications.

In order for the predictor variables to be used in cost

related analysis, several conditions must be met. Some of

these conditions will be mentioned here, but a more detailed

list can be found in the works of Benston (1), Comiskey (2),

and Jensen (6).

Because it is unlikely that the data the auditor is able

to gather will meet all these requirements, the results of

regression analysis can seldom be viewed as anything more

than approximations. Violations of these formal require-

ments will usually have only minor impact on the results.

Usually, the auditor's purpose will be adequately served

if his data is in reasonable conformity with these require-

ments (4, p. 765).

As a general rule, the more historical observations

the auditor can gather, the better his results will be.



22

Thus, it is helpful if the auditor can obtain data on a

monthly or quarterly basis (3, p. 30). There should be

uniformity in the method of recording this periodic infor-

mation. This is an extension of the "matching" principle

of accrual accounting: the revenues of a period should be

matched with the expenses of that period. Because regres-

sion analysis uses historical, or past period, values to

predict future amounts, it is important that no changes in

accounting policy have occurred that may nullify this assump-

tion. Finally, the auditor should attempt to find all

major contributors to a particular account balance, and use

all of these, at least initially, as predictors in his re-

gression model.

The next step in the auditor's use of regression analy-

sis is to determine the regression equation as based on the

historical data. For this step it is necessary for the

auditor to have access to a computer having a regression

analysis program. Most computer manufacturers and service

bureaus make these programs available to their users. As

stated earlier, the stepwise regression method is used by

most packaged programs and is the recommended variable

selection procedure (5, p. 172). Using the stepwise method,

the auditor can eliminate any predictor variables that he

feels are unnecessary to the application, and thus reduce

the complexity of the regression equation.
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Once the auditor has determined the regression equation,

it can be used to estimate the balance of the account he

wishes to examine. This equation will have the form of the

multiple linear regression equation shown earlier: Y =

b0 +b 1+b2 2+ . .+.+bk k. By evaluating this equation

using the X values from the period being audited, the esti-

mate, Y , of the current account balance can be found.
p

The final step the auditor must perform in his use of

regression analysis is the interpretation of the estimated

account balance, Y . As earlier stated, each regression
P

equation has a standard error (SE) associated with it. Using

this measure and the prediction, Yp, several statements about

the true account balance can be made. Based on the defini-

tion of standard error, sixty-eight percent of the time the

true balance should be within a range of plus or minus one

standard error of the predicted balance. Likewise, ninety

percent of the time, it should be within a range of plus or

minus 1.64 standard errors. For example, assume a regression

model to predict shipping expense is built, and has a standard

error of $1530. If the regression equation predicts shipping

expense to be $11,640, then sixty-eight percent of the time

the true balance should be within $11,640 plus or minus $1530.

If the book value reported by the client is less than $10,110

or greater than $13,170, then the auditor would logically

expect the account balance per the books to be in error.
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Another way to interpret the results of using regres-

sion analysis in this manner involves calculating the dif-

ference between the book value (Y) and the predicted value

(Y p). This difference is called a "disturbance" (Ut), and

over several time periods such disturbances should be nor-

mally distributed (3, p. 30). Thus, tests for the signifi-

cance of a particular disturbance can be based on the

characteristics of a normal curve.

The ratio between the disturbance and the standard

error of the regression equation is known as a "z-value,"1

thus: z=Ut/SE(3, p. 30). The significance of a computed

z-value can be determined by referring to a table that gives

the area under a normal curve. Because the disturbance is

from a normal distribution, it can be shown that only five

percent of the z-values are greater than 1.64 and only five

percent are less than -1.64. Thus, a computed z-value of

1.64 implies the probability is five percent that the dif-

ference in predicted and book value can be attributed to

random occurrences. In our previous example, Yp was $11,640

with a standard error of $1530. If the book value is found

to be $11,990, the disturbance is Y minus Yp, or $350. The

z-value for this disturbance is Ut/SE, or .23. Referring to

a table giving the area under a normal curve, a z-value of

.23 indicates the probability is eighty-two percent that the

difference between predicted value and book value can be

attributed to random occurrences.



25

In order to make use of this computed z-value, the

auditor must establish a decision rule requiring him to in-

vestigate all accounts in which the disturbance has less

than a certain percentage probability of resulting from

random occurrences. This percentage probability is referred

to as the auditor's "alpha level." If the auditor estab-

lishes his alpha level at ten percent, then he will investi-

gate all accounts having a z-value of more than 1.64 or

less than -1.64. With this cutoff value, there is only a

ten percent probability of obtaining a z-value of greater

than 1.64 or less than 1.64 if the book balances are cor-

rect. Likewise, for an alpha level of thirty-two percent,

the auditor will investigate accounts whose z-value is more

than 1 or less than -1.

If the auditor sets his alpha level at ten percent.,

then ten percent of the time he will investigate disturb-

ances only to find that the account is stated correctly.

On the other hand, at a five percent alpha level, non-

productive investigations drop to five percent, but the

possibility of not investigating an incorrect balance is

increased. Thus, to minimize his risk of failing to in-

vestigate accounts that are incorrect, the auditor must

increase his risk of investigating accounts that turn out

to be correct. This problem is similar to those encountered



26

in almost all statistical sampling decisions. Criteria for

establishing decision rules such as this have been much

discussed in the statistical sampling literature (3, p. 31).

Sample Size Determination

Another way that regression analysis can be used in

auditing is in the determination of sample size. When re-

gression analysis is used for auditing purposes, the detec-

tion of out of line accounts and sample size determination

are closely related. Often, a regression equation will be

constructed to find information about out of line accounts,

and then this information will be used to determine sample

size. In this way, a larger sample of items will be ex-

amined for accounts that are suspicious than from accounts

that are in line.

The procedures necessary to determine sample size based

on regression analysis can be rather complicated. Statisti-

cal hypothesis testing, statistical sampling techniques, and

the use of Bayes' Formula to derive a set of posterior pro-

babilities are all necessary for the complete application

of this tool. The procedures will only be briefly outlined

here. For further study, Deakin and Granof (4) have worked

extensively in this area, as have Kinney and Bailey (7).

These authors have cited excellent references and given

examples of this application.
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Once the auditor has formulated his regression equation,

he can solve the equation and obtain a predicted value for

an account. This value can be compared with the account

balance as reported by the client. The auditor will estab-

lish two hypotheses: a null (H0) and an alternative (H& )

The null hypothesis states that the true account balance is

reflected by the client stated balance. The alternative

hypothesis states that the client's balance differs signifi-

cantly from the true account balance. Which of these two

hypotheses the auditor accepts will depend upon his sampling

program and the significance of the results of the regres-

sion analysis. In choosing a hypothesis, the auditor must

weigh the costs of rejecting a client figure which is cor-

rect ( c -risk) against that of accepting a client figure

which is incorrect ( -risk). Deakin and Granof (4,

p. 767) have formulated a decision rule for use in this de-

cision. Thus far, the procedures described are like those

used in the detection of out of line accounts.

The auditor now must test the significance of the vari-

ation in the predicted account balance, Yp, and the client

reported account balance, B0 . The procedure for this test

is similar to the determination of a z-value as discussed

earlier. The difference Yp and B0 can be evaluated from a

table giving the area under the normal curve, using the

standard error of the regression equation (SE). The value
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Y -B
that results from the calculation z0= SP , can be converted

SE

to a probability using a table of areas under the normal

curve. The amount thus determined is the probability that

the observed z-value, z0, came from the distribution stated

by the null hypothesis. Or, the probability that the true

account balance is reflected by the client's figure. The

difference between Y and B 0M, the mean balance for the
p 0

determination of accepting the alternative hypothesis, can

also be evaluated. The value resulting from the calculation

zO = Y -(B0tM), can be converted to a probability, as was

SE

z0 . This value is the probability of accepting a client

figure which is incorrect.

The auditor can use these probabilities in either of

two ways. First, he can use them to set heuristically his

acceptableo- and -risk levels for determination of sample

size. Second, he can use the probabilities in a Bayesian

sense to revise his prior probability estimates of a material

misstatement of the account balance. The revised priors can

then be used to find the conditional probabilities necessary

for a given confidence level. If the auditor uses the first

method above, he increases his investigation into accounts

having high -risks. Thus, he will increase sample size

in high $ -risk accounts and decrease sample size in low

4 -risk accounts.
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If the auditor decides to use the Bayesian approach,

he begins with the assumption that his prior probabilities

of H0 and Hp are equal. Then, the results of the regres-

sion equation evaluation will provide conditional probabili-

ties for H0 and H,, . These conditional probabilities,

along with the prior probabilities, can be inserted in Bayest

Formula to derive a set of posterior probabilities. The

auditor can use these posterior probabilities to select the

appropriate g- and -risk levels for his sampling plan.

These values for a<- and -risks must permit the auditor to

achieve a desired confidence level given his set of adjusted

prior probabilities. Again Deakin and Granof (4, p. 768)

have provided a decision table for use in this selection.

In their article, Deakin and Granof (4, pp. 768-770)

present an example of using regression analysis to select

sample size. Here, the auditor elects to evaluate cost of

goods sold for a retail chain of four stores. By using

certain predictor variables and historical data, a regres-

sion equation is constructed. Initially, the results of

the regression analysis are not considered. By establish-

ing equal prior probabilities of the accounts at each of

the four stores being incorrect, the auditor determines his

sample size by using a standard computational formula, This

yields a total sample size of 543 items (151, 104, 241, and

47 for each of the four stores, respectively).
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Next, the results of the regression analysis are used

to revise the auditor's previously equal prior probabili-

ties. By using the conditional probabilities and Bayes'

Formula, the revised probabilities are found. This yields

a total sample size of 364 items (173, 71, 91, and 29 for

the four respective stores). Thus, by employing regression

analysis, the auditor has reduced his total sample size by

33 percent. Also, the distribution of sampling effort was

shifted. With equal prior probabilities, 27.8 percent of

the items sampled were from Store One. After revising the

sample selection, 47.8 percent of the sampling will be done

at Store One. Likewise, revision of the prior probabili-

ties resulted in reduction in sample size at Store Three

from 44.4 percent to 25.0 percent. These changes in sample

distribution indicate a higher probability of error at Store

One than at Store Three.

Conclusion

This discussion has outlined how regression analysis

can be used to identify out of line conditions and also how

it can be used in the selection of audit sample size. These

two procedures can be used either together or separately in

an audit effort. Both applications are fairly new and have

not been tested extensively in actual auditing practice.

However, as the audit environment grows in complexity, tools

such as regression analysis might be used to great advantage.
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CHAPTER III

REGRESSION ANALYSIS IN
COMPUTER SYSTEMS

The preceding chapter described how regression analysis

can be used by the independent auditor in his work. This

application suggested the idea of using regression analysis

for another purpose, in the computer field. Programmers

often ask computer center personnel to predict the time at

which their job will have been completed, i.e., the time at

which it will exit the machine. Traditionally, this predic-

tion of exit time is based on intuition. Regression analy-

sis might be used to produce quantifiable evidence for this

prediction. Historical data of actual job run times could

be used to produce a regression equation. By evaluating

this equation when a job enters the computer system, a better

exit time estimation might be possible. An investigation of

the feasibility of such a regression model is described in

this chapter. Draper and Smith (1, pp. 234-242) give a gen-

eral outline for studies such as this, and also discuss

several types of mathematical models that are important to

this paper.

Types of Mathematical Models

Three main types of mathematical models are often used

by scientists: (1) the functional model, (2) the control

32
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model, and (3) the predictive model (1, pp. 234-235). The

functional model is used when a true functional relation-

ship that exists between a dependent and the independent

variables is known. In practice, there are very few models

that fit into this category. The second type of model, the

control model, contains variables that are under the control

of the experimenter. Usually this type of model requires a

designed experiment using the controlled variables. Often

in practice a controlled experiment is not feasible. Re-

gression analysis techniques have made their greatest con-

tribution in the construction of the third type of model,

the predictive model. This type of model, though in some

senses unrealistic, reproduces the main features of the

behavior of the variable under study. The model is not

ordinarily functional, and need not be useful for control

purposes. The primary purposes of the predictive model are

to provide guidelines for further experimentation, to pin-

point important variables, and to act as a variable screen-

ing device.

The mathematical model built in this thesis to estimate

job exit time is a predictive model, and has the same pur-

pose as the predictive model described above. It is not

meant to be a functional model, but is designed to provide

insight for further research and identify variables that are

most important to the regression model. This predictive
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model is designed to show the general behavior of a real

situation. The historical data for this regression model

was obtained by simulating a computer system. In this way,

different job streams and levels of activity could be easily

arranged to test the regression model. This computer system

model will now be described.

Computer System Model

There is a tremendous number of different computer

systems in existence, and to choose one typical system to

model would be difficult. For the purposes of this study,

a choice of this nature is not necessary. Since this is to

be a predictive type model to estimate job exit time, a

computer system model that shows the general behavior of a

real system is sufficient. A major contributor to the be-

havior of a computer system is the memory management scheme

it uses. This is especially true in a small, simple system

such as the one simulated in this paper.

Memory Management in the Computer System Model

There exist many different methods of allocating com-

puter memory to the jobs that run in a system. Madnick and

Donovan (2, pp. 105-198) describe seven important memory

management schemes in their book about operating systems.

One of these schemes, relocatable partitioned allocation,
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is used in the simulated computer system that was built for

this thesis. This method was chosen because it is rela-

tively easy to understand and to simulate.

This method allocates a partition (area) of computer

memory to a job, the size of the partition being equal to

the size of the job, and then relocates this partition as

necessary to avoid memory fragmentation. (Fragmentation

can be defined as the development of a large number of

separate, unused areas of computer memory (2, p. 121).

Although the total amount of free memory is large, this

memory is not contiguous and therefore cannot be used by

the system.) Instead of a detailed explanation of relo-

catable partitioned memory management, an example of how

a job stream is handled by this scheme will be given.

In order to facilitate the explanation, several assump-

tions will be made. These are: (1) the jobs do no input or

output, (2) the time necessary to relocate a partition is

ignored, (3) a first-in first-out (FIFO) method of starting

jobs is used, and (4) multiprogramming exists, so that if

two or more jobs are in the system they all get equal CPU

time. With these assumptions, only the arrival time, CPU

time required, and core required for the jobs will affect

the total time to process the jobs. The job stream for this

example consists of the jobs shown in Table III, The

Arrival Time given corresponds to the time a job becomes
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available to enter the system. (This may not be equal to

the time the Central Processing Unit (CPU) actually begins

to process the job.) The CPU Time Required is the total

amount of processing time a job requires, and the Memory

Required is the total contiguous memory (core) needed by a

job. It is assumed the computer system has 100,000 bytes

(100K) of usable memory.

TABLE III

SAMPLE JOB STREAM

Job Arrival CPU Time Memory
Time Required Required

(minutes) (000 bytes)

1 0.0 1.0 50
2 0.1 1.0 20
3 0.5 2.0 30
4 1.0 1.0 20

The job trace for this job stream is shown in Table IV.

The symbols such as 2(1.0) indicate the job number (two)

and the required CPU time remaining (one minute). Job One

arrives at time zero and immediately gets 0.1 minute of CPU

time. It does not get more time than this since Job Two

arrives at time 0.1 and is put into memory. After Job Two

enters the memory, the total occupied memory is 70K. These

two jobs will split CPU time until one of two things happens:
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TABLE IV

JOB TRACE FOR SAMPLE JOB STREAM

Elapsed CPU Time
Time Given to
(minutes) Each Job

(minutes)

0.0 0.1
0.1 0.2
0.5 0.7
2.6 0.1
2,9 0.9
4.7 0.3
5.0

Jobs Being Processed

1(1.0)
1(0.9)
1(0.7)
1(0.0)

2(1.0)
2(0.8)
2(0.1)'
2(0.0)

3(2.0)
3(1.3) 4(1.0)
3(1.2) 4(0.9)
3(0.3) 4(0.0)
3(0.0)

(1) another job arrives that will fit into core, or (2) either

Job One or Job Two finishes processing. In this example, Job

Three arrives at time 0.5, and will fit into core, so it is

entered into the processing. Total occupied memory is now

100K, and therefore no more jobs can enter until one of these

three jobs finishes processing. Job One has the least re-

maining CPU time required (0.7 minutes) and finishes at time

2.6. Since Job One occupied 50K of core, this amount of

memory is freed when Job One finishes. Therefore, at this

time Job Four can be put into the memory. No more jobs are

available in the job stream, so Job Two, Job Three, and Job

Four split CPU time until each job finishes.

The processing of this job stream is summarized in

Table V. The Arrival Time, CPU Time Required, and Memory
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Required for each job are given, along with the time pro-

cessing was actually begun and finished for each job. This

type of job trace can be used to simulate the processing of

any job stream, given the assumptions previously mentioned.

TABLE V

SUMMARY OF SAMPLE JOB STREAM PROCESSING

CPU Time'
Required.
(minutes)

1.0
1.0
2.0
1.0

Memory Time
Required Pro-
(000 bytes) cessing

Began

50 0.0
20 0.1
30 0.5
20 2.6

Time
Pro-
cessing
Finished

2.6
2.9
5.0

4.7

Programs in the Computer System Model

The computer system model used for this study consists

of two FORTRAN IV computer programs. FORTRAN IV was used

because it is a widely accepted language for simulations

such as this, and because the International Business Machine

(IBM) regression analysis program- to be used later is written

in FORTRAN IV. The two programs in the model are a job

stream generator and a memory simulator. These will now

be described.

Job

2
3
4

Arrival
Time

0.0
0.1
0.5
1.0
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Job stream generator.--This computer program is essen-

tially a random number generator. It generates a stream of

jobs to be processed by the memory simulator program. The

only input to the generator is a number representing how

many jobs are to be included in the job stream. The output

from the generator consists of an arrival time, required

CPU time, and required memory size for each job in the

stream. This is the same type of information as shown in

Table II, and as described in the section on memory manage-

ment.

The job stream produced by the generator can be changed

by adjusting parameters within the computer program. In

this manner, different type job streams can be simulated to

represent the varied activity levels and job mixes that often

exist in a real computer system. This capability will be

described later in this chapter. A sample listing of the

job stream generator is shown in Appendix I.

Memory simulator.--This computer program processes the

job stream generated by the previous program. It processes

this job stream in the manner described in the section of

this chapter discussing memory management; thus it is simply

a program that constructs the job traces as shown in Table

III. This way, it simulates the processing of any given

job stream according to the assumptions discussed previously.
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The amount of memory used in the model is 250,000 bytes.

The output from the simulator is like that shown in Table

IV, except that more statistics about the processing of the

job stream are gathered. These statistics will be discussed

later in this chapter. A sample listing of the memory simu-

lator is shown in Appendix II.

Computer Processing of the Computer System Model

The computer system model is processed by the IBM 360 /50

computer at North Texas State University (NTSU). The output

from the model is used as historical data to be analyzed by

a regression analysis program. The regression analysis pro-

gram used is program number ST041 in the Statistical Library

of the IBM 360 computer at NTSU. The computer system model

and the regression analysis program are processed as a single

job on the computer, thus making it possible to generate a

job stream, simulate its processing, and analyze the results

with regression analysis in a single computer run.

Evolution of the Predictive Model

The procedure for constructing the model to predict

job exit time began with finding a regression equation to

describe a simple, random job stream. After this, more com-

plicated job streams, such as those with changes in activity

level, were considered. This evolution process allowed many

different data items to be tested and either accepted or
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rejected as good predictor variables. By doing this, one

of the important functions of a predictive model, the

screening of variables, was accomplished. The result of

this process was the identification of several of the vari-

ables most important in job exit time prediction. The final

step in the development was to analyze the model and to draw

conclusions as to the feasibility of an operational model of

this type and as to the knowledge gained by the study. These

conclusions should provide insight for further research on

this subject.

Many runs of the computer system model and regression

program were necessary in order to draw the conclusions

mentioned above. The objective in each of these runs was

to find the best variables for predicting where a job would

exit. This was accomplished by carefully selecting possible

predictor variables, and testing them with a specific stream

of jobs. When a set of good predictor variables was found

for a specific job stream, these same variables were used

with a different job stream to see if they were still good

predictors. The process of testing new predictor variables

with different job streams continued until the important

predictors of job exit time were found. Thus the predictive

model evolved from the testing of many different variables

and many different job streams.
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The job streams used in the test ranged from a simple,

random stream to a more complicated stream with varying

levels of activity. In the early job streams, the job

arrival times were random occurrences, while in the final

streams, jobs arrived rapidly for awhile, and then slowly.

This simulated the cyclic levels of activity that normally

occur in a computer center. That is, during "busy" hours,

jobs may arrive only seconds apart, while during "slow"

hours, jobs may arrive many minutes apart. In real job

streams, when a job finishes processing depends heavily upon

how many other jobs are in the system with it. Thus, an im-

portant test of a model to predict job exit time is how well

it works with these complicated job streams. For this rea-

son, the final test of the predictive model as it evolved

was its ability to perform well in cyclic job streams. As

stated earlier, many runs of the computer system model and

regression analysis program were necessary to develop the

predictive model to estimate job exit times. Only three of

these computer runs will be discussed in this chapter. These

runs show how the model evolved as the job streams became

more complex and different predictor variables were tested.

The explanation of each run will include a discussion

of the job stream used, the predictor variables used, the

results of the run, and the conclusions drawn from the run.

To facilitate these discussions, variable names used in
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the computer system model and in the regression program

will be used in the text of the discussion. The following

variable names are used:

a. ARRT is the time that a job arrives at the com-

puter system to be run.

b. CPUT is the amount of Central Processing Unit

(CPU) time that a job requires,

c. CORE is the amount of computer memory that a

job requires.

d. PREVJB is the number of jobs arriving during a

predetermined time interval before the arrival

of a given job. (This is explained more fully

in the discussion of Run Number Two.)

e. CLASS is a number from one to four used instead

of CPUT to indicate the amount of CPU time a job

requires.

f. SE is the standard error of the regression equa-

tion, as described in Chapter I.

g. R2 is the correlation coefficient of the regres-

sion equation, as described in Chapter I.
h. YP is the job exit time as predicted by the re-

gression equation, as described in Chapter I.
i. RN is a random number used to determine character-

istics of the job stream.
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Run Number One

The first run that will be described occurred early

in the evolution of the model and tested the most basic

predictor variables for importance,

Job stream used.--A job stream with random arrival

times is used in this run of the system. This is the sim-

plest type of stream used in any of the runs, and probably

is not typical in any real computer center. However, this

job stream serves an important step in the evolution of the

predictive model. The job stream consists of twenty jobs

arriving randomly and having random CPU and CORE require-

ments. The arrival times, ARRT, begin at zero for the

first job in the stream, and increase by a random number

(RN) from the interval [0.1,0.9] for each following job.

The arrival times range from zero for the first job to 8.3

for the last. The job exit times as calculated by the com-

puter system model range from 23.03 for the first job to

103.83 for the last. The CPU time required, CPUT, for each

job is a random number from the interval [1,9], and the

memory requirement, CORE, is a random number from the inter-

val 11,99]. These characteristics of the job stream can be

described by a shorter notation as follows;

a. ARRT=ARRT+RN, where RNCf[0.l,0.9].

b. CPUT=RN, where RNC [1,9].

c. CORE=RN, where RNc c[1, 99].
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This notation will be used in describing the characteristics

of future job streams.

Predictor variables tested.--The variables being tested

for their importance in predicting job exit time are the

arrival time, CPU requirement, and CORE requirements of the

jobs. These are the most basic variables in the system and

are used by the computer system model to generate the histori-

cal data used in the regression program. Thus, it may seem

odd to test these variables for importance. But recall that

the object of the regression analysis is to produce an equa-

tion to predict job exit times, and the object of the com-

puter system model is to calculate the actual exit times for

the jobs in the stream. The object of testing the variables

ARRT, CPUT, and CORE here is to determine their usefulness

in the predictive model, not in the computer system model.

Results of the run.--The output from the regression

analysis program for this run is shown in Appendix III.

Since three independent or predictor variables are being

tested, the stepwise regression program has three steps.

During each step, one variable is entered into the regres-

sion. In this program, the variables numbered one, two,

and three refer to ARRT, CPUT, and CORE, respectively. As

each variable enters the regression, many statistics about

the regression equation are calculated. The three most
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important statistics were discussed in Chapter I and are

the correlation coefficient, R2, the standard error, SE,

and the F value for the equation. By observing the changes

in these values from step to step, the best regression

equation for the given historical data and predictor vari-

ables can be determined. A variable that improves the re-

gression equation causes R2 to increase, SE to decrease,

and the F value to increase. This run shows that the vari-

ables ARRT and CPUT improve the equation when entered, but

that CORE does not improve the equation. Thus, the best

regression equation for this run includes only the variables

ARRT and CPUT, and is Y = -2.7+11,3-ARRT+4.03-CpUT, This
p

is shown in step two of the regression run.

The statistics generated by the program at this step

tell more about the equation than which variables are most

important. The correlation coefficient, R2 , for the equa-

tion equals .9843, (Recall from Chapter I that R2 1 [0,1]

and that a value near one indicates a good fit. This means

that about 98 percent of the variance in the exit times of

the job stream is exIplained by the regression equation.

Thus the regression equation fits the historical data very

well. The standard error, SE, of the regression equation

is 4.14 -minutes. As shown in Chapter I, the following state-

ments are possible using this measure:
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a. The probability is .68 that a given job will

exit during the time interval [Y -4.14,Y+4.14]

(Recall YP is the job's exit time as predicted

by the regression equation.)

b. The probability is .95 that a given job will

exit during the time interval [Y -1.96-4.14P
p

Y +1.96-4.14 .
P

In other words, for a specific job that arrives at time 0.1

and has a CPU requirement of 6.0, there is a 68 percent

chance that the job will exit in the time interval [18.52,

26.80 ] , and a 95 percent chance it will exit in the time

interval [14.51,30.81] These intervals were found by

substituting 0.1 and 6.0 into the regression equation for

ARRT and CPUT, respectively, and then calculating the error

term as shown above.

Conclusions drawn from the run. --The results of the

run show that the two variables ARRT and CPUT are important

in the prediction process while the third variable, CORE,
is not. The regression equation has a high correlation co-

efficient and this shows the equation fits the historical

data well. The standard error is small, only 4.14 minutes,
so the error involved in using the equation to predict job

exit times is probably insignificant. Based on these facts,
it can be concluded that the regression equation performs

well when used to predict job exit times in a random job

stream.
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Run Number 'Two

Satisfactory results from the early runs of the system

as shown by Run Number One made it possible to progress to

more complicated job streams. Run Number Two shows one of

the early attempts to develop a regression equation for use

in a cyclic job stream.

Job stream used.--A job stream with varying levels of

activity is used in this run. The stream consists of twenty-

five jobs arriving as follows:

a. For the first five jobs, ARRT=ARRT+RN, where

RN [0.1,0.9].

b. For jobs six through ten, ARRT=ARRT+,l.

c. For jobs eleven through fifteen, ARRT=ARRT+RN,

where RN [0.1,0.9].

d. For jobs sixteen through twenty, ARRT=ARRT+2.0.

e. For the last five jobs, ARRT=ARRT+RN, where

RN r [0.1,0.9].

This arrival time distribution gives a pattern of random,

fast, random, slow, and then random arrival times in the

job stream. The arrival times range from zero for the

first job to 16.70 for the last job. The job exit times

as calculated by the computer system model range from 23.03

for the first job to 119,80 for the last. The CPU and CORE

requirements for each job are determined just as they were

in Job Number One, that is:
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a. CPUT=RN, where RN E [1,9 1

b. CORE=RN, where RN 4- [1,99 1

Predictor variables 'tested. -- Two of the variables

tested in this run, ARRT and CPUT, were used in the regres-

sion equation developed in Run Number One. In addition, two

other variables are tested. For each job in the stream, the

jobs arriving in the previous ten minutes are counted and

shown as the variable PREVJB. This variable indicates whether

the jobs in the stream are arriving rapidly or slowly. The

other variable, CLASS, is used to represent the CPU require-

ments of each job and is related to the variable CPUT. Most

programmers can not accurately predict how much CPU time

their job will require. By establishing classes to represent

ranges of CPU requirements, the importance of an accurate

estimate of this type can be reduced. In this run, jobs in

the stream are assigned to a class from one to four depending

on the variable CPUT. The classification is made as follows:

a. Class one indicates that CPUT is less than three

minutes.

b. Class two indicates that CPUT is between three

and five minutes.

c. Class three indicates that CPUT is between five

and seven minutes,

d, Class four indicates that CPUT is greater than

seven minutes.
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Results of the run.--The output from the regression

analysis program for this run is shown in Appendix IV. The

four variables tested, ARRT, CPUT, PREVJB, and CLASS, are

represented by the variables numbered one, two, three and

four, respectively. The regression program was run twice,

once to test the variables ARRT, CPUT, and PREVJB, and again

to test the variables ARRT, CLASS, and PREVJB. These two

runs are shown as selection one and selection two on the

output. The first selection, using CPUT instead of CLASS,

shows that R2 =.963 and SE=7,65 minutes. The second selec-

tion, using CLASS, shows that R2=.967 and SE=7.19 minutes.

The higher correlation coefficient and smaller standard

error in the second selection indicate a better estimate is

possible by using the variables ARRTCLASS, and PREVJB than

by using the variables ARRT, CPUT, and PREVJB. The regres-

sion equation for this selection can be stated as Y = -1.50+
p

5.19-ARRT+2.62-PREVJB+8.02-CLASS. This is shown in step

three of selection two.

The statistics R2 and SE for the equation can be inter-

preted as they were for Run Number One, The correlation

coefficient indicates that about 96 percent of the variance

in the exit times is explained by the regression equation,

The standard error of 7.65 minutes indicates the probability

is .68 that a given job will exit during the time interval

[y- 7.65,Y +7.65 ] , and .95 that it will exit during the
P n p

time interval [Y Pl4.99 , YP +14,99]
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Conclusions drawn from the run. -- The results of Run

Number Two indicate that a good regression equation to pre-

dict job exit time can be constructed for a cyclic job

stream. The analysis of the standard error shows the error

range to be about fifteen minutes at the 68 percent level

and about thirty minutes at the 95 percent level. These

ranges are small enough that the predictive model should be

useful in estimating a job's exit time.

Run Number Three

As stated earlier, many runs of the computer system

model and regression program were necessary in order to find

the important predictor variables for use in a cyclic job

stream. Many of the variables that were tested and rejected

as important predictors will not be mentioned in the three

runs described in this chapter. The three most important

predictor variables found in the prior runs were the arri-

val time, ARRT, the number of jobs arriving before a par-

ticular job, PREVJB, and a classification of the amount of

CPU time required, CLASS., The last run shown here is the

first test for these three variables in a cyclic job stream.

Job stream used.--The job stream used in this run con-

sists of seventy jobs arriving in a cyclic pattern- The

arrival times for the jobs are determined as follows;
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a. For the first ten jobs, ARRT=ARRT+RN, where

RN < [0.1,0.91.

b. For jobs ten through thirty, ARRT=ARRT+0.1.

c. For jobs thirty-one through fifty, ARRT=ARRT+RN,

where RN e [0.1,0.91.

d. For the last twenty jobs, ARRT=ARRT+2.0.

This arrival time distribution forms a pattern similar to

the job stream in Run Number Two, that is, random, fast,

random, and then slow. The arrival times range from zero

for the first job to 52.40 for the last job, The exit times

as calculated by the computer system model range from 23.03

for the first job to 371.00 for the last job, This stream

contains more jobs than the previous job streams, and is

therefore more realistic.

Predictor variables tested.,-The variables tested for

their importance in predicting job exit times are the arri-

val times, ARRT, the classification of the CPU requirements,

CLASS, and the count of the jobs arriving in the twenty

minutes before each job, PREVJB. These have the same mean-

ing as the variables tested in the previous run, except for

PREVJB, which here is a count of the jobs arriving in the

last twenty minutes rather than the last ten minutes as in

the last run. The runs of the system made before Run Number

Three, but not shown in this chapter, indicated that PREVJB

should be changed in this manner.
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Results of the run.--The output from the regression

analysis program for this run is shown in Appendix V. The

three variables tested, ARRT, PREVJB, and CLASS, are repre-

sented by the variables numbered one, two, and three, re-

spectively. The correlation coefficient, R2 , is equal to

.955, thus 95 percent of the variance in the exit times of

the jobs is explained by the regression equation. The

standard error of 23.56 minutes means the probability is

.95 that a job will exit during the interval [Y -46.18,

Y +46.18 1 , and .68 that it will exit during the interval

[Y P23. 56, y+23.56 ],

Conclusions drawn from the run. -The high correlation

coefficient for this run shows that the regression equation

fits the historical data well. Thus, even for a complicated

job stream such as this, the development of a good regres-

sion equation is possible. The standard error of 23.56

minutes is rather high, but not so high that it would make

an exit time prediction useless- The range of this error

term at a 68 percent confidence level is 48 minutes, and

this knowledge would provide at least some quantifiable

evidence to support the job exit time estimates made by

computer center personnel.

A measure not yet discussed in any of the runs is the

F value of the regression equation, This was described in
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Chapter I as the ratio of the explained variance to the un-

explained variance in the historical data. This ratio can

be used in stepwise regression to indicate whether or not

a variable should be used in the regression equation. The

F value was used, along with R2 and SE, to determine the

variables most important in predicting job exit time.

Another way the F value can be used is in testing the

statistical significance of the regression. The mechanics

of this test were described in Chapter I.. Using these pro-

cedures, the statistical significance of Run Number Three

can be tested. As shown in step three of the regression

run in Appendix V, the degrees of freedom (d.f.,) in the

regression equals 3 and in the residual equals 66. Con-

sulting a table of F Distributions, and using a 95 percent

confidence level, it can be found that F(3,66,,95)=2.76.

The calculated F value of the equation must exceed four

times this number, or 11.04, for the equation to be con-

sidered statistically significant. The calculated F value

for Run Number Three is 470.57, so it is concluded that the

equation is statistically significant. This means that the

equation does a better job of predicting job exit times

than could be done by mere chance,

Residuals Calculation

The regression equation constructed in Run Number Three

is the final form of the predictive model for job exit times.
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To help interpret the usefulness of this model, the re-

siduals from the job stream in Run Number Three were cal-

culated and are shown in Appendix VI. This printout shows

the difference between the actual and predicted exit times

for each job in the stream. The negative residuals indi-

cate an overestimate of the actual exit time. That is, the

job exited before the time predicted by the model. Con-

versely, the positive residuals :show that the job exited

later than the time predicted by the model. Thirty-one of

the jobs in the stream have negative residuals, while the

other thirty-nine have positive residuals, The largest

residual is 59.10 minutes, meaning that this job exited

about one hour later than the predictive model estimated.

Likewise, the largest negative residual is -53,83 minutes,

so the job finished about one hour before the time pre-

dicted by the model. Both of these jobs required about

five hours to process; therefore, for these "worst" cases,

the exit time prediction is about 20 percent off.

Draper and Smith Cl, pp. 89-90) suggest that a good

way to analyze residuals is to plot them in time sequence.

This was done for every fourth residual from Run Number

Three, and is shown in Figure 2, The general trend of this

plot is for the residuals to increase with time. According

to Draper and Smith, this means that a weighted least
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squares method should have been used in the regression

analysis. This method involves a transformation of the

historical data before and after the regression analysis.

Conclusion

This chapter describes how regression analysis might

be used in a computer system to predict job exit times.

The feasibility of this application is tested by using re-

gression analysis to construct a predictive model to esti-

mate job exit times, Some other purposes of the predictive

model are to provide guidelines for further investigation,

to pinpoint important variables, and to act as a variables

screening device.

A computer system simulator was programmed to provide

the historical data used in constructing the model. The

output from this simulator is input to a stepwise multiple

regression analysis which builds a regression equation to

predict job exit times, The results of three runs of the

computer system simulator and regression program are shown

in this chapter.

Based upon the performance of the predictive model with

the various job streams that were tested, it is concluded

that job exit time prediction is a feasible application for

regression analysis. The results of the tests show that

persons doing further research should be aware that a
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weighted rather than normal least squares method of regres-

sion analysis may be necessary. The most important vari-

ables in predicting a job's exit time is its arrival time,

a classification of its CPU time requirement, and the number

of jobs arriving immediately prior to the job.

The next step for researchers in this area is to obtain

historical job stream data from a small computer center and

use the data to construct an operational model to predict

job exit times. The actual application of this model may

reveal other variables that are important to the prediction

process, and the "fine tuning" of the model will be a time-

consuming process. Nevertheless, based upon the results of

the study described in this chapter, such a model is feasible

and will be a valuable addition to the computer center.
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APPENDIX I

COMPUTER LISTING OF JOB STREAM GENERATOR

C JlSTRBE- NERAT7R
0001 REAL ARRT/0./,CPUT/0./,COREd*./
0002 INTEGER NJOBSKX/123456789/
3033 20_FORMAT(13)
3004 50 FORMAT(', ,X RR [ IMEv2X,'CPU TIMEt,2XOCORE SIZE40 FORMAT (' ', 13v3XF7.2,6X,FT.2,3XF7.2)
0006 60.FORMATP XNtB='1,FI2.9)
0007 70 FORMAT (3F8. 21 ~
3338 READ(5,2a) NJOBS
0009 __ _____-WRITE12,20J NJDBS
0010 WRITE(6,50)
0011 XNMB = XRANC(KX)
0012 KX-= 0_-_
0013 DO 30 1 =INJOBS

C FIND ARRIVAL TIME
0014 XNAB = ABS(XRAND( KX)
0015 WRITE(8,60) XNMB
3316 KNMB = IFIX(XNMB * 10.)
331? XNMB = FLUAT(KNMB) / 10.
0018 ARRT = ARRT + XNMB ~ -

C FIND CPU TIME
0319 XNMB = ABS (XRAND (KXI)
3323 WRITE(8,63) XNMB
0021 KNMB = IFIX(XNMB * 10.1
0022 IF (KNMB.EQ.0JKNM8 IF1X(XNMB * 100.
3023 CPUT = KNM ~C FIND CORE SILE
0024 XNM = ABS(XRAND(KX)I
0025 WRITE(s,60) XNMB
0026 KNMU = XNMB * 100
0027 IF (KNMB.EQ.0)_KNMB = XNM8 * 10030028 CORE = KNMLI
0029 WRITE(6,4O) IARRTCPUTCORE
333 WRITE12,70) ARRTCPUT,CORE
0031 30 CONTINUE
0032 END FILE 2
0033 STOP 

-___

0034 END

C NERATES RANDOM NUMBERS ___-

0001 FUNCTION XRAND(KX)
0002 IF (KX.GT.0) IX KX

-QQ 3 __ JY 65539 *JX
J334 IF (IY.LT.0) IY IY + 214748367 + I
0005 XRAND = .4656613E-9 * FLOAT(IY)
0006 IX = IY
3001 RETURN
0008 END

61
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JOa ARRIVAL TIME CPU TIME CORE SIZE
1 0.0 5.00 40.33
2 0.10 6.00 42.00
3 0.63 2.00 56.00
4 0.80 4.30 4C,00
5 1.20 4.00 34.00
6 1.53 9.00 68.00
7 1.93 5.00 95.00
8 2.60 2.00 _7c.00
9 3.43 6.00 4.00

10 3.53 3.00 91.00
11 4.00 7.00 4.00
12 4.50 --6.00 57.00
13 5.00 8.00 72.00
14 5.20 7.00 21.30
15 5.40 3.00 95.00
16 6.20 4.00 6c.00
17 6.7) 7.00 32.03
18 7.10 6.00 1.00
19 7.80 2.00 74.00
20 8.33 4.00 66.00



APPENDIX II

COMPUTER LISTING OF MEMORY SIMULATOR

C MEMORY SIMULATOR
3001 REAL ARRT( ICO) ,CtP>UT iO-O),COREc100), EXEC(100),FINT(10j
)032 REAL RUNT(LOOJ
0003 REAL SRESID/0./
034 10 FORMAT(13)
J035 12 FORMAT (3F8. 2)
0006 114 FORMAT('1','JOB ARRT CPUT CORE FINT) )
0007 255 FORMAT (5F8.2)
0338 115 FORMAT(' '13,4F8.2)

C INITILILATION
0009 - READ(2,10) NJOBS
0010 READ(2,12) (ARRTIJ, CPUT(I),COREJ( I ,xI=1, NJOaS)
0311 CORSIZ= 250.
0012 ELAPT 0.
0013 DO 20 1=1,ICO
0014 20 EXEC(I) = 0.
0015 _ NRUN = 0
0016 JOBCNT = 0
0017 ELAPT = ARRT()
0318 CORSIZ = COPSIZ COREl1)
0019 NRUN = 1
0020 EXEC(1) = CFUTC(I) ____ __--------

0021 JOBCNT I
0022 FINT(1)=ELAFT

C FIND NEXT TAB POINT AND DETERMINE_ IFCANSTART JOB
0023 103 EX EMIN = EXESUB(EXEC,NRUN)
0024 IF(JOBCNT.EO.NJOdS) GO TO 30
0025 ARRMIN = _ARRSUB(ELAPTARRTJOBCNT)
0026 _ F(CORSIZ.GE.CORE(JOBCNT + 1)) GO TO 35
0027 TAB = EXEMIN
0028 GO TO 40
-629 35 TAB = AMINI(EXENINARRMIN)
0030 GO TO 40
0031 30IFIEXEMIN.EC.O.) GO TO 200
0032 TAB = EXEMIN

C ADJUST EXECUTION TIMES FOR TAB PCINT
3033 40 ELAPT = ELAFT + TAB__
0034 NRUNT = NRUN
0335 LIMIT = JOBCNT
0036 0DO50 I = 1,LIM1T-
0037 IF(EXEC(I).E.0) GO TO 50
0038 EXEC(I) = EXECIl) - TAB/NRUN
0339 _IF(EXEC(I).GT.0) GO TO 43

C DELETE A JOB
0043 FINT(I)=ELAPT
0041 EXEC(I) = 2.
0042 NRUNT = NRUNT - 1
3043 CORSIZ = CORSIZ + CORE)
0044 43 IF( JOBCNT. G E.NJOBS)_ GOTO _50
00O45 IF ( CURE IJO BCNT+1).LE.CUR S IZ.AND. ARRTJOBCNT+)LE. ELAPT) GO TO 45
0046 GO TO 50

C START A JOB
0047 45 CORSI 7 ORSIZ CR EIJOBCNT *1)
0048 JOBCNT = JOBCNT + I
0349 NRUNT NRJNT +1I
0053 EXEC(JOBCNT,) = CPUTf(JOBCNT)
0051 50 CONTINUE
0052 NRUN = NRUNT

63



64

0353 -GO-roTOo_______ 
__

0054 200 WRITE(6,114)
0055 KJOBS = NJOES - 1
0356 DO 201 K = 1,KJOBS
0057 PREVJ8 = 0.
0058 IF (K.EQ.1) GO TO 305
0059 305 RUNT(K) FINTIK) - ARRT(K)

C PRINT RESULTS OF SIMULATION
0060 WRITEL9,255) ARRT4K),CPUT(K),CORE(K),FINT(K)
0061 WRITE(6,115) K,ARRT(K),CPUTIK) .CORElK),FINT(K)
0062 201 CONTINUE
0063 ENDIND = 99.
0064_WRITE(9,255) (ENDINDI=1, 4)
0065 END FILE 9
0366 STOP
0067 END

C FIND MINIMUM AMOUNT OF EXECUTION TIME LEFT
0031 FUNCTION EXESUBIEXEC,NRUN)
0002 REAL EXECCICO)
0003 EXESUB =-99S9.
3034 00 20 J=,IICO
3005 IF(EXEC(J).EQ.a.) GO TO 20
0006 _F (EXEC(J).LT.EXESUB)_EXESUB=EXEC(J)
0007 20 CONTINUE
3008 IF(EXESUB.EC.9999.) EXESUB = 0.0009 EXESUB = EXESUB * NRUN
0010 RETURN
0311 END

C FIND ARRIVAL TIYE OF NEXT JOB
FUNCTION ARRSUB(ELAPT,ARRT,JCBCNT)

0002 REAL ARRT(ICO)
0003 ARRSUB- ARRT (JBCNT + 1) - ELAPT0004 IF(ARRSUB.LT.o.) ARRSUB 0.0005 RETURN
0006 END
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JOB ARRT CPUT CORE FINT
1 2.0 5.33 43.03 23.03
2 0.10 6.00 42.00 26.33
3 2.60 2.00 56.00 10.37
4 0.60 4.00 43.03 23.70
5 1.20 4.00 34.03 _21.13

6 1.50 9.00 68.00 47.75
7 1.90 5.00 95.00 38.58
8 2.60 2.00 73.00 34.33
9 3.40 6.00 4.00 52.25

10 3.50 3.00 91.00 54.33
11 4.00 7.00. . 4.00 75.33
12 4.50 6.00 57.00 69.33
13 5.00 8.00 72.00 89.50
14 5.20 7.00 21.03 84.50
15 5.40 3.30 95.03 69.33
16 6.20 4.00 60.00 90.33
17 6.70 7.00 32.00 102.17
18 7.10 6.00 1.00 99.17
0 78.30 2.00 74.00 94.50

4.00 66.00 103.83



APPENDIX III

REGRESSION ANALYSIS FOR RUN NUMBER ONE

STEPWISE REGRESSION - RUN NUMBER ONE

NUIMERCF VAR IABLES4
NUMBER OF SELECTIONS..........
END .F DATA INDICATUR......... 99
DATA INPUT DEViCE............ 9 

NO MINIMUM VARIANCE REQUIRED.

NUMBER OF OBSERVATIONS 20

STANDARD
VARIABLE MEAN DEVIATION

1.3.79a00 2. 64095
2 5.03)33 2.05196
3 51.1003 29.24470
4 60.33800 31.2902),

SIMPLE CORRELATIONS

1 233 4
1 1.0000 0.0058 0.0048 0.9562
2 0.0058 1.0003 -0.4087 3.2703
3 .0.0048 -0.4087 1.0000 -0.0778
4 3.9562 0.2703 -0.0778 1.00DO
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SELECTICN

-DEPENDENTVARIABLE......... 
4NUMBER OF FORCED VARIA LES.. 0NUMBER OF FREE VARIABLES.... 3

MAXIMUM NUM ER OF STEPS.. 3

_-S TrE-P 
______ 

___ -----

l

VARIABLE ENTERED

MULTIPLE R
MULTIPLE R -SQU0.9562 MULTIPLE R ADJUSTED FOR DEGREES OF FREEDOM 0.9537R-QUARE 

_~~43_R-SQUAREADJUSTED FOR DEGREES OF FREEDOM 0TNCRASED ER SUA ES AE .S143INCREASE IN ADJUSTED R-SQUARE 0*9095STANDARD ERROR OF ESTIMATE 9.4128 ADJUSTED STANDARD ERROR OF ESTIMATE 9.28

*** ANALYSISOF VARIANCE ***

DEGREES OF SUM OF MEAN
SOCE FREEDOM SQUARES RES F P

REGRESSION-5REGRESS IN1 17007.647 17007.647 191.9568 0.0O0o18 1594.L,826
TOTAL ~19TOTL -__ 9 ~ 18602.473

*** REGRESSION EQUATION ***

RAW STANDARD STANDARD __VARIABE_- EFFICIENT 'COEFFICIENT ERROR F P
I EFREE) 11.32882 0.95617 0.81768 19j.9568 0.0000CONSTANT 17.40177 0.57059
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STEP 2

VARIABLE ENTERED 2-

MULTIPLE R 0.1921 MULTIPLE R ADJUSTED FUR DEGREES OF FREEDOM 0.9912MULTIPLE R-SQUARE 0.5843 R-SQUARE ADJUSTED FOR DEGREES OF FREEDOM 0.9825jNCREAiEINR-5QUARE 0.070 1 I.NCREASEINADJUSTED R-SQUARESTANDARD ERROR OF ESTIMATE 4.1406 ADJUSTED STANDARD ERROR F ESTIMATE 4.

*** ANALYSIS OF VARIANCE ***

DEGREES OF SUM OF MEAN
SOURCE FREEDOM SQUARES SQUARES F P

RERESSION 83 1.99__9155.5C9.534.0236 0.0000RESIDUAL 17 291.455_ 17.144
TOTAL 19 18602.473

*** REGRESSION EQUATION ***

RAW STANDARD STANDARDVARIABLE CdEFFICIENT COEFFICIENT ERROR F

S(FREE)_0 11.31054 .95463 ___0.35969 988.7923 0.0000_2 (FREE) 4.03642 0.26470 0.46294 76.0232 0.0000CCNSTANT -2.71107 -0.08889

STEP 3

VARIABLE ENTERED 3__

MUTIPL AEE0.9925 MULTIPLE R ADJUSTED FOR DEGREES OF FREEDOM 0.9911MULTIPLE R-SQUARE 0.5851 R-SQUARE ADJUSTED FOR DEGREES OF FREEDOM 0.9823INCREASE IN R-SQUARE 0.0008 INCREASE IN ADJUSTED R-SQUARE -0.0301STANDARD ERROR OF ESTIMATE 4.1572 ADJUSTED STANDARD ERROR OF ESTIMATE 4.3949

*** ANALYSIS OF VARIANCE ***

DEGREES OF SUM OF MEANSOURCE FREEDOM SQUARES SQUARES FP

R EGRESSION 3 18325.9626108.654 353.4694 0.000RESIDUAL 16 276.512 17.282
TOTAL 19_ 18632.473

*** REGRESSION EQUATION **

_-RAW_ STANDARD STANDARDVARIABLE _COEFFICIENT COEFFICIENT ERROR F P

-I_- (FREE) .11.30791 0.95441 0.36114 980.4021 0.0000.2 (FREE) 4.22999 0.27740 0.50928 68.9866 0. 0333i3 (FREE) 0.03323 0.03106 0.03573 0.8647 0.3663__COINSTANT __ .5.36684_ _ -U0.17597

-----------
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*** SUMMARY TABLE ***
_ ____ARIABLE - MULT IPL E___' ADJUSTED R-SQUARE _ ADJUSTEDSiTEP ENTERED R-SQUARE R-SQUARE INCREASE INCREASE

SE 91430.9095 0.9143 0.90952 2 (FREE) 0.9843 0.9825 0.0 701 0. 073033-(FREE).985.920.0008 
-0.0001

F p

191.9568 0.0 jO
534.0236 0.0000
353.4694 0.0000



APPENDIX IV

REGRESSION ANALYSIS FOR RUN NUMBER TWO

STEPnISE REGRESSION - RUN ALMBER TWO

NUMBER OF VARIABLES........... 5
NtmtER OF SELECTIONS........ 2
ENd OF CATA I4DICATJR.......... 99
DATA IJPUT DEVICE............. .9

N3 MINIMUM VARIANCE REQUIRED.

DATA FURMAT =~45F6.2)

NUMBER OF 0 b SERVAT IONS 25

STANDARD
VARIABLE MEAN DEVIATION

1 6.08400 o.30195
2 5.04000 2.24499
3 7.92fl7 4. 67190
4 2.&)0%) 1.06927
5 72.336o0 $7.18948

SIMPLE CORRELATIONS

1 2 3
1 1.33a) -3.0269 3.1153
2 -0.0269 1.0000 0.1674
30.1150 J.i67 1.0000
4 -3.3253 3.9&32 3.2282
5 3.6768 d.L527 O.4791

70

4
-0.3253

3.96 32
0.2282
1.0000
3.2842

5
0.87E
3.252
0.479
0.2 4
1. 33

38

7)_
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SELECTION

DEPENDENT VARIAbLE..........
Nlu ER OF FICED VNA RIAb6L tS-. 0.

NU18ER OF FREE VARIAbLES.... 3
MAXIMUM NUA6ER OF STEPS.....

--- ---------- --- -- - - --------------

STEP 
_

VARIABLE ENTERED

MULTIPLE R 0.8788 MULTIPLE R ADJUSTED FOR DE kEES OF FREEDOM 0.8731MULTIPLE R-SUARE _ 0.7722 -SQUARE ADJUSTEJ FUR DEGREES OF FREDUM 0.76231~L~I~J~E ~ ~ 722 NCRE ASCIN-AU-JUSTEL -SuA -'0.7623STANDARD ERROR OF ESTIMATE 18.1299 ADJUSTED STANDARD ERkGR OF ESTIMATE 1

*** ANALYSIS OF VARIANCE **

DEGREES _DF SUM OF MEAN
SOURCE F kEEDOM SQUARES SQUARES F p
REGRESSION 1 250'33.445 25633.445 77.9860 0.0000
RESIDUAL 23 7559.940 326.693
TPTAL _ 4 ili 3 319 .3 6 ~

** REGR SESSION EQUATION **

RAW STANDARD STANDARD 
- ---VARIA ALE _COEFFIC IEN T COEFF IC IENT ERROR F P

i~1 fEJ 5.~391~0 O. W8 . &_0a49CONSTANT 39.53633 1.08503
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STEP 2

VARIABLE ENTRE~D 3 ~

MULTIPLE R 0.9576 MULTIPLE R ADJUSTED tOR EG-- EE$ F FREEDOM 0.9537
MULTIPLE R-SQUARE 0.5171 R-SQUARE ADJUSTEu FOR RtuttS OF FRELOUM 0.9U95
INCREASE IN R-SQUARE 0.1448 INCREASE IN ADJUSTED R-S.UARE 0.1472
STANDARDF4JTRU E TITVAT E J1.~54' AUJUSTED~5T-AUARDERRJR i+ ETIMATE 1.4260

** ANALYSIS OF VARIANCE ***

DEaREESOF 50 F -MEAN

SOURCE FREEDOM SQUARES SQUARES F P

REGRESSIUN t_1SIL2 30440.873 15220.437 121.6523 0.0003
SIDUAL 22 72.513 -125.114

TUTAL 24 33193.386

**EGkE SSIUN

RAW STA
V ArIALE - )COEFFICIENT ~ COEF

I (FR E) 5.12090
3 (FREE 3.049o4
CCiSTANT 17.32769

STEP 3

VAkIAtLE E4t'RED 2

MULT IPE 1 .981
MUL T IPL E -SJUAR E 0.9630
ICFEASE [N A-SQUAr 0.0459
S TA!ARD E dOR OF ESTuIATE 7.-453

* ANALYSIS OF

LRJ OF SUM OF
SL0U CE FkEE 00 SQUARES

R E ESSI - 3-319u5 .928
RESIDUAL 21 1221.458-
TOTAL 24 33193.386

V IAfLE

1 (F R EE)
3 (FREE)
2 (FREE)
CLiSTANT

REGRE SSIUN E

RAW STAN
C:JE-FFICIENT CuEFF

5. 1331 0
2.7 07 0
3.00544 0
a.84417 3

EQUAT ION * *~

NDARD STANDARD
FICIENT ERKOR F P

0.63472 _ 0.37916 182.4065 J.0000
0.38311 0.49198 38.4243 0.00i0
0.4o733

ULT I PLEP ERADJUST ED FUR DEGNE US OFkEDOM 0.9786
R-SQUARE ADJUSTED FOR DEuGEES UF FREEDOM 0.9577
INCREASE IA ADJUSTED k-SQUARE 0.0482
ADJUSTED STANDARD ERROR OF ESTlMATE 7.9852

VARIANCE ***

MEAN ~
SQUARES F P

10b55.3C9 -- 182.2967 0.00006-
58.450

QUATION *

DARD STANDARD
ICIENT ERROR F P

'.34409 ' .25945 399.1321 3.0330
.34555 0.34132 b4.4Go .3333
.2176i C.70585 26.0915 0.0000
.J2317
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SUMMARY TABLE ***
VA R IALE MULTIPLE __ADJUSTE[D R-SWUA'E __ADJUSTED____________

ST P ~ k bR-~ U R~ -~ U REI CR A E ~ 1CR EA E F P
I I (FREE) __0. 7 7Z 2 __O7~_ 7722 J.76,13 77.98630 .002 ( i rEEF _.93U95- 0. 446 '.1472 12 23 d.oojd32 (FREE) 0.963) J9577 3J459 0.3482 182.2967 0.0000

f V 1 -KBL ES DE-LETED:

StLECTIN 2

DEPENDi)NT VARIABLE..........
NUMBER OF FORCED~ VARIABLES.. 3
NUMBER OF FREE VARIAhLES... 3
MAXIMUM NUMbER OF STEPS..... 3

---------------------------------------------------- ----------------- -

STEP

VARIABLE ENTERED I

MULTIPLE R0.6768 MULTIPLE R ADJUSTED FOR E1RLtS JF FKEEDjM 0.8731MULTIPLE R-SQUARE 0.7722 R-SQUARE ADJUSTELE FuR OL-tt -ES O-FREEDOM 0.7623I C __5F7 AM,;__ARE 722 _l(REASE IN MLJUJUSTEO R-SQUARE 0 .7623"STANDARD ERRJR OF ESTIMATE 18.1299 ADJUSTED STANDARD EkiR i- T IATE 18.1299

*_ANALYSIS OF VARIANCE **

DEGREES OF SUM OF MEANSOURCE FREEDOi SQUARES SQUARES F P
REGRESSION 1 25633.445 25633.445 77.9650 0.)jjj-~RESIDUAL_ 23 7559.943 328.693TOTAL Z4 33193.386

REGRESS ION EQUATION ***

RAW STANDARD STANDARDVARIABLE COEFFICIENT COEFFICIENT ERROR f-P

CO NT E) 5 3 9 27 J.OCONST ANT 39.53633 1.a53 .1 9 7.N
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STEP 2

V A ABLE ENTERED 3 _

MULTIPLE R 0.9576 MULTIPLE R ADJUSTED OR uEGCEES JF FREEDOM 0.9531
MULTIPLE R-SQUARE 0.9171 R-SOUARE ADJUSTED FUR DEuREES (IF FREEDOM 0.9095
INCREASE IN R-SQUARE 3.1448 INCREASE IN ADJUSTED K-S-UMAL ___ 0.1472
STANDARD ERROR OF ESTIMATE 11.1854 ADJUSTED STANDARiJERKuR UF ESTIMATE 1.4263

*r* ANALYSIS OF VARIANCE ***

DEGREES OF SUM OF MEAN
SOURCE FREEDOM SQUARES SQUARES F P

REGRESSION_-_____2 33443.673 02 0.437 121.6525 0.0000
RESIDUAL 22 2lZ.5i3 125.114
TOTAL 24 33193.336

REGRES SION EQUATION

RAW STANDARD STANDARD
VAWIA BLE COi-fFICILNT COEFFICIENT ERROk

1 (Ff4E) 5.12390 3.3472 3.37916
-3 tIFRLE) 3.U.49b4 0.33311 3.49198
CC NSTANT 17.32769 3.46730

F P

1b2.4305 J.33 __

38.4243 .0 fO

STEP 3

VAI6AbLE-NTERED 4 ~

MULTIPLE R.5835 MULTIPLE R ADJUSTED FOR UEGR tS OF FREEDOM 0.9811
MULTIPLE R-SwUARE 0.9673 k-SQUARE ADJUSTE& FOR UEoREES OF FREEDOM 3.9626
I NC LASE IN R-SQUARE 0.0502 INCREASE IN ADJUSTED P-SQUARE _ 0.0531
STA!.0AKu tRDR OF ESTIMATE 7.1936 ADJUSTED STANDARD RNUK iF ESTI44TE 7.5103

** ANALYSIS OF VARIANCE **

DE(6RE ES iF 4JD SUAVOFEAN
SOURCE FkcEtD0 SUJARES SQUARES F P

REGES$73N 3 3213.584 10702.528 206.9926 3.000
RESIDUAL 21 108:>.302 51.7J5
TOTAL 24 33193.366

1 (Fi
3 tFO
4 (F
CL 1

r KtERESS IUNIEQUATION

RA4 STANDARu
AHL CUEFFICIENT COEFFICIENT

'EE) 5.1949 __90.84674

WE) 2.61994 3.32913
tEE) 8.J1619 3.23148

ANT -1.50145 -0.04121

STANDARD
ERAOR

0.24409
3.32520
1.41193

452.9
64. 9 L
32.22

p

071 0.0000
)62 3.0033
3t'1 3.3333
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*** SUMIARY TAbLE **

VARIABLE MULT IPLE
STEP ENTIRE ) R-SQUAR E

I
2
3

.1 (FREE)
3 (FREC)
4 (FkEE)

__ .J*7122

U.9171
3.9673

ADJUSTIEL)
P-SQUARiE

3.7623
U.9095
0.9626

R-SQUARE
INCREASE

0. 772z
L 14483
U .02

ADJUSTiED
I CkEASE F P

3.7 ,23
U.1472
. U5Ji

77. id63
121.6523
2V6.9928

SVAR IABLES LETL 22



APPENDIX V

REGRESSION ANALYSIS FOR RUN NUMBER THREE

STEPWIS REGRES$IO\ - RUN NUMBER THREE

NUILAER OF VARIABLES ..
N E:4kE< oF SELECT I ION .
END U!F ATA INDICATOR....
DATA INPUT EVICVE. .

4

99
9

NJ ! 1 U. VARIANCE REUIRC.

OATA FORMAT (4F6.2z ~

NUQER OF ObS ERVA T IUN S 70

VAR IAELE

I 13.57143

3 2.72)71
4 194.v.,57

SI PL CORRtLATINS

2
3
4

-1473
-0.J151

O. d31

2
-0.1473

0. J32
0 .3 443

S TANDARD
DEV NATION

14.52214
15.52742
1.-0 15.2

C) 39. 0 5h

3
-0.0151
0. 0iU2
1. Ji0J
0. 0996

76

4

0.6511
0.3443
J. 0996
1.0J33
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SELECTIuN 1

DEPENDENT VARIABLE.......... 4
NUEOF FCEo VARIABLES.. 0
No;40LR OF FREE VARIAdLES.... 3
MAXIMUM NUMBER OF STEPS..... 3

STEP - I-
VARIABLE ENTERED

MULTIPLE R 0.8511 MULTIPLE R ADJLSTED FOR .E(KEES OF FREEDOM 0.84d8
MULTIPLE R-StJARE7 .245 R-SQUARE ADJUSTED FOR DEGkEES OF FREtOUM 0.7204

-INC-3EKSEK~NSa -A T.7245 _ INCREASE IN~ADJUSTEU R-SQUARE 0.7234
STANDARD ERROR OF ESTIMATE 57.4L2 ADJUSTED STANDARD ERROk OF ESTIMATE 57.6462

*** ANALYSIS OF VARIANCE ***

DEGREES~OF SUM CF MEAN
SOURCE .FREEDOM SQUARES SQUARES F

REGRESSION I 594114.9D6 594114.96 178.7843
RESIDUAL 68 225969.634 3323.083
TLIT 69 2OO84.540

P

* 000c;

*** REGRESSION EQUATION ***

R A STANDARD STANDARD
VARIABLE COEFFICIENT COEFFICIENT ERROR F P

3 4E.7985115.~4 176. 7c4 3 .
CONSTANT 107.04737 0.98900

- - - - - - - - - - - - - - - - - - - -
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STEP 2

VARI -kLE ENTEE D 2

mUTLE- ARE0.S745 ULTIPLE>R ADJUSTED FUR DEGREES OF FREEDOM 0.9737MULTIPLE R-S-UMARE J-497 k-SQUARE ADJUSTED FUK- .rrES OF FREtOM 0.94d2INC EASE IN R-SQUARET 0.2252 INCREASE IN ADJUSTED R-SUAR E 0.2278
S t A R i o u r E T I T 2ANaARU ERROR CF ESTI M ATE 24.9999

* ANALY SIS OF VARIANCE ***

DEGREESOF SUM OF MEAN
SOURCE FREEDOM SQUARES SQUARES . F P

NREG.ESSILN - ? .67 3894U8.313 63.2190 .
R LS 4 DUAL.914-615. 939TOTAL 69 823J6&+.543

REGRESSION EQUATION **

RAw STANDARD STANDARD
VARIABL COEFFICIENT COEFFICIENT ERROR - F

I (FREE) 7.01583 0.92168 3.21390 1IJ o6.l343 32 (rAEE) 34965 0-79 0.19453 299.8701 0.000NS-T-A-NT 19.493560.1b007

STEP 3

VARIAWLE ENTEKE 3 --3

MULTIPLE R--AR39774 
- iULTIPLER A0JUSTo DFOR OEGR E F FREEDOM 0.9767MULTIPLE -SQUARE .S553 R-SQUARE ADJUSTED FOR DEGREES OF FREEDOM 0.9533TICr [ASE IN .-SQUAREC057 INCREASE IN ACJLSTED R-SQUARE 0.0351STANUARD ERROR OF ESTIMATE -2.5579 ADJUSTED STANDARPj ERROR OF ESTIMATE 23.9069

ANALYSIS OF VARIANCE *s

DEGREES OF SUM OF MEANSOURCE FREE SQUARES SQUARES F p
REGRESSION- 3 734&.271 261152.090 470.5t65 0.0~RESIDUAL 66 3 66281i9 554.974
TJTAL _ 69 82J3t 4 .540

REGRESSION EQUATIN *t*-

RAW _ STANDARD STANDARDVARIACOEFICi COEFF I CLENT ERROR p

E7 .J17To 0.92194 0.20019 1228. 0411 0.00002 3.3641 3.47377 0.18523 322.49U3 3.0303 (FREE) 7A65040 0. 015- 2.64593 8.3601 3.3352CU N S AINT -j. ;U0j8a-0.00777
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*** SUMMARY TABLE ***

VARI ABLE
S TE P ENTERED

1
2
3

1(FREE)
2 (FREE)
3 (FREE)

MULTIPLE ADJUSTED
k-SUA R R-SQUARE'

0 .7245 0.7204
0.99497U9482
0*9553 0,9533

R-SQUARE
INCREASE

3. 724.:
0.22 52
3.3057

ADJUS TED
FN A6p

0. 7i04
0.22 78
0. U051

178.7843
6A2. 2190
470.5665

0 0000

0.0000



AiSIJUALS Fjm RU NUMBER THFLE
ACTUAL ESTIMATED RESIDUAL SUM RESIDUAL

23.03 22. 11 -.- ____.92 0.92
26.33 2o.14 0.19 1.11
10.37 17.68 -7.32 -6.20
20.73 33.07 __ -9.37 -15.57
21.10 36.20 -15.10 -30.67
47.75 56.94 -9.19 -39.86
38.58 55.43 -16.84 -5.71
34.33 48.37 -14.04 -70.74
52.25- 72.62 -20.37 -91.11
54.33 69.00 -14.67 -105.78
75~.33 88.33 -13.03 -118.78

69.33 .84.71 -15.38 -134.16
89.50 96.40 -6.93 -141.05
84.50 100.43 -15.93 -156.98
69.33 89.16 -19.63 -17o.1
90.33 93.19 -2.86 -179.67

105.33 _ 112.52 -7.19 -186.86
101.33 108.91 _ -7.57 -194.43
94.50 97.64 -3.1 4 -197.57

108.67 109.32 -u.65 -198.22
117.33 121.00 -3.67 -201.89

-4122.83 132.68 -9.85 -211.74
100.50 113.77 -13.27 -225.01

- 131.50 140.75 -9.2 5 -234.26
119.83 129.48 -9.b5 -243.93
130.83 141.16 -11.33 -254.23
164.67 152.84 11.82 -242.41
154.83 149.23 5.61 -236.80
164.67 1lb0.91 3.7b -233.04
155.50 157.29 1*.79 _-234.83

201.67 169.67 31.99 -202.84
179.83 157.7J 22.13 -180.71
195.83 174.30 21.53 -159.18
201.67 178.33 23.33 -135.84
218.50 192.12 26.38 -109.46
218.50 198.96 19.54 -89.92

201.67 195.34 6.32 -83.60
Z Z 207.50 195.23 12.27 -71.33

207.50 199.27 8.23 -63.10
239. 50 218.t63 23.90 -42.23

C 255.33 221.93 33.41-8.79

255.33 230.87 24.46 15.67
240.50 227.96 12.54 28.21
224.50 219.53 5.03 33.21
224.50 222.83 1.67 34.88
230.50 227.56 2.94 37.82
Y35.50 236. 51 '-1.31 36.81
261.67 260.05 1.61 38.43
254.67 259.24 -4.53 33.85
258.67 264.68 -6.01 27.84
283.17 297.35 -14.18 13.66
283.17 314.72 -31.55 -17.89
29167 332.09 -4-.42 -58.31
273.o7 327.5J -53.83 -112.14
307.17 343.52 -36.35 -148.50
301.17 316.61 -15.44 -163.94
309.67 287.36 22.31 -141.63
348.17 289.07 59.10 -82.53
310.33 260.18 5u.15 -32.38
328.17 275.21 52.96 20.58
359.17 304.55 54.62 75.20

322.33 292.31 30.02 105.23
316.i7 ~314.00 22.11 127.39
348.17 335.69 12.48 139.87
360.00 349.73 10.27 150.14
329.17 348.47 -19.30 130.84
348.17 370.16 -21.99 108.85

8.x0 399.53 -31.5 77.35
377.00 413.54 -36.54 40.81
371.00 419.93 -48.93 -8.12
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