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This thesis describes regression analysis and shows
how it can be used in account auditing and in computer
system performance analysis. The study first introduces
regression analysis techniques and statistics. Then, the
use of regression analysis in auditing to detect "out of
line" accounts and to determine audit sample size is dis-
cussed. These applications led to the concept of using
regression analysis to predict job completion times in a

computer system. The feasibility of this application of

regression analysis was tested by constructing a predictive

model to estimate job completion times using a computer

system simulator. The predictive model's performance for

the various job streams simulated shows that job completion

time prediction 1s a feasible application for regression

analysis.
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PREFACE

This investigation is concerned with the techniques
of regression analysis and their applications in the
fields of account auditing and computer systems. Chapter I
presents a nonmathematical description of regression analy-
sis techniques and of the statistics calculated by most
computer programs that perform regression analysis. This
chapter provides background information for the regression
techniques discussed in the remainder of the thesis.

Chapter 11 describes two ways that regression analy-
sis can be used in the field -of auditing. These are the
detection of "out of 1ine" account balances and the deter-
mination of audit sample size. This chapter is included in
the thesis to expound upon the techniques presented in
Chapter I by describing some actual applications of regres-
sion analysis. The ideas presented here led to the concept
of using regression analysis in cdmputer systems as shown
in the following chapter.

Chapter III describes how regression analysis might be
used to predict the exit times of jobs running in a computer
system. In this context, the "exit time" of a job refers to
the time that the computer finishes processing the job. This

use has practical application in that many computer users



request computer center personnel to make such a prediction.
The chapter describes how the feasiblity of this regression
analysis application was tested by the construction of a

predictive model to estimate job exit time.
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CHAPTER I
INTRODUCTION TQ REGRESSION ANALYSIS

Regression analysis 1s a method of developing a
mathematical equation to describe the relationships among
a number of variables. This regression equation is for-
mulated such that the value of one variable (called the
dependent variable) can be estimated when the values of
the other variables (called the independent, or predictor,
variables) are known. Thus, the independent variables are
used to estimate a value for the dependent variable. Re-
gression analysis employs past period, or historical, data
to build this regression equation. The equation is "built"
by solving mathematical formulas involving the past period
data. In using the equation, it is assumed that future data
will act in much the same manner as the historical data.

According to Mason (2, p. 485), the word "regression"
was introduced by Sir Francis Galton in 1877 during his
study of heredity. He found that the heights of descendants
of tall parents tended to regress (meaning to go back) to-
ward the average height of the population. He developed a
mathematical line, called the line of regression, to describe
this tendency. The term "line of regression" is commonly

used but, according to Mason, a "predictive equation," or



an "estimating equation," seems to be more appropriate

(2, p. 485). The notion of regression analysis has not
changed since Galton's time. It still means to develop a
mathematical line that describes the tendency of one vari-
able to regress toward another.

The variables mentioned may come from many different
areas., In financial applications; selling expense may be
estimated using the number of invoices processed, net sales
dollars, number of saleSpeople; and their average hourly
wage as predictor variables. In medical applications, the
weight of a person's liver may be predicted based on his
body weight, his height, and his age. Any number of other
examples could be given. The point is that the variables
in a regression analysis application are simply numbers,

and it is the user's duty to assign meaning to them.

Types of Regression Analysis

There are four general types of regression analysis:
(1) simple linear regression analysis; (2) multiple linear
regression analysis; (3) simple nonlinear regression analy-
sis; (4) multiple nonlinear regression analysis. The fac-
tors which distinguish the types from one another are the
number of predictor variables in the equation and the power
to which the predictor variables are raised. In the "simple"
cases, a single predictor variable is used, and in the

"multiple" cases, numerous predictor variables are used.



Furthermore, the predictor variables are all raised to the
first power in the "linear" cases, and raised to a power
greater than one in the "nonlinear' cases.

In all four types of regression analysis, the regres-
sing equation is found by "regressing'" upon the historical
data to determine specific values to be used as the coeffi-
cients of the predictor variables in the equation. By
X

calling X XS’ e e, Xk the predictor variables, Y

1’ 2$
the estimate of the dependent variable, and bd, bl, bz,

P

by the regression coefficients, general equations for the

four types of regression equations can be given as follows:

a. Simple linear regression analysis:
Y =Dhb +b_-
p. 0 bl X
b. Multiple linear regression analysis:
Yp = b0+bl'X1+b2'X2+ e +bk'Xk
C. Simple nonlinear regression analysis:
n
d. Multiple nonlinear regression analysis:
- vl .} Lyl
Yp - b0+bl X +b2 X2+ . . . +bk X.k

The two linear methods of regression analysis will be
most important in the discussion that follows.

Prior to the introduction of the electronic computer,
regression analysis was limited to about three independent
variables because of the large number of calculations neces-
sary to find the regression equation. Presently, most re-

gression analysis programs available on large computers



will accept over twenty independent variables (Z, p. 514).
In the cases of nonlinear regression analysis, computational
complexities are so immense that there are serious diffi-

culties in solving them even with computers (3, p. 439).

Least Squares Method

The most popular way of finding the regression equa-
tion is called the least squares method. This method gives
what is commonly referred to as the "best fitting" straight
line based on the given historical data (2, p. 485). The
best fit line for any set of data points depends upon how
the user states his best fit criteria. In some applications
the best fitting line may pass through each historical data
point, while in other cases, such as with least squares,‘the
best fitting line need not pass exactly through any of the
points. In regression analysis the least squares method is
sald to produce the best fitting straight line because it
minimizes the sum of the squares of the vertical deviations
about the line. This least squares concept of best fit will
be used in this paper.

In the simple linear regression case, this "best fit"
line can be easily demonstrated, but the multiple linear
regression case is more difficult to picture. The simple
linear case will consist of one dependent and one indepen-

dent variable, and the historical data will be given as two



sets of numbers. These sets of numbers can be thought of
as X,y pairs in a cartesian plane. Then, the object of
regression analysis is to find the equation of the straight
line which comes closest to going through all the given
points. In least squares, this means minimizing the sum of
the squares of the vertical deviations about the line. As
an illustration, assume the outside diameters and tensile
strengths of three pieces of wire are measured, and the out-
side diameters are .3 inches, .4 inches, and .5 inches, and
the tensile strengths are 8,000 pounds, 18,000 pounds, and
16,000 pounds. The results of plotting this information
along with the least squares line are shown in Figure 1. 1In
this example, the sum of the squares of the vertical devia-
tion from the regression line can be calculated as
2.02+4.02+2.,02=24,0. Since this is a small example with
few data points, it would not be difficult to verify that
twenty-four is indeed the smallest possible sum of squared
deviations. By drawing some other line to represent the
three points, say by a freehand method, the sum of the
squared deviations would be greater than twenty-four. The
formulas used to find this "best fitting" line by the least
squares method will be discussed later.

The meaning of the least squares method has been dis-

cussed with regard to the simple linear regression analysis
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Figure 1--Plot of Outside Diameter and Tensile
Strength of Wire, and Regression Line

case. For the multiple linear regression analysis case,
the theory is the same, but graphical representation of the
least squares line is very difficult. The object is still
to minimize the sum of the squares of the vertical devia-
tions about the regression line, but the multiple case
involves one dependent variable and more than one indepen-

dent variable.



Regression Analysis Formulas

The formulas for finding the least squares line in
both the simple and multiple linear regression analysis
cases will now be discussed. Because this is a nonmathe-
matical discussion, proofs of the methods will not be
given. These proofs are described in many statistics and
econometrics texts, and involve using the calculus of par-
tial derivatives to minimize certain mathematical equations.
In the simple linear case, the values of the regression co-
efficients, by and by, are found by using the following

formulas:

n (2XY) - (£X) (&Y)
n(gx%) - (£x)2

b1=

In these formulas, n is the number of historical data cases
we have, and X and Y represent the actual historical data.
(Recall that the general form of a simple linear regression
equation is Yp=b0+b1-X, where Yp is a prediction of the
value of the dependent variable, Y.) Using the data for
tensile strengths of wires as shown previously, the above

calculations can be demonstrated.



by = n(EXY) - (X) (8Y) b =$Y . b £X
L

n(EX%)- (£X)2 :

= 3(17.6)~(1.2)(42) = A%g - 40-1.,2
(3)(.5)-(1.2)"

= 2.4 = 14-16
06

= 40 = -2

Thus, the regression equation is Yp=~2+40-X. The
graph of this line was shown in Figure 1, and can easily be
verified by substituting the values three, four, and five
for X in the equation. These formulas may be used to find
the regression coefficients in any simple linear regression
analysis problem that uses the least squares method.

Finding the regression coefficients in multiple linear
regression analysis is a little more difficult. The least
squares estimates of the coefficients in the multiple linear
regression case are given by a=(X'-X)"1-X“Y (1, p. 52).
Here a is a vector of the estimates of the regression coef-
ficients, X is a matrix containing the historical observa-
tions and X' is its transpose, and Y is a vector containing
the historical observations of the dependent variable Y.

The symbol -1 above (X'X) indicates the inverse of this matrix.



An example of how the above formula can be used will
now be given. Assume the set of values shown in Table I is
given and the sums and sums of cross products for the data
have been calculated. The object is to find a regression

ti th Y =b +X +b_-X_+b_:X_ that d ib
equation of the form oD Xgthy X b, X, a escribes
the relationships between the dependent variable, Y, and
the independent variables, X1 and XZ.
TABLE I

DATA FOR EXAMPLE OF MULTIPLE
LINEAR REGRESSION ANALYSIS

Variables

Y X, X,
66.0 38.0 47.5
43.0 41.0 21.3
36.0 34,0 36.5
23.0 35,0 18.0
22.0 31,0 29.5
14.0 34,0 14.2
12.0 29.0 21.0

7.6 32.0 10.0

Sums and Cross Products

$Y=223.6 $X=274.0 €X,198.0
$Y%=8911.8 £X$=9488.0 £x§a5979.1

ZleY=8049.2 2X,"Y=6954.7  ZX,°X,=6875.6
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(To facilitate matrix representation, Xois a dummy variable
whose value is always unity.) The process begins by sub-
stituting the given daté into the formula for finding the
estimates of the coefficients in the regression equation.

a = (Xx'.x) Loxr.y

1.0 38.0 47.5
a, 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 41.0 21.3
| | 1.0 34.0 36.5
a |=J{38.0 41.0 34.0 35.0 31.0 34.0 29.0 32.0 1.0 35.0 18.0
1 1.0 31.0 29.5
a 47.5 21.3 36.5 18.0 29.5 14.2 21.0 10.0 1.0 34.0 14.2
2 1.0 29.0 21.0
.0 32.0 10.0

66.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 43.0

. 38.0 41.0 34.0 35.0 31.0 34.0 29.0 32.0 36.0

47.5 21.3 36.5 18.0 29.5 14.2 21.0 10.0 23.0

22.0

14.0

12.0

7.6

The multiplication of these matrices yields:

-1
2y 8.0 274.0 198.0 223.6
a1 = |274.0 9488.0 6875.6 y 8049.2
a, 198.0 6875.6 5979.1 6954.7

Continuing, any method available can be used to find the
inverse of the above 3 by 3 matrix. When this is done, and
the multiplication performed, the result is:

a -94.6

2.8

o
[
[t}

1.1

i
p—d
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Thus, the regression equation is given by:

Yp: -94.6 + 2.8 - Xl + 1.1 - XZ

The preceding method can be used to find the regression
equation for any linear multiple regression problem. How-
ever, because of the many calculations involved, this method
is impractical for problems using more than three independent
variables.

When these matrix calculations are performed by a com-
puter, they are not carried out using exactly the method
shown above. One reason for this is the large rounding
errors that may occur when this sequence is followed (1,

p- 107). Rather than spend time discussing how electronic
computers solve regression analysis problems, it is better
to assume that packaged programs by computer manufacturers
such as IBM are able to do so. With this assumption, the
interpretation of certain statistics vital to regression

analysis will be discussed.

Regression Statistics
Earlier it was stated that the least squares method
yields the "best fit" regression line. The least squares
method of linear regression analysis attempts to find-a
straight line that best describes the historical data that

is given. Some sets of data values can be described very

well by a straight line, but others cannot. There are
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statistics that indicate how well this "best f£it" straight
line describes a particular set of data values. There are
three such statistics that are of prime importance in this
paper. These are: (1) the Pearson product moment correla-
tion coefficient, (2) the standard error of the estimate,
and (3) the F value of the equation, Each of these statis-
tics will now be discussed.

The Pearson product moment correlation coefficient,
symbolized by R, is a measure of the relationship between
the dependent and independent variables. This measure is
usually squared, R?, to take on a value from zero to one
proportional to the goodness with which the dependent vari-
able, Y, can be predicted from a knowledge of the indepen-
dent variables, X. TFor example, if R2=.92y then 92 percent
of the variation in Y is explained by X. If R2=.20, then
only 20 percent of the variation in Y is explained by X,
and the remaining 80 percent is unexplained. This corre-
lation coefficient, RZ, is printed out for most regression
analysis problems solved by a computer. " An examination of
this statistic shows how well the regressicn equation fits
the historical data.

The standard error of the estimate is a measure similar
to the standard deviation normally encountered in statistics.
The standard error is symbolized by SE and measures the dis-

persion of points about the regression line. As an example,
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assume a regression equation that predicts amount of sales
(in millions of dollars) based on several predictor vari-
ables has been developed, and that the computer run shows
the standard error of the estimate to be 1.24. When the

equation is used to predict sales, Y,, the following state-

p?
ments can be made:
a. The probability is .68 that the sales are in
the range Ypf$1;240,000.
b. The probability is .95 that the sales are in
the range.Ypf 1.96-($1,240,000).
c. The probability is .997 that the sales are in
the range Ypfs-($1,24o,000).
These probabilities are based on the characteristics of the
normal curve as described in many statistics books.
Another important use of the standard error of the
estimate is apparent when computers use a "stepwise"
method of finding a multiple linear regression equation.
Most popular computer programs use this method, and it
simply means that the predictor variables, X1 Koy o v Xy»
are entered into the regression equation one at a time. As
each variable is entered, a regression "step'" is completed.
The computer program determines which variable to enter at
each step by computing the correlation between each of the

independent variables and the dependent variable. The
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independent variables showing the highest correlation with
the dependent variable are. entered into the regression
first. A matrix of these correlations is shown at the
first of most étepwise multiple regression programs.

A regression equation and statistics about the regres-
sion are printed out at each step described above. The
equation at each step includes all the predictor variables
that have entered the regression thus far. This way, a user
may decide at any step that the regression equation is "good
énough” and obtain an equation that contains only the vari-
ables entered so far, The standard error can be used to tell
when the regression equation is "good enough,' because it
indicates whether the estimation is getting better or worse.
Since a small standard error is desirable, a predictor vari-
able should be used in the regression. equation only if the
step in which it enters shows a smaller standard error than
was shown at the previous step.

The F value of the equation is the final measure to be
discussed. This is the ratio of the explained variance to
the residual or unexplained variance. This ratio can be
used in much the same way as the standard error of the esti-
mate in a stepwise regression problem. If a variable entered
into the regression at a step adds to the explained variance,

that is, increases the F value, then it should be used in
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the regression equation. For example, assume a stepwise
regression analysis program has calculated the F values for

each step in the regression as shown in Table II.

TABLE II
P VALUES FROM A STEPWISE REGRESSION PROGRAM

Step _Variables.Used‘(Xk) F Value Calculated
1 4 106.630

2 - 4,2 207.485

3 4,2,5 345.369

4 4,2,5,1 217,546

5 4,2,5,1,3 140.404

The predictor variable Xl and X3 would probably not be used
in the final regression equation. This is because when they
were entered, at step four and step five, they decreased
rather than increased the F value, thus indicating that
these two variables decreased the explained variance at
their respective steps.

Another way the F value can be used is in testing the
"statistical significance" of the regression (1, p. 64).
Stating that a regression is "statistically significant,"

means that the portion of variance observed in the data,
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and accounted for by the regression equation, is greater
than would be expected by chance in 100+ (1-ot) percent of
the similar sets of data with the same number of observa-
tions and predictor variables. Here, e is a risk level
specified by the user of the regression equation.

To further explain this statement, another statistic
normally appearing on a computer printout of gz regression
run must be mentioned. This is the "degrees of freedom"
(d.f£.) in the regression and in the residual of the equa-
tion. These are two numbers determined during the computer
run that relate to how many sets of historical data were
used in a regression problem. For the purposes of this
paper, it will be best to use these numbers without for-
mally explaining their origin. (For further information,
the reader may consult any introductory statistics text.)
Assuming this, an example of testing the statistical signi-
ficance of a regression equation can be given. Suppose a
risk level, e¢ , of .05 is chosen and that the degrees of
freedom (d.f.) calculated in the regression is 10 and in
the residual is 20. By consulting a statistical table
giving F Distributions, it can be found that F(10,20,.95)=
2.35. This means that the F value calculated from the
regression equation must exceed 2.35 in order for the re-
gression te bhe considered statistically significant. In

other words, the F value will exceed 2.35 if the regression

equation does a better job of explaining the variances in
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the data than could be done by mere chance. Studies have
indicated that the F value should not merely exceed the
selected percentage point of the F-distribution, but should
be four times the selected percentage point (1, p- 64).
Thus, the F value in this example would have to exceed 9.4
for the regression equation to be considered a better pre-

diction tool than mere chance.

Conclusion

Regression analysis is a mathematical tool used to
build an equation that describes the relationship among
several variables. This equation is based upon the histori-
cal values of the dependent and independent variables in the
equation. The least squares method is the most popular way
to find the regression coefficients to be used in the equa-
tion. There are four types of regression analysis, and the
two types most important to this paper are simple linear re-
gression analysis and multiple linear regression analysis.
These two types differ only in the number of independent, or
predictor, variables used. Almost all regression analysis
problems are solved by a computer, and most computer programs
use a stepwise method to determine the regression ecquation.
This enables the user to observe the values of certain sta-
tistics, such as the correlation coefficient, the standard
error of the estimate, and the F value of the equation at
ecach step and thus decide when the regression equation is

satisfactory for his application.
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CHAPTER 11
REGRESSION ANALYSIS IN AUDITING

This chapter outlines how regression analysis has been
applied in the field of auditing. More specifically, it
shows how this tool has been used in auditing to predict
sample size and to detect out of line accounts. These ap-
plications have special significance to this thesis in that
they were the stimuli for the application of regression
analysis in computer systems, as shown in Chapter IIL.

Business managers today retain more financial infor-
mation about the activities of their companies than ever
before. The need for keeping this large amount of infor-
mation has always existed, but only recently has technology
provided cost effective methods of doing this. As this re-
tained information increases in amount, the independent
auditor faces an increasingly difficult task when forming
his opinion regarding the financial statements of a business.
Auditors characteristically express this opinion after ex-
amining only a small portion of the underlying financial
data. Often the auditor relies only on his informed judge-
ment as to which specific data he should review. Two pro-
cedures that have been helpful in this selection process

are statistical sampling and ratio analysis.

19
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Statistical sampling allows the auditor to review a
small number of transactions (called the sample size) and,
based on the results of this eXamination, make a statement
regarding all similar transactions (called the universe or
population). This technique is used most notably in the
examination of inventory and accounts receivable. Ratio
analysis is performed by calculating percentages and ratios
between account balances, and investigating'thOSe showing
significant deviations from those of past periods. In this
way, the auditor can direct more audit effort toward 'out-
of-1line"™ accounts. Roth of these procedures have disadvan-
tages, however. In statistical sampling, the auditor usu-
ally has no quantifiable guidance as to whether he should
increase or decrease the level of confidence (and thus the
sample size) he specifies for his tests. Ratio analysis is
not based on an understanding of the behavior of the indi-
vidual accounts, and therefore can often be misleading.

Multiple linear regression analysis can be used alqng
with statistical sampling and ratio analysis to make these
procedures more effective. The use of regression analysis
to detect "out-of-line" accounts will now be discussed.
Following that, the use of regression analysis in conjunc-

tion with statistical sampling will be described.
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Ratio Analysis

The first step in this application of regression analy-
sis is the selection of independent variables (the X values)
that can be used in predicting the value of the dependent
variable (Y). For this application, the dependent variable
represents the account balance the auditor wishes to test.
The predictor variables chosen would normally be based, at
least initially, upon the auditor's judgment. They could
be derived from many different areas: internal or company
data, industry statistics, or general economic indications.
In order for the predictor variables to be used in cost
related analysis, several conditions must be met. Some of
these conditions will be mentioned here, but a more detailed
list can be found in the works of Benston (1), Comiskey (2),
and Jensen (6).

Because it is unlikely that the data the auditor is able
to gather will meet all these requirements, the results of
regression analysis can seldom be viewed as anything more
than approximations. Violations of these formal require-
ments will usually have only minor impact on the results.
Usually, the auditor's purpose will be adequately served
if his data is in reasonable conformity with these require-
ments (4, p. 765).

As a general rule, the more historical observations -

the auditor can gather, the better his results will be,
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Thus, it is helpful if the auditor can obtain data on a
monthly or quarterly basis (3, p. 30). There should be
uniformity in the method of recording this periodic infor-
mation. This is an extension of the "matching" principle
of accrual accounting: the revenues of a period should be
matched with the expenses of that period. Because regres-
sion analysié uses historical, or past period, values to
predict future amounts, it is impbrtant that no changes in
accounting policy have occurred that may nullify this assump-
tion. Finally, the auditor should attempt to find all
major contributors to a particular account balance, and use
all of these, at least initially, as predictors in his re-
gression model.

The next step in the auditor's use of regression analy-
sis is to determine the regression equation as based on the
historical data. For this step it is necessary for the
auditor to have access to a computer having a regression
analysis program. Most computer manufacturers and service
bureaus make these programs available to their users. As
stated earlier, the stepwise regression method is used by
most packaged programs and is the recommended variable
selection procedure (5, p. 172). Using the stepwise method,
the auditor can eliminate any predictor variables that he
feels are unnecessary to the application, and thus reduce

the complexity of the regression equation.
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Once the auditor has determined the regression equation,
it can be used to estimate the balance of the account he
wishes to exémine. This equation will have the form of the
multiple linear regression equation shown earlier:_Yp =
b0+bl°Xl+b2-X2+ - .+bk-Xk. By evaluating this equation
using the X values from the period being audited, the esti-
mate, Yp, of the current account balance can he found.

The final step the auditor must perform in his use of
regression analysis is the interpretation of the estimated
account balance, Yp. As earlier stated, each regression
equation has a standard error (SE) associated with it. Using

this measure and the prediction, Y several statements about

p?
the true account balance can be made. Based on the defini-
tion of standard error, sixty-eight percent of the time the
true balance should be within a range of plus or minus one
standard error of the predicted balance. Likewise, ninety
percent of the time, it should be within a range of plus or
minus 1.64 standard errors. For example, assume a regression
model to predict shipping expense is built, and has a standard
error of §1530. If the regression equation predicts shipping
expense to be §$11,640, then sixty-eight percent of the time
the true balance should be within $11,640 plus or minus $1530.
1f the book value reported by the client is less than §10,110

or greater than $13,170, then the auditor would logically

expect the account balance per the books to be in error.
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Another way to interpret the results of using regres-
sion analysis in this manner involves calculating the dif-
ference between the book value (Y) and the predicted value
(Yp). This difference is called a “"disturbance" (Ut), and
over several time periods such disturbances should be nor-
mally distributed (3, p. 30). Thus, tests for the signifi-
cance of a particular disturbance can be based on the
characteristics of a normal curve.

The ratio between the disturbance and the standard
error of the regression equation is known as a "z-value,"
thus; Z:Ut/SE(E, p. 30). The significance of a computed
z-value can be determined by referring to a table that gives
the area under a normal curve. Because the disturbance is
from a normal distribution, it can be shown that only five
percent of the z-values are greater than 1.64 and only five
percent are less than -1.64. Thus, a computed z-value of
1.64 implies the probability is five percent that the dif-
ference in predicted and book value can be attributed to
random occurrences. In our previous example, Yp was $li,640
with a standard error of $1530. 1If the book value is found
to be $11,990, the disturbance is Y minus Yp, or $350. The
z-value for this disturbance is Ut/SE, or ,23. Referring to
a table giving the area under a normal curve, a z-value of
.23 indicates the probability is eighty-two percent that the
difference between predicted value and book value can be

attributed to random cccurrences.
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In order to make use of this computed z-value, the
auditor must establish a decision rule requiring him to in-
vestigate all accounts in which the disturbance has less
than a certain pefcentage probability of resulting from
random occurrences. This percentage probability is referred
to as the auditor's "alpha level." Tf the auditor estab-
lishes his alpha level at ten percent, then he will investi-
gate all accounts having a z-value of more than 1.64 or
less than -1.64. With this cutoff value, there is only a
ten percent probability of obtaining a z-value of greater
than 1.64 or less than -1.64 if the book balances are cor-
rect. Likewise, for an alpha level of thirty-two percent,
the auditor will investigate accounts whose z-value is more
than 1 or less than -1.

If the auditor sets his alpha level at ten percent,
then ten percent of the time he will investigate disturb-
ances only to find that the account is stated correctly.

On the other hand, at a five percent alpha level, non-
productive inVestigations drop to five percent, but the
possibility of not investigating an incorrect balance 1is
increased. Thus, to minimize his risk of failing to in-
vestigate accounts that are incorrect, the auditor must
increase his risk of investigating accounts that turn out

to be correct. This problem is similar to those encountered
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in almost all statistical sampling decisions. Criteria for
establishing decision rules such as this have been much

discussed in the statistical sampling literature (3, p. 31).

Sample Size Determination

Another way that regression analysis can be used in
auditing is in the determination of sample size. When re-
gression analysis is used for auditing purposes, the detec-
tion of out of line accounts and sample size determination
are closely related. Often, a regression equation will be
constructed to find information about out of line accounts,
and then this information will be used to determine sample
size. In this way, a larger sample of items will be ex-
amined for accounts that are suspicious than from accounts
that are in line.

The procedures necessary to determine sample size hased
on regression analysis can be rather complicated. Statisti-
cal hypothesis testing, statistical sampling techniques, and
the use of Bayes' Formula to derive a set of posterior pro-
babilities are all necessary for the complete application
of this tool. The procedures will only be briefly outlined
here. For further study, Deakin and Granof (4) have worked
extensiyvely in this area, as have Kinney and Bailey (7).
These authors have cited excellent references and given

examples of this application.
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Once the auditor has formulated his regression equation,
he can solve the equation and obtain a predicted value for
an account. This value can be compared with the account
balance as reported by the client. The auditor will estab-
1ish two hypotheses: a null (Ho) and an alternative (Hc£ ).
The null hypothesis states that the true account balance is
reflected by the client stated balance. The alternative
hypothesis states that the client's balance differs signifi-
cantly from the true account balance, Which of these two
hypotheses the auditor accepts will depend upon his sampling
program and the significance of the results of the regres-
sion analysis. In choosing a hypothesis, the auditor must
weigh the costs of rejecting a client figure which is cor-
rect ( ¢ -risk) against that of accepting a client figure
which is incorrect (#? -risk). Deakin and Granof (4,

p. 767) have formulated a decision rule for use in this de-
cision. Thus far, the procedures described are like those
used in the detection of out of line accounts,

The auditor now must test the significance of the vari-
ation in the predicted account balance, Yp, and the client
reported account balance, Bp. The procedure for this test
1s similar to the determination of a z-value as discussed
ecarlier. The difference Yp and By can be evaluated from a
table giving the area under the normal curve, using the

standard error of the regression equation (SE). The value



28

Y -B
that results from the calculation zoﬁ'p O, can be converted

SE
to a probability using a table of areas under the normal

curve. The amount thus determined is the probability that
the observed z-value, zjy, came from the distribution stated
by the null hypothesis. Or, the probability that the true
account balance is reflected by the client's figure. The
difference between Yp and BOfM, the mean balance for the
determination of accepting the alternative hypothesis, can
also be evaluated. The value resulting from the calculation
T = pr(BOTM), can be converted to a probability, as was
N ,
Zg- This value is the probability of accepting a client
figure which is incorrect.

The auwditor can use these probabilities in either of
twe ways. First, he can use them to set heuristically his
acceptableol- and4g -risk levels for determination of sample
size. Second, he can use the probabilities in a Bayesian
sense tolrevise his prior probability estimates of a material
misstatement of the account balance. The revised priors can
then be used to find the conditional probabilities necessary
for a given confidence level. If the auditor uses the first
methed above, he increases his investigation into accounts
having high.%g -risks. Thus, he will increase sample size

in high.gewrisk accounts and decrease sample size in low

4? -risk accounts.
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1L the auditor decides to use the Bayesian approach,
he begins with the assumption that his prior probabilities
of HO and Hy are equal. Then, the results of the regres-
sion equation evaluation will provide coﬁditional probabili-
ties for HO and Ho¢ . These conditional probabilities,
along with the prior probabilities, can be inserted in Bayes!
Formula to derive a set of posterior probabilities. The
auditor can use these posterior probabilities to select the
appropriate - and 4? -risk levels for his sampling plan.
These values for - and.ﬁ’—risks must permit the auditor to
achieve a desired confidence level given his set of adjusted
prior probabilities. Again Deakin and Granof (4, p. 768)
have provided a decision table for use in this selection.

In their article, Deakin and Granof (4, pp. 768-770)
present an example of using regression analysis to select
sample size. Here, the auditor elects to evaluate cost of
goods sold for a retail chain of four stores. By using
certain predictor.variables and historical data, a regres-
sion equation is constructed. Initially, the results of
the regression analysis are not considered. By establish-
ing equal prior probabilities of the accounts at each of
the four stores being incorrect, the auditor determines his
sample size by using a standard computational formula. This
yields a total sample size of 543 items (151, 104, 241, and

47 for each of the four stores, respectively).
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Next, the results of the regression analysis are used
to revise the auditor's previously equal prior probabili-
ties. By using the conditional probabilities and Bayes'
Formula, the revised probabilities are found. This yields
a total sample size of 364 items (173, 71, 91, and 29 for
the four respective stores). Thus, by employing regression
analysis, the auditor has reduced his total sample size by
33 percent., Also, the distribution of sampling effort was
shifted. With equal prior probabilities, 27.8 percent of
the items sampled were from Store One. After revising the
sample selection, 47.8 percent of the sampling will be done
at Store One. Likewise, revision of the prior probabili-
ties resulted in reduction in sample size at Store Three
from 44.4 percent to 25.0 percent. These changes in sample
distribution indicate a higher probability of error at Store

One than at Store Three.

Conclusion
This discussion has outlined how regression analysis
can be used to identify out of line conditions and also how
it can be used in the selection of audit sample size. These
two procedures can be used cither together or separately in
an audit effort. Both applications are fairly new and have
not been tested extensively in actual auditing practice.
However, as the audit environment grows in complexity, tools

such as regression analysis might be used to great advantage.
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CHAPTER III

REGRESSION ANALYSIS IN
COMPUTER.SYSTEMS

The preceding chapter described how regression analysis
can be used by the independent auditor in his work. This
application suggested the idea of using regression analysis
for another purpose, in the computer field. Programmers
often ask computer center personnel to predict the time at
which their job will have been completed, i.e., the time at
which it will exit the machine. Traditionally, this predic-
tion of exit time is based on intuition. Regression analy-
sis might be used to produce quantifiable evidence for this
prediction. Historical data of actual job run times could
be used to produce a regression equation. By evaluating
this equation when a jdb enters the computer system, a better
exit time estimation might be possible. An investigation of
the feasibility of such a regression model is described in
this chapter. Draper and Smith (I, pp. 234-242) give a gen-
eral outline for studies such as this, and also discuss
several types of mathematical models that are important to

this paper,

Types of Mathematical Models
Three main types of mathematical models are often used

by scientists: (1) the functional model, (2) the control

32
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model, and (3} the predictive model (1, pp. 234-235). The
functional model is used when a true functional relation-
ship that exists between a dependent and the independent
variables 1is knownf In practice, there are very few models
that fit into this category. The second type of model, the
control model, contains variables that are under the control
of the experimenter. Usually this type of model requires a
designed experiment using the controlled variables. Often
in practice a controlled experiment is not feasible. Re-
gression analysis techniques have made their greatest con-
tribution in the construction of the third type of model,
the predictive model. This type of model, though in some
senses unrealistic, reproduces the main features of the
behavior of the variable under study. The model is not
ordinarily functional, and need not be useful for control
purposes. The primary purposes of the predictive model are
to provide guidelines for further experimentation, to pin-
point important variables, and to act as a variable screen-
ing device.

The mathematical model built in this thesis to estimate
job exit time is a predictive model, and has the same pur-
pose as the predictive model described above. It is not
meant to be a functional model, but is designed to provide
insight for further research and identify variables that are

most important to the regression model. This predictive
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model is designed to show the general behavior of a real
situation. The historical data for this regression model
was obtained by simulating a computer system. In this way,
different job streams and levels of activity could be easily
arranged to test the regression model. This computer system

model will now be described.

Computer System Model

There 1s a tremendous number of different computer
systems in existence, and to choose one typical system to
model would be difficult. For the purposes of this study,
a choice of this nature is not necessary. Since this is to
be a predictive type model to estimate job exit time, a
computer system model that shows the general behavior of a
real system is sufficient. A major contributor to the be-
havior of a computer system is the memory management scheme
it uses. This is especially true in a small, simple system

such as the one simulated in this paper.

Memory Management in the Computer System Model

There exist many different methods of allocating com-
puter memory to the jobs that run in a system. Madnick and
Donovan (2, pp. 105-198) describe seven important memory
management schemes in their book about operating systems.

One of these schemes, relocatable partitioned allocation,
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is used in the simulated computer system that was built for
this thesis. This method was chosen because it is rela-
tively easy to understand and to simulate.

This method allocates a partition (area) of computer
memory to a job, the size of the partition being equal to
the size of the job; and then relocates this partition as
necessary to avoid memory fragmentation. (Fragmentation
can be defined as the development of a large number of
separate, unused areas of computer memory (2, p. 121).
Although the total amount of free memory is large, this
memory is not contiguous and therefore cannot be used by
the system.) Instead of a detailed explanation of relo-
catable partitioned memory management, an example of how
a job stream is handled by this scheme will be given.

In order to facilitate the ¢xplanation, several assump-
tions will be made. These are: (1) the jobs do no input or
output, (2) the time necessary to relocate a partition 1is
ignored, (3) a first-in first-out (FIF0O) method of starting
jobs is used, and (4) multiprogramming exists, so that if
two or more jobs are in the system they all get equal CPU
time. With these assumptions, only the arrival time, CPU
time required, and core required for the jobs will affect
the total time to process the jobs. The job stream for this
example consists of the jobs shown in Table ITI. The

Arrival Time given corresponds to the time a job becomes
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available to enter the system. (This may not be equal to
the time the Central Processing Unit (CPU) actually begins
to process the job.) The CPU Time Required is the total
amount of processing time a job requires, and the Memory
Required is the total contiguous memory (core) needed by a
job. It is assumed the computer system has 100,000 bytes

(100K) of usable memory.

TABLE 111
SAMPLE JOB STREAM

Job- . Arrival CPU Time - Memory
Time f Required Required
L S (minutes) | (000 bytes)
1 0.0 1.0 50
2 0.1 1.0 20
3 0.5 2.0 30
4 1.0 1.0 20

The job trace for this job stream is shown in Table IV.
The symbols such as 2(1.0) indicate the job number (two)
and the required CPU time remaining (one minute). Job One
arrives at time zero and immediately gets 0.1 minute of CPU
time. It does not get more time than this since Job Two
arrives at time 0.1 and is put into memory. After Job Two
enters the memory, the total occupied memory is 70K. These

two jobs will split CPU time until one of two things happens:



37

TABLE IV

JOB TRACE FOR SAMPLE JOB STREAM

Elapsed CPU Time Jobs Being Processed
Time _ Given to
(minutes) Each Job
(minutes)
0.0 0.1 1(1.0)
0.1 0.2 1(0.9) |2(1.0)
0.5 0.7 100.7) [2(0.8) |3(2.0)
2.6 0.1 1(0.0) |2(0.1) 3(1.3) |4(1
2.9 0.9 2(0.0) |3(1.2)(4(0
4.7 0.3 3(0.3) {4(0
5.0 3(0.0)

(1) another job arrives that will fit into core, or (2) either

Job One or Job Two finishes processing. In this example, Job

Three arrives at time 0.5, and will fit into core, so it is

entered into the processing. Total occupied memory is now

100K, and therefore no more jobs can enter until one of these

three jobs finishes processing. Job One has the least re-
maining CPU time required (0.7 minutes) and finishes at time
2.6. Since Job One occupied 50K of core, this amount of
memory is freed when Job One finishes. Therefore, at this
time Job Four can be put into the memory. No more jobs are
available in the job stream, so Job Two, Job Three, and Job
Four split CPU time until each job finishes.

The processing of this job stream is summarized in

Table V. The Arrival Time, CPU Time Required, and Memory
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Required for each job are given, along with the time pro-
cessing was actually begun and finished for each job. This
type of job trace can be used to simulate the processing of

any job stream, given the assumptions previously mentioned,
TABLE V

SUMMARY OF SAMPLE JOB STREAM PROCESSING

Job Arrival | CPU Time Memory - |Time - Time
Time Required Required = [Pro- ' | Pro-
: (minutes). | (000 bytes) |cessing cessing
o " |Began - | Finished
1 0.0 1.0 50 0.0 2.6
2 0.1 1.0 20 0.1 2.9
3 0.5 2.0 30 0.5 5.0
4 1.0 1.0 20 2.6 4.7

Programs in the Computer System Model

The computer system model used for this study consists
of two FORTRAN IV computer programs. FORTRAN IV was used
because it is a widely accepted language for simulations
such as this, and because the International Business Machine
{(IBM) regression analysis program to be used later is written
in FORTRAN IV. The two programs in the model are a job
stream generator and a memory simulator. These will now

be described.
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- Job stream generator.--This computer program is essen-

tially a random number generator. It generates a stream of
jobs to be processed by the memory simulator program. The
only input to the generator is a number representing how
many jobs are to be included in the job stream. The output
from the generator consists of an arrival time, required
CPU time, and required memory size for each job in the
stream. This is the same type of information as shown in
Table 11, and as described in the section on memory manage-
ment.

The job stream produced by the generator can be changed
by adjusting parameters within the computer program. In
this manner, different type job streams can be simulated to
represent the varied activity levels and job mixes that often
exist in a real computer system. This capability will be
described later in this chapter. A sample listing of the

job stream generator is shown in Appendix I.

Memory simulator.--This computer program processes the

job stream generated by the previous program. It processes
this job stream in the manner described in the section of
this chapter discussing memory management; thus it is simply
a program that constructs the job traces as shown in Table
ITI. This way, it simulates the processing of any given

job stream according to the assumptions discussed previously.
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The amount of memory used in the model is 250,000 bytes,

The output from the simulator is like that shown in Table
IV, except that more statistics about the processing of the
job stream are gathered. These statistics will be discussed
later in this chapter. A sample listing of the memory simu-

lator is shown in Appendix II.

Computer Processing of the Computer System Model

The computer system model is processed by the IBM 360/50
computer at North Texas State University (NTSU). The output
from the model is used as historical data to be analyzed by
a regression analysis program. The regression analysis pro-
gram used is program number ST041 in the Statistical Library
of the IBM 360 computer at NTSU. The computer system model
and the regression analysis program are processed as asingle
job on the computer, thus making it possible to generate a
job stream, simulate its processing, and analyze the results

with regression analysis in a single computer run.

Evolution of the Predictive Model
The procedure for constructing the model to predict
job exit time began with finding a regression equation to
describe a simple, random job stream. After this, more com-
plicated job streams, such as those with changes in activity
level, were considered. This evolution process allowed many

different data items to be tested and either accepted or
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rejected as good predictor variables. By doing this, one

of the important functions of a predictive model, the
screening of variables, was accomplished. The result of
this process was the identification of several of the vari-
ables most important in job exit time prediction. The final
step in the development was to analyze the model and to draw
conclusions as to the feasibility of an operational model of
this type and as to the knowledge gained by the study. These
conclusions should provide insight for further research on
this subject.

Many runs of the computer system model and regression
program werc necessary in order to draw the conclusions
mentioned above. The objective in each of these runs was
to find the best variables for predicting where a job would
exit. This was accomplished by carefully selecting possible
.predictor variables, and testing them with a specific stream
of jobs. When a set of good predictor variables was found
for a specific job stream, these same variables were used
with a different job stream to see if they were still good
predictors. The process of testing new predictor variables
with different job streams continued until the important
predictors of job exit time were found, Thus the predictive
model evolved from the testing of many different variables

and many different job streams.
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The job streams used in the test ranged from a simple,
random stream to a more complicated stream with varying
levels of activity. In the early job streams, the job
arrival times were random occurrences, while in the final
streams, jobs arrived rapidly for awhile, and then slowly.
This simulated the cyclic levels of activity that normally
occur in a computer center. That is, during "busy'" hours,
jobs may arrive only seconds apart, while during '"slow"
hours, jobs may arrive many minutes apart. In real job
streams, when a job finishes processing depends heavily upon
how many other jobs are in the system with it. Thus, an im-
portant test of a model to predict job exit time is how well
it works with these complicated job streams. For this rea-
son, the final test of the predictive model as it evolved
was its ability to perform well in cyclic job streams. As
stated earlier, many runs of the computer system model and
regression analysis program were necessary to develop the
predictive model to estimate job exit times. Only three of
these computer runs will be discussed in this chapter. These
runs show how the model evolved as the job streams became
more complex and different predictor variables were tested.

The explanation of each run will include a discussion
of the job stream used, the predictor variables used, the
results of the run, and the conclusions drawn from the run.

To facilitate these discussions, variable names used in
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the computer system model and in the regression program
will be used in the text of the discussiqn. The following
variable names are used:

a. ARRT is the time that a job arrives at the com-
puter system to be run.

b, CPUT is the amount of Central Processing Unit
(CPU) time that a job requires.

c. CORE is the amount of computer memory that a
job requires.

d. PREVJB is the number of jobs arriving during a .
predetermined time interval before the arrival
of a given job. (This is explained more fully
in the discussion of Run Number Two.)

e. CLASS is a number from one to four used instead
of CPUT to indicate the amount of CPU time a job
requires.

f. SE is the standard error of the regression equa-
tion, as described in Chapter T.

g. R? is the correlation coefficient of the regres-
sion equation, as described in Chapter I,

h. Yp is the job exit time as predicted by the re-

_gression equation, as described in Chapter T.
i, RN is a random number used to determine character-

istics of the job stream.
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Run Number One

The first run that will be described occurred early
in the evolution of the model and tested the most bhasic

predictor variables for importance,

Job stream used.--A job stream with random arrival

times is used in this run of the system., This is the sim-
plest type of stream used in any of the runs, and probably
is not typical in any real computer center. However, this
job stream serves an important step in the evolution of the
predictive model. The job stream consists of twenty jobs
arriving randomly and having random CPU and CORE require-
ments. The arrival times, ARRT, begin at zero for the
first job in the stream, and increase by a random number
(RN) from the interval {0.1,0.9] for each following job.
The arrival times range from zero for the first job to 8.3
for the last. The job exit times as calculated by the com-
puter system model range from 23.03 for the first job to
103.83 for the last. ThelCPU time required, CPUT, for each
job is a random number from the interval [1,9], and the
memory requirement, CORE, is a random number from the inter-
val [1,99]. These characteristics of the job stream can be
described by a shorter notation as follows:

a. ARRT=ARRT+RN, where RNE€[0.1,0.97.

b. CPUT=RN, where RN€ [1,9].

C. CORE=RN, where RNe [1,99],
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This notation will be used in describing the characteristics
of future job streams,

Predictor variables tested.--The variables being tested

for their importance in predicting job eﬁit time are the
arrival time, CPU requirement, and CORE requirements of the
jobs. These are the most basic variables in the system and
are used by the computer system model to generate the histori-
cal data used in the regression program. Thus, it may seem
odd to test these variables for importance. But recall that
the object of the regression analysis is to produce an equa-
tion to predict job exit times, and the object of the com-
puter system model is to calculate the actual exit times for
the jobs in the stream. The object of testing the variables
ARRT, CPUT, and CORE here is to determine their usefulness

in the predictive model, not in the cdmputer system model,

Results of the run.--The output from the regression

analysis program for this run is shown in Appendix IIT.
Since three independent or predictor variables are being
tested, the stepwise regression program has three steps.
During each step, one variable is entered into the regres-
sion. 1In this program, the variables numbered one, two,
and three refer to ARRT, CPUT, and CORE:.respectively. As

each variable enters the regression, many statistics about

the regression equation are calculated. The three most




46

important statistics were discussed in Chapter I and are
the correlation coefficient, Rz, the standard error, SE,
and the F value for the equation. By observing the changes
in these values from step to step, the best regression
equation for the given historical data and predictor vari-
ables can be determined. A variable that improves the re-
gression equation causes R2 t0 increase, SE to decrease,
and the F value to increase; This run shows that the vari-
ables ARRT and CPUT improve the equation when entered, but
that CORE does not improve the equation: Thus, the best
regression equation for this rTun includes only the variables
ARRT and CPUT, and is Yp= -2.7+11.3+ARRT+4.03-CPUT. This
is shown in step two of the regression run.

The statistics generated by the program at this step
tell more about the equation than which variables are most

important. The correlation coefficient, R2

, for the equa-
tion equals .9843., (Recall from Chapter I that RZ & [0,1]
and that a value near one indicates a good fit!‘ This means
that about 98 percent of the variance in the exit times of
the job stream is explained by the regression equation.

Thus the regression equation fits the historical data very
well. The standard error, SE, of the regression equation

i1s 4.14 minutes. As shown in Chapter I, the following state-

ments are possible using this measure:
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a. The probability is .68 that a given job will
exit during the time interval {Yp~4.14,Yp+4.14]
(Recall Yp is the job's exit time as predicted
by the regression equation;)
b. The probability is .95 that a given job will
exit during the time interval [Yp—1;96-4.14,
Y +1.964.14 1.
In other words, for a specific job that arrives at time 0.1
and has a CPU requirement of 6;0; there is a 68 percent
chance that the job will exit in the time interval [18.52,
26. 80 1, and a 95 percent chance it will exit in the time
interval [14.51,30.817] . These intervals were found by
substituting 0.1 and 6.0 into the Tegression equation for
ARRT and CPUT, respectively, and then calculating the error

term as shown above.

Conclusions drawn from the run.--The results of the

run show that the two variables ARRT and CPUT are important
in the prediction process while the third variable, CORE,

is not. The regression equation has a high correlation co-
efficient and this shows the equation fits the historical ...
data well, The standard error is smail, only 4.14 minutes,
so the error involved in using the equation to predict job
exit times is probahly insignificant. Based on these facts,
it can be concluded that the regression equation performs
well when used to predict job exit times in g random job

stream.
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" Run’ Number Two.

Satisfactory results from the early runs of the system
as shown by Run Number One made it possible to progress to
more complicated job streams; ‘Run Number Two shows one of
the early attempts to develop a regression equation for use

in a cyclic job stream.

Job stféam E§§Q.~-A job stream with varying levels of
activity is used in this run; ‘The stream consists of twenty-
five jobs arriving as follows:

a; For the first five jobs, ARRT=ARRT+RN; where

RN € [0.1,0.9].

b. For jobs six through ten, ARRT=ARRT+.1,

C. For jobs eleven through fifteen, ARRT=ARRT+RN,

where RN &£ [0.1,0.9};'

d. For jobs sixteen through'twenty; ARRT=ARRT+2.0,

¢.  For the last five jobs, ARRT=ARRT+RN, where

RN € [0.1,0.9].
This arrival time distribution gives a pattern of random,
fast, random, slow, and then random arrival times in the
job stream., The arrival times range from zero for the
first job to 16.70 for the last job. 'The job exit times
as calculated by the computer system model range from 23,03
for the first job to 119,80 for the last. The CPU and CORE
requirements for each job are determined just as they were

in Job Number One, that is:
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a.  CPUT=RN, where RN & [1,9 ].
b.  CORE=RN, where RN & [1,99 ].

tested in this run, ARRT and CPUT, were used in the regres-
sion equation developed in Run Number One; In addition, two
other variables are tested. For each job in the stream, the
jobs arriving in the previous ten minutes are counted and
shown as the Variable'PREVJB: This variable indicates whether
the jobs in the stream are arriving rapidly or slowly. The
other variable, CLASS, is used to represent the CPU require-
ments of each job and is related to the variable CPUT. ﬁ%st
programmers can not accurately predict how much CPU time
their job will require; By establishing classes to represent
ranges of CPU requirements, the importance of an accurate
estimate of this type can be reduced. In this run, jobs in
the stream are assigned to a class from one to four depending

on the variable CPUT, The classification is made as follows:

a, Class one indicates that CPUT is less than three
minutes.
b, Class two indicates that CPUT is between three

and five minutes,

C. Class three indicates that CPUT is between five
and seven minutes,i'

d, Class four indicates that CPUT is greater than

seven minutes.
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Results of the run.--The output from the regression
analysis program for this run is shown in Appendix IV. The
four variables tested, ARRT, CPUT, PREVJB, and CLASS, are
represented by the variables numbered one, two, three and
four, respectively; The regression program was run twice,
once to test the variables ARRT; CPUT; and PREVJB, and again
to test the variables ARRT, CLASS, and PREVJB. These two
runs are shown as selection one and selection two on the
output. The first selection; using CPUT instead of CLASS,
shows that RZ=.963 and SE=7;65 minutes. The second selec-
tion, using CLASS, shows that R%=.967 and SE=7.19 minutes.
The higher correlation coefficient and smaller standard
error in the second selection indicate a better estimate is
possible by using the variables ARRT;CLASS, and PREVJB than
by using the variables ARRT, CPUT, and PREVJB. The regres-
sion equation for this selection can he stated as Yp='-1'50+
5.19+-ARRT+2,62+PREVJB+8,02-CLASS. This is shown in step
three of selection two.

The statistics R’ and SE for the equation can be inter-
preted as they were for Run Number One, The correlation
coefficient indicates that about 96 percent of the variance
in the exit times is explained by the'regression equation,
The standard error of 7,65 minutes indicates the probability.
1s .68 that a given job will exit during the time interval

[Yp-7!6S,YP+7,65 1, and .95 that it will exit during the

time interval [Y,-14.99 ) Ypt14.99
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- Conclusions drawn from the rTun.--The results of Run

Number Two indicate that a good regression equation to pre-
dict job exit time can be constructed for a cyclic job
stream. The analysis of the standard error shows the error
range to be about fifteen minutes at the 68 percent level
and about thirty minutes at the 95 percent level. These
ranges are small enough that the predictive model should be

useful in estimating a jobh's exit time.

"Run'Number'Three

As stated earlier, many runs of the computer system
model and regression program were necessary in order to find
the important predictor variables for use in a cyclic job
stream. Many of the variables that were tested and rejected
as important predictors will not be mentioned in the three
runs described in this chapter. The three most important
predictor variables found in the prior runs were the arri-
val time, ARRT, the number of jobs arriving before a par-
ticular job, PREVJB, and a classification of the amount of
CPU time required, CLASS. The last run shown here is the

first test for these three variables in a cyclic job stream.

Job stream used.--The job stream used in this run con-

sists of seventy johs arriving in a cyclic pattern. The

arrival times for the jobs are determined as follows:
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a. For the first ten jobs, ARRT=ARRT+RN, where
RN € [0.1,0.9].
b.  For jobs ten through thirty, ARRT=ARRT+0.1.
c. For jobs thirty-one through fifty, ARRT=ARRT+RN,
where RN € [0.1;0.91.
d. For the last twenty jobs, ARRT=ARRT+2.0,
This arrival time distribution fbrms a pattern similar to
the job stream in Run Number Two, that is, random; fast,
random, and then slow. The arrival times range from zero
for the first job to 52.40 for the last job. The exit times
as calculated by the computer system model range from 23.03
for the first job to 371.00 for the last job, This stream
contains more jobs than the previous job streams; and is

therefore more realistic.

~ Predictor variables tested.--The variables tested for

their importance in predicting job exit times are the arri-
val times, ARRT, the classification of the CPU requirements,
CLASS, and the count of the jobs arriving in the twenty
minutes before each job, PREVJB. These have the ‘same mean-
ing as the variables tested in the previous run, except for
PREVJB, which here is a count of the jobs arriving in the
last twenty minutes rather than the last ‘ten minutes as in
the last run., The runs of the system made before Run Number
Three, but not shown in this chapter, indicated that PREVJB

should he changed in this manner.



533

Results of the run.--The output from the regression

analysis program for this run is shown in Appendix V. The
three variables tested, ARRT, PREVJB, and CLASS, are repre-
sented by the variables numbered one, two, and three, re-
spectively. The correlation coefficient, Rz, is equal to
955, thus 95 percent of the variance in the exit times of
the jobs is explained by the regression equation. The
standard error of 23.56 minutes means the probability is
.95 that a job will exit during the interval [Yp—46.18,

Y +46.18 | , and .68 that it will exit during the interval

P

[Yp~23.56,Yp+23.56 1.

Conclusions drawn from the run.--The high correlation

coefficient for this run shows that the regression equation
fits the historical data well. Thus, even for a complicated
job stream such as this, the development of a good regres-
sion equation is possible. The standard error of 23.56
minutes is rather high, but not so high that it would make |
an exit time prediction uselessQ The range of this error
term at a 68 percent confidence level is 48 minutes, and
this knowledge would provide at least some quantifiable
evidence to support the job exit time estimates made by
computer cehter’perSonnel;

A measure not yet discussed in any of the runs is the

F value of the regression equation, This was described in
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Chapter I as the ratio of the explained variance to the un-
explained variance in the historical data. This ratio can
be used in stepwise regression to indicate whether or not
a variable should be used in the regression equation. The
F value was used, along with R? and SE, to determine the
variables most important in predicting job exit time.
Another way the F value can be used is in testing the
statistical significance of the regression. The mechanics
of this test were described in Chapter I. Using these pro-
cedures, the statistical significance of Run Number Three
can he tested. As shown in step three of the regression
run in Appendix V, the degrees of freedom (d.f;) in the
regression equals 3 and in the residual equals 66. Con-
sulting a table of F Distributions, and using a 95 percent
confidence level, it can be found that F(3,66,.95)=2.76.
The calculated F value of the equation must exceed four
times this number, or 11.04, for the equation to he con-
sidered statistically significant. The calculated F value
for Run Number Three is 470.57, so it is concluded that the
equation is statistically significant. This means that the
equation does a better job of predicting job exit times

than could be done by mere chance,

‘ Residuals-calculatiOn

The regression equation constructed in Run Number Three

is the final form of the predictive model for job exit times,
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To help interpret the usefulness of this model, the re-
siduals from the job stream in Run Number Three were cal-
culated and are shown in Appendix VI. This printout shows
the difference between the actual and predicted exit times
for each job in the stream. The negative residuals indi-
cate an overestimate of the actual exit time;' That is, the
job exited before the time predicted by the model. Con-
versely, the positive residuals show that the job exited
later than the time predicted by the model. Thirty-one of
the jobs in the stream have negative residuals, while the
other thirty-nine have positive Tesiduals. The largest
residual is 59.10 minutes; meaning that this job exited
about one hour later than the predictive model estimated.
Likewise, the largest negative residual is -53;83 minutes,
so the job finished about one hour before the time pre-
dicted by the mode1; ‘Both of these jobs required about
five hours to proceSs;'therefore;'for these "worst! cases,
the exit time prediction is about 20 percent off.

Draper and Smith (1, pp; 89-90) suggest that a good
way to analyze residuals is to plet them in time sequence.
This was done for every fourth residual from Run Number
Three, and is shown in Figure 2; The general trend of this
plot is for the residuals to increase with time; According

to Draper and Smith, this means that a weighted least
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squares method should have been used in the regression
analysis. This method involves a transformation of the

historical data before and after the regression analysis.

Conclusion

This chapter describes how regression analysis might
be used in a computer system to predict job exit times.

The feasibility of this application is tested by using re-
~gression analysis to construct a predictive model to esti-
mate job exit times;' Some other purposes of the predictive
model are to provide guidelines for further investigation,
to pinpoint important variables, and to act as a variables
screening device;

A computer system simulator was programmed to provide
the historical data used in constructing the model! The
output from this simulator is input to a stepwise multiple
regression analysis which builds a regression equation to
predict job exit times; The results of three runs of the
computer system simulator and regression program are shown
in this chapter.

Based upon the performance of the predictive model with
the various job streams that were tested, it is concluded
that job exit time prediction is a feasible application for
regression analysis, The results of the tests show that

persons doing further research should be aware that a
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weighted rather than normal least squares method of regres-
sion analysis may be necessary. The most important vari-
ables in predicting a job's exit time is its arrival time,

a classification of its CPU time requirement, and the number
of jobs arriving immediately prior to the job.

The next step for researchers in this area is to obtain
historical job stream data from a small computer center and
use the data to construct an operational model to predict
job exit times. The actual application of this model may
reveal other variables that are important to the prediction
process, and the "fine tuning" of the model will be a time-
consuming process. Nevertheless, based upon the results of
the study described in this chapter, such a model is feasible

and will be a valuable addition to the computer center.
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APPENDIX T
COMPUTER LISTING OF JOB STREAM GENERATOR

C JOB_STREAM_GENERATOR

ocol REAL ARRY/(./+CPUT/0.7/+CORE/Gas
0002 INTEGER NJORS KX/123456789/
_..0023 20 _FORMATIIZ)
3004 50 FURMAT{*1", LJ0B" y2X, ¢ ARRIVAL TIME',2X,'CPU TIME® ,2X, *CORE SIZE')
0905 e 40 FORMATU® 1, 13,3%X4F7u2+6X3F7a2y3%X,FTe2) e
__0008& 60_FORMAT{® XNVMB=',F12.9)
goor 70 FORMAT{3F8,2}
3038 READ{5,23) NJOBS
. boo9 WRITE(2,200 NoOSS =~
0910 o WRITE(6,50) _ , . e
001L . XNMB = XRANC(KX) . e
_.ogrz KX =_0 —— I
0013 DO 30 1 = 1,NJOBS
C FINO ARRIVAL TIME
_Dors __XN4B = ABS{XRAND{KX]} R
LoLs , HRITE{8,60) XNMB o .
3016 oo KNMB = IFIX(XNMB * 10.) o e
. Qorr - XNMB = FLUATIKNMB) / 10.
0018 © ARRT = ARRT + XNMSB
. C FIND CPU TIME
_.bo1g XNMB = ABS{XRAND{XX}) : —
3323 HRITE(8+6)) XNMB
0021  KNMB = IFIX{XNMB * 10. ) .
L0022 IF {KNMB.EQ.0)_KNMB = IFIX{XNMB * 100.)
2023 CPUT = KNMB
C FIND CORE SIZE
L0024 XNMB = ABS (XRANDIKX)) - L
0025 . WRITE(8,60) XNMB _ .
0026 . KNMB = XNMB * 100 V _ , R
_____ 0027 IF (KNMB.EQ.J) KNMB = XNMB * 1000 ,
0028 CORE = KNMB
0029 WRITE{6+40) 1,ARRT, CPUT,CORE
..0033 WRITEL2,70) ARRT.CPUT,CORE
po3r .. 30 CONTINUE _ _ e
o3z END FILE 2 T AT _ e
0033 sTOP . '
0034 o END
. L _GENERATES RANDGM_NUMBERS ST — S
0001 . FUNCTIGN XRAND{KX) _ X e .
. 0002 IF {KXaGTueG) IX = KX o
..0003 1Y = 65539 * IX
Q994 o IF LIYALTL0) IY = 1Y + 214748367 ¢ I
0005 . _XRAND = ,4656613E~9 * FLOAT(IY} _
Q005 IX = 1Y .
007 RETURN : _ e
G008 END _ T
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JO08 ARRIVAL TIME CPU TIME CDRE SIZE
1 . 5.00 40.29
2 _0.10 6.00 42,00

E] 0460 2.00 56400
4 . 0.80 4.00 4C.00
5 1.20 4.00 34.00
& 1.5) 9.00 68.00
1 1.92 5.90 95,00
8 2,60 2.00 7000
g7 3,45 6.00 4.00
10 3.5 3.00 91.00
11 4400 7.90 B
12— 4.50 T 8.00 T $7.00
13 5.00 77 s.00 | 712.00
14 5.2 7.00 21.39
15 5.40 3.00 95,00
16 6.23 4,00 6C.00
17 6,73 7.00 32.00
18 .10 6.00 1.00
19 7.80 77 2,00 74400
20 8,39 44 00. 56400
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COMPUTER LISTING OF MEMORY SIMULATOR

APPENDIX II

C MEMORY SIMULATOR

REAL ARRT{1C0),CPUT{100),CORE(L00),EXECLL00)FINTLLOOD)

3001
2002 REAL RUNT(1GO2
0003 . REAL SRESID/0./
0304 10 FORMAT(I3)
2025 12 FORMAT(3F8.2)
0006 114 FORMAT (1,708 ARRT cPUT CORE___ FINV*)
0007 255 FORMAT (5F8.2)
8008 115 FORMAT(' *,13,4F8.2)
o C INITILIZATION .
oods READ(Z,10) NJOBS
0010 T READ{2,12) (ARRT{I),CPUT(I1)sCORE{L) I=1,NJOBS)
0011 CORSIZ = 25C, R
0012 ELAPT = 0.
0013 D0 20 1=1,1C0
_014 20 EXEC(I) = 0
0015~ TTTRRUN = 0
0016 ... JOBCNT = O
Q017 ELAPT = ARRT(1) L
0218 CORSIZ = CORSIZ — CORE(1)
0019 NRUN = 1
0020 EXEC(1)_= CFUT{1) S —
0021 TJ0BCNT = 1
“ooz2 T FINT(1)=ELAFT
_C FIND NEXT TAB PGINT_AND DETERMINE_IF CAN_STARY JOB
0023 103 EXEMIN = E£XESUB{EXEC,NRUN)
0024 " IF{JUBCNT.EC.NJOBS) GO TO 30
0025 _ARRMIN = ARRSUBIELAPT,ARRT,JOBCNT}
0026 TIF(CORSIZ.GE.CORE(JOBCNT + 1)) GO TO 35
L0027 T " YAB = EXEMIN
0028 QYO 40 -
“baze 35 TAB = AMINL(EXEMIN,ARRMIN)
0039 6D TO 40
_0031 3Q IF{EXEMIN.EC.0.)_60.T0.200. _ U
oosz TAB = EXEMIN T
_ . _C ADJUST EXECUTION TIMES FOR TAB PCINT
0033 40 ELAPT = ELAFT + TAB
0034 NRUNT = NRUN
0035 LIMIT = JOBCNT
0036 DO 59 I = 1,LIMI¥-__ e - e e e e
o037 IFLEXEC(I).EQ.0) GO TO 50
Coo038 T EXEC{I) = EXEC{I) ~ TAB/NRUN
99239 IFLEXEC(1).CT.0) GO TO 43 R —
C DELETE A JOB
0040 FINT{IJ)=ELAPT
_0041 EXEC(I) = 2. ST
70042 UNRUNT = NRUNT = 1
0043 CORSIZ = CORSIZ + CORE(I}
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_ 0044 43 IF{JOBCNT.GE.NJDBSE GO YO 50
0045 IF{CORE(JUBCNT+1) LLE.CURSIZ. AND. ARRT {JOBCNT+1} JLE.ELAPT? GO T0 45
0046 GO TD 50
C_START A JOB o ——
0047 " 45 CORSIZ = CORS1Z ~ CORE{JOBCNT ¥ 11
0048 T JOBCNT = JOBONT + |
9349 NRUNT = NRURT + 1 o }
0053 EXEC{JCBCNT.) = CPUT(JDBCNT)
0651 50 CONTINUE .
_0052 NRUN = NRUNT . - e



0353 G0 TO 1300

0054 200 WRITE(Gy114)
G055 KJDBS = NJOBS - |

_0356 DU 201 K = 1,KJ08S .
0057 T PREVJB = 0.
coss IF (K.EQ.1} GO TO 305
0059 305 RUNT(K) = FINTIK) - ARRT(K) __ .
. C PRINT RESULTS OF SIMULATION
0060 WRITE(9y255)  ARRT{K)},CPUT{K),CORE (K} ,FINT(K)
0061 WRITEL6,115) KeARRY (K)sCPUT(K) +COREIKI yFINTIK)
ooz 201 CDNTINUE
Q063 . _ _ ENDIND = 99, L .
_006s WRITE(9,255) (ENDINDs1=1,4y
0065 END FILE 9
0286 sTop
0067 END

L _FIND MINIMUM AMCUNT OF EXECUTION TIME LEFT _

3001 FUNCTION EXESUB[EXEC, NRUN)
0002 REAL EXEC{1CD)
kY CEXESUB = 9959,
J024 . . . . DO 20 J4=1,1C0
3005 D TF{EXEC(J) «EQ.D.) GO TO 20
_G0Qs IFIEXECIJ) .LTLEXESUB) EXESUB = EXECJ) _
00407 " 20 CONTINUE
J308 IFIEXESUB.EC.9999.) EXESUB = 0.
_boa9 ' EXESUB = EXESUB _* NRUN o
G010 RETURN e
oowmy o END_ T
oo .. € _FIND ARRIVAL TIME OF NEXT JUB
0601 FUNCTION ARRSUSB(ELAPT,ARRT,JCBCNT)
Q002 REAL ARRT{1€0}
_0pos ARRSUB = ARRT(JUBCNT + 1) —~ ELAPT
Q004 . IF(ARRSUB.LT.0.) ARRSUB = 0.
. 0005 e RETURN

3006 __END




JG8 ARRT CPUT CORE FINT
1 3.0 5.00  43.00 23.03
2 0.10 6.00__ 42.00__ 26.33__
3 2.60 2.00  56.007 10.37
4.  0.80 4.00 40,00  23.70
E 1.20 &.00 34.03 _21.10
6 1.50 9.00  68.00  47.75
7 1.90  5.00 95.00 38.58
8 2.60 2.00__70.00__ 34,33
9 . 3.40 6.00 4,00 52,25
10 3.50 3.00  91.00  54.33
i1 4,00 T-00,__4<00___75.33
12 450 6.00 57.00  69.33
13 5.00 _ 8.00 72.00 89.50
14 5.29 7.00  21.00 84450
15 5.40 3,00 9$5.00  69.33
16 6.20 4.00 60.00 90.33
17 6.70 7.00__ 32.00__102.17
18 _ 7.10 __ 6.00_ . 1.00 _ 99.17
19 t7.80 . 2,00 74.00  94.50
20 8.30 4,00 66.00 103,83
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APPENDIX III

REGRESSION ANALYSIS FOR RUN NUMBER ONE

STEPWISE REGRESSION — RUN NLMBER ONE

_NUMBER OF VARTABLESeuasas
NUMBER OF SELECTIUONScaase
END .OF DATA INDICATURAwu.

_DATA_INPUT DEVICEwasensns

LI
LA R K
s o

TR EX]

RED.

NJ MINIMUM VARIANCE REQUI
DATA FURMAY = (4FB.2)

 NUMBER OF OBSERVATIONS 20
. STANDARD
VARIABLE MEAN _DEVIATION . .

1 3.79300 2.64095
2 5.02300 . 2005896 .
3 51.10000 29,24470
4 6033800 31.2902)

TSIMPLE CORRELATIONS e
1 1.0300 0.0058  ° 0.0048 3.9562
2z | 0.0058 1.0000 ~0,4087 0.2703
3 :0.0048 =0.4087 ALQ000  =0.0778
& 0.9562 9.2733 ~0.0778 1.0000
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SELECTICN 1l .

~DEPENDENT VARIABLEeesesasans 4 —— el
NUMBER OF FORCED VARIABLES.. o
NUMBER OF FREE VARIABLES.... 3 '

~MAXIMUM _NUMBER OF STEPSw,... 3

WSTEP 1 e - e e
VARTABLE ENTERED _ 1~~~ i
MULTIPLE R . 0.5562 MULTIPLE R ADJUSTED FUR DEGREES OF FREEDOM 0.9537
~MULTIPLE R~SQUARE _ 0.5143 R-SQUARE_ADJUSTED FOR DEGREES OF FREEDOM 0.9095
. INCREASE IN R~SQUARE T 0.5143 INCREASE IN ADJUSTED R~$QUARE 0.9095
STANCARD ERROR OF ESTIMATE ~  g.4128 -~ ADJUSTED STANDARD ERROR OF ESTIMATE . 9.4128
**% ANALYSIS OF VARIANCE #us e
... __DEGREES OF " sum oe 7 mEsw N o
__SOURCE FREEDQOM S_ELU?B_ESA..MS_QU&&E-L_H__*_L__,,h__._w,, P I
REGRESSION 1 17007.647 17007.647 151.9568 0.0000
_RES] OUAL . g} IjMijJ.BZéM&&_,QQ.LH____.___.H__...M,__W___
TOTAL 19 18602.473 LT
*¥% REGRESSION EQUATION **%
, e RAW T STANDARD STANDARD o o
VARIABLE COEFFICIENT _COEFFICIENT ~ ERmOR F e
1 (FREE) 11.32887 0.95617 0.81768 191.9588 0.G000 T
CONSTANT 17.40177 0.57059
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STEP 2

F

VARIABLE ENTERED _

MULTIPLE R ADJUSTED FUR DEGREES OF FREEDOM  0.9912

MULTIPLE R 0.9921

MULTIPLE R~-SQUARE 0.%843 R~SQUARE ADJUSTED FUR DEGREES OF FREEDOM 0.9825
INCREASE IN R-SQUARE 0.,08701 INCREASE IN_ADJUSTED R~SQUARE D GOT30
STANDARD ERROR OF ESTIMATE. _  4.1404 ADJUSTED STANDARD ERROR COF ESTIMATE 42540

k% ANALYS IS OF VARIANCE #%%

DEGREES QF SUM OF "MEAN T I
SOURCE FREEDOM SQUARES SQUARES F P
REGRESSION 2 J8311.019_ . 9155.509____$34.0236___ 0.0000
RESIDUAL 17 291 .455 17.144
TOTAL 19 18602.473
*%% REGRESSION EQUATION »4%
L _RAW . STANDARD  __ _ STANDARD e
VAR TABLE COEFFICIENT COEFFICIENT ERROR F P
L _(FREE) -A1.31056 0.95463 _ _0.35969_ __988.7923 _._ 0.0030
2 (FREE} 4.03642 0.26470 0.46294 76,0232 0.0000
CONSTANT -2.71107 ~0.08889
STEP 3
VARIABLE ENTERED 3. T CoT T

MULTIPLE R

MULTIPLE R-SQUARE
~INCREASE IN R-SQUARE _

STANDARD ERROR OF ESTIMATE

0.5925
0.69851

4.1572

**% ANALYSIS OF VARIANCE %%

MULTIPLE R ADJUSTED FUR DEGREES OF FREEDOM Q.
R—-SQUARE ADJUSTED FOR DEGREES OF FREEDOM
0.0008  _ INCREASE IN ADJUSTED R-SQUARE —
ADJUSTED STANDARD ERROR OF ESTIMATE

9911 -
0.9823
4.3949

T DEGREES OF  SUM OF — MEAN 7 T
SUURCE  FREEDOM  SQUARES SQUARES F P
TREGRESSION 3 18325942 6108.654  353.4694  0.3000
RES | DUAL 16 276.512 17.282
_TOTAL 19 18692.473 _ = e
*x¥ REGRESSION EQUATION waw ~— 7~ "7 = — -

» _RAW . STANDARD _ _ _ STANDARD ___ _ .
VARIABLE __ COEFFICIENT COEFFICIENT ERROR F P
___L_jEREEL__;*M:_ﬁmeL.30791mﬂﬁ__w“mk0.954&1__““h;0.3d1144,m 980.4021 __0.0000

2 UFREEY 4.22999 0.27742 0.50928 68.9866 2.020)
3 (FREE) 0.03323 0.03106 0.03573 0.8647 0.3663
. _CONSTANT ~5.,36684 ~0.L7597__ e B .




e _VARIABLE__
STEP ENTERED
b ) AFREE)__
2 . 2 {FREE)
3 3.{FREE)

*E% SUMMARY TABLE %%

HULTIPLE_@u,AGJUSTED$Vm_R—SQUARE_“, ADJUSTED
R—SQUARE R-~SQUARE INCREASE INCREASE
0.9143 —0.9095 _ _ 0.9143 _ 0.9095 o
C.9843 0.9825 0.0701 0.0730

. 2.9851 0.9823 ... 0.0008 =0. 0001
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191.9568 0.3000
534.0238 Q. Q00
333.4094 Q. 0000




APPENDIX IV

REGRESSION ANALYSIS FOR RUN NUMBER TWO

. _wmm“,ﬁh"‘,f__._l._ C s 5 sy

-0.0269 1.0000 J.16Te
Vells0 T T T dllete T T
-J.J3253 ° J.5632 D.2282
J.6788 2.2527  0.4791

R
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4

1.332) -3.0259 2.1152 © =0.0253

J.96J)2

1.4000
D.2842

STEPWISE REGRESSION — RUN ALMBER TWO
_ NURGER OF VARIAELES---rrsgltzwmm“5kw”f o o
NUMHER OF SELECTIONS.e.weuos 2
Emng (}F CATQ INDICATiJR-l--uagv Qg
_DATA INPUT DEVICEsccnevoanees 9 e
N3 MINIMUM VARIANCE REqUIRED.,
T DATA FURMAT ="{5Fd.2) T T - T
NUMBER OF DLS3ERVATIONS a5
: STANDARD
__VARIABLE MEAw  DEVIATION
i 6, u8400 6. J0l9s
2 Se04000 T 2.24499 e
i 7.92303 " G.6TY9Q 7T T
4 2463309 l.06927
P T2e33640 0 37.18%48
SIMPLE CORRELATIONS

TleoooeT T L2282 T
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SELECTION 1
DEPENDENT VARIADLEweeoroesan 35
TNUMBER T OF TROICES TV ARTABLES. 9 B T T T e -
NUBER OF FREE VARIABLES.... 3
_MAXLAUM NUAGER OF STEPS..... 3 o o
s STEP l e b ———— o m te A A rr——a —t———— = - - . — e e — -
_ VARIABLE ENTERED™ "1
MULTIPLE R 0.8788 MULTIPLE R ADJUSTED FOR DEGREES OF FREEDUM  9.5731
MULTIPLE R~SQUARE _ 0.7722 K-SQUARE ADJUSTEY FUR DEGREES OF FRECDUM  0.7623
TINCREASE TN RS QUAKE 501722 INCREASE IN ADJUSTED KoSWUARE ~ " = = = “0-7623
" STANDARD ERKUK OF ESTIMATE ~ 1a. 1259 ADJUSTED STANDARD ERKUR GF ESTIMATE 18,1299
K% ANALYSES OF VARIANCE *%+ B
T TS GEGREES DETTT SUMTOF MEAN
TSUURCE ™ T UUFREEDOM T SQUARES SQUARES _E e
REGRESSION 1 25033.445 25633.445 77.9860  0.0000
RESIDUAL 23 7559.940 325,653 ‘ B
ffﬁT:’i'L - 24 TEs l?;.} 386 - i T T T T T e
wx% REGRESSION EQUATION %wx
L TTTTRAW T STANDARD T T TTSTANDARE T - T
VARIABLE """ ""COEFFICIENT™ " COEFFICIENT ERROR F p
{ TFALE) 549170 SETeTE T 061049 17,9860 Targgy T
CONSTANT 39.53633 1.08503
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STEP 2
TVARTABLE ENTERED ~— 3 B T T T T
TMULTIPLE R 0.9576 MULTIPLE R ADJUSTED roR LEGREES OF FREEDUM 0.9537

MULTIPLE R—-SQUARE J2.5171 R=SQUARE ADJUSTEU FOR DrokbkS OF FRELDUM U.9uy5

INCREASE IN R—SQUARE - _ 0.1%48 INCREASE IN ACJUSTED RS UAKRE d.1472
“§TAHuxﬁﬁfﬁgﬁﬁﬁ“jﬁ‘EéTTﬁﬁfﬁ“f*Iyﬁiasaffff“AuJUSTED"STKNUARD”ERRJR tF ESTIMATE 777777 T Ll44280 7

®%% ANALYSIS OF VARIANCE ##%x
DEGREES GF 7 SUM OF ™" MeaN T T ¢ oo e T

SOURCE FREEDDH SQUARES S5QUAKES F p
_ REGRESSIUN - 2 3us40.813 15220.437 121.6523 Ue UUII

RESTDUAL 27 FI52.5137 1250114 T

TUTAL 24 33193.386
oo T Tuww REGHRESSIUN EQUATTION “sww™ —7 777 7770 mmmmmm e o
— e e RAaW STANDARD STANDARD e
TUvaRTARLE CUEFFICIENT COEFFICIENT ERKQR ~ 7T TR T "

L EFREE) 5412096 0.83472 0.37916  182.4065  0.0090
T3 (ERED)D T 304984 U=36311" T 0.49198 7 38.4243 TTT0. 0003

CLLSTANT 17.32769 Je%0T3d

STEP 3
VAR ABLE EATERED T T2 T T T T .

MULTIPLE R T TSR T UOMULTIPLE R OADJUSTED FUR DEGKEES “OF FREEDOM U.9786
MULTIPLE A~SJUARE 0.9630 R—SQUARE ADJUSTEL FOR DEGREES UF FREEDUM 0.9577

[WCFEASE IN R=SQUARE  0.0459  [INCREASE L4 ADJUSTED K=SQUARE 0.0482
 STARDARD [RHURTOF ESTIMATE T.6453 ADJUSTED STANDARD ERRCR OF £sTIMATE 7.9852

*wx ANALYS1S UF VARIANCE #=%
CUDEGREES OF T suMm OF . MEAN T T T o e

SOUNLE FREEQDH SUUARES SWUARES F p

REGAESSION 7 T3 TTTTBIYL 5,924 T T TT10655.30y T IB2. 2967 0.000G T mm

RESTDUAL 21 1227.458- 58,450
TeTAL 24 33193.386 S
o oo T T ey REGRESSIUN EQUATION swsT T T B - -
e e Rad .. . STANDARD STANDARD e o -

VakTABLE CUEFFICIENT CUEFFICIERT ERROR £ [
oL UFREERY 0 5.1633L 0 D.34489 Y 0025945 399.1321  3.0000
3 {FRTE) 2.7307u 3434555 0.34132 L% 54 Lo 343333
2 (FREE} e 60544 0.21765 C.70585 26,0915 0.0000
CLNSTANT _ o J.8441T  D.32317 _ o o
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TEE SUMMARY TABLE %%
v eV ARTABLE _MULTIPLE  ADJUSTED  R-SQUARE ADJUSTED
STEP ENTZRED R~5u0ARE R=SQUARE T TINCREASE ™7 INCREARE F P
. _“le(fﬂﬁﬁ[me__um;Q:T?dd 0.7023 0.7722 JaT7623 77.9850 0.0009
2 3 (FREE} 0.5171 T o.yoRsTT T ‘0.1445'”'”‘"'0;1472“"“IETTEsz‘“_“ﬁﬁodﬁﬁm““
3 2 {FREE) 3.963) Ja957T J.d45% 3. 0482 182.2967 0.0000
T‘ﬁﬁﬁiiﬁaé§”ﬁ?i?#€ﬁ?’ e ST
StLLCTIaN 2
RDEPENDENT_MARIABEE....,....t_NHﬁ__ - o o
NUABER GF TFOXCED VARIABLES.. 3
NUMGER OF FREE VARIABLES.... 3
_MAXIHUM NUMBER OF STEPS.,.., 3 e
LSTEP 1 e , B} .
VARIABLE ENTERED 1 -

MULTIPLE K 0.6788 MULTIPLE R AUJUSTED FOR ULEGREES JF FREEDUM  0.8731
MULTIPLE R-SOUARE o 0.77122 R-SQUARE ALJUSTED FULR DEGaeES Ob FRE EUUM 0.7623
'”1ncnr1§E”TN‘R—SUUIRE“““““‘"“““U:77za"“ﬂ“iNcREAss‘Im AUJUSTED R-SQuUakE T d.1623 7
STANDARD ERRJR OF ESTIMATE  13.1299 AUJUSTED STANDARD ERRUR UF €5TIMATE 18.1299

TYZ ANALYSIS OF VARIANCE *xx B
: GEGREES UF  SuM OF MEAN
_SUOURCE FREEDIM SMULRES __ SWUARES F p S
REGRESSI1ON 1 25€33.445 25633,455 77498650 3.2232
wMRESAQP%E__MMﬁn_a_uﬂ23”_“ﬁ“__7559-943,____‘ 328.693 i
TOTAL 26 33193.346
ke REGRESSION EQUATION %%
I RAW T T STANDARD STANDARD
VARLABLE COEFFICIENT COEFFICIENT ERRUOR F P
T 1 {FReE) 5.39123 W.8TETd T TTEI61049 TT.%d00 7 TuLgudo T i
CONSTANT 39.553633 1.08523
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STEP 2

TVARTABLE ENTERED 3

MULTIPLE R U.5576 MULTIPLE R ADJUSTED rUR UEGKEES JF FREEDOM 0.9537
MULTIPLE R-SQUARE 0.5173 R~SJUARE ADJUSTED FUk DiuREES OF FREEDUM 0.9095
INCREASE IN R-SQUARE J.1448 INCREASE IN ADJUSTED k—=SnUART 0.1472
T STANDARD ERROR OF ESTIMATE  11.1854 ADJUSTED STANDARL ERRuR UF ESTIMATE 14263
ek ANALYSIS OF VAR[ANCE #aux
. DEGREES OF SUM OF MEAN - o -
SOURCE FREEDOM SGUARES SQUARES F P
_REGRESSION a_ 33443.473 152204437  121.6525 _ G,0000
RESIDUAL 22 2752,513 125,114
TUTAL 24 33193.336
T T TTeS AT REGRESSIUN TEQUATION *xxT 77T T I
o RAw  STAKNDARD  STANDARD
VAL TABLE COEFFICIENT COEFFICLENT ERROK ' F ] P
L URREE) 0 5,12090 0.83472 0 3437916 1BZ.4d0d  3.030)
3 {FALE) 3.0496% U.33311 J.49198 38.4243 0. 0030
CONSTANT 17.32769 J.46730
TSTEP 3
TVARTAGLE ENTEHED 4 77 T o T -

CTMULTIPLE R
MULTIPLE R-SWUARE
INCEEASE IN R=SQUARE

Ua5673
0.0502

T STALOAKy eKKLR UF ESTIMATE ~ 77,1906 "

TToJge3s T T

MULTIPLE R ADJUSTED FOR OEGRUES OF FREEDON 0.9811
k=3UUARE ADJUSTEL FUR UEGREES OF FREEDOM d.9626
INCKEASE IN AUJUSTED R—SJQUARE 0.0531
TADJUSTED STANJARD EdxUR UF ESTIHATE ” T.51037

wE= ANALYSIS OF VARIANCE »%=
TTREGREES OF T sud oF T T T MEANT - T T e e
SOUKCE CFRCEQGM SWUARES SQUARES F P )
TREGRESSTUNT 7T 7T 737 TTT32107.584 7 7107024528 7 206.99z8 7 70,0000
RESTOUAL 21 1085 .802 51.72%
- TUTAL 2% 35193.3¥6 o .
) T T T e d TREGKES SIUN T EQUAT TON wRe T T - o
. RAW STANDAKL _ STANDARD : _
VarbARLE CUEFFICIENT COEFFICIENT & ERROR ¥ I o
C1 GFREE) T 5.1946%  0.840T4 D.24409 452.9071 040000
3 (FRIE) 2.61994 3.32913 77 0432520 64.9062 T 0L03F T T T
% (FREE) 8.01619 J.23348 L.41190 32.2351 3.0230 -
CCULNSTART  —1.50145 =0.04121 e




wk® SUMMARY TABLE w4

o VARIABLE  MULTIPLE  ADJUSTED K~SQUARE

STEP ENTERED R—SQUARE R—SQUARE ™7 T INCREASE
11 IFREEY 9.T7122 .7623 C0.TT2e
2 3 (FREE) V.ylT1 0.9095 C G.1448
3 4 [FKEE} 2.9673 0.9626 U.0502

T 1 VARIABLES DELETEL: T 2T 7T T
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ADSUSTED
FNCKEASE ™ ™77 F

5. T6es 17,9360
Uel4Ts  121.6523
Jeubsl 206.9928

P

Je 3232
J.3233
0. 0000



APPENDIX V

REGRESSION ANALYSIS FOR RUN NUMBER THREE

il

STEPWISE REGRESSINON - RUN ALMAIER THREE

NUAGER QF VAR LABLE Sevsvvennnn

NUAGER UF SELECTIONS e waaatss 77

Bty WF DATA INGICATOR v enans

BATA INPUT DEVICEresenaannan

K2 EINTSUM VARTIANCE REQUIRED.

WATATEURMAT 5 [4F3.21

NUFBER OF OBSERVATIONS 70
VARLABLE | Al
1 13,5704 3
2 23.62857
- I 2T 14 S
L 194, 57057

STMpLE CORRELATIONS

- 1 £
H IS TR PIV IV IR, S XY
2 ~J. 147D 1.222)
3 ~J.J15% 0.0822
4 Uoddll T 0.3443

76

4

N

99
9 .

STANDARD

QEVIATIU&_

14,22214
1o, 52742
T leai5a2
1)%.3L 30y

4
EvVIESA
0.08u2
1eJ320
VedG98

4 -
08511
0.3443
J. 0996

TLed Y
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SELECTION 1
DEPENDENT VARIABLEweeovoness 4 -
TTRUMOER T OF FGRCED VARIASBLES.. 79 T ) . T N T ’
NUABER OF FREE VARIABLES.ce.. 3
_MAXIMUM NUMBER UF STEPS..... 3 ; .
CSTER N o
 VARTABLE ENTERED &

MULTIPLE R J.8511 MULTIPLE R ADJLSYED FOR LEGKEES OF FREEDOM 0.384338
MULTIPLE R-SQUARE J . 7245 R—=SQUARE ADJUSTEU FUR DEGREES UF FREEDUM G.T204%
TINCEEASE TINTR-SQUARRE JeT245 INCREASE IN ADJUSTEL R-SQUARE™ "~~~ 77 7 7777 35,7254

" STANDARD ERROR OF ESTIMATE ~ 57.¢462 AUSUSTED STANDARD ERROK UF ESTIMATE 57.6462
oo KF* ANALYSIS OF VARIANCE #**x I
e o DEGREES™OF " SUM CF MEAN
SOURCE . TTFREEDOM 7 7 SQUARES  SQUARES F N o
REGRESSIUN 1 594114.93¢6 %94114.936 178.72843 Ja 0006
KESTOUAL 68 22596%.634 3323.083 o
TTOTAL T RS T B2008%.540 T T e CTrrmTmmmm T T e
#xk REGRESSION EQUATIUN #2%
- RAW T TG TANDARD T T STANDARD ) T T
VAKRIABLE ~ 7 " "TCOEFFICIENT © CDEFFICIENT ERROR F P .

TOUUFREEY T T T BLaYBYZ T OVESILS T T ULG8455 T 1¥B. 7343 ALY T

CONSTANT 107.04737 G.98900



STEP 2

VARTABLE ENTERED 2~

TMUOLTTPLE R 308745 T THMULTIPLE R AUJUSTED FUR DEGREES JF FREEDOM 0.9737

HULTIPLE R-SJUARE 3.5497 K-SWUARE ADJUSTEU FUh DiGrrcS OF FRECOOM  0.9432
INCREASE IN R=SQUARE. 0.2252 INCREASE IN ADJUSTED R-SGUAKE 0.2278
- STANUARD™ERRDR DF ESTIMATE ™" 242 €181 " "ABJUSTeD STANDARD ERRUR. LF ESTIMATE """ 24.9999
¥H& ANALYSIS OF VARIANCE %#x
o TTTTTUUUTLEGREES OF TUUSUM uFT T T wEan :
SDURCE FREEDOM SQUARES SCUARES . £ P
REGRESSILN ~ ' Tro816.627 389408.313 632.2190 LIRNRNY
CORESIDUALT T T R T T4 267,904 T 615,939 T T T e
TUTAL 69 822064 .54)
T C T T wwx HEGRESSION EQUATION % B T s e
- RAW STANDAKD STANDARC _
| VARIABLE  TUUCDEFFICIENT T COEFFICIENT  ERROR - L
I {FREE) 7.01583 3.92168 D.21050  1106.6143  3.9320
S 2 EEREEY T 3036865 T TTT U GLU4TRT9 T QL l9aBy - 299. 87017 90000 T
CGNSTANT 19.4995¢6 0.15007
STEP 3 . )
TVARIABLE ENTEKED 3 e T T e T 'ffj

TR R T 994 T AULTIPLETR ADJUSTED FCR DEGIEES "F FREEOOM 0. 9765
MULTIPLE R~SQUARE 0.5553 R-SQUARE ADJUSTED FOR DEGREES OF FREEDOM  0.9533
INCHEASE IN R~SQUARE U.CO57 IRCREASE IN ADJUSTED R~SQUARE 0.0051

" STANUARD ERKUR OF ESTIMATE ™ 23.5579 77 ADJUSTED STANDARw LRROR OF ESTIMATE ~ 77 23,9069

re% ANGLYS IS OF VARIANCE »w%x
: T DEGKEES OF *7 sgq oF  MEAN . . o )
SUURLE _ FREEDUM  SUJARES SQUARES F p
CREGRESSION ~ 777 T g TTT83450.,271 T 261152.090 470.506% 0 0.2d90 T T v
RESIDUAL P 366d.209 554.974
TUTAL ) 69 . 820334.540 o —
T T e e v:a_sz'fi EGRTE S S i[_]N- EQUA'{ lu” L 3.5 o o T T e -
o RolE T ne RAM. L STANDARD  sTanparD
VAR IAGLE COEFFICTENT COEFFICLENT ERROR E P
A UEREEY 10776 . 0.92194 0.20015  1228.0411 g.,0000
2 (FREE) 3.32641 J. 47377 0.18523 °  322.494) 2,033
3 (FREE) 7. 65040 0.07546 2.64593 8.3601 23952
CONSTANT — ~y.6s008 =0.00777 o ~ S L
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®xk SUMMARY TABLE whz
] _nvdﬁigﬁgg_“w o MRLTIPLE AUJUSTED  R-SQUARE ADJUSTED o o
T ENTERED H=%widakk R—SWUARE INCREASE [MCKEASE F [
e L EREEY 047245 0.7204 L DeT243 0 Da7204 __A78.7843  0.0000
2 [FREE) _ 0.9497 U 9482 0.2252 Va2278 632.2190 0.0000
3 (FREE) 3.9553 © D.9533 2.0357 U. 0051 470.5665 0.0000




APPENDIX VI

RESIDUALS CALCULATIONS FOR RUN NUMBER THREE

HeSTUUALS FRJIM RUN NUMBER THREE

ACTUAL ESTIMATEY RESIDUAL SUM RESIDUAL
__23.03 22.11 Ju92 L d.92
26.33 26. 14 0.19 1.11
10.37 17.68 ~7.32 -65.20

20470 3J.97 =9.31 =15.57
Z1.10  36.20  —15.10 -30.67
47.75 56.94 -9.19 -39,86
33,58 55443 . —16.8% -56.7L
34.33 48.37 -14.04% -T0. T4
E2.25 T2.62 ~20.37 -91.11
5%.33 6£9.00 —14.67 ~105.78
75.33 88.33 —=13.00 -118.78
©69.33 B4.TL  -—15.38 ~134.16
89.50 96.40 ~6.93 ~141.05
84.50 100.43 -15.93 -156.96
69.33 59.16 -19.53 ~1To.51
90.33 $3.19 ~2.86 -179.67
125.33 ~186.86
121.33 ~194.43
94 .50 -197.57
108.67 -1498.22
117.33 ~201 .89
122.83 =211.74%
100,50  =225.01
131.50 -234.,26
119.83 e -243.,90
130.83 141.16 —1J.33 —-254 ,23
164.67 ' —242 .41
154,83 -236.80
164.67 _ _ =233.04
155.50 ) —234,63
20L.67 ~202. 84
179.83 -180.71
195.83 ~159.18
201.67 -135.84%
218.50 B —-109.46
. 218.50 ) O -89.92
201,67 ~83.60
207.50 —71.33 '
207.50 . 199.27 8.23 -63.10
239452 218.690 23.90 =42.20
255,33  221.93 33,41 —-8.79
255.33 230.87 24 .46 - 15.67
244050 227.94 12.54 28.2)
224.50 219.53 5.0J 33.21
224.50 222483 1.67 34.88
232,59 2271.58 2.9 37.82
235,50 236.51 T -1.31 26,81
261,677 T 260.05 T l.61 38.43
254.67 259.24 -4,58 33.85
258,67 264.68 —5.01 27.84
283,17 297.35 ~14.18 13.66
283,17 314.72 -31.55 -17.389
291.67 332.09 7 C4d.42 i ~58.31
213.07  327.59 ~53.33 -112.14
307417 343.52 ~36,35 ~148,50
331.17 316.61 —~15.4% -163.%4
339.67 287.36 22.31 ~141.63
348417 289.07 59.12 -82.53
310433 260.18 SU.15 ~32.38
328.17 275%.21 52.96 20.58
359.17 304.55 e 5ha62 75.23
322.33 292.31 30.02 105.23
33617 314.00 22.117 127.3%
348.17 335.69 12.48 139.87
360.00 349.73 13.27 150. 14
329,17 348.47 -19,30 130.84
348417 370.16 -21.99 108.85
368700 399.5) —-3[.5) T 17.35
377.00 413.54% -35.54 40.81
371.0J 419.93 ~45.93 -B.12



BIBLIOGRAPHY

Books

“““““

Draper, N. R. and H. Smith, Applled Regre551on Ana1y51s,
New York, John Wiley & Sons, Inc., 1967.

Madnick, Stuart E. and John J. Donovan“O‘eratin Systems,
New York, McGraw-Hill Book Company,

Mason, Robert D., Statlstlcal Technlques in Bu51ness and
Egonomlcs, I11Tinois, Richard D, Irwin, Inc.,, 197%.

Sterling, Theodor D. and Seymour V, Pcllack,
to Statistical Data Processing, New Jer%ey, Prentice-
Hall, Inc., 1968.

Articles

Benston, George J., "Multiple Regression Analysis of Cost
BehaVlor,” The Accounting Review, Vol, XLI, No. 4

(October, 1966), 657-672.

Comiskey, Eugene E., "Cost Control by Regression Analysis,”
The‘ACCOuntlng Review, Vel. XLI, No. 2 (April, 1966),
235-238.

Deakin, Bdward R. and Michael H. Granof, "Directing Audit
Effort Using Regression Analysis," The CPA Journal,
Vol. XLVI, No. 2 (February, 1976), 29-33.

Deakin, Edward R. and Michael H. Granof, "Regression
Analysis as a Means of Determining Audit Sample Size,"
The Accounting Review, Vol. XLIX, No. 4 (October, 1974),
764-771.

Jensen, Robert E., "A Multiple Regression Model for Cost
Control - Assumptlons and Limitations,' The Accounting
Review, Vol. XLII, No. 2 (April, 1967], 265-273.

Kinney, William R., Jr. and Andrew D. Bailey, Jr., '"Regression
Analysis as a Means of Determining Audit %ample Size: A
Comment, "The Accounting Review, Vol. LI, No. 2
(April, 1976), 396-40T.

81



