THE TWO-PART FRAMEWORK IN SELECTED CHORAL WORKS AS A HARMONIC AND STYLISTIC DETERMINANT

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF MUSIC

By

Michael W. Turner, B.M.
Denton, Texas
May, 1981

Turner, Michael, W., The Two-Part Framework in Selected Choral Works As A Harmonic and Stylistic Determinant. Master of Music (Theory), May, 1981, 139 pp., 47 Tables, 7 Illustrations, Bibliography, 29 Titles.

The problem with which this investigation is concerned is the determination of compositional styles in terms of manners of employing monadic and dyadic intervals in the music of the common practice period. An aspect for determining style is proposed by way of comparing the frequency of occurrence of dyads and monads in selected musical examples from the baroque, classical, and romantic periods.

Chapter I is a discussion of the problem and methodology of the study. Chapters II, III, and IV present analytic comparison of examples in the baroque, classical, and romantic periods respectively. Chapter V presents a summary of the findings with references to the pedagogical applications of the two-part framework principle.
(c) Copyright by

Michael Wayne Turner 1981

TABLE OF CONTENTS

PageLIST OF TABLESLIST OF ILLUSTRATIONS
Chapter
I. INTRODUCTION 1
Current and Prevailing Harmonic Systems:A CritiqueProposal of An Additional System in StylisticAnalysis
Aspects of AnalysisMaterial Used for AnalysisComputer AssistancePedagogical Applications
II. MUSIC OF THE BAROQUE PERIOD 10
Music of Jean-Philippe RameauMusic of Antonio VivaldiMusic of Johann Sebastian BachConclusions and Correlations
III. MUSIC OF THE CLASSICAL PERIOD 31.
Music of Joseph HaydnMusic of Wolfgang Amadeus MozartMusic of Ludwig Van BeethovenConclusions and Correlations
IV. MUSIC OF THE ROMANTIC PERIOD 51Music of Hector BerliozMusic of Anton BrucknerMusic of Johannes BrahmsCorrelations and Conclusions
V. CONCLUSIONS 71Music of Baroque PeriodMusic of Classical PeriodMusic of Romantic Period

TABLE OF CONTENTS--Continued

Page

Soprano Lines of the Baroque, Classical and Romantic Periods
Bass Lines of Baroque, Classical, and Romantic Periods
The Two-part Framework of Baroque, Classical, and Romantic Music Applications and Demonstrations
APPENDIX 106
BIBLIOGRAPHY 136

LIST OF TABLES

Table Page
I. Soprano Intervals of Rameau 11
II. Bass Intervals of J. P. Rameau's Music 12
III. Dyad Intervals in J. P. Rameau's Music 13
IV. Soprano Intervals in Antonio Vivaldi's Music 14
V. Bass Intervals of Antonio Vivaldi's Music 15
VI. Dyad Intervals in Vivaldi's Music 16
VII. Soprano Intervals in Bach's Music 18
VIII. Bass Intervals in Bach's Music 19
IX. Dyad Intervals in Bach's Music 20
X. Soprano Intervals of Rameau, Vivaldi, and Bach 21
XI. Interval Direction in the Soprano Lines of Rameau, Vivaldi, and Bach 24
XII. Bass Intervals of Rameau, Vivaldi, and Bach 26
XIII. Interval Direction in the Bass Lines of Rameau, Vivaldi, and Bach 27
XIV. Dyad Intervals of Rameau, Vivaldi, and Bach 28
XV. Soprano Intervals of Joseph Haydn 32
XVI. Bass Intervals of Joseph Haydn's Music 33
XVII. Dyad Intervals of Joseph Haydn's Music 34
Table Page
XVIII. Soprano Intervals of W. A. Mozart's Music 35
XIX. Bass Intervals of W. A. Mozart's Music 36
XX. Dyad Intervals of W. A. Mozart's
Music 37
XXI. Soprano Intervals of L. V. Beethoven's Music 38
XXII. Bass Intervals of L. V. Beethoven's
Music 39
XXIII. Dyad Intervals of L. V. Beethoven's
Music 40
XXIV. Soprano Intervals of Haydn, Mozart, and Beethoven 42
XXV. Interval Movement in the Soprano Lines of Haydn, Mozart, and Beethoven 44
XXVI. Bass Intervals of Haydn, Mozart, and Beethoven 45
XXVII. Interval Movement in the Bass Lines of Haydn, Mozart, and Beethoven 47
XXVIII. Dyad Intervals in the Music of Haydn, Mozart and Beethoven 48
XXIX. The Soprano Intervals of Hector Berlioz 52
xxx. The Bass Intervals of Hector Berlioz 53
XXXI. Dyad Intervals of Hector Berlioz 54
XXXII. The Soprano Intervals of Anton Bruckner 55
XXXIII. The Bass Intervals of Anton Bruckner 56
xxxIV. The Dyad Intervals of Anton Bruckner 57

LIST OF TABLES--Continued

Table Page
XXXV. The Soprano Intervals of Johannes Brahms. 58
XXXVI. The Bass Intervals of Johannes Brahms 59
XXXVII. The Dyad Intervals of Johannes Brahms 61
XXXVIII. The Soprano Intervals of Berlioz, Bruckner, and Brahms 62
XXXIX. Soprano Interval Movement of Berlioz, Bruckner, and Brahms 64
XL. Bass Intervals of Berlioz, Bruckner, and Brahms 65
XLI. Bass Interval Movement of Berlioz, Bruckner and Brahms 66
XLII. Dyad Intervals in the Music of Berlioz, Bruckner, and Brahms 68
XLIII. The Soprano Intervals of Baroque, Classical, and Romantic Music 85
XIIV. The Soprano Interval Movement of Baroque, Classical, and Romantic Music 86
XLV. The Bass Intervals of Baroque, Classical, and Romantic Music 88
XLVI. Bass Interval Movement of Baroque, Classical, and Romantic Music 89
XLVII. The Dyad Intervals of Baroque, Classical, and Romantic Music 93

LIST OF ILLUSTRATIONS

Figure Page

1. Example of Interval Analysis 5
2. Example of Bach Chorale 96
3. Classical Setting of Bach Chorale 97
4. Romantic Setting of Bach Chorale 98
5. Example of Beethoven Piano Sonata 99
6. Romantic Setting of Beethoven's Piano Sonata 100
7. Baroque Setting of Beethoven's Piano Sonata 101

CHAPTER I

INTRODUCTION

Common Practice Period: General Stylistic Description The study of harmony and style ${ }^{l}$ in tonal music has, for the most part, been limited to music of what is often referred to as the common practice period. Historically, this period lasted from approximately 1600 A. D. to 1900 A. D. and is subdivided into three style periods: Baroque, Classical, and Romantic. The one overriding common denominator during these periods, in terms of harmonic vocabulary, is the manner in which chords are constructed or conceived, known as the tertian principle. However, the very fact that this common practice period is further divided into three parts implies that there are other various musical parametric considerations which contribute to stylistic differences.

[^0]The stylistic difference is the resulting effect of employing in diverse manners the various musical elements or parameters such as melody, harmony, rhythm, and form. These parameters of music have been enumerated and classified in various texts on musical style and, in most of these texts, the parameter of form is regarded as the most important determining factor. That is, the parameters of melody, harmony, and rhythm are generally considered in the context of a musical form, and not as separate parameters, independent of form, in the determination of a musical style. This approach to style is not always illuminating: for one particular parameter alone, such as harmony or harmonic vocabulary, and the idiomatic manner of its employment, can often be taken as a determining factor in illustrating a particular stylistic trait.

Current and Prevailing Harmonic Systems: A Critique Ever since Jean-Phillipe Rameau, in his Treatise on Harmony (1722), formulated the theory of the invertibility of triads (chords), there have been many texts and treatises which deal specifically with harmonic vocabularies of the common practice period. These works, however, are often mere enumerations and classifications of chords and chord types and none, to the best of this writer's knowledge, approach these chordal vocabularies from a stylistic point of view. Chords and chord types are merely explained in terms of functional harmonic behavior and, although excerpted
from actual compositions, the musical examples used are not discussed from a historical-stylistic perspective. That is, although various chord types (triads, sevenths, etc.) are employed in compositions of all three style periods, in actual practice the manner in which they are employed exhibits certain distinguishable stylistic and compositional practices.

Proposal of An Additional System
 in Stylistic Analysis

The structural fabric of music, as with any other art form, is the synthesis of various elements that contribute to its distinct shape, (vertical and horizontal), texture, and overall style. One of these basic elements is the harmonic vocabularies found in music and, in the common practice period, these harmonic vocabularies are founded upon the tertian principle. However, there is another, if not more fundamental and perhaps often overlooked element, that can be employed in determining the distinct characteristics of a particular historical style. This element is anphony. That is, the manner in which the two outer linear parts (i.e., soprano and bass) proceed in music is believed to exhibit certain features which also contribute to stylistic characteristics. Specifically, the basic two part progression in music conveys or reflects the acceptable practice in terms of intervallic progression of a given historical era. This anphonic (as opposed to homophonic,
monophonic, or polyphonic) approach to music will be referred to in this study as the two-part framework. ${ }^{2}$

Aspects of Analysis

Through a careful analytic and comparative study of the works in the common practice period with respect to their two-part framework, it is believed that conclusions may be drawn which will aid in a clearer definition and description of various stylistic characteristics. The methodology of this study is to reduce the selected works of several composers to a two-part framework (soprano and bass) in order to show the melodic (within one line) and dyadic (between two outer parts) intervallic successions. Through a study of interval sizes and their frequencies of occurrence in soprano, bass, and dyad parts, the manner in which the types of intervals in the individual lines as well as between the lines are used can be more precisely examined. The frequency of occurrence of each interval will be represented by its percentage of the total intervallic content. This study, in essence, proposes that a comparison of these percentages within each period will show the significance of interval makeup as a determining factor of a compositional style.
$2_{\text {The }}$ term "two-part framework" is borrowed from Paul Hindemith's Craft of Musical Composition Volume I, pg. 144. In this volume, Hindemith refers to the two-part framework as a "skeleton" that has significant importance in the harmony of any musical composition. There is, however, no reference to stylistic importance, and the harmonic importance that he describes is somewhat vague, and lacks any supportive evidence for his claims.

The following musical example and its accompanying analysis will illustrate the procedure in which the monadic intervals in each line, and dyadic intervals between soprano and bass lines are measured.

Figure 1: Example of Interval Analysis

As this example illustrates, there are five soprano monads, five bass monads, and nine dyads. In the soprano line there are three major seconds and two minor seconds which can be represented by the percentages of 60% for major seconds and 40% for minor seconds. The bass line contains three major seconds, one minor second, and one perfect fifth, which can be represented by the percentages: 60\% for major second, 20% for minor second, and 20% for perfect fifth. The dyads and their percentages are as follows: one minor second (11.1\%), one minor third (11.1\%), one major third (11.1\%), one perfect fifth (11.1\%), one minor sixth (11.1\%), one minor seventh (11.1\%), one major seventh (11.1\%), and two perfect octaves (22.3\%).

Melody and bass lines can also be used as a determinant of harmony and, as such, can be utilized in a manner that will further aid in stylistic comparison. In addition,
dyadic content will also be compared with the concurrent harmonic (chordal) successions, which will in turn indicate the importance of interval makeup and its mutual relationship with harmonic idioms of each style period.

Material Used for Analysis
For this study, selected works of three representative composers from each of the three style periods, baroque, classical, and romantic, are analyzed. The composers are Jean-Philippe Rameau, Antonio Vivaldi, Johann Sebastian Bach; Franz Joseph Haydn, Wolfgang Amadeus Mozart, and Ludwig van Beethoven, Hector Berlioz, Anton Bruckner; and Johannes Brahms. A total of thirty complete works from the literature of these composers is examined. In addition, portions from another twenty works were examined to substantiate the validity and reliability of the findings.

For the purpose of expediting the reductive process, choral music was selected for the following reasons: 1) a comparatively clearer and more consistent harmonic content, smaller tonal range, and 2) generally simpler rhythmic pattern. The majority of these choral works are from the sacred literature because they tend to exhibit a consistent, if somewhat conservative style. Also, all aforementioned composers wrote some sacred choral music. It should be mentioned, however, that the conclusions drawn from this study will be applied to a few selected instrumental works in order to further demonstrate the validity and reliability of the findings.

Computer Assistance

As an aid in the compiling and analysis of data, a computer is used to store the information gathered from a preliminary study. Furthermore, the computer calculates the percentages of interval information with regard to each work, each composer, and composers of the same historical period. The information is then stored on magnetic disc for future reference. The computer used is the National Systems model 5000 with an IBM cobol compiler. The computer language utilized in the writing of the program is cobol (see Appendix A for listing of computer cards used) and the program is also stored on magnetic disc (see Appendix B for computer printout of the program).

The interval classes that are used for the data set consisted of the following: perfect unison, minor second, major second, minor third, major third, perfect fourth, augmented fourth, diminished fifth, perfect fifth, augmented fifth, minor sixth, major sixth, minor seventh, major seventh, and perfect octave. To facilitate more efficient computer programming, the following abbreviations are used for the above data set: UN, N2, M2, N3, M3, P4, A4, D5, P5, A5, N6, N7, M7, and P8.

Because of certain computer limitations, the following intervals classes have been left out of the data set: augmented second, augmented sixth, and diminished seventh. Although these intervals have their enharmonic equivalents
in the above data set, they are none the less important in that they require specific manner of resolution. In order to resolve the problem of excluding those intervals, an "error clause" has been included in the computer program. This clause compiles any errors (intervals not included in the data set) and subtracts them from the total number of intervals and adjusts the percentages of the data set. The data set percentages do not total 100% when any "errors" are included and thus the difference (remaining percentage up to 100%) is the total percentage of errors that is programmed into the computer. It should be noted, however, that the incidence of these intervals in the "error clause" is minute and therefore is regarded as of minimal significance in this study. These intervals, however, will be dealt with spearately.

Pedagogical Applications

From a pedagogical standpoint, the understanding of the two-part framework is beneficial not only in analytical study but also in other aspects of theoretical instruction such as harmonization and aural skills, particularly eartraining. Also, stylistic differences illustrated by reducing the harmonic music to soprano, bass, and chord symbols will manifest features of musical style which harmonic analysis alone does not reveal, as will be illustrated in the conclusion of this study. On the other hand,
the realization of figured bass can also be better understood when using the two-part framework as a model. An application of the principle of the two-part framework in the instruction of the basic two-year theory course and other theoretical courses, such as form and style analysis and counterpoint, will, probably, have an added dimension in the understanding of the compositional process, characteristic of each historical era.

CHAPTER II

MUSIC OF THE BAROQUE PERIOD

Works of three composers are selected to represent Baroque music: Jean-Philippe Rameau (1683-1764), Antonio Vivaldi (ca. 1678-1741), and Johann Sebastian Bach (16851750). An effort was made to find musical examples that represented a chronological crossection (early, middle, and late) of each composer's work. In this manner, it is believed, a more accurate representation of stylistic features pertaining to intervallic relationships can be examined for analytical comparison.

Music of Jean-Philippe Rameau

The music of Jean-Philippe Rameau contains certain intervallic features that, when compared to that of other Baroque composers, are comparable in some aspects while, in other aspects, distinquish the style of Rameau from other Baroque composers. Before these comparisons can be made, however, it is necessary to thoroughly examine Rameau's examples.

Melodically, Rameau used the intervals of perfect unison, minor second, and major second in great majority (approximately three-fourths). Also, if the intervals of
minor third, major third, and perfect fourth are included in the calculation, these six intervals then compnise nearly all of the intervals employed. (See the following table for individual percentages.)

TABLE I
SOPRANO INTERVALS IN J. P. RAMEAU'S MUSIC
Intervals Percentages Proup

The monadic content of Rameau's bass lines bears essential similarities with that of his soprano lines and the percentage use of the six aforementioned intervals is 91.37\%, only slightly lower than that of the soprano line. (See Table II). The difference that accounts for this lower percentage in the bass lines is due to the increased employment of the perfect fifth and perfect octave intervals at certain points, particularly cadence. It may be said, therefore, that Rameau's bass and soprano lines are very similar
in regards to intervallic motions, with the only exception that the bass lines use the perfect fifth and perfect octave at cadence points.

TABLE II
BASS INTERVALS OF J. P. RAMEAU'S MUSIC
Intervals Percentages Percentages

The intervals most often found between the soprano and bass lines (dyads) of Rameau are the minor third, major third, perfect fifth, and perfect octave. These intervals, when totalled, constitute a majority of intervals used (66.47\%). The next most often found intervals in the dyadic writing of Rameau's examples is the minor and major sixths which, together, occupy nearly one-fifth of the intervals used (16.2\%). These above intervals, when totaled together, account for more than four-fifths (82.67\%) of the entire dyadic content. (See Table III). The remainder of the
intervals found are divided among the rest of the intervals; the only intervals not found are the augmented second, augmented sixth, and diminished seventh. (See Appendix C for complete computer printout of the intervals used in Rameau's examples).

TABLE III
DYAD INTERVALS IN J. P. RAMEAU'S MUSIC

Intervals
Perfect Unison
Minor Second
Major Second
Minor Third 17.70
Major Third 14.86
Perfect Fourth 5.13
Augmented Fourth 1.75
Diminished Fifth
Perfect Fifth
Augmented Fifth
Minor Sixth
Major Sixth
Minor Seventh
Major Seventh
Perfect Octave

Group
Percentages
Percentages

Music of Antonio Vivaldi
Examples of Antonio Vivaldi reveal certain differences in interval usage from that of Rameau and Bach and other Baroque composers. These differences will be discussed later, following analytical examination of the music of Vivaldi and Bach.

In melodic (soprano) writing, Vivaldi used the perfect unison, minor second, and major second intervals; these
comprise a little more than three-quarters of the intervals found (77.2\%). When the intervals of minor third, major third, and perfect fourth are taken into account with the above intervals, the great majority of the monadic content of Vivaldi's soprano lines contains these six intervals. (See following table).

TABLE IV
SOPRANO INTERVALS IN ANTONIO VIVALDI'S MUSIC
Intervals Percentages Percentages

Antonio Vivaldi's bass lines employs less frequent use of perfect unisons, minor and major seconds, when compared to his soprano lines; when totaled, these intervals are used more than half of the monadic content (i.e., 63.7\% as compared to 77.2\%). If, however, the intervals of the minor and major thirds, and perfect fourth are included with these other intervals, the total accounts for slightly
more than four-fifths (82.7\%) of the intervals found in Vivaldi's bass lines. Although these intervals constitute a lesser frequency of occurrence than that of the soprano lines, the difference is due primarily to the increased use of the perfect fifth and perfect octave (13.18\% for both), especially at cadences. These eight intervals constitute the percentage occurrence for nearly all (95.8\%) of the monadic motion in Vivaldi's bass lines of these examples. Noteworthy is the small percentage of minor and major sixth intervals (see the following table for individual percentage).

TABLE V

BASS INTERVALS OF ANTONIO VIVALDI'S MUSIC

The interval usage in the dyadic writing of Vivaldi is different from that of his soprano and bass lines. The intervals that are most frequently employed are the minor third, major third, perfect fifth and perfect octave. When
the frequency of occurrence of these intervals is totaled together, it is found that they account for almost two-thirds (60.53\%) of total dyadic intervals found. The remaining one-third of the intervals consists of other intervals, largely that of minor and major sixths, and an unusually high incidence of the diminished fifth and minor seventh. The significance of this high number of diminished fifth and minor sevenths lies in the increased usage of dominant harmonies (dominant triads, dominant seventh chords, diminished triads, half diminished seventh chords, and full diminished seventh chords). The following table illustrates the individual percentages of each dyadic interval in Vivaldi's examples.

TABLE VI
DYAD INTEERVALS IN VIVALDI'S MUSIC

Intervals
Percentages
Group Percentages

Perfect Unison 0.00
Minor Second 1.38
Major Second 1.73
Minor Third 10.20
Major Third 19.37
Perfect Fourth 4.49
Augmented Fourth 2.07
Diminished Fifth
Perfect Fifth 4.15
Augmented Fifth 16.43
Minor Sixth 0.17
Major Sixth 8.47
$\begin{aligned} & 8.47 \\ & 7.78\end{aligned}>16.25 \longrightarrow$
Minor Seventh 6.57
Major Seventh 0.51
Perfect Octave 14.53

Music of Johann Sebastian Bach

The monadic content in Bach's soprano lines is similar to that of the other Baroque composers in many respects; there are, however, certain differences that will be discussed later in fuller detail.

Bach's use of the three primary intervals (perfect unison, minor second, and major second) occupies slightly more than three-fourths of all intervals used (77.55\%). A noteworthy factor in Bach's melodic writing is the high incidence of the major second (42.21\%), which is somewhat distinctive from works by other Baroque composers examined in this study. The percentage occurrence of minor and major thirds and perfect fourths, holds no particular significance when examined individually; if, however, the total percentage of these intervals is added to the percentage of the three primary intervals, it is found that the great majority of intervallic movement in Bach's soprano lines is these six intervals (i.e., $77.5 \%+16.05 \%=93.6 \%$) See Table VII for an illustration of the individual and total percentages of interval movement in Bach's soprano lines.

The monadic content of Bach's bass lines bears essential similarities with that of his soprano lines, with the exception that the perfect fifth and octave are used predominantly at cadence points. The percentage occurrence of the six aforementioned intervals (i.e., unison, minor and major seconds, minor and major thirds, and perfect fourth), when

SOPRANO INTERVALS IN BACH'S MUSIC

Intervals Percentages | Group |
| :---: |
| Percentages |

totaled together, is slightly less than that of his soprano lines (i.e., 86.38% vs. 93.6%) ; this is due, primarily, to the increase of perfect fifths and perfect octaves (10.86\% for both) at cadence points. See Table VIII for an illustration of the individual and group percentages of interval movement in Bach's bass lines.

The dyadic writing of Bach reveals a high percentage of occurrence of the following intervals: minor third, major third, perfect fifth, and perfect octave (totalling 59.18\%). However, when the intervals of the minor and major sixths (inversions of the major and minor thirds) are included (i.e., minor and major thirds, minor and major sixths, perfect fifths and octaves) it is found that they

TABLE VIII

BASS INTERVALS IN BACH'S MUSIC

Intervals \quad Eercentages \quad Group

occupy slightly more than three-fourths (78.35\%) of the total dyadic content in Bach's dyadic writing. The remaining fourth of the intervals used is comprised of the rest of the intervals, with perfect fourth, diminished fifth and minor seventh comprising the majority of occurrence (see Table IX).

Conclusions and Correlations
A careful comparison of the music of these Baroque composers in terms of intervallic usage will suggest certain phenomena in which differences can be regarded as a manifestation of stylistic differences of individual composers. It goes without saying that the similarities can be seen as a common factor within that historical period and thus can
be used in the comparison with other historical periods (Classical and Romantic).

TABLE IX
DYAD INTERVALS IN BACH'S MUSIC

Intervals

Percentages
Group
Percentages

The soprano lines of Bach, Vivaldi, and Rameau reveal certain monadic trends that seem to indicate changes in the compositional style of composers within the Baroque period. There is a steady decline from Rameau to Bach in the percentage occurrence of perfect unisons and major and minor seconds and thirds, while there is an increase of perfect fourths and fifths. The intervals larger than a perfect fifth are used infrequently in Baroque soprano lines. The highest frequency of the perfect fifth is found in Bach's soprano lines (3.31\%).

While there is little difference in the total frequency of occurrence of the six aforementioned intervals among these three Baroque composers, there are certain differences in the percentage occurrence of individual intervals that note mention. While the percentage occurrence of perfect unison is basically the same in Rameau and Vivaldi's soprano lines (28.6% and 26.6% respectively), there is a marked difference in Bach's use of the same interval (11.89\%). Vivaldi uses the minor second considerably more than Rameau or Bach, while the use of the major second in Bach's music is considerably more than that in Rameau and Vivaldi's soprano lines (see Table X).

TABLE X SOPRANO INTERVALS OF RAMEAU, VIVALDI, AND BACH

Intervals	Rameau Percentages	Vivaldi Percentages	Bach Percentages
Perfect Unison	28.60	26.60	11.89
Minor Second	18.87	27.20	23.45
Major Second	31.73	23.40	42.21
Minor Third	7.93	6.40	4.69
Major Third	5.04	2.68	4.46
Perfect Fourth	4.44	4.40	6.97
Augmented Fourth	0.00	.20	.11
Diminished Fifth	.60	.80	.22
Perfect Fifth	1.44	2.60	3.31
Augmented Fifth	0.00	0.00	0.00
Minor Sixth	0.60	1.20	0.11
Minor Seventh	0.12	1.80	0.68
Major Seventh	0.12	0.20	0.11
Perfect Octave	0.24	0.20	0.91

As this table illustrates, there is a consistent decline in the frequency of occurrence of minor and major thirds from Rameau to Vivaldi to Bach. The perfect fourth, however, is used by Bach slightly more than Vivaldi or Rameau, while the perfect fifth shows a steady increase in use from Rameau to Vivaldi to Bach. The minor and major sixths are more common with Vivaldi than Rameau or Bach. The minor and major sevenths are seldom used by any of the composers; the major seventh, however, is used only by Bach and not by Rameau or Vivaldi. The occurrence of the perfect octave is more prevalent in Bach's soprano lines than Vivaldi or Rameau. Table X illustrates the percentage of occurrence of all intervals in the soprano lines of these composers.

While interval content (percentage of occurrence) is important in the determination of the style of composers, there are other factors that can also be used in aiding the stylistic differentiation. One of these factors is the direction of intervallic motion and, it is believed, an examination of the manners of intervallic motion may also reveal features between composers, and between historical periods. Since the major and minor seconds are, or can be regarded as the universal melodic interval, they may not be as revealing as others in differentiating stylistic characteristics. For this reason, only intervals larger than seconds will be used in the analysis of monadic interval motion.

The interval content of these Baroque composers with respect to their melodic (soprano) writing shows certain similarities as well as variations. With regard to monadic motion, the differences are not as apparent as the similarities. In general, monadic motion (ascending or descending intervals) among these composers is generally the same. Generally the majority of monadic third motions are descending (the ascending motion occupies approximately one-third of the minor third motions while ascending major thirds constitutes only one-fourth). However, the monadic perfect fourth generally moves upward (approximately three-fourths of the time). The motion of the augmented fourth (occurring twice only) is indeterminant, while the diminished fifth occurs only as a descending interval. The perfect fifth, as opposed to the perfect fourth, shows the tendency of downward movement and such movements are attributed to the frequent progression in the dominant-tonic relationship. The general tendency of the minor sixth is the upward motion, while that of the major sixth is divided equally between ascending and descending, although the upward movement is found to be predominant in the examples of Rameau. The only major seventh motions found in the Baroque examples studied are in Bach's and they are all of downward skips. The octave motions in Rameau's and Vivaldi's examples are all downward, while that of Bach is upward. The following table lists the percentage of intervallic motions in the soprano lines of these composers.

TABLE XI
INTERVAL DIRECTION IN THE SOPRANO LINES OF' RAMEAU, VIVALDI, AND BACH

	Rameau Percent		Vivaldi Percent		Bach Percent	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	33.0	67.0	31.2	68.8	39.0	61.0
Major Third	26.2	73.8	17.4	82.6	23.0	77.0
Perfect Fourth	65.0	35.0	82.0	18.0	72.1	27.9
Augmented Fourth	00.0	00.0	00.0	100.0	100.0	00.0
Diminished Fifth	00.0	100.0	100.0	00.0	00.0	100.0
Perfect Fifth	33.0	67.0	46.1	53.9	15.4	84.6
Augmented Fifth	00.0	00.0	00.0	00.0	00.0	00.0
Minor Sixth	80.0	20.0	84.0	16.0	00.0	100.0
Major Sixth	00.0	100.0	80.0	11.0	100.0	00.0
Minor Seventh	00.0	100.0	00.0	100.0	60.0	40.0
Major Seventh	00.0	00.0	00.0	00.0	00.0	100.0
Perfect Octave	00.0	100.0	00.0	100.0	52.8	47.2

The intervallic movement of bass lines in these Baroque examples shows general similarity with that of the soprano lines, with a few notable differences found mostly at the cadence points. Certain trends can be noticed when the intervals are compared, and these trends coincide in general with that of the soprano lines. Certain differences may be observed, however, by a comparison of individual interval classes.

Between the bass lines of Rameau and Vivaldi, the repeated note (perfect unison) occurs approximately in the same frequency (23% vs. 24.74%). However, it is substantially
less in Bach's bass lines (7.91\%). This may be regarded as reflecting, essentially, the contrapuntal nature of Bach's linear writing. The use of minor second movement shows a steady increase from Rameau to Bach; the major second exhibited a marked decrease from Rameau to Vivaldi (29.5\% to 16.5%) but a two-fold increase from Vivaldi to Bach (16.5\% to 34.36). This, again, further underscores the contrapuntal nature in Bach's writing as compared with that of his two contemporaries. The minor third movement shows a steady decrease from Rameau to Bach, while that of major third shows a decrease from Vivaldi to Bach. In all examples the perfect fourth was used in a greater frequency within the bass line, as compared to that in the soprano lines, with Vivaldi's examples containing the highest percentage (11\%). Also, the perfect fifth is used more in Vivaldi's examples (8.24%) than that of Rameau (3.46%) or Bach (6.42%). The minor sixth movement reveals that Rameau uses it more than Vivaldi's bass line and Bach's bass line. Minor and major seventh movement is found exclusively in Bach's bass lines. The perfect octave is found to be nearly equal in terms of frequency of occurrence among these compsosers. The following table illustrates percentages for all intervals used in the examples of these composers.

The intervallic motion in the bass lines of these Baroque examples follows the same basic principles as that

TABLE XII

BASS INTERVALS OF RAMEAU, VIVALDI, AND BACH

Intervals	Rameau Percentages	Vivaldi Percentages	Bach Percentages
Perfect Unison	23.02	24.74	7.91
Minor Second	16.08	22.47	26.45
Major Second	29.54	16.49	34.36
Minor Third	9.43	5.36	3.95
Major Third	5.68	2.68	4.32
Perfect Fourth	7.62	10.92	9.39
Augmented Fourth	0.27	1.64	0.12
Diminished Fifth	0.55	0.20	0.49
Perfect Fifth	3.46	8.24	6.42
Augmented Fifth	0.00	0.00	0.00
Minor Sixth	0.83	0.49	0.49
Major Sixth	0.13	1.44	0.49
Minor Seventh	0.00	0.00	0.61
Major Seventh	0.00	0.00	0.37
Perfect Octave	3.32	4.94	4.44

of the soprano lines: the minor and major thirds predominantly move downward; the perfect fourth shows an upward tendency (three out of four times in all the Baroque examples); the motion of augmented fourth is almost always in an upward direction, while the diminished fifth in all instances moves downward. An examination of the direction of movement of the perfect fifth, shows general trends of downward motion. However, the frequency of downward motion reveals some individual statistics; Rameau's 60\%, Vivaldi's 76\%, and Bach's 84.6\%. The minor sixth shows the consistency of a downward motion, while the major sixth showed upward motion in Bach's and Rameau's examples. The sevenths are found only in Bach's examples and, while the minor seventh tends to move upward (60\%),
the major seventh is found consistently downward. The perfect octave is found both up and down in Rameau's and Bach's bass lines, while in Vivaldi's it often moves downward (62.5\%). The following table illustrates the percentages of ascending and descending intervals in the bass lines of these Baroque examples.

TABLE XIII
INTERVAL DIRECTION IN THE BASS LINES OF RAMEAU, VIVALDI, AND BACH

	Rameau Percentages		Vivaldi Percentages		Bach Percentages	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	10.3	89.7	23.0	77.0	37.5	62.5
Major Third	12.2	87.8	15.4	84.6	28.6	71.4
Perfect Fourth	72.7	27.3	77.3	22.7	77.6	22.4
Augmented Fourth	100.0	00.0	75.0	25.0	100.0	00.0
Diminished Fifth	00.0	100.0	00.0	100.0	00.0	100.0
Perfect Fifth	40.0	60.0	25.0	75.0	15.4	84.6
Augmented Fifth	00.0	00.0	00.0	00.0	00.0	00.0
Minor Sixth	00.0	100.0	00.0	100.0	00.0	100.0
Major Sixth	00.0	100.0	100.0	00.0	100.0	00.0
Minor Seventh	00.0	00.0	00.0	00.0	60.0	40.0
Major Seventh	00.0	00.0	00.0	00.0	00.0	100.0
Perfect Octave	54.2	45.8	37.5	62.5	52.8	47.2

The use of dyadic intervals in these Baroque examples reveals certain similarities among them as well as differences between those composers. The perfect unison is not used while the occurrence of minor second is minimal (See Table XIV). Also, this table shows, the dyadic major second

TABLE XIV
DYAD INTERVALS OF RAMEAU, VIVALDI, AND BACH

Intervals	Rameau Percentages	Vivaldi Percentages	Bach Percentages
Perfect Unison	00.00	00.00	00.00
Minor Second	0.81	1.38	0.33
Major Second	4.45	1.73	3.74
Minor Third	17.70	10.20	16.86
Major Third	14.86	19.37	12.56
Perfect Fourth	5.13	4.49	6.17
Augmented Fourth	1.75	2.07	1.54
Diminisehd Fifth	0.67	3.15	3.19
Perfect Fifth	16.62	16.43	15.98
Augmented Fifth	0.27	0.17	0.22
Minor Sixth	6.75	8.47	8.59
Major Sixth	9.45	7.78	10.58
Minor Seventh	3.10	6.57	4.85
Major Seventh	1.08	0.51	0.77
Perfect Octave	17.29	14.53	13.78

is used very little, while the minor and major thirds account for almost a third of the total dyadic interval content. A closer examination indicates that the frequency of dyadic thirds (major and minor) slightly decreases from Rameau to Vivaldi to Bach (32.56% to 29.57% to 29.42% respectively). The dyadic interval of perfect fourth accounts for only 5% and reveals no particular trends. The use of the augmented fourth and diminished fifth is minimal; they are found more in Vivaldi's examples than that of the two other composers. The use of the perfect fifth is found to be almost exactly the same among these composers (only indicating
a very slight decrease in use from Rameau to Bach). The augmented fifth is rarely found. The use of the minor and major sixth intervals, when totaled together, is approximately one-half that of the minor and major thirds. The minor seventh is found to be more prevalent in Vivaldi's examples than either Rameau or Bach. The major seventh is seldom used. The perfect octave shows a decrease in use from Rameau to Vivaldi to Bach.

While the frequency of occurrence of dyadic intervals manifests certain stylistic tendencies, the manner of dyadic succession reveals another aspect which, perhaps, is more significant than the former in terms of stylistic study. This aspect will be dealt with later in a greater detail; it will suffice to mention the following regarding the dyadic successions in these Baroque examples. Major and minor consonant intervals (i.e., major and minor thirds and sixths) are preceded and followed by any interval. Augmented and diminished intervals are mostly followed by perfect intervals. Perfect intervals (i.e., perfect fifths, fourths, and octaves) are seldom preceded or followed by another perfect interval. The consistent manner in which these dyadic successions are handled can be regarded as a manifestation of a compositional concern: observation of certain essential contrapuntal rules such as often stated in treatises on composition, and adherence to certain essential harmonic rules such as those often given in texts and treatises on music theory.

One additional point that should be considered is the relation of dyadic intervals with their concurrent harmonies. It is found that in Baroque music certain dyads were associated with certain harmonies in great frequency and therefore conclusions may be drawn from these coincidental harmonies and dyads. The major and minor consonant intervals (major and minor thirds and sixths), perfect fifths and perfect octaves are most generally associated with consonant harmonies (major and minor chords). The use of the dissonant intervals (major and minor seconds and sevenths, tritone, perfect fourth, and augmented fifth) are generally found in association with dominant function harmonies. Certain non-functional harmonies are also found; in general, they are the direct result of contrapuntal writing. (These non-functional harmonies will not be discussed in comparing the dyads and relative harmonies.) The aspect of dyadic succession versus harmonic progression as a stylistic determinant will be discussed further in the concluding chapter.

CHAPTER III

MUSIC OF THE CLASSICAL PERIOD

Works of three composers are selected to represent classical music: Franz Joseph Haydn (1732-1809), Wolfgang Amadeus Mozart (1756-1791), and Ludwig Von Beethoven (17701827). An effort was made to find musical examples that represented a chronological progression (early, middle, late) of each composer's work. In this manner, it is believed, a more accurate representation of stylistic features pertaining to intervallic relationships can be examined for analytical comparison.

Music of Joseph Haydn

The music of Franz Joseph Haydn contains certain intervallic features that, when compared to that of other classical composers are similar in some aspects, while in other aspects, differentiate the style of Haydn from that of other classical composers. Before these comparisons can be made, however, a thorough examination of the music of each composer, in terms of intervallic content and the two-part framework need to be made.

Analytic study reveals that melodically Haydn's examples use the perfect unison, minor second and major second
approximately three out of four times (see Table XV). This table also shows that the use of the minor third, major third, and perfect fourth accounts for nearly one out of five intervals. Also, if the percentage of occurrence of these six intervals are combined, the frequency of usage of these intervals occupies a great majority (94.25\%) of the total interval content. Augmented intervals do not occur, while sevenths, sixths, tritones, and octaves account for only 5% of the total monadic content of soprano lines.

TABLE XV
SOPRANO INTERVALS OF JOSEPH HAYDN

$$
\text { Intervals } \quad \text { Percentages } \quad \text { Group }
$$

The monadic content of Hayan's bass lines bears essential similarities with that of his soprano lines and, although slightly lower, the percentage use of the six aforementioned intervals is still significantly high (88.38\%; see Table XVI).

The difference between soprano and bass lines with respect to monadic percentage occurrence is due primarily to the following aspects: greater amount of perfect unison, perfect fifths and octaves, and considerably lesser amounts of major second. The increase in perfect fifths and octaves is due primarily to the "harmonic bass" (as opposed to linear bass) of the dominant-tonic progression particularly at cadence points. The perfect fifth and octave accounts for nearly 10%.

TABLE XVI
BASS INTERVALS OF JOSEPH HAYDN'S MUSIC

Percentages \quad| Group |
| :---: |

Intervals

In Haydn's dyadic writing the intervals of minor and major thirds, perfect fifth, minor and major sixths, and perfect octave occupy the majority (84.09\%) (see Table VII).

As this table illustrates, the most predominantly used interval is the perfect octave (27.08\%). The perfect fifth accounts for 13.26% of the intervals used and the minor and major thirds account for a 24.38 percentage occurrence. It is to be noted that the augmented fourth and diminished fifth intervals occur considerably more in Haydn's examples than that of the Baroque composers. This is also true with regard to the perfect fourth and minor seventh intervals.

T'ABLE XVII
DYAD INTERVALS OF JOSEPH HAYDN'S MUSIC

Intervals
Perfect Unison 0.09
Minor Second. 0.37
Major Second
1.76

Minor Third 10.38
Major Third
14.00

Perfect Fourth 5.10
Augmented Fourth 1.57
Diminished Fifth
Perfect Fifth
Augmented Fifth 0.00
Minor Sixth 8.99
Major Sixth 10.38
Minor Seventh 2.59
Major Seventh
Perfect Octave

Percentages
Group Percentages
is combined with the percentage occurrence of minor and major thirds and perfect fourths, they occupy 94.68% of the total monadic content. The perfect fifth in Mozart's soprano lines occurs considerably more than that of Haydn.
'TABLE XVIII
SOPRANO INTERVALS OF W. A. MOZART'S MUSIC
Intervals Percentages Percentages

The monadic content of Mozart's bass lines bears certain similarities with that of his soprano lines; there are, however, certain differences that should be mentioned. The most notable difference is the increased use of the repeated note (see Table XIX). This increase characterizes the often stagnent bass line in Mozart's example.

The primary monadic intervals of perfect unison, major and minor seconds, minor and major thirds, and perfect fourth, occupy a great majority (92.56\%) of the total interval content.

TABLE XIX

BASS INTERVALS OF W. A. MOZART'S MUSIC

Intervals Percentages | Group |
| :---: |
| Percentages |

The perfect fifth and octave occur considerably more in
Mozart's bass lines than they do in his soprano lines, and the combined percentages of these two intervals occupy a greater portion of the remaining percentages. The intervals of perfect fifth and perfect octave are primarily found at or near cadence points. A greater frequency of cadential points and the regularity of their occurrence in Mozart's examples explains these higher percentages.

The dyadic intervals of major and minor thirds, perfect fifths, major and minor sixths, and perfect octave occupy a significant portion in the total dyadic content succession of Mozart's examples. As Table XX illustrates, the interval of the perfect octave is by far the most predominantly used
(20.76\%). One noteworthy aspect is the almost identical use of major and minor thirds (24.94\%) and major and minor sixths (24.75\%). Perhaps an even more significant fact in this table is the almost identical use of minor thirds (13.71\%) and its inversion: the major sixth (13.33\%) and major thirds (11.23\%) and its inversion: the minor sixth (11.42\%). This use of the thirds and sixths will be discussed further at a later time. Another noteworthy factor is the percentage occurrence of the tritone, perfect fourth, and minor sevenths which, when combined, accounts for a higher percentage of use as compared to the interval content in Haydn's examples.

TABLE XX

DYAD INTERVALS OF W. A. MOZART'S MUSIC

Intervals Percentages | Group |
| :---: |
| Percentages |

Perfect Unison 0.00
Minor Second 0.76
Major Second
1.71

Minor Third 13.71
Major Third 11.23
Perfect Fourth
Augmented Fourth
Diminished Fifth
2.66

Perfect Fifth
Augmented Fifth
2.85
$10.66 \longrightarrow 81.11$
Augmented Fi
Minor Sixth 0.38

Major Sixth 11.42 13.33

Minor Seventh 3.42

Major Seventh
0.38

Perfect Octave
20.76

Music of Ludwig Van Beethoven

The music of Beethoven, like that of the other classical composers, contains certain intervallic features that are unique to his music. In the examples studied, the repeated note (i.e., monadic perfect unison) occupies over one-third (36.07\%) in his soprano lines and is by far the most predominantly used melodic interval (see Table XXI). The major second accounts for 28.95% of the intervals used and the minor second accounts for 14.42%; the combined usage of these three intervals accounts for approximately four-fifths of the intervals used. When the percentage occurrence of the major and minor thirds and perfect fourth are included in the calculation, the percentage occurrence of these six

TABLE XXI

SOPRANO INTERVALS OF L. V. BEETHOVEN'S MUSIC

Intervals Percentages | Group |
| :---: |
| Percentages |

intervals is 91.25%. The use of other intervals constitutes a percentage which is slightly higher than that of the other classical composers.

The monadic content of the bass lines in Beethoven's examples bears certain similarities with the monadic content of his soprano lines, with a few exceptions most notably in the interval of perfect fourth, fifth, and octave. The perfect unison is used slightly more in his soprano lines. The major and minor seconds, however, are used considerably less in the bass lines of Beethoven as compared to his soprano lines (see Table XXII). This may be used to explain a particular nature of bass line movement (i.e., less linear or more harmonic in character. There is also a considerable difference in the use of the perfect fourth in

TABLE XXII

BASS INTERVALS OF L. V. BEETHOVEN'S MUSIC

Intervals

Percentages
Group
Percentages

his bass lines (8.59\%) as compared to the soprano lines (2.90\%) . This difference is also noted in the areas of perfect fifth and perfect octave. All of these differences are largely attributable to the more harmonic character of the bass lines at cadential points of the dominant-tonic relationship.

In his dyadic writing, the perfect octave is the most frequently used interval, with the perfect fifth having approximately the equal frequency of occurrence with that of the octave (see Table XXIII). Also, Tavle XXIII shows, intervals of thirds, sixths, perfect fifth and octave occupy nearly three-fourths of the total dyadic content. The remaining percentages are primarily divided among the intervals of major seconds, minor sevenths, and perfect fourths.

TABLE XXIII

DYAD INTERVALS OF L. V. BEETHOVEN'S MUSIC

$$
\text { Intervals } \quad \text { Percentages } \quad \text { Groups }
$$

Conclusions and Correlations

The melodic writing of the three classical composers reveals certain personal traits in terms of monadic movement which illustrates not only one aspect of individual style but also that of the classical period as a whole. As Table xXIV shows, the perfect unison increases in percentage occurrence from Haydn to Mozart to Beethoven. This table also indicates that the percentage occurrence of the unison, minor second, and major second are almost equal in Haydn's examples, while in Mozart's examples there are more minor seconds and less major seconds, and Beethoven's examples more major seconds and less minor seconds. The combined percentage occurrence of these three intervals are, however, very similar in the Haydn and Mozart examples, and considerably greater in Beethoven examples due to a greater occurrence of repeated notes (monadic unison).

The intervals of minor and major thirds, and perfect fourth occur in approximately the same frequency in the examples of Haydn and Mozart, indicating certain melodic similarities between these two composers. In contrast, these intervals in Beethoven's examples occur only half as often as that in Haydn's or Mozart's examples. Also, while the augmented fourth does not occur at all in Haydn's or Mozart's example, it occurs occasionally in Beethoven's melodies. The perfect fifth is used more by Mozart than Haydn or Beethoven. The minor and major sixths occur more

TABLE XXIV

SOPRANO INTERVALS OF HAYDN, MOZART, AND BEETHOVEN

Intervals	Haydn Percentages	Mozart Percentages	Beethoven Percentages
Perfect Unison	25.68	28.85	36.07
Minor Second	23.64	25.99	14.42
Major Second	25.17	18.50	28.95
Minor Third	7.33	8.14	5.31
Major Third	5.30	6.38	3.60
Perfect Fourth	7.13	6.82	2.90
Augmented Fourth	0.00	0.00	0.30
Diminished Fifth	0.30	0.44	0.10
Perfect Fifth	1.83	3.30	2.90
Augmented Fifth	0.00	0.00	0.00
Minor Sixth	0.50	0.88	1.20
Major Sixth	1.01	0.00	1.20
Minor Seventh	0.61	0.00	0.40
Major Seventh	0.10	0.00	0.10
Perfect Octave	1.12	0.66	2.30

often in Beethoven's examples than in Haydn's and Mozart's; in Mozart's examples, major sixth does not occur. Major sevenths occur infrequently in Haydn's and Beethoven's; they are not found in Mozart's examples. Lastly, the frequency occurrence of the perfect octave in Beethoven's examples is almost twice that of the Mozart and Haydn examples.

An examination of the direction of monadic movements in these examples reveals a predominance of descending minor and major thirds in the soprano lines, with the only exception that Mozart's examples contain more ascending major thirds. The majority of perfect fourths are found in an ascending direction. An examination of Table XXV also reveals that the
use of ascenäing perfect fourths increases from Haydn to Mozart or Beethoven ($61.4 \%, 67.7 \%$, and 75.9% respectively). The tritone skip is generally in the descending direction in Beethoven's examples while it is generally ascending in Haydn and Mozart examples. The perfect fifth is more likely to be descending except in the Haydn examples where equal percentages of ascending and descending perfect fifths are used. Frequency of occurrence of the major and minor sixths is equally divided between up and down movement in all the examples of these composers. As stated previously, major sixths do not occur in the Mozart examples studied. The percentage of occurrence of minor seventh, with respect to interval direction, is equally divided between ascending and descending in the Haydn soprano lines while in Beethoven's examples ascending minor seventh occurs more often. Only the ascending major seventh is found in Haydn and Beethoven's examples. The melodic interval of minor and major sevenths do not occur in the Mozart examples studied. Only the ascending perfect octave is found in Mozart melody examples while in Haydn and Beethoven's examples, the octave motion is mostly descending.

The monadic content of these composers' bass lines bears essential similarities with that of their soprano lines. As mentioned previously, a notable difference between soprano and bass lines with regard to the monadic use is the increased frequency of perfect fifths and octaves which occur in the bass lines, mostly at cadence points. The use of perfect unison shows slight increase from Haydn to Mozart to

TABLE XXV

INTERVAL MOVEMENT IN THE SOPRANO LINES OF HAYDN, MOZART, AND BEETHOVEN

	Haydn Percentages		Mozart Percentages		Beethoven Percentages	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	23.6	76.4	37.8	62.2	35.8	64.2
Major Third	38.5	61.5	62.0	38.0	38.9	61.1
Perfect Fourth	61.4	38.6	67.7	32.3	75.9	24.1
Augmented Fourth					33.3	66.7
Diminished Fifth	63.7	33.3	100.0	00.0	00.0	100.0
Perfect Fifth	50.0	50.0	33.3	66.7	31.0	69.0
Augmented Fifth					----	
Minor Sixth	20.0	80.0	50.0	50.0	50.0	50.0
Major Sixth	60.0	40.0			58.3	41.7
Minor Seventh	50.0	50.0	----	----	75.0	25.0
Major Seventh	100.0	00.0	----	----	100.0	00.0
Perfect Octave	45.6	54.6	100.0	00.0	43.5	56.5

Beethoven (31.11\%, 36.36%, and 38.70% respectively), while the minor second decreases in use particularly from Haydn and Mozart (21.24\%, 21.05\%) to Beethoven (11.58\%). The frequency of occurrence of major seconds increases from Haydn to Mozart but it decreases from Mozart to Beethoven (See Table XXVI). The minor and major thirds occur more often in Haydn's bass lines than that of Beethoven and Mozart. The use of the perfect fourth, on the other hand, does not show any notable change in the examples of these composers. The perfect fifth and octave are used considerably less frequently in Mozart's bass lines, as opposed to
that of Beethoven and Haydn. The major and minor sixths and sevenths occurr infrequently. This aspect is similar to the bass line monadic use of Baroque examples studied. (This will be discussed in greater detail later in this study).

TABLE XXVI
BASS INTERVALS OF HAYDN, MOZART, AND BEETHOVEN

Intervals	Haydn Percentages	Mozart Percentages	Beethoven Percentages
Perfect Unison	31.11		
Minor Second	21.24	26.36	38.70
Major Second	16.95	21.05	11.58
Minor Third	6.54	2.87	19.49
Major Third	4.61	3.34	4.72
Perfect Fourth	7.93	7.65	4.24
Augmented Fourth	0.32	0.00	8.59
Diminished Fifth	0.10	0.23	0.00
Perfect Fifth	6.33	4.06	0.10
Augmented Fifth	0.00	0.00	4.72
Minor Sixth	0.53	0.47	0.00
Major Sixth	0.32	0.47	0.48
Minor Seventh	0.21	0.00	0.48
Major Seventh	0.00	0.00	0.48
Perfect Octave	3.21	2.15	0.28
			5.98

An examination of the direction of monadic movements reveals certain features that are highly significant from the personal stylistic viewpoints. For example, while the movement of minor third shows consistency among these three composers--approximately one third of the frequency of occurrence is in an upward direction and two thirds is in a
downward direction, the movement of the major third indicates highly personal differences: Haydn's usage is divided more equally between upward and downward (48.8% and 51.2% respectively), Beethoven's usage is mostly downward (81.8\%), and Mozart rarely in an upward motion (7.1\%) (see Table XXVII). The use of perfect fourth shows consistency of ascending direction. However, it is to be noted that there is more descending perfect fourths in the bass lines as opposed to the same interval occurring in soprano lines of these classical examples. Also, the tritone consistently occurs in a descending direction. The perfect fifth is in a descending direction three-fourths of the time. This interval also exhibits consistency in its usage--it constitutes nearly equal percentages in the bass lines of all these composers (i.e., 76.3\% for Haydn, 76.5\% for Mozart, and 77.6\% for Beethoven). The direction of major and minor sixth is another example showing distinctive personal traits: Haydn's consistent use of these intervals is descending, while Mozart's minor sixth is always ascending and major sixth is always descending. Beethoven uses a majority of descending minor sixths and ascending major sixths.

The dyadic intervals of Haydn, Mozart and Beethoven contain certain similarities and differences that deserve mentioning. The minor second occurs infrequently and therefore no conclusions of any significance can be drawn. The major second occurs slightly more in the Haydn and Mozart

TABLE XXVII

INTERVAL MOVEMENT IN THE BASS LINES OF HAYDN, MOZART, AND BEETHOVEN

	Haydn Percentages		Mozart Percentages		Beethoven Percentages	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	37.3	62.3	33.3	66.7	38.8	61.2
Major Third	48.8	51.2	7.1	92.6	18.2	81.8
Perfect Fourth	62.2	37.8	59.4	40.6	57.3	42.7
Augmented Fourth	00.0	100.0	----	----		
Diminished Fifth	00.0	100.0	00.0	100.0	00.0	100.0
Perfect Fifth	23.7	76.3	23.5	76.5	22.4	77.6
Augmented Fifth						
Minor Sixth	60.0	40.0	100.0	00.0	40.0	60.0
Major Sixth	66.7	33.3	00.0	100.0	80.0	20.0
Minor Seventh	100.0	00.0	-----	----	40.0	60.0
Major Seventh	----	----	----	----	33.3	66.7
Perfect Octave	36.7	63.3	88.0	11.1	43.5	56.5

examples; however, in Beethoven's example the same interval occurs significantly more, approximately five times that of Haydn or Mozart's usage (see Table XXVIII). The minor and major third dyads occur frequently in all these examples and, although there are differences in the percentages between these two intervals the combined percentage occurrence reveals a near identical frequency of usage among these composers (i.e., 24.38\% in Haydn's examples, 24.94\% in Mozart's, and 24.67% in Beethoven's). The frequency of perfect fourth is about the same in Haydn's and Mozart's examples, while it is more in Beethoven's examples. The frequency occurrence of tritones is slightly higher in

Mozart's examples. It should also be mentioned that the tritone is found more often in these classical examples than in Baroque or even Romantic examples. This and other relative matters will be discussed in greater detail later in this study. The frequency occurrence of perfect fifth is slightly higher in Beethoven's examples than Haydn's or Mozart's. The minor and major sixth occur more often in Mozart's examples than either Haydn or Beethoven, constituting nearly one-fourth of all dyadic intervals. The minor seventh, however, constitutes significantly higher percentages in Beethoven's examples than Mozart or Haydn. The use of perfect octave is the only dyad that exhibited a historical trend: its usage decreases from Haydn to Mozart to Beethoven (i.e., $27.08 \%, 20.76 \%$, and 18.02% respectively).

TABLE XXVIII

DYAD INTERVALS IN THE MUSIC OF HAYDN, MOZART AND BEETHOVEN

Intervals	Haydn Percentages	Mozart Percentages	Beethoven Percentages
Perfect Unison	0.09	0.00	0.18
Minor Second	0.37	0.76	0.55
Major Second	1.76	1.71	5.08
Minor Third	10.38	13.71	9.98
Major Third	14.00	11.23	14.69
Perfect Fourth	5.10	5.71	7.67
Augmented Fourth	1.57	2.66	1.20
Diminished Fifth	2.87	2.85	1.20
Perfect Fifth	13.26	10.66	15.80
Augmented Fifth	0.00	0.38	0.00
Minor Sixth	8.99	11.42	6.09
Major Sixth	10.38	13.33	8.22
Minor Seventh	2.59	3.42	6.37
Major Seventh	0.55	0.38	0.46
Perfect Octave	27.08	20.76	18.02

An examination of the dyadic succession in these examples reveals that perfect intervals (i.e., fifths, fourths, and octaves) are seldom preceded or followed by another perfect interval. There is, however, more frequent occurrence of these perfect intervals than that in Baroque examples. Particularly, in Beethoven's examples a perfect interval is often preceded or followed by another perfect interval; such dyadic succession occurs more often in Beethoven music than in Haydn or Mozart's examples. Major and minor intervals are preceded and followed by any interval, and no particular preference is to be noted. The only exception is that the major seventh is always followed by a perfect octave. The augmented fourth is most often followed by a larger interval (i.e., perfect fifth or larger) and the diminished fifth is most often followed by a smaller interval (perfect fourth or smaller). These dyadic motions are very much in accordance with that of the music of the preceding era. The augmented sixth, though infrequently used (approximately 2\%), is always followed by a perfect octave. The great majority of dyads in the classical examples used in this study are associated with harmonies (chords) that are, for the most part, diatonic and not chromatic. These concurrent harmonies exhibit some resemblances to Baroque music, with certain differences that will be discussed later in this study. The more consonant harmonies (i.e., major and minor chords) are primarily associated with intervals of major and minor thirds, major and minor
sixths, perfect fifth, perfect octave, and occasionally perfect fourth. The more dissonant harmonies (i.e., diminished seventh chords) are primarily associated with dissonant dyadic intervals: minor and major seconds, minor and major sevenths, augmented fourth, diminished fifth, and to some extent, perfect fourths. There are indeed more examples of chromatic harmonies in the classical examples than the Baroque examples, and these chromatic harmonies are more often associated with the more dissonant intervals such as mentioned above.

CHAPTER IV

MUSIC OF THE ROMANTIC PERIOD

Choral works of Hector Berlioz (1803-1869), Anton Bruckner (1824-1869), and Johannes Brahms (1853-1897) are selected to represent music of the Romantic period. In selecting musical examples, an effort was made to include pieces that represent a chronological progression (early to late) of styles of these composers. It is believed that in this manner, a more representative crossection of linear and harmonic styles in the romantic period can be presented for analysis and thus providing material for stylistic comparison. The examples of these composers contain certain intervallic as well as other features that are stylistically unique to these individual composers. Before discussing these features, it is necessary to examine their selected work in detail.

Music of Hector Berlioz

The melodic (soprano) lines of Berlioz reveal that the great majority of intervals used are the perfect unison and minor and major seconds occupying over 80% (see Table XXIX). If the intervals of minor and major thirds and perfect fourths are added to the three aforementioned intervals, their
combined percentages occupy nearly all the monadic intervals used (95.73\%). The remaining intervals constitute an insignificant amount in the motion of Berlioz's soprano lines. This aspect underscores the extremely melodious feature of Berlioz melodic material.

TABLE XXIX
THE SOPRANO INTERVALS OF HECTOR BERLIOZ
Intervals
Perfect Unison
Minor Second

The monadic content of the bass lines in Berlioz examples, however, exhibits quite different character from that of his soprano lines (see Table XXX). The occurrence of perfect unison in Berlioz's bass lines is considerably more than that of his soprano lines, constituting approximately half of all intervals used (43.21\%). The frequency occurrence of minor and major seconds is considerably less than that of his soprano lines, and the minor third is used slightly more
than that of his soprano lines. The perfect fourth and fifth are used approximately twice as much as in his soprano lines. Another noteworthy factor is the infrequent use of the perfect octave in the bass lines, as compared with other Romantic composers. This particular aspect will be dealt with in greater detail later in this study.

TABLE XXX

THE BASS INTERVALS OF HECTOR BERLIOZ

Intervals Percentages | Group |
| :---: |
| Percentages |

The most frequently occurring dyad in Berlioz's examples is the perfect octave, occupying approximately one-fourth of the total dyadic content (22.4\%). The interval having the next highest frequency of occurrence is the major third. This offers a notable contrast to examples of Baroque and Classical composers so far examined. If the
frequency of occurrence of the major and minor thirds are combined, these two intervals account for over one-fourth of total dyadic usage. The perfect fifth is another important dyadic interval occupying approximately one-sixth the total dyadic content. See the following table for percentages of dyadic intervals in Berlioz's examples.

TABLE XXXI

DYAD INTERVALS OF HECTOR BERLIOZ

Intervals Percentages | Group |
| :---: |
| Percentages |

Music of Anton Bruckner

In the soprano lines of Anton Bruckner, the following intervals are used frequently: perfect unison, and minor and major seconds. These intervals account for three-fourths of the total monadic content (see Table XXXII). If, however, the intervals of minor and major thirds, and perfect fourths
are combined with the three aforementioned intervals, these six intervals account for the great majority (93.02\%) of the total monadic content.

TABLE XXXII

THE SOPRANO INTERVALS OF ANTON BRUCKNER

Intervals

Perfect Unison 24.51 \quad| Group |
| :---: |
| Percentages |

The monadic intervals content of Bruckner's bass lines is different from that of his soprano lines. The perfect unison is used slightly more, and the minor second is used considerably less often than his soprano lines (see Table XXXIII). The major and minor seconds are used less, while the major third occurs in almost equal frequency to that in the soprano line. The perfect fourth as well as perfect fifth and octave are used considerably more in Bruckner's bass line as opposed to his soprano lines. The increased
occurrence of these three perfect intervals is due primarily to their increased occurrence at cadence points. Another interesting factor in Bruckner's bass lines is the higher occurrence of the perfect fourth as opposed to the perfect fifth, which is in contrast to the monadic content of his soprano lines. This is due to increased use of these intervals at cadential points. The perfect fourth is associated with the dominant-tonic progression.

TABLE XXXIII

THE BASS INTERVALS OF ANTON BRUCKNER

Intervals
Perfect Unison
Minor Second $16.44-6855$
Major Second 25.86
Minor Third
5.70
86.71

Major Third
Perfect Fourth
Augmented Fourth 0.26
Diminished Fifth 0.53
Perfect Fifth 7.02
Augmented Fifth 0.00
Minor Sixth 0.26
Major Sixth 0.92
Minor Seventh 0.13
Major Seventh 0.26
Perfect Octave 3.31

The dyadic content in Bruckner's examples reveals a number of important factors which are in contrast to that of other Romantic composers. Dyadic motions in Bruckner's examples indicate that the perfect octave occurs most
frequently, comprising approximately one-half of the total dyadic content (see Table XXXIV). The interval of the next highest frequency occurrence is the perfect fifth (11.6\%). The major and minor thirds account for 17.40% of the dyadic intervals and the major and minor sixths account for a nearly equal percentage (14.86\%). When these above interval, percentages are combined, they comprise a great majority of the dyads in Bruckner's examples (84.97%). The major second, perfect fourth, and minor seventh account for a great majority of the remaining intervals in frequency occurrence.

TABLE XXXIV

THE DYAD INTERVALS OF ANTON BRUCKNER

> Intervals Percentages Percentages

Group

Music of Johannes Brahms

An analysis of Brahms* melodic examples reveals that the use of perfect unison occurs considerably less often
than other Romanic examples. The use of major second accounts for approximately one-third of the monadic content of Brahm's soprano lines (see Table XXXV). The minor second, however, is used considerably less and accounts for approximately one-fourth (22.79\%) of Brahm's monadic content. An interesting factor in the soprano lines of these Brahms', examples is the identical percentage occurrence of major thirds and perfect fourths (8.23\%). The use of these six intervals (perfect unison, minor and major seconds, minor and major thirds, and perfect fourth) comprises the great majority (96.12%) of the monadic content in Brahms. soprano lines. The perfect fifth occupies half of the remaining percentage. Augmented fourth, augmented fifth, minor seventh and perfect octave do not occur.

TABLE XXXV

THE SOPRANO INTERVALS OF JOHANNES BRAHMS

Group
Intervals
Percentages
Percentages
Perfect Unison
Minor Second Major Second Minor Third 13.30 $22.76-70.03$

Major Third 33.97 Perfect Fourth $9.63-96.12$ 8.23 Perfect Fourth 8.23 Diminished Fifth 0.17
Perfect Fifth 2.10

Augmented Fifth 0.00
Minor Sixth 1.22
Major Sixth 0.17
Minor Seventh 0.17
Major Seventh 0.00
Perfect Octave 0.00

The monadic content of Brahm's bass lines is considerably different than that of his soprano lines. A significant difference is the increased use of the perfect intervals (unison, fourth, fifth, and octave). Particularly perfect fifth occupies approximately one-sixth of the total monadic content of the bass line. These intervals, when combined, account for half of the monadic content in Brahms' bass lines (50.26\%), as compared to only one-fourth in the monadic content of the soprano lines (23.63\%). Another significant difference is the use of perfect unison, major and minor seconds, major and minor thirds, and perfect fourths (see Table XXXVI).

TABLE XXXVI

TTHE BASS INTERVALS OF JOHANNES BRAHMS
Intervals Percentages Proup

These six intervals, when combined, account for approximately three-fourths of the monads in Brahm's bass lines, which is Considerably less than the soprano lines (i.e., 76.84\% for bass and 96.12% for soprano). Noteworthy is the decreased use of the minor and major seconds and the minor third, as compared to the frequency use of these intervals in his soprano lines.

The dyadic content in Brahm's examples reveals that, as in examples of other Romantic composers, the perfect octave is the most frequently employed; it accounts for approximately one-fourth of the total dyadic usage (see Table XXXVII). The major third is the next most frequently used interval (20.72\%). The combined occurrence of minor and major thirds comprises one-third of the total dyadic usage in Brahm's examples. The perfect fifth also is frequently employed in the dyadic motions of Brahms' examples and accounts for 16.94% usage, while the minor and major sixths are nearly equal in use (i.e., 6.9\% and 7.56% respectively). When the percentage occurrence of the above intervals are combined, they occupy a large percentage (88.13\%) of the total dyadic usage in Brahms' examples. The remaining percentages (12\%) are occupied by the other intervals, mostly major seconds, perfect fourths and minor sevenths.

TABLE XXXVII

THE DYAD INTERVALS OF JOHANNES BRAHMS
Intervals Percentages Percentages

Correlations and Conclusions
The differences of these Romantic examples are more marked than the differences in the classical or Baroque examples. Monadically, the soprano lines of these Romantic examples reveal that there is a steady decline in the use of the perfect unison (see Table XXXVIII). While the minor second is approximately equal in use among these composers, the major second and minor third increases in use from Berlioz to Bruckner to Brahms. The major third is used by Brahms more than any other Romantic composer (8.23\%), while Bruckner used it least (3.41\%). The use of the same interval in Brahms' examples is considerably more than any other composer in any of the three historical periods. This will be elaborated upon more in the final chapter. The use of
perfect fourth shows a steady increase from Berlioz to Brahms while the perfect fifth is nearly equal in use in all examples of the three composers. The use of the perfect octave, however, occurs considerably more often in Bruckner's soprano lines than that of Berlioz and Brahms. This interval does not occur in Brahms' examples and occurs only twice in Berlioz's examples.

TABLE XXXVIII

THE SOPRANO INTERVALS OF BERLIOZ, BRUCKNER, AND BRAHMS

Intervals	Berlioz Percentages	Bruckner Percentages	Brahms Percentages
Perfect Unison	37.09	24.51	
Minor Second	22.33	23.04	23.30
Major Second	21.05	29.26	33.96
Minor Third	6.67	6.95	9.63
Major Third	4.49	3.41	8.23
Perfect Fourth	4.10	5.85	8.23
Augmented Fourth	0.12	0.24	0.00
Diminished Fifth	0.12	0.24	0.17
Perfect Fifth	1.92	2.07	2.10
Augmented Fifth	0.00	0.00	0.00
Minor Sixth	0.38	0.85	1.22
Major Sixth	0.89	0.36	0.17
Minor Seventh	0.38	0.48	0.17
Major Seventh	0.00	0.00	0.00
Perfect Octave	0.25	2.19	0.00

The direction of these monadic motions suggests additional information on certain trends of these Romantic composers. The ascending minor third shows a decrease in use from

Berlioz to Brhams, while the descending minor third shows an increase. It is significant to point out that the ascending minor third occupies a considerable portion of Berlioz's melodic motion while the descending minor third comprises an important monadic movement in Brahms' melodic lines. The descending major third, however, is used in great majority among all three composers. Another important feature is that, while the perfect fourth in the soprano lines of Bruckner and Berlioz moves upward, the same interval is mostly in a downward motion in Brahms examples. The perfect fifth in the soprano lines of Berlioz and Brahms is more often ascending while Bruckner uses descending perfect fifths a majority of the time. Note also that Brahms' use of fifth occurs mostly in an ascending direction (91.7\%); this is a significantly higher frequency of occurrence, as compared to that in other composers melodies. The augmented fourth is generally in ascending motion. The minor sixth is used predominantly in an ascending direction in all these examples. There is, however, a decline in the frequency of occurrence of ascending minor sixths from Berlioz to Brahms. While Berlioz uses ascending sixths exclusively, Bruckner uses the same over three-fourths and Brahms over two-thirds. The monadic content of the bass lines in these Romantic examples reveals certain differences and similarities when compared to the soprano lines. The use of the perfect unison is greater in Berlioz examples than Bruckner or

SOPRANO INTERVAL MOVEMENT OF BERLIOZ, BRUCKNER, AND BRAHMS

	Berlioz Percentages		Bruckner Percentages		Brahms Percentages	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	59.6	40.4	56.1	43.9	47.3	52.7
Major Third	42.8	57.2	42.9	57.1	44.7	55.3
Perfect Fourth	59.4	40.6	70.8	29.2	46.8	53.2
Augmented Fourth	100.0	0.0	50.0	50.0	----	----
Diminished Fifth	100.0	0.0	0.0	100.0	0.0	100.0
Perfect Fifth	66.7	33.3	35.3	64.7	91.7	8.3
Augmented Fifth			-85.		---	---
Minor Sixth	100.0	0.0	85.7	14.3	71.4	28.6
Major Sixth	57.1	42.9	66.7	33.3	100.0	0.0
Minor Seventh	33.3	66.7	100.0	0.0	0.0	100.00
Major Seventh		----	----	-	---	----
Perfect Octave	50.0	50.0	27.8	72.2	----	----

Brahms (see Table XL). The minor second exhibits a similar trend (i.e., greater in Berlioz lesser in Bruckner and least in Brahms). The major second, however, is used the most in Bruckner's examples than Berlioz or Brahms. The minor third occurs approximately the same frequency in Berlioz and Bruckner examples (i.e., 5.21\% and 5.7\%) but in Brahms' examples the same interval occurs slightly more than twice the frequency (11.47\%). The major third is used approximately twice as much in the Berlioz examples as compared to Bruckner's and Brahms'. While the use of perfect fourth shows little distinguishing features among these composers, the perfect
fifth reveals marked traits: the percentage occurrence is twice as much in Bruckner's than in Berlioz's (i.e., 7.02\% and 4.32% respectively), and it is twice as much in Brahms' than in Bruckner (i.e., 16.39% and 7.02% respectively). All other intervals occur very frequently; no comparison of any significance can be made.

TABLE XL
BASS INTERVALS OF BERLIOZ, BRUCKNER, AND BRAHMS

Intervals	Berlioz Percentages	Bruckner Percentages	Brahms Percentages
Perfect Unison	43.21	26.25	19.67
Minor Second	17.28	16.44	10.38
Major Second	11.02	25.86	20.03
Minor Third	5.21	5.70	11.47
Major Third	6.40	3.84	3.82
Perfect Fourth	9.09	8.62	11.47
Augmented Fourth	0.00	0.26	0.36
Diminished Fifth	0.00	0.53	0.36
Perfect Fifth	4.32	7.02	16.39
Augmented Fifth	0.00	0.00	0.00
Minor Sixth	0.59	0.26	1.63
Major Sixth	0.89	0.92	0.18
Minor Seventh	0.59	0.13	0.36
Major Seventh	0.00	0.26	0.00
Perfect Octave	0.80	3.31	2.73

The interval direction of the monads in the bass lines of these Romantic examples as compared with that in the soprano lines, contains certain differences that note mention. The minor third is used predominantly in a descending direction in the bass lines of these Romantic examples (see Table XII).

Although major thirds occur equally often in ascending as well as in descending motion when all these romantic examples are combined, individual differences deserve notice: descending motion is predominant in the Berlioz and Bruckner examples, while ascending motion is predominant in Brahms' examples. The motion of perfect fourth is generally equally divided between ascending and descending. The augmented fourth is found primarily in an ascending direction, while the diminished fifth is always descending. The perfect fifth and octave are generally in the descending direction. However, octave is employed primarily in the ascending motion in the Brahms' example (86.7\%) as opposed to the same interval in the other composers.

TABLE XLI

BASS INTERVAL MOVEMENT OF BERLIOZ, BRUCKNER, AND BRAHMS

	Berlioz Percentages		Bruckner Percentages		Brahms Percentages	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	40.0	60.0	41.9	58.1	20.6	79.4
Major Third	48.8	51.2	48.3	51.7	52.4	47.6
Perfect Fourth	54.1	45.9	60.0	40.0	52.4	47.6
Augmented Fourth	----	----	50.0	50.0	100.0	0.0
Diminished Fifth	----		0.0	100.0	0.0	100.0
Perfect Fifth	27.6	72.4	28.3	71.7	37.8	62.2
Augmented Fifth		----	----	----		
Minor Sixth	100.0	0.0	100.0	0.0	11.1	88.9
Major Sixth	33.3	66.7	57.1	42.9	100.0	0.0
Minor Seventh	75.0	25.0	100.0	0.0	100.0	0.0
Major Seventh			0.0	100.0		
Perfect Octave	16.7	83.3	28.0	72.0	86.7	13.3

The usage of dyadic intervals in the examples of these Romantic composers exhibit the common historical traits and, at the same time, individual characteristic of each composer. The dyadic perfect unison, not found in the Baroque and Classical examples, seldom occurs (once in Bruckner's example). The dyadic minor second, though infrequently, appears in the examples of Bruckner and Berlioz. The dyadic major second is found in all three composers' examples, with approximately equal frequency (see Table XLII). These composers also use approximately the same amount of dyadic perfect fourths and major and minor sixths. Although the use of major and minor sevenths exhibits a decline from Berlioz to Brahms, the difference is too small to warrant any consideration. However, comparison of occurrence of the dyadic minor and major thirds in these examples reveal certain individual differences that deserve mention. While these dyads occupy a significant portion in the total dyadic content in Berlioz's examples (26.93\%) and even more so in Brahms (32.23\%), they are given a comparatively secondary importance in Bruckner's examples (17.4\%). The dyadic interval of perfect octave in these examples reveals that while it occupies nearly half of the total dyadic content in Bruckner's examples (41.11\%), the same dyad occurs approximately only half as often in the examples of Berlioz and Brahms (22.4\% and 25.5\% respectively). It should also be noted that the dyadic interval of augmented sixth appears
considerably more often in these examples, as compared to examples from Baroque and Classical periods.

TABLE XLII

DYAD INTERVALS IN THE MUSIC OF BERLIOZ, BRUCKNER, AND BRAHMS

Intervals	Berlioz Percentages	Bruckner Percentages	Brahms Percentages
Perfect Unison	00.00	0.12	0.00
Minor Second	0.51	0.12	0.00
Major Second	4.46	3.38	3.61
Minor Third	10.10	8.22	11.51
Major Third	16.83	9.18	20.72
Perfect Fourth	5.31	5.80	4.27
Augmented Fourth	1.42	1.08	0.16
Diminished Fifth	3.75	0.60	0.32
Perfect Fifth	13.47	11.60	16.94
Augmented Fifth	0.77	0.12	0.16
Minor Sixth	6.73	6.04	6.90
Major Sixth	6.86	8.82	7.56
Minor Seventh	3.88	2.53	2.46
Major Seventh	1.81	0.48	0.32
Perfect Octave	22.40	41.11	24.50

While the frequency of occurrence of dyadic intervals manifests certain stylistic tendencies, the manner of dyadic succession is an aspect which is more indicative of stylistic differences. This aspect will be dealt with later in a greater detail; it will suffice to mention here the following observations in these Romantic examples. The major and minor consonant dyadic intervals (i.e., major and minor thirds and sixths) are preceded or followed by any other intervals with no predominance of any particular
dyadic motion. The perfect consonant dyadic intervals (fourths, fifths, and octaves) are preceded or followed by by any interval, with a slight preference for major and minor consonant intervals and augmented or diminished intervals. However, noteworthy is the fact that these perfect consonant intervals are often preceded or followed by other perfect consonant intervals. This is in contrast to that in examples of Baroque and Classical eras. The augmented dyadic intervals are generally preceded by any intervals and followed by a larger consonant interval, either perfect, major or minor (for example, from major third to augmented fourth to perfect fifth). The diminished dyadic intervals are generally preceded by any interval and followed by a smaller consonant interval, either perfect, major, or minor (for example, from minor sixth to diminished fifth to perfect fourth). The dyadic motions of major and minor dissonant intervals (seconds and sevenths) show no particular manner of succession; they are preceded or followed by any interval. In general, the dyadic successions in these Romantic examples reveal that any interval can be preceded or followed by any other interval, with no particular preference in their succession. This can be viewed as a phenomenon indicating a general lack of any controlled contrapuntal movements between soprano and bass lines.

One additional aspect which needs examining is the relationship between certain dyadic intervals and their
corresponding harmonies. It is to be noted that certain harmonies are more frequently associated with certain dyads in these Romantic examples and, through this relationship, certain conclusions may be drawn which in turn, may be applied in a stylistic study. The major and minor consonant intervals (thirds and sixths) are more frequently associated with major and minor chords. The perfect consonant intervals (fifths, fourths, and octaves) are often found to be associated with all chord types but more often with major and minor chords. The major and minor dissonant intervals (seconds and sevenths) as well as the perfect fourth, are more often associated with dominant function chords. The augmented intervals (augmented fourth, augmented fifth, augmented sixth, and augmented seconds) are more often associated with dominant function harmonies (i.g., dominant seventh chords, augmented dominant triad, enharmonic dominant, and "nondominant" ${ }^{\text {L }}$ diminished seventh chords). The only exception to the above dyadic-harmonic association is the dyadic augmented sixth which often implies some altered subdominant function harmonies (i.e., augmented sixth chords). The diminished intervals (fifths and sevenths) are often associated with dominant function harmonies.

[^1]
CONCLUSIONS

This study has attempted to show another aspect of parametric analysis that may contribute to further clarification of stylistic differences in music. This study has proposed that, through a careful analysis of the two-part framework, along with analytical comparison of monadic and dyadic content and their manner of employment, an additional perspective can be offered in a stylistic study. It is not the intent of this study to suggest that dyadic and monadic analysis replace harmonic analysis; rather, it is to propose that such an approach will supplement harmonic and other parametric analyses in understanding stylistic differences.

This study has examined dyadic and monadic interval content, dyadic succession, and direction of monadic interval motion in selected works from the Baroque, Classical, and Romantic periods. More specifically, works by different composers in a given historical era have been analyzed and compared. However, little has been said regarding the stylistic differences of these historical periods. This chapter will summarize the main points of observation of musical style in each era, and discuss the validity of the two-part framework as an aspect of stylistic comparison. A comparison
of the three style periods will then be made. Finally, the validity of the two-part framework as an analytic criteria will be demonstrated through analysis of other examples of choral and instrumental music from the three style periods, and the stylistic features thus validated will then be applied through imaginary pedagogical settings.

In the preceding chapters, the monadic content and succession in selected examples of three representative composers from each of the three historical eras have been tabulated and the results analyzed. The "mean" frequency of occurrence of monadic and dyadic intervals may then be taken as representing general stylistic features of the historical period, while the differences of such intervallic usages among these composers may be taken as an indication of certain characteristics marking the individuality of each composer's "personal style". A brief summary of the stylistic features pertaining to each historical period and significant personal compositional styles seems appropriate here.

Music of the Baroque Period

The soprano lines in these Baroque examples show certain consistency with regard to the usage of the six "melodic monads": perfect unison, minor and major seconds, minor and major thirds, and perfect fourth. These intervals occupy more than 90% of all intervallic content in the melodic (soprano) lines. However, some differences in the usage of
these, and other, intervals show certain individual traits of these composers. For example, the perfect unison (i.e., repeated notes) is used much less frequently in Bach's melodies than in Rameau's or Vivaldi's examples. This may, perhaps, be regarded as a manifestation of the intrinsic contrapuntal nature (i.e., linearly controlled motion) of Bach's melodies, as opposed to a more "harmonically" oriented writing of the latter two. An examination of the minor thirds reveals a gradual decline in use from Rameau to Vivaldi to Bach while the major third declines in use from Rameau to Bach to Vivaldi. All trends in interval usage may be linked to contrapuntal writing or the lack of it in these composers' examples. Interestingly, however, the perfect fourth and fifth monads are used more in the Bach examples than in the Rameau and Vivaldi examples. This may, perhaps, contribute to the so called "non-vocal" nature of Bach's melodic writing.

The monadic content of the bass lines in these Baroque examples are considerably different than that of the soprano lines, due primarily to the "harmonic" intervals of perfect fifth and octave. The combined percentage of the six "melodic" intervals, however, still constitutes a great majority (more than 80%) of the intervallic content in the bass lines. Differences in the use of certain intervals have been noted: these may be regarded as contributing to the personal stylistic traits of the composers. For example, the perfect unison
(i.e., repeated notes) is used much less frequently in Bach's bass lines than in Rameau or Vivaldi, supporting the more linear and contrapuntally independent or less harmonically static quality of Bach's part writing. The perfect fourth exhibits no particular differences among the three composers examples; the frequency of occurrence is approximately twice as much as compared to the soprano lines. This is indicative of the more "harmonic" nature of the Baroque bass lines, as compared to the more "melodic" nature of the soprano lines. The perfect fifth and perfect octave are also used in a greater frequency, due to the same "harmonic" nature of the bass lines as mentioned above.

The general consistency in the direction of monadic interval motion in both the soprano and bass lines of these Baroque examples can be observed: minor and major thirds are predominantly descending; perfect fourths are generally ascending, while perfect fifths are most often used in a descending direction. The direction of octave motions in soprano and bass lines show certain differing preferences: it is more often descending in soprano lines while ascending in bass lines. A notable exception to this octave movement may be found in Bach and Vivaldi's examples: the descending movement is more prevalent in the bass lines of Vivaldi, while it is the ascending movement in Bach's soprano lines.

The dyadic content of these Baroque examples, like the soprano and bass lines, primarily consists of six intervals
(more than 75\%). These six "harmonic" intervals are:major and minor thirds, perfect fifth, major and minor sixths, and perfect octave. It goes without saying that these intervals are the primary intervals in the formation of tertian harmony. There are, however, noteworthy differences in the use of individual intervals with regard to percentage occurrences. Major seconds and minor thirds are used considerably more often in Rameau and Bach's examples than in Vivaldi's. The major third is used more often in Vivaldi and Bach's examples than Rameau which, perhaps, is indicative of a more dissonant nature in the dyadic examples of Vivaldi and Bach's music.

The combined occurrence of the perfect fifth and perfect octave in all these Baroque examples constitutes a very high percentage in the total dyadic content. Interestingly, the combined percentage occurrence of minor and major thirds (nearly equal to the combined percentage occurrence of the perfect fifth and perfect octave in all these Baroque dyadic examples) is nearly twice that of the combined percentage occurrence of minor and major sixths.

The consistency in the manner of the dyadic succession (movement from one dyad to another) is to be observed in the examples of all these Baroque composers. Particularly, certain dyadic successions are found to be common in these Baroque examples and are, at the same time, stylistically characteristic to the Baroque period. Major and minor
consonant intervals may be preceded or followed by any interval with the only exception that an interval is seldom followed by another of the same size and quality such as a major third to another major third, or a perfect consonant to another perfect consonant (of either the same or different size). A perfect interval is usually preceded or followed by a major or minor consonant interval. Major and minor dissonant intervals may be preceded or followed by any interval except one of the same size and quality.

Music of the Classical Period

The soprano lines of these classical examples show certain consistency with regard to the combined usage of the six "melodic" monads. These intervals occupy more than (90\%) of all intervallic content in melodic (soprano) writing. The usage of each interval, however, varies from composer to composer. In general it may be said that, with few exceptions, Haydn's and Mozart's soprano lines are very similar with regard to individual interval content. Beethoven, however, is strikingly different in the use of each interval. For example, the use of repeated note (perfect unison) and perfect octave is considerably more in Beethoven's examples than Mozart or Haydn. This may be due, at least in part, to two factors: a greater amount of contrapuntal writing in the examples of Mozart and Haydn, and the use of the repeated notes for emphasis of certain
important notes in Beethoven's examples. Other examples of different interval usages in Beethoven soprano lines are as follows: more major and minor sixths, less minor seconds, less major and minor thirds, more augmented fourths, and less perfect fourths. All of these factors combine to make Beethoven's melodies less lyrical in character and more instrumental than vocal in nature.

The bass lines of these classical examples, like the soprano lines, show certain consistencies among composers with regard to the combined usage of the six "melodic" monads. These intervals occupy more than 80% of all intervallic content in Haydn and Beethoven's examples and more than 90% in Mozart's examples. The chief difference of the bass lines as opposed to the soprano lines lies in the increased usage of the so called "harmonic" intervals of the perfect fourth, perfect fifth and perfect octave, particularly at cadence points. Interestingly, Mozart used the intervals of minor and major third considerably less than in his soprano lines. This is due primarily to an increased usage of perfect unison and perfect octave. The differences of Beethoven as compared to Haydn and Mozart are essentially the same as mentioned regarding the soprano lines.

The dyadic content of these classical examples show certain consistencies among the composers with regard to the combined usage of the six "harmonic" intervals (dyads).

These intervals occupy approximately 80% of the total dyadic content in Mozart's and Haydn's examples, while only approximately 70\% in Beethoven's examples. The lower percentage of "harmonic" examples in Beethoven's examples is due primarily to the increased usage of the more dissonant intervals: major second, minor seventh, and perfect fourth. These intervals are usually associated with the dominant seventh chord and consequently provide Beethoven's music with a harmonically less stable, more active sound.

Another interesting factor in the examples of Mozart is the use of minor and major thirds and their inversions, major and minor sixths. The difference between this two groups of intervals is negligible (.19\%), which is in direct contrast to Haydn's and Beethoven's examples where the percentage occurrence of major and minor sixths is almost half that of minor and major thirds. In fact the use of major third and its inversion of minor sixth and minor third and its inversion of major sixth are nearly equal. This use of thirds and sixths gives Mozart's examples a more attractive character that is distinctly different from that of Haydn or Beethoven.

The direction of interval movement in the soprano lines of these classical composers reveals certain consistencies that may be taken as indicative of the historical style, while certain differences may be noted that are indicative of "personal" style. For example: minor thirds
are more frequently descending in all these examples, while the major third is more frequently descending in Haydn's and Beethoven's examples while it is more frequently in ascending motion in Mozart's examples.

Other differences that are noted are: Mozart's use of ascending perfect octaves as compared to Beethoven and Haydn's use of descending octaves, and the descending tritone (both augmented fourth and diminished fifth) in the examples of Beethoven as compared to the ascending in Mozart and Haydn's examples.

The direction of interval movement in the bass lines of these classical examples are as follows: major and minor thirds are predominantly descending while the majority of perfect fourths are in the ascending direction. All tritones and the majority of perfect fifths are descending. Perfect octaves are predominantly descending, except for Mozart examples where ascending octaves are the norm. In general, the movement of the so-called harmonic interval (perfect fourth and perfect fifth) are directly related in both the soprano lines and bass lines to the dominant-tonic relationship: perfect fourths move up and perfect fifths move down.

Dyadic succession of these classical examples is consistent in the manner in which it is employed. Major and minor consonant intervals are preceded or followed by any interval. As a general rule, however, intervals of
the same size and quality are seldom preceded or followed by each other: for example, major third to major third. There are, however, some occurrences of this kind of succession, but it is decidedly a rare case. Perfect consonant intervals are almost always preceded and/or followed by any intervals other than perfect consonant intervals. Major and minor dissonant intervals and augmented and diminished intervals are generally preceded and followed by any consonant intervals, with a few exceptions: most notably, minor dissonant intervals are preceded or followed by augmented or diminished intervals.

Music of the Romantic Period

The soprano lines of these Romantic examples show certain consistencies among composers with regard to the combined percentage occurrence of the six "melodic" monads. These intervals occupy more than 90% of the total intervallic content in the soprano lines of these Romantic examples. This, however, is where the similarity ends among these composers; for, of the three periods studied, the Romantic period exhibits the most marked differences among composers with regard to the percentage occurrence of intervals. For example: the repeated note (perfect unison) in Berlioz's soprano lines occurs quite frequently while it occurs considerably less frequently in the examples of Bruckner and Brahms. The intervals of major second, major and minor
thirds, and perfect fourth occur considerably more often in Brahms' soprano lines than in Berlioz or Bruckner. This is indicative of a more disjunct approach to melody in Brahms' soprano lines as opposed to the more conjunct (stepwise motion) in Berlioz and Bruckner's melodies. Bruckner, however, uses the perfect octave more often than Berlioz or Brahms.

The direction of interval movement is, perhaps, more indicative of personal differences among these Romantic composers. For example, while minor thirds are predominantly ascending in Berlioz and Bruckner's examples, they are descending in Brahms' examples. Interestingly, both Berlioz and Brahms used ascending perfect fifths a majority of the time, this is the contrast to the accepted practice of perfect fifth downward motion in Baroque and Classical soprano lines. In addition, Brahms employed the movement of perfect fourths of descending direction in a far greater frequency than ascending. Bruckner, on the other hand, used the more traditional (Classical and Baroque) fashion of ascending perfect fourth up and descending perfect fifth in his soprano lines. The conclusion that may be drawn from this observation is that Romantic composers largely discard the need to adhere to the established interval motions as shown in the earlier tradition.

The interval contents of the bass lines in these Romantic examples are, like the soprano lines, markedly
different between each individual composer's practice. For example, the amount of the perfect unison in Berlioz's examples is nearly twice that of Bruckner and Brahms. This extremely high occurrence of repeated notes in Berlioz's examples accounts for the very stagnant, "non-melodic" character of his bass lines. Some other extreme differences in interval usage in the bass lines of these examples are as follows: occurrence of minor thirds in Brahm's examples is twice that in Berlioz and Bruckner's examples, more than twice the percentage occurrence of perfect fifths in Brahms! as compared to that in Berlioz and Bruckner's, and Berlioz's considerably lower frequency of occurrence of major seconds and perfect octaves as compared to Bruckner and Brahms'. It would appear, from these observations, that Berlioz and Brahms are extremely different from each other with regard to interval content, while Bruckner's usages stand somewhere in between those two.

The direction of interval movement in the bass lines of these Romantic examples is comparatively more consistent among these composers, with certain exceptions. For example: perfect octave is primarily in descending motion in Berlioz and Bruckner's examples, while it is primarily ascending in Brahms'. Major thirds are almost equally divided between ascending and descending motion in all examples (with Brahms using slightly more ascending and

Berlioz and Bruckner using slightly more descending). Minor sixths are always ascending in Berlioz and Bruckner's examples while it is primarily descending in Brahms' examples.

The consistency with which certain intervals occur in the dyadic content of these examples has been previously noted. There are, however, certain differences among these composers that may indicate certain "personal" stylistic traits. For example, Bruckner's use of the perfect octave (which occupies approximately half of the total dyadic content) is nearly twice that of Brahms and Berlioz. The use of major thirds is considerably greater in Brahms' examples than Bruckner or Berlioz. The use of dissonant intervals (major and minor seconds, major and minor sevenths, augmented fourth and fifth, and diminished fifth) is considerably greater in the examples of Berlioz as compared to Brahms and Bruckner. The above usages contribute to the general musical impression of these composers; that is, in terms of dyadic interval content, Berlioz's music may be described as of a dissonant nature, while Bruckner's is of a more open and more stagnant sound, and Brahms' more consonant.

Dyadic succession in these Romantic examples is unlike that of the Baroque and Classical stylistic periods. In the Baroque and Classical examples there is a general avoidance of successive intervals of the same size and quality. In the Romantic examples studied, however, there are found
many instances of successive perfect fifths and octaves and successive intervals of the same size and quality. Although these instances are not in the majority, they are nonetheless frequent enough to indicate that the use of successive intervals of the same size and quality is not as carefully avoided as was in the previous stylistic eras, and that these Romantic composers were not as concerned about the parallel interval motions between the two outer parts as were Baroque and Classical composers. In some instances, it would seem that Romantic composers used these successiveparallel intervals deliberately to create a different chordal color and texture to music.

> Soprano Lines of the Baroque, Classical and Romantic Periods

The interval content for each historical period is obtained by averaging the occurrences of each interval in the works of the three composers in the period. The following table illustrates these "mean" percentages and may be used for a comparison of three stylistic periods in terms of the monadic content in the melody (i.e., soprano lines).

As indicated in Table XLIII, the use of repeated notes (perfect unison) is considerably greater in the Classical examples than in the Baroque or Romantic examples. This is due largely to Beethoven's frequent use of repeated notes. While the use of minor second is nearly equal among

TABLE XLIII
THE SOPRANO INTERVALS OF BAROQUE, CLASSICAL, AND ROMANTIC MUSIC

Intervals	Baroque Percentages	Classical Percentages	Romantic Percentages
Perfect Unison	21.53	30.53	26.08
Minor Second	22.57	20.30	22.71
Major Second	33.99	25.48	27.55
Minor Third	6.30	6.65	7.55
Major Third	4.71	4.80	5.06
Perfect Fourth	5.43	5.34	5.85
Augmented Fourth	0.09	0.12	0.13
Diminished Fifth	0.49	0.24	0.18
Perfect Fifth	2.44	2.54	2.02
Augmented Fifth	-2.54	$-2 .-$	-7.
Minor Sixth	0.54	0.86	0.78
Major Sixth	0.72	0.90	0.50
Minor Seventh	0.13	0.41	0.36
Major Seventh	0.18	0.08	0.00
Perfect Octave	0.49	1.52	0.92

all three style periods (only 2.41% difference from lowest to highest); the major second is used considerably more in the Baroque examples and occupies one-third of the total monadic content, as compared to only one-fourth in the Classical and Romantic periods. Upon closer examination, certain historical trends may also be noticed in soprano interval use. For example, the usage of minor and major thirds increases slightly from Baroque to Classical to Romantic, while the tritone decreases in use from Baroque to Classical to Romantic. It is also interesting to note that the frequency of usage of the perfect fourth and fifth intervals is almost equal in all three style periods (approximately half of one percent separates the lowest
and highest percentage occurrence of each interval. Lastly, it is to be noted that the use of the six melodic monads is nearly equal in all three periods (94.53\% Baroque, 93.10% Classical, and 94.80\% Romantic.)

The direction of interval movement in the soprano lines exhibits more clearly than the monadic content the stylistic differences of these historical periods. For example, Romantic composers are more inclined to use ascending minor thirds, while Baroque and Classical composers prefer descending minor thirds (see Table XIIV). It

TABLE XLIV
THE SOPRANO INTERVAL MOVEMENT OF BAROQUE, CLASSICAL, AND ROMANTIC MUSIC

	Baroque Percentage		Classical Percentage		Romantic Percentage	
Intervals	Up	Down	Up	Down	Up	Down
Minor Third	34.4	65.6	32.4	67.6	54.3	45.7
Major Third	22.2	77.8	46.5	53.5	43.5	56.5
Perfect Fourth	73.0	27.0	68.3	31.7	59.0	41.0
Augmented Fourth	33.3	66.7	33.3	66.7	75.0	25.0
Diminished Fifth	33.3	66.7	54.6	44.4	33.3	66.7
Perfect Fifth	31.5	68.5	38.1	61.0	64.6	35.4
Augmented Fifth	----					
Minor Sixth	54.6	45.4	40.0	60.0	85.7	14.3
Major Sixth	60.0	40.0	59.2	40.8	74.6	25.4
Minor Seventh	20.0	80.0	62.5	37.5	44.4	55.6
Major Seventh	00.0	100.0	100.0	00.0		
Perfect Octave	17.6	82.4	63.0	37.0	38.9	61.1

is also worth notice that, while all three periods frequently use major thirds in descending motion, the Baroque period uses
descending major thirds more than the Classical or Romantic period. Certain trends in interval movement can be noticed also: the use of ascending perfect fourths decreases (from the Baroque) in Classical and further in the Romantic period (73\%, 68.3\%, and 59\% respectively). Among these three periods, the differences in the Romantic period is most noticeable with more ascending minor thirds, more descending perfect fourths, more ascending augmented fourths, and more ascending major and minor sixths.

Bass Lines of Baroque, Classical, and Romantic Periods

The intervallic usage in the bass line reveals the marked differences of not only monadic content but also the implied harmonic practices of these three historical eras. For example, the frequency of use of the repeated note (perfect unison) in the Classical and Romantic examples is far greater (twice as frequent) than that in the Baroque examples (see Table XLV). At the same time, the Baroque examples use more minor and major seconds (50.11응 of the total intervallic content than the Classical or Romantic examples (35.2% and 34.23%). These factors (e.g., more frequent use of major and minor seconds and less frequent use of perfect unisons in the Baroque bass lines) are indeed a manifestation of the more contrapuntal nature of Baroque music, as opposed to the more harmonic or homophonic nature of the Classical and Romantic periods.

TABLE XLV
THE BASS INTERVALS OF BAROQUE, CLASSICAL, AND ROMANTIC MUSIC

Intervals	Baroque Percentages	Classical Percentages	Romantic Percentages
Perfect Unison	17.36	35.33	30.19
Minor Second	21.78	17.01	15.04
Major Second	28.33	18.81	19.19
Minor Third	6.25	5.11	7.14
Major Third	4.41	4.23	4.71
Perfect Fourth	9.13	8.17	9.57
Augmented Fourth	0.54	0.12	0.20
Diminished Fifth	0.44	0.16	0.30
Perfect Fifth	5.80	5.23	8.71
Augmented Fifth	-2.	-7.	0.75
Minor Sixth	0.54	0.50	0.70
Major Sixth	0.59	0.41	0.35
Minor Seventh	0.24	0.29	0.10
Major Seventh	0.14	0.12	2.33
Perfect Octave	4.16	4.23	

As Table XLV further reveals, the one noticeable difference in the bass line monadic contents of the three periods is the more frequent use of the perfect fifth and less frequent use of the perfect octave in the Romantic period. The increased use of the perfect fifth, particularly that in the descending motion (see Table XLVI) in these Romantic bass lines, is attributable to a greater use of subdominant function harmonies which is characteristic of Romantic harmony. These include not only the diatonic subdominant harmonies but also subdominant substitutes and altered subdominants (i.e., neopolitan sixths and augmented sixths). While interval direction of the perfect fourth in
all these examples is generally ascending, the percentage occurrence of such ascending motion also indicates a steady decrease from Baroque to Classical to Romantic. It is interesting to note that while the harmonic relationships of dominant to tonic and tonic to dominant prevails throughout the entire common practice period, this relation occurs in greatest frequency in the Baroque period, less frequent in Classical, and even less so in the Romantic period. In other words, the use of interval directions of the perfect fourth and fifth coincides with the general trend of employing subdominant and dominant function harmonies in these style periods.

TABLE XLVI

BASS INTERVAL MOVEMENT OF BAROQUE, CLASSICAL, AND ROMANTIC MUSIC

Intervals	Baroque Percentage		Classical Percentage		Romantic Percentage	
	Up	Down	Up	Down	Up	Down
Minor Third	23.6	76.4	36.5	63.5	34.2	65.8
Major Third	18.7	81.3	24.7	75.3	49.8	50.2
Perfect Fourth	75.9	24.1	59.6	40.4	55.5	44.5
Augmented Fourth	91.7	8.3	00.0	100.0	25.0	75.0
Diminished Fifth	00.0	100.0	00.0	100.0	00.0	100.0
Perfect Fifth	26.8	73.2	23.2	76.8	31.2	68.8
Minor Sixth	00.0	100.0	66.7		----	----
Major Sixth	33.3	66.7	66.7 48.9	33.3 51.1	70.4	29.6
Minor Seventh	60.0	40.0	48.9 70.0	30.0	63.5 91.7	36.5 8.3
Major Seventh	00.0	100.0	33.3	66.7	00.0	100.0
Perfect Octave	48.2	51.8	56.4	43.6	43.8	100.0 56.2

With regard to the direction of monadic movement in the bass lines, certain consistencies can be observed. For example, major and minor thirds are primarily used in the descending direction, minor sevenths are primarily ascending, and major sevenths are primarily descending. Perfect fourths are primarily ascending and perfect fifths descending (see above). Aside from these consistencies, there are stylistic differences and trends in interval direction that deserve mentioning. For example, the descending major thirds decrease in use from Baroque to Classical to Romantic (81.3\%, 75.3\%, and 50.2\% respectively.) The augmented fourth is nearly always in ascending direction in the Baroque period but the practice is completely reversed (i.e., in descending motion) in the Classical and Romantic periods. The minor sixth always appears in ascending motion in the Baroque bass lines, while this interval is predominantly in ascending motion in the Classical and Romantic examples. The use of descending major sixth decreases from a substantial majority in the Baroque period (66.7\%), to a slight majority in the Classical period (51.1\%), to a definite minority in the Romantic period (36.5\%). The use of minor seventh, while remaining mostly in the ascending motion in all three style periods, increases from the Baroque to Classical to Romantic periods ($60 \%, 70 \%$, and 91.7% respectively).

The Two-part Framework of Baroque, Classical, and Romantic Music

The dyadic content of examples in all three historical periods reveals certain consistencies as well as some noticeable differences. While the consistencies can be viewed as indicative of the features which bind the music of these periods into "common practice", the differences are indeed manifestations of stylistic changes in compositional practices among these periods. It should be noted, however, that most of the percentages are not extremely different between the three style periods. The degree of difference diminishes when the dyadic occurrences of all composers' examples in each stylistic period are averaged (i.e., showing mean percentages). That is, while percentage occurrences of individual composers may differ substantially among style periods, when all occurrences within each period are averaged, the resulting mean averages reduce the degree of difference.

The use of major second and perfect fourth is nearly equal in all three historical periods (see Table XLVII). The percentage occurrence of minor second shows a steady decline from the Baroque to Classical to Romantic era. The use of minor thirds also exhibits a consistent decline from the Baroque to Classical to Romantic periods, with the largest difference occurring between the Baroque and Classical periods. The use of the major third, while nearly equal
between the Baroque and Romantic period, is somewhat less in the classical period. While the steady decline of the augmented fourth and diminished fifth (tritone) from the Baroque to Classical to Romantic periods is noteworthy, it should be pointed out that the diminished fifth is used more frequently than the augmented fourth in each of the style periods. The higher incidence of the tritone in the Baroque period is due, perhaps, to the greater frequency occurrence of tritone in Vivaldi's examples (see Table XIV, p. 28). The perfect fifth occurs more frequently in the Baroque examples than the Classical or Romantic, the latter two having nearly equal frequency of usage. The use of major and minor sixths is greatest in classical music than Baroque or Romantic. The minor seventh exhibits a steady decline of usage from Baroque to Classical to Romantic, with the Romantic period having the lowest percentage occurrence.

As Table XLVII shows, the greatest difference between the three stylistic periods is seen in the use of the perfect octave. The dyadic octave increases in frequency from the Baroque to Classical to Romantic period, the increase being approximately two-fold from the Baroque to Romantic (15.14\% Baroque, 22.19\% Classical, and 29.99\% Romantic). It is, however, in the manners of dyadic succession that significant stylistic features of these historical periods can be observed.

TABLE XLVII
THE DYAD INTERVALS OF BAROQUE, CLASSICAL, AND ROMANTIC MUSIC

Intervals	Baroque Percentages	Classical Percentages	Romantic Percentages
Perfect Unison	0.00	0.11	0.04
Minor Second	0.76	0.52	0.22
Major Second	3.46	3.09	3.89
Minor Third	15.41	10.87	9.78
Major Third	15.10	13.74	15.04
Perfect Fourth	5.39	6.25	5.21
Augmented Fourth	1.75	1.63	0.95
Diminished Fifth	2.60	2.19	1.63
Perfect Fifth	16.31	13.78	13.72
Augmented Fifth	0.22	0.07	0.36
Minor Sixth	7.95	8.30	6.52
Major Sixth	9.48	10.09	7.79
Minor Seventh	4.71	4.28	2.99
Major Seventh	0.80	0.48	0.90
Perfect Octave	15.14	22.19	29.99

In the Baroque period, intervals are rarely preceded or followed by intervals of the same size and quality: for example, perfect fifths and octaves are very seldom preceded or followed by perfect fifths and octaves respectively. In the Classical period, major and minor consonant intervals are preceded and followed by any interval including those of same size and quality (e.g., major and minor intervals). Perfect consonant intervals are generally preceded or followed by intervals of different size or quality; however, intervallic successions of the same size and quality may be occasionally found, as opposed to the obvious avoidance of such in the Baroque period. The

Romantic period, on the other hand, indicates a considerable freedom with regard to dyadic successions, and intervals of the same size and quality may frequently be found preceding or following each other. Although not in the majority, perfect consonant intervals may also frequently be found to precede or follow other perfect consonant intervals. In short, the Baroque practice shows a high degree of rigidity in the employment of dyadic successions, while the Classical practice indicates a loosening of adherence to linear rules, and the Romantic practice is marked by freedom, not bound by any of the restrictions adhered to in the Baroque or Classical period with regard to dyadic successions.

Applications and Demonstrations

This study has primarily been concerned with the quantitative calculation of the frequency of occurrence of monadic and dyadic intervals and their movements. While it is not the intent of this study to replace musical analysis with quantitative information, it is believed that such information provides another perspective in the study of stylistic comparison of music. Particularly, the quantitative data of the dyadic content and succession (the "two-part framework) sheds a new insight to the understanding of harmonic-linear practices as a criterion in stylistic differentiation. That is, the quantitative information of dyadic progression further enhances the concept toward the stylistic discernment of polyphony, homophony, and anphony in the historical context, (i.e., Baroque, Classical, and Romantic respectively).

From the pedagogical point of view this offers itself as a useful vehicle in the course of teaching theory, particularly melody harmonization. For example, "how would Baroque, Classical, and Romantic composers harmonize the same melody but using different linear harmonic idioms?" should be regarded a valid question posed in a sophomore theory class. For the purpose of demonstrating the validity of the findings of this study and their practical applications, the following examples are given. Melodic materials are selected from a Bach chorale and a Beethoven piano sonata. In harmonizing these same melodies in different styles, the process of composing the various bass lines attempts to incorporate information from the three style periods regarding their bass lines and dyadic contents. Some of the percentage occurrences may not exactly correspond with the "ideal" criteria (e.g., as found in Tables XLV and XLVII), they are nontheless kept to the closest possible approximations.
"O Sacred Head Now Wounded" (passion chorale) of Bach's chorale harmonizations represents a nearly "ideal" example incorporating a very close approximation of monadic content in soprano and bass, and dyadic content, observed in the Baroque examples.

Figure 2: The Baroque Example, Chorale \#72
The following arrangements, based on the same soprano line, incorporate different bass lines and dyadic content to exemplify Classical and Romantic stylistic criteria. Different harmonic progressions are also employed to further strengthen the stylistic differences.

By varying the monadic content of the bass line and the resulting dyadic content, this version manifests Classical traits of harmonization. Different bass line and the resultant dyadic progression necessitates a different harmonic progression; it is, however, not the intent of this study to make comparative study of harmonic idioms in these historical eras. This version illustrates the interval content of the vass line and dyadic content of the Classical example which are different from that of the Baroque period. The same melody can be further modified by incorporating Romantic traits with regard to the monadic content of the bass line and the dyadic content.

Figure 3: The Classical Example, Bach Chorale

As the following version illustrates, the mere change of bass line content and dyadic content bring about changes in the character of the music which differs from that of the Baroque and Classical period. It goes without saying that the Romantic harmonic language is considerably different from that of the Baroque and Classical periods.

Figure 4: The Romantic Example, Bach Chorale

The following examples are used to further illustrate the application of the procedure and demonstrate that stylistic consideration of monadic and dyadic content and their successions has a certain degree of validity whether it is vocal or instrumental music. The melody is from Beethoven's Piano Sonata, Opus 13, second movement.

Figure 5: Beethoven's Piano Sonata, Opus 13 (excerpt)

The following two versions, using the same melody with some modifications, have different bass lines and dyadic contents from the original example in order to simulate the Baroque and Romantic styles. This was done by following the interval contents of the bass line and dyad as closely as possible to the quantitative information in Tables XLV (for bass line) and XLVII (for dyadic content).

Figure 6: The Romantic Setting, Beethoven's Piano Sonata

Figure 7: The Baroque Example, Beethoven's Piano Sonata
It should be added that since the soprano lines that are used in these reharmonizations are "Baroque" and "Classical" in nature, there is an inherent problem in the process of rewriting the bass lines and dyads to simulate the Baroque, Classical, and Romantic styles. As mentioned earlier, the soprano lines differ somewhat from one style period to another and, therefore, the process of reharmonizing the same melody in different styles can not be expected to be totally cohesive. However, the pedagogical implications and benefits from such a procedure should be apparent from these demonstrations.

Epilogue

"Style" perhaps more than any other commonly used musical (and art in general) terminology, defies any attempt at a concise definition. The term has been in general use since early seventeenth century (e.g., stile antico vs. stile moderno), or even earlier if one considers the fact that early composers had attempted to distinguish the compositional "style" of the immediate era from the preceding one (e.g., ars nova vs. ars antiqua). However, in spite of its long history and wide usage, a concise definition of style is all but impossible; consider, for example, the long list of criteria for stylistic determinant as found in various works expressly addressing to the problem of style, (La Rue, Dickinson, and Ratner). This problem of defining style is further complicated by the fact that the term may connote any number of aspects, from a historical (such as Baroque style vs. Classical style), formal (e.g., Symphonic style vs. Opera style), textural (e.g., Polyphonic style vs. Homophonic style), national (German style vs. French style), to personal (Haydn vs. Mozart) or even within one composer's changes in personal style (three style periods of Beethoven). ${ }^{l}$

It is not difficult to find in many current theory textbooks some references to style, whether or not such reference
$1_{\text {Willi }}$ Apel, "Style," Harvard Dictionary of Music Second Edition, Harvard University Press, Cambridge, Massachusetts, 1969, pp. 811-812.
is a conscientious or implicit one. For example, in illustrating the use of "borrowed chords," one finds the majority of examples excerpted from late Classical or Romantic works, but not from the Baroque; or the augmented sixth from the same eras but seldom from the Baroque. Or, consider also, the textbook definition of non-harmonic tones; seldom are the illustrative excerpts from post-romantic works. From such observation, one may conclude that the discussion of style and its multi-faceted manifestations deal primarily in the generalization of musical practices which are seen as the prevailing norm. That is, if a certain practice is employed frequently in the majority of works of the same historical period, that practice becomes one aspect of the musical style of that particular historical era.

In this sense, the term style pertains, to a certain extent, to any aspect of musical practice (or the manner of employing certain musical parameters) which, due to its significant frequency of occurrence, is regarded as a norm. Or, the frequency of its occurrence is considerably great to the extent that the degree of surprise (the bits of information) is small. The inclusion of this aspect in a rigorous stylistic study entails a quantitative comparison, which is an aspect of information theory. Although this branch of study is of recent emergence, many earlier treatises foreshadowed the approach: McHose's study of harmonic vocabulary in Bach's chorales is one such work. There are indeed many
significant studies in recent years which approach the problem of stylistic study by way of quantitative analysis (Baker, 1963; Bean, 1961; Choen, 1952; Fuller, 1965).

It is imperative to remember that the quantitative analysis or the employment of information theory in a stylistic study is not intended to replace the traditional approaches. The quantitative approach is but one additional vehicle to further supplement the conventional analytic studies whereby the complexity of style can be more concisely defined and the resultant data more graphically used to support the stylistic differences.

The present study is, in essence, an examination of the monadic and dyadic practices of the common practice period by way of quantitative analysis. The data itself, however, offers little significance; particularly in the light of the fact that the material, both in terms of the number of musical works and their medium, is limited. The data could not and should not be taken as representative or revealing criteria. This study is intended only to call attention to one aspect of comparative analysis which heretofore has escaped consideration. That is, the use of intervals and the directions of their movement in the soprano and bass lines and, perhaps more importantly, the use of dyads and dyadic successions illustrate stylistic changes which occur during the common practice period. Indeed the examination of the manner of intervallic employment in stylistic study can be traced
back to medieval times, such as the manners of employing fourths, thirds, sixths, etc. The importance of intervals in the examination of music as narrated in many historical treatises from the Renaissance to the present time reflects such a concern.

Finally, it should be noted that, while the monadic/ dyadic intervals in the two-part framework are important in the determination of style, they may also be used in connection with harmonic vocabulary in stylistic analysis. In this sense, it is found that dyads and dyadic succession either control the harmony or are controlled by harmony. The musical examples used in this study reveal certain consistencies with regard to dyads and their coexisting harmonies. For example, the harmony of musical examples in the Baroque period are primarily determined by the linear motions of the melodic soprano and bass lines. The harmony, then, is controlled by the dyads and dyadic successions. In the Classical period, harmony is the controlling factor in dyadic successions, as exemplified in the great majority of examples. Because of greater freedom in dyadic succession and an expanded harmonic vocabulary in the Romantic period, it is found that dyads and harmony are of equal importance, thereby making it difficult to judge which is the prominent determinant. This aspect indeed deserves further study and is worthy of future investigation.

APPENDIX A

```
    00001: //MIKF JOE (3002-4143.:50.1), SMITH G!,CLASS=AGMSGLEVFL=(1,1
```

 00002: \(1 /\) FXEC PGN=IEFEH.14

00005: $1 /$ CISP=(0LQ.LEL!TF), UNIT $=2314$, VOL =SER=USRPAK
0000E: //STEPI EXEC POA=ILCLPCTE, PARM=AFW

00010: //SYSFRI:T LE SYSOUT $=A$
00011: /SYSLMED

00014 : ULENTIFICATION DIVTSIGN.
0001 O : PROGRAft-IO. NUSIC.

60017: $\mathrm{A} \therefore$ TE-C0mpllf.
0001S: CNVIRGNMENT DLVISTON.
0015 COAFIGURATION SECTIGN.

$0002 \hat{2}$: TiPUT-CUTPUT SECTIG:
00023: FItE-CONTROL
00024: SELECT HEL-FILE ASSIGN TOUT-SOMELOUY.
UOO2S: SELECT CASS-FILE ASSIGN TOUT-S-tASS.
0002E: SFLECT CHORCHFLE ASEIGH TO UT-SWCHORG.
00027 :
0002 c
00025
00030
00031
00032:
$00032:$
30034:
0003 だ:
$00036:$
00037:
00038:
Cう035:
00040 :
00041
00042 :
0004 3:
00044
00045
$00046:$
00047 :
00048
$00049:$
00056
00031:
$00052:$
0005 :
00054 :
$0<0$ 万5
$000=$:
00057 :
0005 :
0005% :
00060 :
$03061:$
$00062:$
U0日:
04062:
Cita EIVISIO:.
FILE BECTIOM.
FOMEL-FIIE
LARLL EECOROS ARE STAMOARD
GFCORO CCNTAIAS AO CHARACTERS
DATA RICOFD IS MEL-INE
$01 \mathrm{NLL}-1 \mathrm{H}$.
02 MEL-I PICXX OCCURS 40 TIMES.
FO PRT-FILE
LAEEL EECOROS ARE OMITTEO
DATA FRCORD IS PRT-REC.
© 1 FRT-KEC.
0 O FTLLER PICK.
02 FUUSIC PIC $x(6)$.
02 UETAIL-LK。
03 FILLER PIC x.
03 LFFT-OVEF FIC (12ち).
FO BASS-FILF
LAEEL $\because E G O R D S$ AFE STANOAKD
FEENRD CONTAIHS SO CHARACTEFS
DATA AECOKO IS RASS-IN.
01 PASS-1:
Q2 BASS-1 PIC $x \times$ OCCURE 4 TYMES.
FS ChundirltE
LAOSL GECORDS APE STANDAKO
RECGRC COMTAINS 8O CHABACTCRS
CATA RERCRO IS EHORO-IN.
01 CHERO-IM。
02 CHOHS-I FIC $x \times$ COCUPS 40 TIMES.
WGRKTVG-ETORAGE SECTICN.
01 OUNT VIC 49 VALUF $2 E R O R S$.
$\begin{array}{llll}01 & \text { OUMT } & \text { PIC } 49 \\ 01 & \text { TOT-CT } & \text { PIC } 9(4) & V A L U F ~ 2 E R O R S . ~\end{array}$

01 Eft

PIC \because
01 KOF

STLEET OLT-FILF ASSIGN TO UT-S-DRTHTER.
BHMT ORAGE SECTION:
VALUE ZEROTS.
VALUE SPACRS.
VALUE ZEFC.
Valus x frof B .

APPENDIX A-Continued

APPENDIX A--Continued

APPENDIX A--Continued

APPENDIX A--Continued

APPENDIX B

//MIKE JOB (2032-4182,:50,1), ©TURNER •,CLASS=A.HS6LEVEL=(1,1)

 I/SYSPRINT DD SYSOUT $=A$11 DISP= $010 L D$, DELEMES, UNIT $=2314$,VOLFSER=USRPAK ***
 ******************** IEF2361 RLLOC. FOR MIKE
IEF2361 RLLOC. FLR MIKE
1EF2371 533
IEF2371
125
ALLOCAYED
ALLOCAEE TO SYPRINT

COOE 0000

chner
termination

JOB. 323

APPENDIX B--Continued

SYSIN

```
* AOD NAME=MUSIC,LIST=ALL
*/ NUMEER NEWI=10,INCR=10
```

NEW MASTER
IEBUPOTE LOG PAGE 0001

APPENDIX B--Continued

NEW MASTER
IEBUPDTE LOG PAGE 0002

APPENDIX B--Continued

NEW MASTER

APPENDIX B--Continued

APPENDIX B--Continued

APPENDIX B--Continued

IEBUPDTE LOG PAGE 0006

CB545 V2 LVL. 78 DIMAY72 IBM OS AMERICAN NAYIONAL STANDARO COBOL

1

00001 IDENTIFICATION DIVISION. 00000010
$00002 \quad$ PROGRAM=ID. MUSIC. 00000020
00003
00004 00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
OATE-WRITTEN. FEB 21.1980. 00000030

EVVIRONMENI OIVISION. 00000050
CONFIGURATION SECTION. 00000060
SOURCE-COMPUTER. IBM-360-H50. 00000070
OBJECT-COMPUTER. IBM-360-HSO.

FILE-CONTROL. 00000100
SFLECT MEL-FILE ASSIGN TO UT-S-MELOOY. 00000110
SELECT BASS-FILE ASSIGN TO UT-S-BASS. 00000120
SELECT CHORO-FILE ASSIGN TO UT-S-CHORO. 00000130
SELECT FRT-FILE ASSIGN TO UT-S-PRINTER. 00000140

FILE SECTION. 00000260
FD MEL-FILE 00000170
LAEEL RECORDS ARE STANDARO $\quad 00000180$
RECORD CONTAINS 80 CHARACTERS 00000190
COU IS MEL-IN 00000200
01 MEL-IN. 00000210
O2 MEL-I PICXX OCCURS 40 TIMES. 00000220
FO PRT-FILE 00000230
LABEL RECORDS ARE OMITTED 00000240
01 PRT-REC. $0 . .$.
02 FILLER PIC X .
02 MUSIC PIC $\times(6)$. 00000270

02 DETAIL-LN. 03 FILLER 00000290

00033 FD BASS-FILE 00000320
$\begin{array}{lll}00035 & \text { DATA RECORD IS BASS-IN. } \\ 00036 & \text { BASS-IN. }\end{array}$
00036
01 BASS-IN.
00037
02 BASS-I PIC XX OCCURS 40 TIMES. 00000370

APPENDIX B--Continued

APPENDIX B--Continued

APPENDIX B--Continued

00169 00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183

00184

00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225

```
    EXHIEIT NAMED IN-REC.
        MOVE -MELODY: TO MUSIC.
mOVE "MELOOY" TO MUSIC.
    00001700
    00001710
```



```
        BASS-PAR. .
```



```
        MOVE REROES TO KOUNT. KOUNT = 40...00001750
        PERFORM 8ASS-PAR2 UNYIL KOUNT = 40. 
```



```
        EXIT. ... 00001790
        CHORD-PAR. ..........................................................................000
        READ CHORD-FILE AT ENO MOVE 1 TO EOF, GO TO CHD EXIT 00001810
        MOVE ZEROES TO KOUNT. . 00001820
        PERFORM CHORO-PAR2 UNTIL KOUNT =40....................................001830
        EXHIBIT NAMED IN-REC. 
```



```
        CHD-EXIT. 
        EXIT.
MEL-PAR2.
    ADD 1 TO KOUNT, TOT-CT.
    MOVE MEL-I (KOUNT) TO IN-REC.
    IF IN~REC = * SUBTRACT I FROM TOT-CT. 00001910
```



```
BASS-PARZ.
    ADO I TO KOUNT, TOT-CT.
```



```
    PERFORM CALCULATE. 00001970
CHORD-PAR2.
    AOD 1 TO KOUNT, TOT-CT.
    MOVE CHORD-I (KOUNT) TO IN-REC. 
    IF IN-REC = . SURTRACT 1 FROM TOT-CT..............................0002010
    PERFORM CALCULATE. ...................00002020
calculate.
    IF IN-REC = UN' ADD 1 TO UN ELSE, ...............................0002040
    IFIN-REC = 'N2" ADD 1 TO N2 ELSE, (MON 1 TO H2 ELSE, 
```



```
    IFIN-REC = MMS'ADD 1 TO MS ELSE, 
```



```
    IF IN-REC = 'A4. ADD 1 TO A4 ELSE, 
    IF IN-REC = OS' ADD 1 TO DS ELSE, 
```



```
    IF IN-REC = ASS ADD 1 TO AS ELSE, 
    IF IN-REC = MGG.ADD 1 TO NG ELSE, MG ELSE, 00002150
```



```
    IF IN-REC = MM7, ADO 1 TO MT ELSE, }0000217
    IF IN-REC = PP8, ADD I TO PB ELSE, 00002180
```



```
PER-CENT. ............00002210
EXHISIT NAMEDUN, N2,M2,N3.M3, P4, M, 00002220
                A4, D5,P5,N6,MG,N7,M7,P8. 
```


APPENDIX B--Continued

000804
000886

APPENDTX B--Continued

cross reference table

ENTRY NAME LOCATION
TOABEND IEEB
ILBOSTPI $282 E$.

NAME LOCATION NAME LOCATION NAME LOCATION

 282 E $\begin{array}{ccc}\text { O SYMBOL IN CONTROL SECTION } & \\ \text { ILBOSTPO } & \text { ILBOSTPO } \\ \text { ILBOACPO } & \text { ILBOACPO } \\ \text { ILBODSPO } & \text { ILBODSPO } & \\ & \end{array}$

ENTRY ADDRESS 00
8 CB
800
808
CONTROL SECIION NI9IBO JW甘N

MUSIC 00 CoBPSW $1 E 30$

ILBOACPO* 1F30 $\begin{array}{ll}\text { ILBODSPO* } & 2118 \\ \text { ILBOSTP0* } & 2818\end{array}$
abenos * 2850
LENGTH
0 E 3 I
43 700
35

534

00
2088
doEs NOI EXIST BUT HAS BEEN ADOED. TO DATA SET
ENTRY ADORESS
TOTAL LENGTH
***musical
APPENDIX B--Continued

APPENDIX C

APPENDIX C--Continued
all pieces of music
bardque

perfect UNISON	MINOR SECOND	MAJOR SECOND	$\begin{aligned} & \text { MINOR } \\ & \text { THIRD } \end{aligned}$	$\begin{aligned} & \text { MAJOR } \\ & \text { THIRD } \end{aligned}$	PERFECT FOURTH	$\begin{aligned} & \text { AUGMENTED } \\ & \text { FOURTH } \end{aligned}$	DIMINISH FIFTH	perfect FIFTH	augmented FIFTH	$\begin{aligned} & \text { MINOR } \\ & \text { SIXIH } \end{aligned}$	hajor SIXIH	$\begin{gathered} \text { MINOR } \\ \text { SEVENTH } \end{gathered}$	MAJOR SEYENTH	PERFECT OCTAVE
ELody 0104	0205	0369	0041	0039	0061	0001	0002	0829	0000	0001	0006	0001	0004	0008
ERCEN11.89	23.45	42.21	4.69	4.46	6.97	0.11	0.22	3.31	0.00	0.11	0.68	0.11	0.45	0.91
lass 0064	0214	0278	0032	0035	0076	0001	0004	0052	0000	0004	0004	0005	0003	0036
ERCEN 7.91	26.45	34.36	3.95	4.32	9.39	0.12	0.49	6.42	0.00	0.49	0.4	0.61	0.37	4.44
HORD 0000	0003.	0034	0153	0114	0056	0014	0029	0145	0002	0078	0096	0044	0007	012
ercen 0.00	0.33	3.74	16.86	12.56	6.17	1.54	3.19	15.98	0.22	8.59	10.58	4.85	0.77	13.78

1J3J8Jd HOCVW YONIW tave 0011 0.49 $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{a}{3}$ n
m
on $\stackrel{ \pm}{9}$

all pieces of music baroque
a3in3won

NOSIN
103183 A
ODY 0475
: RCE N2 1.53
iss 0350
RCEM17. 36
tord 0000
rcem 0.00

$$
\begin{gathered}
\text { MINDR } \\
\text { SIXTH } \\
0012 \\
0.54 \\
0011 \\
0.54 \\
0177 \\
7.95
\end{gathered}
$$

APPENDIX C--Continued

APPENDIX C --Continued

PERFECI
OCTAVE
0037 0037 $\stackrel{N}{0}$ $\overrightarrow{0}$
a
0 m
\vdots
\vdots n
0
0
0 $\stackrel{a}{a}$

MAJOR
SIXTH 0022 \circ
\vdots

\vdots | 응 |
| :--- |
| 0 |

 10.09

MINOR
SIXIH 0021 $\begin{array}{ll}\infty & N \\ \infty & 0 \\ 0 & 0\end{array}$ 0.50 $\underset{\sim}{N}$ 0
∞
∞ UGMENTED
FIFIH

0000

-8	
0	
0	

 13.78
APPENDIX C--Continued

APPENDIX C--Continued
ALL PIECES OF MUSIC ROMANTIC

$\begin{aligned} & \text { ECT } \\ & \text { SON } \end{aligned}$	MINOR SECOND	MAJOR. SECOAD	MINOR THIRD	MAJOR THIRO	PERfect FOURTH	AUGMENTED FOURTH	DIMINISH FIFTH	PERFECT FIFTH	AUGMENTED FIFTH	$\begin{aligned} & \text { MINOR } \\ & \text { SIXTH } \end{aligned}$	$\begin{aligned} & \text { MAJOR } \\ & \text { SIXJH } \end{aligned}$	MINOR SEVENTH	hajor SEVENTH	PERFECt octave
176	0130	0194	0055	0047	0047	0000	0001	0012	0000	0007	0001	0003	- 0000	0000
, 30	22.76	33.97	9.63	8.23	8.23	0.00	0.17	2.10	0.00	1.22	0.17	0.17	0.00	0.00
. 08	0057	0110	0063	0021	0063	0002	0002	0090	0000	0009	0001	0002	0000	0015
. 67	10.38	20.03	11.47	3.82	11.47	0.36	0.36	16.39	0.00	1.63	0.18	0.36	0.00	2.73
100	0000	0022	0070	0126	0026	0001	0002	0103	0001	0042	0046	0015	0002	0149
.00	0.00	3.61	11.51	20.72	4.27	0.16	0.32	16.94	0.16	6.90	7.56	2.46	0.32	24.50

APPENDIX D

Music Used in Tables

Baroque Period:
J. S. Bach

St. John Passion (1723)
Mass in B Minor (1733)
Christ Lag in Todesbanden
A. Vivaldi

Beatus Vir
Kyrie
Magnificat
J. P. Rameau

Motet: Gai
Motet: Laboravi
Motet: Vivement
Classical Period:
F. J. Haydn

Die Schbpfung (1796-1798)
Agnus Dei from the Theresa Mass (1799)
Te Deum Laudamus in C Major (1765)
W. A. Mozart

Gloria from Mass in C Major K-317
Dies Irae from the Requiem $\mathrm{K}-626$
Ave Verum K-618
L. V. Beethoven

Last Movement of Symphony \#9 Opus 125
Agnus Dei from Missa Solemnis Opus 123
Der Glorreiche Augenbluck \#l Opus 136
Romantic Period:
H. Berlioz

Chorus of the Maji (1832)
Agnus Dei from the Requiem (1837)
Resurrexit (1824)

APPENDIX D--Continued

J. Brahms
The Hunter
Requiem - lst Movement (1857-1868)
Ach Lieber Herre Jesu Christ
A. Bruckner
Agnus Dei From Mass \#3 in F Minor (1868)
Gloria From Mass \#l in D Major (1864)
Credo From Mass \#2 in E Minor (1866)
Other Works Consulted
J. S. Bach
Brandenburg Concertos \#5 \& \#6
Chorale \#72 (Passion Chorale)
L. V. Beethoven
Mass in C Major Opus 86
Excerpts From Fidelio Opus 72
Symphony \#7 (2nd movement) Opus 92
Piano Sonata Opus 13 (2nd movement)
H. Berlioz
Te Deum Opus 22 (1849)
Damnation of Faust Opus 24 (1846)
J. Brahms
Ave Maria Opus 12 (1858)
Serenade in D Major Opus 11 (1857)
Symphony \#4 Opus 98 (1885)
A. Bruckner
Missa Solemnis (1854)
Requiem (1875)
F. J. Haydn
Stabat Mater (1767)
Missa Brevis in F Major (1749)
W. A. Mozart
Missa Brevis Kl40
Missa Solemnis Kl39
Piano Concerto \#l

BIBLIOGRAPHY

BIBLIOGRAPHY

Books
Apel, Willi. Harvard Dictionary of Music. Cambridge, Mass.: Harvard University Press, 1956.

Atkisson, Harold F. Basic Counterpoint. New York: McGrawHill Book Co., 1956.

Bukofzer, Manfred F. Music in the Baroque Era. New York: W. W. Norton and Co., 1947.

Christ, William, Richard Delone, Vernon Kliewer, Lewis Rowell, William Thomson. Materials and Structure of Music. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1972.

Davis, Ferdinand and Donald Lybbert. The Essentials of Counterpoint. Norman, Oklahoma: University of Oklahoma Press, 1977.

Davis, William S. Information Processing Systems. Reading, Massachusetts: Addison-Wesley Publishing Co., 1978.

Dickinson, George S. A Handbook of Style in Music. New York: DaCapo Press, 1969.

Forte, Allen. Tonal Harmony in Concept and Practice. New York: Holt, Rinehart, and Winston, 1974.

Fux, Johann Joseph. The Study of Counterpoint, edited and translated by Alfred Mann. New York: W. W. Norton and Company, 1965.

Grout, Donald Jay. A History of Western Music. New York: Holt, Rinehart, and Winston, 1960.

Hindemith, Paul. Craft of Musical Composition Volume I, translated by Arthur Mendel. New York: Schott Inc., 1970.

Jacobs, Arthur (editor). Choral Music. Baltimore, Maryland: Penquin Books, 1963.

Kennan, Kent Wheeler. Counterpoint. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1972.

LaRue, Jan. Guidelines for Style Analysis. New York: W. W. Norton and Company Inc., 1970.

Mason, Neale B. Essentials of Eighteenth Century Counterpoint. Dubuque, Iowa: William C. Brown Co., 1968.

Ottman, Robert W. Advanced Harmony. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1972.

Palisca, Claude V. Baroque Music. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1968.

Phillippakis, Andrea S. Structured Cobol. New York: McGrawHill Book Co., 1977.

Piston, Walter. Counterpoint. New York: W. W. Norton and Company, 1947.

Ratner, Leonard G. Music: Listener's Art. New York: McGrawHill Book Co., 1966.

Scherman, Thomas K. and Louis Biancolli (editors). The Beethoven Companion. New York: Doubleday and Co., 1972.

Scott, Samuel H. Tonal Counterpoint. Denton, Texas: The North Texas Printing Office, 1975.

Stein, Leon. Structure and Style. Evanston, Illinois: Summy-Birchard Company, 1962.

Tinctoris, Johannes. The Art of Counterpoint, translated and edited by Albert Seay. American Institute of Musicology, 1961.

Zarlino, Gioseffo. The Art of Counterpoint, edited by Claude V. Palisca. New Haven, Connecticut: Yale University Press, 1968.

Articles
Cohen, J.C., "Information Theory and Music," Behavioral Sciences, VII: 137, 1952.

Quastler, H., "Studies of Human Channel Capacity" In E.C. Cherry (Ed.), Information Theory. - Third London Symposium, Academic Press, New York, 1955, p. 361.

Unpublished Material

Baker, R., A Statistical Analysis of the Harmonic Practice of the 18 th and Early 19th Centuries. Unpublished doctoral dissertation, University of Illinois, 1963.

Bean, C., Jr., Information Theory Applied to the Analysis of a Particular Formal Process in Tonal Music. Unpublished doctoral dissertation, University of Illinois, 1961.

[^0]: $1_{\text {The term "style" }}$ refers to the method in which form, melody, harmony, and rhythm in a musical composition or group of compositions are treated. In actual practice, the term is applied in a variety of ways. It may be applied to single works (the style of Beethoven's fifth symphony); to types of composition (symphonic style, concerto style, etc.); to a specific media (instrumental style, vocal style, etc.); to methods of composition (contrapuntal style, homophonic style, etc.); or to historical periods (Baroque style, Classical style, etc.) or in a combination form such as Beethoven's symphonic style or Mozart's concerto style. This study will refer mainly to historical style; when another connotation of the term is implied, it will be specifically stated.

[^1]: IThe term describes the particular manner in which a fully diminished seventh chord is "resolved." That is, while a diminished seventh chord is regularly implying a dominant function (i.e.,viio 7 of the resultant harmony), this particular manner employs it as a decorative chord--nonessential harmony--containing two chromatic appoggiaturas. Examples are $\#_{v^{\circ}}{ }^{\circ} 7$ and \#ii ${ }^{\circ} 7$, "resolving" to V and I respectively. (C£. R. Ottman, Advanced Harmony, pp.169-170).

