An exploratory study of alkali sulfate aerosol formation during biomass combustion

Lusi Hindiyarti ${ }^{\text {a }}$, Flemming Frandsen ${ }^{\text {a }}$, Hans Livbjerg ${ }^{\text {a }}$, Peter Glarborg ${ }^{\text {a,** }}$, Paul Marshall ${ }^{\text {b }}$
${ }^{a}$ Department of Chemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
${ }^{\mathrm{b}}$ Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, P.O. Box 305070, Denton, TX 76203-5070, United States

Received 3 April 2007; received in revised form 30 August 2007; accepted 4 September 2007
Available online 25 September 2007

Abstract

It is still in discussion to what extent alkali sulfate aerosols in biomass combustion are formed in the gas phase by a homogeneous mechanism or involve heterogeneous or catalyzed reactions. The present study investigates sulfate aerosol formation based on calculations with a detailed gas phase mechanism. The modeling predictions are compared to data from laboratory experiments and entrained flow reactor experiments available in the literature. The analysis support that alkali sulfate aerosols are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The rate-limiting step may be the oxidation of sulfite to sulfate, rather than the oxidation of SO_{2} to SO_{3} proposed previously. Even though the proposed model is consistent with experimental observations, experiments in a rigorously homogeneous system are called for to test its validity. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Sulfate aerosols; Gas phase; Modeling; Sulfur oxide

1. Introduction

In Denmark, there is a significant amount of straw available as byproducts from farming. Previous experience with combustion of some biomass fuels, including straw, has revealed problems with formation of submicron aerosol particles, deposits, corrosion, and emissions. These problems are closely linked to the chemical composition of the biomass. The content of inorganics in annual biomass fuels is about $5-10 \%$ of the total mass, and in straw the alkali content, especially potassium, is very high [1].

The formation of aerosols is not favorable for the environment or for human health, since they affect the health of living creatures. The submicron particles are formed by condensation of volatilized material, mainly alkali salts. Their main constituents are the chlorides and sulfates of

[^0]the alkali metals. Their formation also has negative effects on the boiler operation because they penetrate particle filters more easily than larger combustion particles, and they are usually accompanied by corrosive deposits on boiler surfaces [2].

The characteristics of aerosols formed in the combustion of different biomass fuels have been reported for a wide range of boiler scales from domestic heat producers to large electricity generation plants [3,4]. The relevance of alkali and chlorine for deposit formation and boiler corrosion was pointed out in several studies [5-8]. Alkali metals may combine with alumino-silicates, causing lower melting temperatures of boiler deposits. Without the presence of the alkali, the boiler deposits do not melt at typical biomass combustion temperatures. Therefore, the presence of alkali will increase the fouling tendency in biomass-fired power plants compared to coal-fired boilers [5,6,9].

Alkali sulfates play an important role in the formation of submicron particle formation [2,3,10,11]. Alkali sulfate is normally present in aerosols formed from biomass
combustion $[2,3,11]$ and in experiments using a laboratory flow reactor [12,13]. It is still in discussion as to what extent alkali sulfate aerosol formation is initiated in the gas phase by a homogeneous mechanism or involves a heterogeneous mechanism. Only a small fraction of the equilibrium value for gas phase alkali sulfate is expected to form according to early gas phase kinetic considerations [14]. The work by Steinberg and Schofield [14-16] on homogeneous interactions of sodium and sulfur in the burned gas of flames implied that kinetic limitations ruled out homogeneous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ formation mechanisms under these conditions. Instead, the formation was reported to be a surface phenomenon, involving condensation of alkali chlorides, followed by reaction with gas phase sulfur species to form sulfates in the condensed phase [14]. However, more recent results from Iisa et al. [13] indicate that the sulfation rate in the condensed phase under combustion conditions is too slow to account for the aerosol formation. A number of studies suggest that sulfate aerosols may be formed in the gas phase by recondensation of alkali, volatilized in the combustion zone [2,3,11,13,17]. According to these studies, the particles are formed from alkali sulfate vapors by homogeneous nucleation of salt seeds, which grow by condensation and coagulation. The process is controlled by chemical reactions in the gas between alkali, chlorine, and sulfur species [2,17]. The formation of aerosol particles by homogeneous nucleation from supersaturated vapors is practically immediate, once a certain threshold of supersaturation is exceeded.

A model of particle formation during cooling of a flue gas from the combustion of fuels rich in volatile alkali species was developed by Christensen et al. [2,3,11,18]. According to that model, sulfate seeds are formed by homogeneous nucleation of $\mathrm{K}_{2} \mathrm{SO}_{4}$ vapors at approximately 1073 K . When the flue gas cools down, KCl condenses on these nuclei. This suggestion has received some experimental support $[12,19]$.

In a recent study, Glarborg and Marshall [17] proposed a detailed mechanism for a gas phase sulfation process. According to this work, the oxidation of SO_{2} to SO_{3} is the first and presumably rate-limiting step in the gaseous alkali sulfate formation. The subsequent step was proposed to be an association reaction involving KOH or KCl with SO_{3} :

$$
\begin{equation*}
\mathrm{KOH}+\mathrm{SO}_{3}(+\mathrm{M}) \rightarrow \mathrm{KHSO}_{4}(+\mathrm{M}) \tag{R36}
\end{equation*}
$$

$\mathrm{KCl}+\mathrm{SO}_{3}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{3} \mathrm{Cl}(+\mathrm{M})$
Here, the reaction numbers refer to the listing in Table 3. The alkali complexes formed in these reactions may then participate in a series of shuffle reactions leading to alkali sulfate formation, mainly:

$$
\begin{align*}
& \mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl} \tag{R65}\\
& \mathrm{KHSO}_{4}+\mathrm{KCl} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{HCl} \tag{R60}
\end{align*}
$$

The proposed mechanism indicates a fast and efficient gas phase sulfation process, with oxidation of SO_{2} being the rate-limiting step rather than alkali transformations. The plausibility of the mechanism depends on the thermal stability of the intermediate alkali complexes in the gas phase ($\mathrm{KSO}_{3} \mathrm{Cl}$ and KHSO_{4}), as well as the suggestion that these molecule-molecule reactions are fast due to dipoledipole interactions [17].

The objective of this study is to investigate further the active mechanism in the sulfate aerosol formation in biomass combustion. Recent advances in our understanding of the SO_{2} oxidation chemistry [20-22] and $\mathrm{K} / \mathrm{Cl} / \mathrm{S}$ interactions [17,23] are supplemented with an investigation of plausible novel pathways for gas phase $\mathrm{K}_{2} \mathrm{SO}_{4}$ formation, based on ab initio methods, to yield an updated detailed reaction mechanism for sulfate formation. Modeling predictions are compared to experimental data on aerosol formation from Iisa et al. [13], Jensen et al. [12], and Jimenez and Ballester $[19,24]$. These data cover a range of experimental techniques, as well as variations in SO_{2} and O_{2} inlet concentration, residence time, and temperature time history.

2. Detailed chemical kinetic model

The chemical kinetic model for the gas phase interactions between sulfur, chlorine, and potassium earlier proposed by Glarborg and Marshall [17] is used as basis for the current modeling. The reaction mechanism consists of subsets for $\mathrm{H}_{2} / \mathrm{O}_{2}$, chlorine chemistry, sulfur chemistry, potassium chemistry and the interactions between these subsets. The importance of homogeneous sulfation pathways not involving SO_{3} formation is investigated. Specifically, the $\mathrm{K} / \mathrm{S} / \mathrm{O} / \mathrm{H}$ subset of Glarborg and Marshall is extended with the alkali species KHSO_{3} and KSO_{4}, which have not previously been considered in modeling, as well as a number of additional elementary reactions.

The thermodynamic data used in the present study are taken from previous work [17,21], except for KHSO_{3} and KSO_{4} and their sodium equivalents, and $\mathrm{KO} . \mathrm{Ab}$ initio studies by Lee et al. [25] reveal a complex electronic structure for KO, with two electronic states very close in energy to the ground state. Based on the parameters provided by Lee et al., we have evaluated partition functions for each state via the rigid-motor harmonic-oscillator approximation, and combined them to derive the thermochemistry shown in Table 2.

The neutral alkali species KHSO_{3} and KSO_{4} (see Fig. 1) are unknown experimentally, so their properties are predicted via ab initio methods. Details of the approach have been given previously [17]. Briefly, the Gaussian-3 methodology [26], as modified for alkali metals [27], was employed to derive the 0 K molecular energies listed in Table 1. Computations were carried out with the Gaussian 03 program suite [28]. These energies were used to compute the 0 K enthalpy changes for the isodesmic processes

Fig. 1. MB3LYP/6-311G(d,p) geometries computed for KSO_{4} and KHSO_{3}. Distances in $10^{-10} \mathrm{~m}$ and angles in degrees.
$\mathrm{OH}+\mathrm{AHSO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{ASO}_{4}$
$\mathrm{OH}+\mathrm{AHSO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{ASO}_{3}$
The A here represents alkali metal species either as potassium (K) or sodium (Na). Next, moments of inertia and vibrational frequencies scaled by 0.99 , computed at the B3LYP/6-311G(d,p) level of theory and given in Table 1, were used to calculate the temperature-dependent heat capacities and other thermodynamic properties (see Table 2), and thus to correct the reaction enthalpies to 298 K . We then used our earlier thermochemistry for AHSO_{4} and ASO_{3} [17], together with values for OH [29] and $\mathrm{H}_{2} \mathrm{O}$ [30] to find $\Delta_{\mathrm{f}} H_{298}$ for the unknown species. The $\mathrm{C}_{2 \mathrm{v}}$ structure for ASO_{4} shows the binding to a pair of S-O bonds highlighted previously [17] in several other alkali-sulfur species, and is in accord with the calculations of Wang et al. [31]. The AHSO_{3} molecules exhibit an unusual structure suggestive of binding not only to the two $\mathrm{S}-\mathrm{O}$ groups but also to the hydroxyl group (see Fig. 1).

The reactions that oxidize SO_{2} to SO_{3} are of special interest in this study since they have been proposed as possible rate-limiting steps in the $\mathrm{K}_{2} \mathrm{SO}_{4}$ formation. The sulfur subset was taken from recent work by the authors [20-22] who derived revised rate constants for several reactions important for the $\mathrm{SO}_{2} / \mathrm{SO}_{3}$ interconversion and validated

Table 1
Ab initio results for alkali metal species

Molecule	$G 3$ energy $(\mathrm{au})^{\mathrm{a}}$	$\Delta H_{\mathrm{f}, 298}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Symmetry	Inertia product $\left(\mathrm{GHz}^{3}\right)$	Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)^{\mathrm{b}}$
NaHSO_{3}	-786.44191	-668.3	C_{1}	58.22	$129,166,306,322,417,454,498,579,990,1025,1094$,
NaSO_{4}	-860.97449	-655.8	$\mathrm{C}_{2 \mathrm{v}}\left({ }^{2} \mathrm{~B}_{1}\right)$	24.34	3750
				$84,219,282,327,384,427,515,580,765,915,1090$,	
KHSO_{3}	-1224.04538	-690.7	C_{1}	23.19	1117
KSO_{4}	-1298.58048	-698.1	$\mathrm{C}_{2 \mathrm{v}}\left({ }^{2} \mathrm{~B}_{1}\right)$	10.36	$117,149,235,304,396,427,494,572,990,1028,3752$
				$58,173,215,333,370,430,513,564,762,918,1108$,	

${ }^{\mathrm{a}} 1$ a.u. $\approx 2625.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
${ }^{\mathrm{b}}$ B3LYP/6-311G(d,p) result. Frequencies scaled by 0.99 .

Table 2
Thermodynamic properties for selected alkali species

Species	$H_{\mathrm{f}, 298}$	S_{298}	$C_{p, 300}$	$C_{p, 400}$	$C_{p, 500}$	$C_{p, 600}$	$C_{p, 800}$	$C_{p, 1000}$	$C_{p, 1500}$
K	21.26	34.80	4.97	4.96	4.96	4.97	4.98	4.98	4.98
KO	13.50	57.45	8.82	8.82	8.82	8.82	8.82	8.82	8.82
KO_{2}	16.00	64.15	11.57	12.13	12.56	12.88	13.27	13.47	13.69
KOH^{2}	-55.41	56.90	11.77	12.21	12.47	12.62	12.83	13.07	13.62
KCl	-51.27	57.11	8.72	8.85	8.92	8.98	9.04	9.09	9.20
KSO_{2}	-95.38	73.46	15.61	16.73	17.55	18.15	18.84	19.16	19.53
KSO_{3}	-135.69	78.93	18.54	20.43	21.83	22.83	24.03	24.58	25.23
KSO_{4}	-166.84	82.19	22.18	24.86	26.78	28.10	29.56	30.18	31.10
KHSO_{3}	-165.07	79.63	21.44	23.78	25.46	26.64	27.99	28.66	29.95
KHSO_{4}	-225.66	83.80	23.73	26.68	28.92	30.57	32.66	33.80	35.42
$\mathrm{~K}_{2} \mathrm{SO}_{4}$	-261.29	90.14	26.42	29.49	31.63	33.11	34.86	35.81	36.83
$\mathrm{KSO}_{3} \mathrm{Cl}^{2}$	-188.29	86.25	23.33	25.38	26.92	28.06	29.47	30.17	31.01
NaSO_{4}	-152.47	81.02	21.21	24.10	26.15	27.60	29.25	29.96	30.93
NaHSO_{3}	-153.27	78.26	20.47	23.04	24.92	26.26	27.83	28.57	$[17]$

Units are kcal $\mathrm{mol}^{-1}\left(H_{\mathrm{f}, 298}\right)$ and cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}\left(\mathrm{~S}_{298}, C_{p}\right)$.

Table 3
Rate coefficients for reactions in the potassium subset

No	Reaction	A	n	E	Note
1	$\mathrm{K}+\mathrm{O}+\mathrm{M} \rightleftharpoons \mathrm{KO}+\mathrm{M}$	1.5 E 21	-1.50	0	[17] Est
2	$\mathrm{K}+\mathrm{OH}+\mathrm{M} \rightleftharpoons \mathrm{KOH}+\mathrm{M}$	3.8E19	-0.65	0	[23]
3	$\mathrm{K}+\mathrm{HO}_{2} \rightleftharpoons \mathrm{KOH}+\mathrm{O}$	1.0E14	0.00	0	[17] Est
4	$\mathrm{K}+\mathrm{O}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KO}_{2}(+\mathrm{M})$	3.6E14	0.00	0	see [17]
	Low pressure limit	5.4 E 21	-1.32	0	
5	$\mathrm{K}+\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{KOH}+\mathrm{OH}$	2.5E13	0.00	0	[17] Est ${ }^{\text {a }}$
6	$\mathrm{K}+\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{KO}+\mathrm{H}_{2} \mathrm{O}$	1.6 E 13	0.00	0	[17] Est ${ }^{\text {a }}$
7	$\mathrm{KO}+\mathrm{H} \rightleftharpoons \mathrm{K}+\mathrm{OH}$	2.0 E 14	0.00	0	[17] Est
8	$\mathrm{KO}+\mathrm{O} \rightleftharpoons \mathrm{K}+\mathrm{O}_{2}$	2.2E14	0.00	0	[17] Est ${ }^{\text {a }}$
9	$\mathrm{KO}+\mathrm{OH} \rightleftharpoons \mathrm{KOH}+\mathrm{O}$	2.0E13	0.00	0	[17] Est
10	$\mathrm{KO}+\mathrm{HO}_{2} \rightleftharpoons \mathrm{KOH}+\mathrm{O}_{2}$	5.0E13	0.00	0	[17] Est
11	$\mathrm{KO}+\mathrm{H}_{2} \rightleftharpoons \mathrm{KOH}+\mathrm{H}$	1.6 E 13	0.00	0	[17] Est ${ }^{\text {a }}$
12	$\mathrm{KO}+\mathrm{H}_{2} \rightleftharpoons \mathrm{~K}+\mathrm{H}_{2} \mathrm{O}$	3.1 E 12	0.00	0	[17] Est ${ }^{\text {a }}$
13	$\mathrm{KO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{KOH}+\mathrm{OH}$	1.3 E 14	0.00	0	[17] Est ${ }^{\text {a }}$
14	$\mathrm{KO}+\mathrm{CO} \rightleftharpoons \mathrm{K}+\mathrm{CO}_{2}$	1.0 E 14	0.00	0	[17] Est ${ }^{\text {a }}$
15	$\mathrm{KOH}+\mathrm{H} \rightleftharpoons \mathrm{K}+\mathrm{H}_{2} \mathrm{O}$	5.0 E 13	0.00	0	[17] Est
16	$\mathrm{KOH}+\mathrm{KOH} \rightleftharpoons \mathrm{K}_{2} \mathrm{O}_{2} \mathrm{H}_{2}$	8.0 E 13	0.00	0	[17] Est
17	$\mathrm{KO}_{2}+\mathrm{H} \rightleftharpoons \mathrm{K}+\mathrm{HO}_{2}$	2.0 E 14	0.00	0	[17] Est
18	$\mathrm{KO}_{2}+\mathrm{H} \rightleftharpoons \mathrm{KO}+\mathrm{OH}$	5.0 E 13	0.00	0	[17] Est
19	$\mathrm{KO}_{2}+\mathrm{H} \rightleftharpoons \mathrm{KOH}+\mathrm{O}$	1.0E14	0.00	0	[17] Est
20	$\mathrm{KO}_{2}+\mathrm{O} \rightleftharpoons \mathrm{KO}+\mathrm{O}_{2}$	1.3 E 13	0.00	0	[17] Est ${ }^{\text {a }}$
21	$\mathrm{KO}_{2}+\mathrm{OH} \rightleftharpoons \mathrm{KOH}+\mathrm{O}_{2}$	2.0E13	0.00	0	[17] Est
22	$\mathrm{KO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{KO}+\mathrm{CO}_{2}$	1.0E14	0.00	0	[17] Est
23	$\mathrm{K}+\mathrm{Cl}+\mathrm{M} \rightleftharpoons \mathrm{KCl}+\mathrm{M}$	1.8 E 20	-1.00	0	see [17]
24	$\mathrm{K}+\mathrm{HCl} \rightleftharpoons \mathrm{KCl}+\mathrm{H}^{\mathrm{b}}$	9.1 E 12	0.00	1180	see [17]
		1.0E14	0.00	3635	
25	$\mathrm{K}+\mathrm{Cl}_{2} \rightleftharpoons \mathrm{KCl}+\mathrm{Cl}$	4.4E14	0.00	0	[17] Est ${ }^{\text {a }}$
26	$\mathrm{KO}+\mathrm{HCl} \rightleftharpoons \mathrm{KCl}+\mathrm{OH}$	1.7E14	0.00	0	[17] Est ${ }^{\text {a }}$
27	$\mathrm{KOH}+\mathrm{HCl} \rightleftharpoons \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$	1.7E14	0.00	0	[17] Est ${ }^{\text {a }}$
28	$\mathrm{KO}_{2}+\mathrm{HCl} \rightleftharpoons \mathrm{KCl}+\mathrm{HO}_{2}$	1.4 E 14	0.00	0	[17] Est ${ }^{\text {a }}$
29	$\mathrm{KCl}+\mathrm{KCl} \rightleftharpoons \mathrm{K}_{2} \mathrm{Cl}_{2}$	8.0 E 13	0.00	0	[17] Est ${ }^{\text {a }}$
30	$\mathrm{K}+\mathrm{SO}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{2}(+\mathrm{M})$	3.7E14	0.00	0	see [17]
	Low pressure limit	5.2 E 23	-1.50	0	
31	$\mathrm{K}+\mathrm{SO}_{3}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{3}(+\mathrm{M})$	3.7 E 14	0.00	0	[17]
	Low pressure limit	4.7E34	-4.90	0	
32	$\mathrm{KO}+\mathrm{SO}_{2} \rightleftharpoons \mathrm{~K}+\mathrm{SO}_{3}$	5.0 E 12	0.00	0	Est
33	$\mathrm{KO}+\mathrm{SO}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{3}(+\mathrm{M})$	3.7E14	0.00	0	[17] Est
	Low pressure limit	5.2E23	-1.50	0	
34	$\mathrm{KO}+\mathrm{SO}_{3}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{4}(+\mathrm{M})$	1.0 E 14	0.00	0	[17] Est
	Low pressure limit	2.6 E 42	-7.60	0	
35	$\mathrm{KOH}+\mathrm{SO}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KHSO}_{3}(+\mathrm{M})$	1.0 E 14	0.00	0	Est as k_{36}
	Low pressure limit	2.6E42	-7.60	,	
36	$\mathrm{KOH}+\mathrm{SO}_{3}(+\mathrm{M}) \rightleftharpoons \mathrm{KHSO}_{4}(+\mathrm{M})$	1.0 E 14	0.00	0	[17]
	Low pressure limit	2.6E42	-7.60	0	
37	$\mathrm{KO}_{2}+\mathrm{SO}_{2} \rightleftharpoons \mathrm{KO}+\mathrm{SO}_{3}$	1.0E14	0.00	0	Est
38	$\mathrm{KO}_{2}+\mathrm{SO}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{4}(+\mathrm{M})$	1.0 E 14	0.00	0	Est as k_{36}
	Low pressure limit	2.6E42	-7.60	0	
39	$\mathrm{KSO}_{2}+\mathrm{O} \rightleftharpoons \mathrm{KO}+\mathrm{SO}_{2}$	1.3 E 13	0.00	0	[17] Est
40	$\mathrm{KSO}_{2}+\mathrm{OH} \rightleftharpoons \mathrm{KOH}+\mathrm{SO}_{2}$	2.0 E 13	0.00	0	[17] Est
41	$\mathrm{KSO}_{2}+\mathrm{OH}(+\mathrm{M}) \rightleftharpoons \mathrm{KHSO}_{3}(+\mathrm{M})$	2.0 E 13	0.00	0	Est
	Low pressure limit	1.0 E 23	-1.50	0	
42	$\mathrm{KSO}_{2}+\mathrm{O}_{2}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{4}(+\mathrm{M})$	1.0 E 14	0.00	0	Est as k_{36}
	Low pressure limit	2.6 E 42	-7.60	0	
43	$\mathrm{KSO}_{2}+\mathrm{KO}_{2} \rightleftharpoons \mathrm{~K}_{2} \mathrm{SO}_{4}$	1.0E14	0.00	0	[17] Est
44	$\mathrm{KSO}_{3}+\mathrm{O} \rightleftharpoons \mathrm{KO}+\mathrm{SO}_{3}$	1.3 E 13	0.00	0	[17] Est
45	$\mathrm{KSO}_{3}+\mathrm{OH}(+\mathrm{M}) \rightleftharpoons \mathrm{KHSO}_{4}(+\mathrm{M})$	2.0 E 13	0.00	0	Est
	Low pressure limit	1.0 E 23	-1.50	0	
46	$\mathrm{KSO}_{3}+\mathrm{KO} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}$	1.0 E 14	0.00	0	[17] Est
47	$\mathrm{KSO}_{4}+\mathrm{O} \rightleftharpoons \mathrm{KSO}_{3}+\mathrm{O}_{2}$	1.0 E 13	0.00	0	Est
48	$\mathrm{KSO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{OH}$	1.0 E 14	0.00	0	Est
49	$\mathrm{KSO}_{4}+\mathrm{KOH} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{OH}$	1.0 E 14	0.00	0	Est
50	$\mathrm{KSO}_{4}+\mathrm{HCl} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}$	1.0 E 14	0.00		Est
51	$\mathrm{KSO}_{4}+\mathrm{KCl} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cl}$	1.0 E 14	0.00	0	Est

Table 3 (continued)

No	Reaction	A	n	E	Note
52	$\mathrm{KHSO}_{3}+\mathrm{OH} \rightleftharpoons \mathrm{KSO}_{3}+\mathrm{H}_{2} \mathrm{O}$	2.0 E 13	0.00	0	Est
53	$\mathrm{KHSO}_{3}+\mathrm{OH} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{H}$	2.0E13	0.00	0	Est
54	$\mathrm{KHSO}_{3}+\mathrm{KO} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{K}$	1.0E14	0.00	0	Est
55	$\mathrm{KHSO}_{3}+\mathrm{KO}_{2} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{KO}$	1.0 E 14	0.00	0	Est
56	$\mathrm{KHSO}_{4}+\mathrm{H} \rightleftharpoons \mathrm{KSO}_{3}+\mathrm{H}_{2} \mathrm{O}$	2.0 E 13	0.00	0	Est
57	$\mathrm{KHSO}_{4}+\mathrm{O} \rightleftharpoons \mathrm{KHSO}_{3}+\mathrm{O}_{2}$	1.0 E 13	0.00	0	Est
58	$\mathrm{KHSO}_{4}+\mathrm{OH} \rightleftharpoons \mathrm{KSO}_{4}+\mathrm{H}_{2} \mathrm{O}$	2.0 E 13	0.00	0	Est
59	$\mathrm{KHSO}_{4}+\mathrm{KOH} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$	1.0 E 14	0.00	0	[17] Est
60	$\mathrm{KHSO}_{4}+\mathrm{KCl} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$	1.0 E 14	0.00	0	[17] Est
61	$\mathrm{KCl}+\mathrm{SO}_{3}(+\mathrm{M}) \rightleftharpoons \mathrm{KSO}_{3} \mathrm{Cl}(+\mathrm{M})$	1.0 E 14	0.00	0	[17]
	Low pressure limit	1.9 E 41	-7.80	0	
62	$\mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{H} \rightleftharpoons \mathrm{KSO}_{3}+\mathrm{HCl}$	2.0 E 13	0.00	0	Est
63	$\mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{K} \rightleftharpoons \mathrm{KSO}_{3}+\mathrm{KCl}$	2.0 E 13	0.00	0	Est
64	$\mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{OH} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{Cl}$	1.0 E 14	0.00	0	[17] Est
65	$\mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{HCl}$	1.0 E 14	0.00	0	[17] Est
66	$\mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{KOH} \rightleftharpoons \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$	1.0 E 14	0.00	0	[17] Est

Units are cm , mol, s, K.
${ }^{\text {a }}$ Estimated to be the same as the measured rate constant for the equivalent sodium reaction.
${ }^{\mathrm{b}}$ The resulting rate constant is the sum of the two rate constants.
an updated reaction mechanism against experimental data for SO_{2} oxidation over a wide range of conditions. The sulfur subset includes reactions of SO_{2} with O, OH, and HO_{2} to form SO_{3}, and reactions involving the HOSO_{2} intermediate, as well as reactions of SO_{3} with the O / H radical pool. All of these reactions may be important for the ratio of SO_{2} to SO_{3}.

The alkali subset of the reaction mechanism is listed in Table 3. Few of the rate constants in this subset have been determined experimentally and estimated values are assigned to most of the reactions [17,23]. Some additional reactions are added to the $\mathrm{K} / \mathrm{H} / \mathrm{S} / \mathrm{O}$ subset in the present work. The emphasis has been on reactions of alkali species that either promote oxidation of SO_{2} to SO_{3} or offer a pathway to potassium sulfate that does not involve SO_{3} as intermediate. Formation of SO_{3} may be promoted by reactions that replenish the chain carriers in the system. The interaction of alkali species with the O / H radical pool has been investigated in a number of studies [23,32-34]. Under favorable conditions, the alkali metals may participate in the chain-branching sequence

$$
\begin{equation*}
\mathrm{KOH}(+\mathrm{M}) \rightarrow \mathrm{K}+\mathrm{OH}(+\mathrm{M}) \tag{R2~b}
\end{equation*}
$$

$\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+\mathrm{H}$
However, under the conditions of the present study this sequence is not competitive. Alkali species may also promote SO_{3} formation by interaction with sulfur oxides. By analogy with reactions of SO_{2} with the O / H radical pool, this could occur directly by
$\mathrm{KO}+\mathrm{SO}_{2} \rightarrow \mathrm{~K}+\mathrm{SO}_{3}$
$\mathrm{KO}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{KO}+\mathrm{SO}_{3}$
or indirectly through a sequence such as
$\mathrm{KO}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KOSO}_{2}(+\mathrm{M})$
$\mathrm{KOSO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{KO}_{2}+\mathrm{SO}_{3}$

While the direct pathways ($\mathrm{R} 32, \mathrm{R} 37$) are conceivable, the route through KOSO_{2} is not feasible. KOSO_{2}, with the potassium atom bonded to a single oxygen atom, quickly rearranges to KSO_{3} where K is bonded to two O nuclei [17]. The reaction
$\mathrm{KSO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{KO}_{2}$
is strongly endothermic and too slow to be of significance. However, KSO_{3}, formed directly via
$\mathrm{KO}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{3}(+\mathrm{M})$
may promote sulfation through other pathways. Like other alkali molecules KSO_{3} has a strong dipole moment and may participate in molecule-molecule reactions, such as

$$
\begin{align*}
& \mathrm{KSO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{KHSO}_{4}+\mathrm{H} \tag{R56b}\\
& \mathrm{KSO}_{3}+\mathrm{KCl} \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{K} \tag{R63b}
\end{align*}
$$

The complexes KHSO_{4} and $\mathrm{KSO}_{3} \mathrm{Cl}$ may then form $\mathrm{K}_{2} \mathrm{SO}_{4}$ through reactions (R60) and (R65). However, both (R56b) and (R63b) are quite endothermic and slow under the conditions of interest. Another possibility is that KSO_{3} form KHSO_{4} by recombination with hydroxyl radicals,
$\mathrm{KSO}_{3}+\mathrm{OH}(+\mathrm{M}) \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{KHSO}_{4}(+\mathrm{M})$
Also KSO_{4} may be an intermediate in sulfation pathways that bypasses SO_{3}, e.g.

$$
\begin{equation*}
\mathrm{K}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{2}(+\mathrm{M}) \tag{R30}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{KSO}_{2}+\mathrm{O}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{4}(+\mathrm{M}) \tag{R42}
\end{equation*}
$$

$\mathrm{KSO}_{4}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cl}$
In addition to these reactions, a sequence involving KHSO_{3} was added to the mechanism

$$
\begin{align*}
& \mathrm{KOH}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KHSO}_{3}(+\mathrm{M}) \tag{R35}\\
& \mathrm{KHSO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{KHSO}_{4}+\mathrm{O} \tag{R57b}
\end{align*}
$$

followed by conversion of KHSO_{4} to $\mathrm{K}_{2} \mathrm{SO}_{4}$ (R60). This sequence is of particular interest, since it only involves reactions between stable species and may constitute a low-temperature pathway to sulfation.

For all added reactions, rate constants were estimated by analogy with other alkali species reactions. The sparse experimental data available, mostly for sodium reactions, indicate that molecule-molecule reactions are generally fast and proceed close to collision frequency, while reactions of alkali species with radicals are somewhat slower [17].

3. Results and discussion

Modeling predictions with the updated detailed gas phase mechanism are compared with experimental data from Iisa et al. [13], Jensen et al. [12] and Jimenez and Balester [19,24]. The Senkin code [35], which runs in conjunction with Chemkin-II [36], was used in the modeling, assuming plug flow.

The experiments by Iisa et al. [13] were conducted in the temperature range $1173-1373 \mathrm{~K}$ in an entrained flow reactor. Solid KCl particles were introduced to the system together with a gaseous mixture of $\mathrm{SO}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$, and N_{2}. The residence time of the gases in the reactor was in the range $0.3-1.5 \mathrm{~s}$, after which a quenching system was applied to avoid further reaction. Following Glarborg and Marshall [17], the evaporation of solid potassium chloride was modeled as three-pseudo-first order reactions in series, with rate constants fitted to match the experimental data (Fig. 2).

A comparison between the observed degree of KCl sulfation (symbols) as a function of the residence time at 1173 and 1373 K and modeling predictions (solid lines) is shown in Fig. 3. Considering the uncertainties in both experiments and model, the modeling predictions are in satisfactory agreement with the observed sulfation rate at both temperatures. It is noteworthy that while about 40% of the vaporized KCl forms $\mathrm{K}_{2} \mathrm{SO}_{4}$ at 1373 K , practically all the KCl vapor is sulfated to $\mathrm{K}_{2} \mathrm{SO}_{4}$ at 1173 K .

Glarborg and Marshall [17] concluded that the oxidation of SO_{2} to SO_{3} was the rate-limiting step in the sulfation pro-

Fig. 2. Vaporization of solid KCl as a function of residence time in an entrained flow reactor at 1173 and 1373 K . Symbols denote experimental results [13], lines denote modeling results. KCl feed rate: $0.24 \mathrm{~g} / \mathrm{min}$.

Fig. 3. Conversion of solid KCl to $\mathrm{K}_{2} \mathrm{SO}_{4}$ as a function of residence time in an entrained flow reactor at 1173 and 1373 K . Symbols denote experimental results [13], while the solid lines denote modeling results with the full mechanism. The dashed lines (" $\mathrm{SO}_{3}{ }^{* \prime \prime}$) denote predictions where SO_{3} formation is assumed rate-limiting, using the updated sulfur chemistry of the present work. Inlet feed contained $2 \% \mathrm{SO}_{2}, 5 \% \mathrm{O}_{2}$, $10 \% \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$ to balance, and a KCl feed rate of $0.24 \mathrm{~g} / \mathrm{min}$.
cess. They found their predicted sulfation rate, which was in good agreement with the data of Iisa et al. at 1373 K , to be equal to the SO_{3} formation rate. A recent modeling study of sulfation in orujillo (a residue of olive oil production) combustion in an entrained reactor by Jimenez and Ballester [24] supports that the SO_{3} formation is rate limiting.

The dashed lines in Fig. 3 ($\left.\mathrm{SO}_{3}{ }^{*}\right)$ show modeling predictions assuming that any SO_{3} produced in the process instantaneously and irreversibly form potassium sulfate. The simplified mechanism is seen to underpredict the sulfation rate, most pronounced at 1173 K . Both at 1173 and 1373 K , the present sulfur mechanism results in a lower SO_{2} oxidation rate and consequently a lower sulfation rate than predicted previously by Glarborg and Marshall [17]. The difference can be attributed to the changes in the sulfur subset implemented in the present work, notably a decrease in $\mathrm{SO}_{2}+\mathrm{O}_{2}$ reactivity (see below).

The enhanced sulfation rate predicted by the full mechanism compared to $\mathrm{SO}_{3}{ }^{*}$ in Fig. 3 is due to alkali reactions promoting the sulfation rate. In order to identify the key reactions that govern the sulfation rate, a pathway analysis (Fig. 4) and a sensitivity analysis (Fig. 5) for formation of $\mathrm{K}_{2} \mathrm{SO}_{4}$ were performed for the reaction conditions of Fig. 3 (1373 K), based on computations with the full kinetic model. The main form of gaseous potassium is potassium chloride. In agreement with the previous studies [17,23], some KCl is after vaporization converted to KOH by reaction (Fig. 4)

Fig. 4. Pathway diagram for potassium transformations under the conditions of Iisa et al. [13] at 1373 K . The solid lines denote the sulfation mechanism outlined by Glarborg and Marshall [17], while the dashed lines indicate additional pathways proposed in the present work.

$$
\begin{equation*}
\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+\mathrm{HCl} \tag{R27b}
\end{equation*}
$$

However, KCl remains the dominant gas phase potassium component. Sulfation of KCl is facilitated by SO_{3} [17]. The calculations indicate that the reactions involved in the formation of SO_{3} are:

$$
\begin{aligned}
& \mathrm{SO}_{2}+\mathrm{OH}(+\mathrm{M}) \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{HOSO}_{2}(+\mathrm{M}) \\
& \mathrm{HOSO}_{2}+\mathrm{O}_{2} \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{HO}_{2}+\mathrm{SO}_{3} \\
& \mathrm{SO}_{2}+\mathrm{O}(+\mathrm{M}) \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{SO}_{3}(+\mathrm{M}) \\
& \mathrm{SO}_{2}+\mathrm{OH} \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{SO}_{3}+\mathrm{H}
\end{aligned}
$$

These reactions all involve radicals and for this reason the oxidation rate for SO_{2} is quite sensitive to the generation of chain carriers in the system. At 1173 K , where the O / H radical pool is insignificant, very little SO_{3} is formed. The reaction
$\mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons \rightleftharpoons \rightleftharpoons \mathrm{SO}_{3}+\mathrm{O}$
proposed earlier [17] to contribute to SO_{3} formation, is now known to be too slow to be significant [22]. Once formed, SO_{3} promotes sulfation of KCl through the reactions [17]

$$
\begin{align*}
& \mathrm{KCl}+\mathrm{SO}_{3}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{3} \mathrm{Cl}(+\mathrm{M}) \tag{R61}\\
& \mathrm{KSO}_{3} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KHSO}_{4}+\mathrm{HCl} \tag{R65}\\
& \mathrm{KHSO}_{4}+\mathrm{KCl} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{HCl} \tag{R60}
\end{align*}
$$

According to the mechanism, reaction (R60) is the main consumption step for KHSO_{4} and the only reaction of importance that directly produces $\mathrm{K}_{2} \mathrm{SO}_{4}$. Since these alkali reactions are all fast, none of them shows up in the sensitivity analysis (Fig. 5). Instead, the modeling predictions are sensitive to potassium reactions that either affect chain-branching, promote SO_{3} formation, or offer an alternative route to sulfation that bypasses SO_{3}. The calculations indicate that the presence of potassium may promote SO_{3} formation through the sequence
$\mathrm{KOH}+\mathrm{OH} \rightarrow \mathrm{KO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{KO}+\mathrm{SO}_{2} \rightarrow \mathrm{~K}+\mathrm{SO}_{3}$
The atomic potassium formed in (R32) may further promote sulfation through a sequence involving KSO_{2} and KSO_{4} as intermediates (Fig. 4):

$$
\begin{align*}
& \mathrm{K}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{2}(+\mathrm{M}) \tag{R30}\\
& \mathrm{KSO}_{2}+\mathrm{O}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{4}(+\mathrm{M}) \tag{R42}\\
& \mathrm{KSO}_{4}+\mathrm{KCl} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cl} \tag{R51}\\
& \mathrm{KSO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KHSO}_{4}+\mathrm{OH} \tag{R58b}
\end{align*}
$$

Another sulfation sequence that does not involve SO_{3} as an intermediate is

$$
\begin{equation*}
\mathrm{KO}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KSO}_{3}(+\mathrm{M}) \tag{R33}
\end{equation*}
$$

$\mathrm{KSO}_{3}+\mathrm{OH}(+\mathrm{M}) \rightarrow \mathrm{KHSO}_{4}(+\mathrm{M})$
followed by (R60). These sulfation sequences, with or without SO_{3} as an intermediate, all result in the loss of one or two radicals (typically OH) and thus rely on the generation of chain carriers in the system. For this reason they are more active at 1373 K than at 1173 K . However, the 1173 K data of Iisa et al., as well as the data of Jensen et al. [12] discussed below, show that sulfation of KCl readily takes place even at temperatures where formation of radicals in the $\mathrm{SO}_{2} / \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}$ system (with or without KCl) is slow or negligible. This imply the existence of a sulfation mechanism that does not require the presence of radicals. Based on the present work, we propose the reaction sequence

Fig. 5. Sensitivity coefficients for the elementary reactions towards the $\mathrm{K}_{2} \mathrm{SO}_{4}$ formation for conditions corresponding to Iisa et al. [13] at 1373 K and with a residence time of 1.2 s (Fig. 2).
$\mathrm{KOH}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow \mathrm{KHSO}_{3}(+\mathrm{M})$
$\mathrm{KHSO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{KHSO}_{4}+\mathrm{O}$
followed by (R 60). The reaction (R 57) is roughly thermoneutral. This sequence, presently only a hypothesis, is one of several sulfation pathways at 1373 K (Fig. 4), but at 1173 K it is the dominating source of potassium sulfate in the model. Modeling predictions are particularly sensitive to the rate constant for (R57), which is currently only a rough estimate.

The experiments of Iisa et al. were chosen for model evaluation because they were obtained under well-controlled conditions. However, the reaction conditions with high levels of KCl and SO_{2} are not representative of practical combustion systems. For this reason, modeling predictions were also compared to the experimental data from Jensen et al. [12] and from Jimenez and Ballester [19]. These studies were conducted under conditions resembling more closely practical combustion systems, with comparatively low concentrations of potassium and sulfur species, as well as a more realistic flue gas cooling rate.

Jensen et al. conducted experiments in a laboratory tubular furnace reactor using a synthetic flue gas containing a mixture of $\mathrm{KCl}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$, and N_{2}. The potassium chloride was added to the system by saturating the feed stream or part of it with salt vapors. Downstream of the KCl feeding system (maintained at 1043 K), a peak temperature in the range $1043-1273 \mathrm{~K}$ was obtained, followed by cooling of the flue gas at about $300 \mathrm{~K} / \mathrm{s}$. Experimental data, presented as the ratio $\mathrm{S} /(\mathrm{S}+\mathrm{Cl})$ in the collected aerosols downstream, are compared to predicted results in Table 4. The model slightly overpredicts the sulfur content in the aerosols, but the agreement is satisfactory considering the uncertainties. The model correctly predicts that variations in the peak temperature in the range $1043-1273 \mathrm{~K}$ have little influence on the sulfation rate. It also captures well the effect of variations in the concentrations of SO_{2} and O_{2}.

According to the calculations, oxidation of SO_{2} to SO_{3} is negligible under the conditions of Jensen et al. The sulfa-

Table 4
Comparison between experimental results from Jensen et al. [12] and modeling predictions for the sulfation of KCl , presented as the ratio $\mathrm{S} /$ $(\mathrm{S}+\mathrm{Cl})$ in the captured aerosols

Conditions	Sulfur content (exp)	Sulfur content (pred)
	$\mathrm{S} /(\mathrm{S}+\mathrm{Cl})$	$\mathrm{S} /(\mathrm{S}+\mathrm{Cl})$
	$(\mathrm{mol} / \mathrm{mol} \%)$	($\mathrm{mol} / \mathrm{mol} \%$)
$T_{\text {peak }}=1043 \mathrm{~K}$	7.1	10.2
$T_{\text {peak }}=1073 \mathrm{~K}$	5.9	10.2
$T_{\text {peak }}=1223 \mathrm{~K}$	6.8	10.2
$T_{\text {peak }}=1273 \mathrm{~K}$	7.9	10.2
100 ppm SO 2	5.0	6.7
$19 \% \mathrm{O}_{2}$	15.9	20.0

The experimental conditions are held constant except for the variation noted in the first column: Peak temperature 1223 K , feed composition: $200 \mathrm{ppm} \mathrm{KCl}, 200 \mathrm{ppm} \mathrm{SO} 2,4 \% \mathrm{O}_{2}, 4 \% \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$ to balance.
tion occurs almost entirely via the reaction sequence $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+\mathrm{HCl} \quad(\mathrm{R} 27 \mathrm{~b}), \quad \mathrm{KOH}+\mathrm{SO}_{2}(+\mathrm{M}) \rightarrow$ $\mathrm{KHSO}_{3}(+\mathrm{M})$ (R35), $\mathrm{KHSO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{KHSO}_{4}+\mathrm{O}$, (R57b), $\mathrm{KHSO}_{4}+\mathrm{KCl} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{HCl}(\mathrm{R} 60)$. The rate-limiting step in this sequence is reaction (R57). If this step is omitted from the mechanism, the predicted sulfation rate is lowered more than an order of magnitude.

Finally, the model is evaluated against experimental data of Jimenez and Ballester [19,24] for combustion of orujillo in an entrained flow reactor. The reactor, maintained at a temperature of 1573 K , was followed by a cooling section with a temperature gradient of $\sim 600 \mathrm{~K} / \mathrm{s}$. A comparison between modeling predictions and the observed Cl / S ratio in the aerosols is presented in Fig. 6. The model underpredicts the sulfate formation at very low SO_{2} levels, resulting in higher Cl / S values compared to the experimental data. Even though the reactions between $\mathrm{SO}_{2} / \mathrm{SO}_{3}$ and $\mathrm{KOH} / \mathrm{KCl}$ occur almost at collision frequency, the sulfation rate is limited due to the very low concentration of reactants ($13 \mathrm{ppm} \mathrm{KOH}, 10-25 \mathrm{ppm} \mathrm{SO} \mathrm{S}_{2}$ in the inlet). For this reason, even the SO_{3} formed is only partly converted to $\mathrm{K}_{2} \mathrm{SO}_{4}$ and the model predicts a comparatively low degree of sulfation. However, at higher sulfur concentrations the agreement between modeling predictions and experimental data is satisfactory (see Fig. 6).

In a number of studies on formation of sulfate aerosols [2,3,11-13,17,24,37] it was concluded that SO_{3} formation in the gas phase is the rate-limiting step and that immediately after its formation, the SO_{3} is consumed to form $\mathrm{K}_{2} \mathrm{SO}_{4}$. As shown above, a modeling approach based on this assumption underpredicts the formation of sulfate aerosols, in particular at lower temperatures. This discrepancy is not a result of deficiencies in the $\mathrm{H} / \mathrm{S} / \mathrm{O}$ subset of the reaction mechanism. In Fig. 7, modeling predictions are compared to experimental data [38-40] obtained in atmospheric pressure flow reactors with of the order of 1000 ppm $\mathrm{SO}_{2}, 4-60 \% \mathrm{O}_{2}, 0-9 \% \mathrm{H}_{2} \mathrm{O}$; with and without presence of combustibles (450 ppm CO). Temperatures were in the range $973-1325 \mathrm{~K}$, with $0.2-10 \mathrm{~s}$ residence time. With a

Fig. 6. Comparison of model predictions (solid lines) with the experimental data for the Cl / S ratio in combustion of orujillo in the captured aerosols from Jimenez and Ballester [19] (symbols). Inlet composition: $13 \mathrm{ppm} \mathrm{KOH}, 34 \mathrm{ppm} \mathrm{HCl}, 10 / 25 / 180 \mathrm{ppm} \mathrm{SO}_{2}, 5 \% \mathrm{O}_{2}, 20 \% \mathrm{H}_{2} \mathrm{O}, 8 \%$ CO_{2} and N_{2} to balance.

Fig. 7. Correlation between experimental data for the oxidation of SO_{2} and modeling predictions with the sulfur subset of the present model. The experimental data were obtained in atmospheric pressure laboratory flow reactors under the following conditions: Flint and Lindsay [38] 1400 ppm $\mathrm{SO}_{2}, 8 \% \mathrm{H}_{2} \mathrm{O}$, and air to balance at $973-1173 \mathrm{~K}$ and $1-10$ s residence time; Jørgensen et al. [40] $480 \mathrm{ppm} \mathrm{SO} 2,60 \% \mathrm{O}_{2}, 0-1 \% \mathrm{H}_{2} \mathrm{O}$, and N_{2} to balance at $1200-1325 \mathrm{~K}$ and 4 s residence time; Glarborg et al. [39] 450 ppm CO , $1400 \mathrm{ppm} \mathrm{SO}_{2}, 4 \% \mathrm{O}_{2}$, and 1% or $9 \% \mathrm{H}_{2} \mathrm{O}$ at $1000-1200 \mathrm{~K}$ and 0.2 s residence time.
few exceptions the observed conversion of SO_{2} is in the range $0-4 \%$. In general, the sulfur subset [22] predicts well the homogeneous SO_{2} oxidation over this range of conditions. There are no indications that the model underpredicts oxidation of SO_{2}; in fact, the most important discrepancy is an overprediction of the oxidation rate for the conditions of Jørgensen et al. [40].

The data of Fig. 7, as well as other literature results [38,41,42], show that the homogeneous oxidation of SO_{2} by oxygen molecules at temperatures below 1173 K is very slow. During moist CO oxidation [39] the oxidation rate of SO_{2} is enhanced due to the generation of radicals. However, even in the absence of combustibles, an even higher SO_{2} consumption is found in $\mathrm{SO}_{2} / \mathrm{O}_{2} /$ alkali metal systems [12,13]. This suggests that the presence of alkali metals may promote oxidation of SO_{2}. In particular the experimental data of Jensen et al. [12] show high conversion rates for SO_{2}, in the range $5-16 \%$ at temperatures as low as 1043 K. Similar levels of sulfation have been reported from field measurements of straw and other alkali containing biomass fuels [11]. Since homogeneous oxidation of SO_{2} to SO_{3} cannot account for the observed sulfation of KCl at lower temperatures, the sulfation rate must be controlled either by chemistry involving (stable) K-containing species, as outlined above, or surface reactions.

Several studies have been reported for heterogeneously catalyzed SO_{3} formation [37,40,42,43]. Among materials often used in laboratory studies, steel and to a lesser extent alumina have been shown to catalyze oxidation of SO_{2}, while quartz can be considered inert [40]. In practical combustion systems fly ash is likely to be the most efficient catalyst. It has been observed that submicron-ash may catalyze the SO_{2} oxidation to SO_{3} in the convective passes of a coal-fired utility boiler, depending on the fuel, combustion conditions, and temperature profile in the convective section [43]. Both the iron oxide content $[37,43]$ and the cal-
cium content [43] of the fly ash are important for the catalytic activity. A laboratory study by Marier and Dibbs [37] showed that the degree of oxidation of SO_{2} in the presence of fly ash was $10-30 \%$, increasing linearly with the iron oxide content of the ash, compared to a conversion below 1% in the absence of fly ash. Graham and Sarofim [43] used submicrometer CaO to study the inorganic aerosols and their role in catalyzing sulfuric acid production in furnaces. The sulfation reaction of submicrometer CaO was reported to be fast. Iron oxides on boiler walls and tube furnaces may also be active as catalysts. A study on emissions of sulfur trioxide from coal-fired power plants [44] indicates that formation of SO_{3} may be catalyzed by iron oxides at lower temperatures ($700-870 \mathrm{~K}$) in the economizer region of the boiler. This formation depends on site-specific factors such as cleanliness of the tube surfaces.

Under the experimental conditions of Jensen et al. [12] with the high reported sulfation levels, there is no indication that catalytic oxidation of SO_{2} to SO_{3} contributes significantly to the $\mathrm{K}_{2} \mathrm{SO}_{4}$-formation. The available surfaces include the alumina reactor wall, which is to some extent covered by alkali deposits. However, alumina is not a very active catalyst for SO_{2} oxidation [40], and there are no indications of a fast reaction between molten/solid KCl and SO_{2} (see [17] and references therein). It has been suggested [45] that presence of $\mathrm{K}_{2} \mathrm{SO}_{4}$ nuclei may promote additional $\mathrm{K}_{2} \mathrm{SO}_{4}$ formation in the system, possibly by catalyzing SO_{2} oxidation, but to what extent this reaction affects in-flight aerosol formation cannot presently be assessed. For the conditions of Jimenez and Ballester [19,24] the presence of fly ash may be of importance. However, they report that similar results were obtained in ash-free systems [24].

Sulfation of alkali metals is known to proceed readily (but slow) in condensed phase. However, it is unlikely that sulfates, once formed, are released from a surface to the gas phase as aerosols. We believe that alkali sulfate aerosol seeds are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The seeds subsequently act as condensation nuclei for further condensation of alkali sulfate vapors and other supersaturated vapors, e.g., alkali chlorides, as the flue gas cools down. The rate-limiting step is the oxidation of $\mathrm{SO}_{2} \mathrm{~S}^{\mathrm{IV}}$ to a higher oxidation state. The present work indicate that it may be involve oxidation of sulfite to sulfate, rather than oxidation of SO_{2} to SO_{3}, as proposed previously. Such a mechanism is consistent with experimental observations $[12,13,19]$ as well as with $a b$ initio calculations on the thermal stability of the proposed complex intermediates (present work, [17]) and the observation that molecule-molecule reactions involving alkali species are very fast, proceeding close to collision frequency [17]. The proposed mechanism currently cannot be proven, since reported experimental results are all obtained in systems where surfaces are present, i.e., reactor walls, deposits, and alkali and/or fly ash particles. There are indications that some or all of these surfaces may catalyze oxidation of SO_{2} to SO_{3}, but their role in alkali sulfate aerosol formation is still in discussion.

Experiments in a rigorously homogeneous system are called for to test the proposed gas phase sulfation mechanism.

4. Conclusions

In this study, sulfate aerosol formation was analyzed based on calculations with a detailed gas phase mechanism. The modeling predictions were compared to data from laboratory experiments and entrained flow reactor experiments available in the literature. The analysis supports the idea that alkali sulfate aerosols are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The rate-limiting step may be the oxidation of sulfite to sulfate, rather than the oxidation of SO_{2} to SO_{3} proposed previously. Even though the proposed model is consistent with experimental observations, additional experimental work is needed in order to gain more insight into the fundamental mechanisms controlling the sulfate aerosol formation.

Acknowledgements

The authors acknowledge support from the CHEC (Combustion and Harmful Emission Control) Research Program, PSO-Elkraft (Grant FU-2207), the Robert A. Welch Foundation (Grant B-1174), the UNT Faculty Research Fund and the National Science Foundation (Grant CHE-0342824), and the National Center for Supercomputing Applications (Grant CHE000015N). Finally, the Otto Mønsted Fund is acknowledged for financing a guest professorship for P.M. at the Technical University of Denmark.

References

[1] Sander B. Biomass Bioenerg 1997;12:177-83.
[2] Christensen KA, Livbjerg H. Aerosol Sci Technol 2000;33:470-89.
[3] Christensen KA, Livbjerg H. Aerosol Sci Technol 1996;25:185-99.
[4] Johansson LS, Tullin C, Leckner B, Sjovall P. Biomass Bioenerg 2003;25:435-46.
[5] Michelsen HP, Frandsen F, Dam-Johansen K, Larsen OH. Fuel Proc Technol 1998;54:95-108.
[6] Heinzel T, Siegle V, Spliethoff H, Hein KRG. Fuel Proc Technol 1998;54:109-25.
[7] Hansen LA, Nielsen HP, Frandsen FJ, Dam-Johansen K, Hørlyck S, Karlsson A. Fuel Proc Technol 2000;64:189-209.
[8] Nielsen HP, Frandsen FJ, Dam-Johansen K, Baxter LL. Prog Energ Combust Sci 2000;26:283-98.
[9] Boow J. Fuel 1972;51:170-3.
[10] Latva-Somppi J, Moisio M, Kauppinen EL, Valmari T, Ahonen P, Keskinen J. J Aerosol Sci 1998;29:461-80.
[11] Christensen KA, Stenholm M, Livbjerg H. J Aerosol Sci 1998;29(4):421-44.
[12] Jensen JR, Nielsen LB, Schultz-Møller C, Wedel S, Livbjerg H. Aerosol Sci Technol 2000;33:490-509.
[13] Iisa K, Lu Y, Salmenoja K. Energ Fuel 1999;13:1184-90.
[14] Steinberg M, Schofield K. Prog Energ Combust Sci 1990;16:311-7.
[15] Schofield K, Steinberg M. J Phys Chem 1992;96:715-26.
[16] Steinberg M, Schofield K. Combust Flame 2002;129:453-70.
[17] Glarborg P, Marshall P. Combust Flame 2005;141:22-39.
[18] Christensen KA. PhD thesis. Technical University of Denmark, ISBN 87-90142-04-7; 1995.
[19] Jimenez S, Ballester J. Combust Flame 2005;140:346-58.
[20] Yilmaz A, Hindiyarti L, Jensen A, Glarborg P, Marshall P. J Phys Chem A 2006;110:6654-9.
[21] Rasmussen CL, Glarborg P, Marshall P. Proc Combust Inst 2007;31:339-47.
[22] Hindiyarti L, Glarborg P, Marshall P. J Phys Chem A 2007;111:3984-91.
[23] Hindiyarti L, Frandsen F, Livbjerg H, Glarborg P. Fuel 2006;85:978-88.
[24] Jimenez S, Ballester J. Fuel 2007;86:486-93.
[25] Lee EPF, Soldan P, Wright TG. J Chem Phys 2002;117:8241.
[26] Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA. J Phys Chem 1998;109:7764.
[27] Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA. J Chem Phys 2001;114:9287.
[28] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, revision D. 02. Wallingford, CT: Gaussian, Inc.; 2004.
[29] Ruscic B, Wagner AF, Lawrence LB, Harding LB, Asher LR, Feller D, et al. J Phys Chem A 2002;106:2727.
[30] Gurvich LV, Bergman GA, Gorokhov LN, Iorish VS, Leonidov VYa, Yungman VS. J Phys Chem Ref Data 1997;26:1031-110.
[31] Wang X-B, Ding C-F, Nicholas JB, Dixon DA, Wang L-S. J Phys Chem A 1999;103:3423.
[32] Perry RA, Miller JA. Int J Chem Kinet 1996;28:217-34.
[33] Zamansky VM, Lissianski VV, Maly PM, Ho L, Rusli D, Gardiner Jr WC. Combust Flame 1999;117:821-31.
[34] Glarborg P. Proc Combust Inst 2007;31:77-98.
[35] Lutz AE, Kee RJ, Miller JA. A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Sandia National Laboratories, Report SAND87-8248; 1987.
[36] Kee RJ, Rupley F, Miller JA. Chemkin ii - a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Sandia National Laboratories, Report SAND89-8009; 1989.
[37] Marier P, Dibbs HP. Thermochim Acta 1974;8:155-65.
[38] Flint D, Lindsay AW. Fuel 1952;30:288.
[39] Glarborg P, Kubel D, Dam Johansen K, Chiang HM, Bozzeli JW. Int J Chem Kinet 1996;28:773-90.
[40] Jørgensen TL, Livbjerg H, Glarborg P. Chem Eng Sci 2007;62:4496-9.
[41] Cullis CF, Mulcahy MFR. Combust Flame 1972;18:225-92.
[42] Dennis JS, Hayhurst AN. Combust Flame 1988;72:241-58.
[43] Graham KA, Sarofim AF. J Air Waste Manage Assoc 1998;48:106-12.
[44] Srivastava RK, Miller CA, Erickson C, Jambhekar R. J Air Waste Manage Assoc 2004;54(6):750-62.
[45] Zeuthen J. PhD thesis. Technical University of Denmark; 2007.

[^0]: * Corresponding author.

 E-mail address: pgl@kt.dtu.dk (P. Glarborg).

