A Bibliography of Sources of Thermodynamic Data for the Systems: \(\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{O}, \text{CO}_2 + \text{H}_2\text{S} + \text{H}_2\text{O}, \text{H}_2\text{S} + \text{NH}_3 + \text{H}_2\text{O}, \text{and CO}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{H}_2\text{O} \)

R. N. Goldberg and D. K. Steckler
Center for Chemical Physics
National Measurement Laboratory
National Bureau of Standards
Gaithersburg, MD 20899

Sponsored by:
Design Institute for Physical Property Data
Project 811
American Institute of Chemical Engineers
New York, NY

May 1985
ABSTRACT

Contained herein is a bibliography of sources of experimental and correlated thermodynamic data for the systems \(\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{O} \), \(\text{CO}_2 + \text{H}_2\text{S} + \text{H}_2\text{O} \), \(\text{H}_2\text{S} + \text{NH}_3 + \text{H}_2\text{O} \), and \(\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{H}_2\text{O} \). The types of data in this bibliography include all types of equilibrium data, including both equilibria in solution and vapor-liquid equilibrium data, enthalpies, heat capacities, and densities. There are 215 references cited.

KEY WORDS: ammonia; ammonium carbamate; bibliography; carbon dioxide; enthalpy; equilibrium constants; heat capacity; hydrogen sulfide; sour water; thermodynamics; urea; vapor-liquid equilibria; water.
INTRODUCTION

The thermodynamics of mixtures of \(CO_2 + NH_3 + H_2O \), \(CO_2 + H_2S + H_2O \), \(NH_3 + H_2S + H_2O \), and \(CO_2 + NH_3 + H_2S + H_2O \) are of importance for a variety of industrial applications which include the synthesis of urea, the utilization of sour water systems, gas production, and environmental concerns. The purpose of this bibliography is to identify papers which contain either experimental thermodynamic data for these systems or reviews or correlations of this data. The thermodynamic properties of interest include all types of equilibrium data, including both equilibria in solution and vapor-liquid equilibrium data, enthalpies, heat capacities, and densities. The principal species in aqueous solutions are \(CO_2^0 \), \(CO_3^{2-} \), \(HCO_3^- \), \(H_2CO_3^0 \), \(NH_3^0 \), \(NH_4^+ \), \(HS^- \), \(S^{2-} \), \(CO(NH_2)_2 \), and ammonium carbamate, \(NH_2COONH_4 \). Our search of the literature was based upon a search of the following sources: a computer aided one of Chemical Abstracts from 1967 to 1983, the Bulletin of Chemical Thermodynamics [1] from 1960 to 1981, the files of the Chemical Thermodynamics Data Center at the National Bureau of Standards, and, finally, of the references found in the papers identified in the search itself. The authors would appreciate learning of any papers which we have missed in our search.

The papers are listed alphabetically by first author. Each bibliographic citation includes a brief reference citation (the year and three letters from the names of the first two authors), the authors names, the title of the article and the source. In one instance only an abstract was available and there we have also given the Chemical Abstracts citation. The last column contains a capital letter(s) which serves to identify which systems are found in the paper. The letter codes used are: (A) \(CO_2 + H_2S + H_2O \), (B) \(CO_2 + NH_3 + H_2O \), (C) \(H_2S + NH_3 + H_2O \), and (D) \(CO_2 + H_2S + NH_3 + H_2O \).
Each paper has been annotated to show the type of data, the temperature range and, if appropriate, the pressure, solution composition, and pH. The property codes which we have used are from the Bulletin of Chemical Thermodynamics [1]; they are reproduced in Table I. In specifying the compositions of ternary systems, we have frequently used the quantities L and W, which are defined to be the mole ratios NH_3/CO_2 and $\text{H}_2\text{O}/\text{CO}_2$, respectively. Note that, using existing conventions, the value of W can be negative [2]. We have attempted to adhere to the journal abbreviations used in the Chemical Abstracts Service Source Index [3].

The Japanese, Russian, and Polish titles have been translated into English. These translations come, by preference, from the papers themselves or from Chemical Abstracts. The titles from the latter source may be condensations of the originals.

This bibliography was sponsored by the Design Institute for Physical Property Data (DIPPR) of the American Institute of Chemical Engineers. Bibliographies on the binary systems $\text{CO}_2 + \text{H}_2\text{O}$, $\text{NH}_3 + \text{H}_2\text{O}$, and $\text{H}_2\text{S} + \text{H}_2\text{O}$ have also been compiled for DIPPR under the direction of Drs. David Garvin, David Smith-Magowan, and Bert R. Staples. These bibliographies have been used in developing the present listing, but those papers which treat only the binaries have not been repeated here. We thank Mr. T. B. Selover of the Standard Oil Company for bringing several references to our attention for inclusion in this bibliography, Dr. Hideo Okabe for his assistance with the papers written in Japanese, and Dr. Ewa Gajewski for her help with the papers in Polish.
REFERENCES

<table>
<thead>
<tr>
<th>Category</th>
<th>Subgroup</th>
<th>Description of Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Da</td>
<td>Activity, fugacity</td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td>Partial molar quantities</td>
</tr>
<tr>
<td></td>
<td>Dx</td>
<td>Excess functions for mixtures</td>
</tr>
<tr>
<td>H</td>
<td>Hc</td>
<td>for combustion in O\textsubscript{2} or F\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>Hr</td>
<td>for other chemical reactions</td>
</tr>
<tr>
<td></td>
<td>Hm</td>
<td>for mixing: solution, dilution, etc.</td>
</tr>
<tr>
<td></td>
<td>Hp</td>
<td>for phase transitions, fusion, vaporization</td>
</tr>
<tr>
<td></td>
<td>Hs</td>
<td>for surface processes: adsorption, desorption, etc.</td>
</tr>
<tr>
<td>K</td>
<td>Kd</td>
<td>Dissociation/decomposition pressures and derived enthalpy/entropy changes.</td>
</tr>
<tr>
<td></td>
<td>Ke</td>
<td>Electrochemical cell potentials, etc. and derived enthalpy/entropy changes.</td>
</tr>
<tr>
<td></td>
<td>Kk</td>
<td>Equilibrium constants for chemical reactions and derived enthalpy/entropy changes.</td>
</tr>
<tr>
<td>M</td>
<td>Md</td>
<td>Data (e.g., structural or spectroscopic) for molecular parameters; atomic energy levels; ionization potentials.</td>
</tr>
<tr>
<td></td>
<td>Mi</td>
<td>Ideal gases: thermodynamic functions (e.g., tabulations).</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>Real gases: intermolecular potentials, derived equations of state</td>
</tr>
<tr>
<td></td>
<td>Mm</td>
<td>Mixtures</td>
</tr>
<tr>
<td></td>
<td>Mx</td>
<td>Crystal, solid and liquid states.</td>
</tr>
<tr>
<td></td>
<td>Mb</td>
<td>Bond energies; non-bonded interactions.</td>
</tr>
</tbody>
</table>
Phase Equilibria

Pt Temperatures: freezing point, boiling point, triple point, other phase transitions.

Pp Vapor pressure and derived quantities for vaporization and/or sublimation, pure substances

Pv Vapor/liquid equilibria and related phase diagrams, mixtures

Px Condensed phase equilibria: solubility, freezing points, phase diagrams.

Po Osmotic pressure/membrane equilibria

Ps Surface phenomena: surface tension, surface energy, adsorption, etc.

Thermal Properties for Non-Reacting Systems, by Calorimetry

Q1 Condensed phase, T \(\leq 400 \) K: heat capacity, enthalpy, entropy, etc.

Qh Condensed phase, T \(\geq 400 \) K: heat capacity, enthalpy, entropy, etc.

Qg Gas phase: heat capacity, enthalpy, entropy etc. as f(T,P).

Volume as f(T,P): Empirical Equations of State

Vg Gases: PVT, and related data

Vc Critical state properties

Vx Condensed phases: compressibility, thermal expansivity

Vt Tables and charts of data, e.g., Mollier diagrams.

Physical Properties of a Single Phase

Xd Density

Xv Viscosity

Xr Refractive index

Compilations, Correlations and Reviews

Za Analysis of experimental data and of errors

Zc Empirical Correlations

Ze Evaluations and compilations

Zr Reviews

Physical States: crystalline, solid

(aq)ueous

(amorp)hous (nonaq)ueous, includes fused salts, solid solutions

(liq)uid

(gas) (Ads)orbed
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>39ARD:</td>
<td>Ardeeva, V. A.; "Partial pressures of NH$_3$, CO$_2$ and H$_2$O in</td>
<td>Pv, 70-90 °C.</td>
</tr>
<tr>
<td></td>
<td>liquids in reflux-condensors"; Zh. Khim. Prom.; *16, 26 (1939)</td>
<td></td>
</tr>
<tr>
<td>47BAD/WIL:</td>
<td>Badger, E. H. M.; Wilson, D. S.; "Vapour pressures of ammonia and</td>
<td>Zc, Kk, Pv, 0-100 °C.</td>
</tr>
<tr>
<td></td>
<td>carbon dioxide in equilibrium with aqueous solutions. Part VI"; J. Soc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chem. Ind. London; *66, 84 (1947)</td>
<td></td>
</tr>
<tr>
<td>63BAR:</td>
<td>Baranski, A.; "Study of the kinetics of the synthesis and decomposition</td>
<td>Kk, 150-180 °C.</td>
</tr>
<tr>
<td></td>
<td>of urea. II. Kinetics of the decomposition of urea"; Chem. Stosow.; *4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>, 567 (1963)</td>
<td></td>
</tr>
<tr>
<td>64BAR:</td>
<td>Baranski, A.; "Study of the kinetics of the synthesis and decomposition</td>
<td>Kk, 120-150 °C.</td>
</tr>
<tr>
<td></td>
<td>of urea. III. Kinetics of the decomposition of urea"; Chem. Stosow.;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*3A, 281 (1964)</td>
<td></td>
</tr>
<tr>
<td>78BEU/REN:</td>
<td>Beutier, D.; Renon, H.; "Representation of NH$_3$-H$_2$S-H$_2$O,</td>
<td>Zc, Kk, Da, Pv, 0-100 °C.</td>
</tr>
<tr>
<td></td>
<td>NH$_3$-CO$_2$-H$_2$O, and NH$_3$-SO$_2$-H$_2$O vapor-liquid equilibria";</td>
<td></td>
</tr>
<tr>
<td>63BLA/BAR:</td>
<td>Blasiak, E.; Baranski, A.; Matuszewski, Z.; "On the kinetics of the</td>
<td>Kk, 150-180 °C.</td>
</tr>
<tr>
<td></td>
<td>reactions of the synthesis and decomposition of urea"; Bull. Acad. Pol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sci.; *11, 261 (1963)</td>
<td></td>
</tr>
<tr>
<td>80BLA/SWA:</td>
<td>Blauwhoff, P. M. M.; van Swaaij, W. P. M.; Enschede, N.; "Gas-liquid</td>
<td>Zc, Pv, 40-66 °C.</td>
</tr>
<tr>
<td></td>
<td>equilibria between H$_2$S, CO$_2$ and aqueous amine solutions"; EFCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>urea fluids in large-scale laboratory installations in continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operation"; Khim. Promst. (Moscow); *14, 707 (1937)</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>37BOL/LEM2</td>
<td>Bolotov, V. A.; Leman, V. R.; Popova, A. N.; Shanoshehnikov, V. S.</td>
<td>"Synthesis of urea from ammonia and carbon dioxide at installations in continuous operation"; Khim Promst. (Moscow); *14, 1693 (1937)</td>
</tr>
<tr>
<td>37BOL/POP</td>
<td>Bolotov, V. A.; Popova, A. N.; Sokolova, Yu K.</td>
<td>"Synthesis of urea from ammonia in carbonic acid in an abundance of ammonia"; Khim. Promst. (Moscow); *14, 631 (1937)</td>
</tr>
<tr>
<td>37BOL/TUG</td>
<td>Bolotov, V. A.; Tugai, D. G.</td>
<td>"Regeneration of gases after the synthesis of urea from ammonia and carbonic acid"; Zh. Khim. Prom. ;*14, 991 (1937)</td>
</tr>
<tr>
<td>10BUC</td>
<td>Buch, K.</td>
<td>"Die Hydrolyse der Ammoniumsalze fluchtiger Sauren"; Z. Physik. Chim. (Leipzig); *70, 66 (1910)</td>
</tr>
</tbody>
</table>

Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B.; "Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes"; AIChE J.; *25, 820 (1979)

Chernen'kaya, E. I.; "Experimental determination of the specific heats of aqueous solutions of NH₄HCO₃, NaHCO₃, Na₂CO₃, NH₃, and of liquors of the soda industry at 25 °C"; J. Appl. Chem. USSR (Eng. Trans.); *44, 1562 (1971)

Chernen'kaya, E. I.; Bratash, E. G.; "Experimental determination of the specific heats of aqueous solutions of Na₂CO₃, NaHCO₃, NH₄HCO₃, and of liquors of the soda industry at 35 and 50 °C"; J. Appl. Chem. USSR (Eng. Trans.); *45, 2325 (1972)

Chernen'kaya, E. I.; Bratash, E. G.; "Calculation of specific heats of aqueous salt systems over a wide temperature range"; J. Appl. Chem. USSR (Eng. Trans.); *48, 1910 (1975)

Clark, K. G.; Gaddy, V. L.; Rist, C. E.; "Equilibria in the ammonium carbamate urea-water system"; Ind. Eng. Chem.; *25, 1092 (1933)

Durisch, W.; "Experimentelle und thermodynamische Untersuchung des Siedegleichgewichts des Systems CO₂/NH₃/H₂O unter Harnstoffsynthese - Bedingungen" Dissertation, Eidgenössischen Technischen Hochschule, Zürich, Switzerland (1978)

79DUR/BER: Durisch, W.; van den Berg, P. J.; "Die Dichte gasformiger Kohlendioxid-Ammoniak Wasser-Gemische unter Harnstoffsynthese-Bedingungen"; Chimia; *33, 200 (1979)

75DUR/BUC: Durisch, V. W.; Buck, A.; "Zusammensetzung und Dichte der Harnstoffschmelze und der koexistierenden Gasphase"; Chimia; *29, 436 (1975)

77DUR/BUC: Durisch, W.; Buck, A.; Luder, J.; "Der Gleichgewichtsdruck des systems CO\textsubscript{2}/NH\textsubscript{3}/H\textsubscript{2}O bei Harnstoffsynthese-Bedingungten"; Chimia; *31, 296 (1977)

79DUR/BUC2: Durisch, W.; Buck, A.; Lemkowitz, S. M.; van den Berg, P. J.; "Experimental investigation of the vapour-liquid equilibrium of the carbon dioxide ammonia-water system at urea synthesis conditions"; Chimia; *33, 293 (1979)

80DUR/LEM: Durisch, W.; Lemkowitz, S. M.; van den Berg, P. J.; "Constituent and component measurements and calculations of the vapour/liquid equilibrium of the ternary system carbon dioxide ammonia-water under urea synthesis conditions"; Chimia; *34, 314 (1980)

<table>
<thead>
<tr>
<th>Code</th>
<th>Authors</th>
<th>Title</th>
<th>Source</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>75EDW/NEW</td>
<td>Edwards, T. J.; Newman, J.; Prausnitz, J. M.</td>
<td>"Thermodynamics of aqueous solutions containing volatile weak electrolytes"; AICHE J.; *21, 248 (1975)</td>
<td>Zc, Da, Kk, Pv, 0-100 °C, 10-4 to 2 mol Kg-1.</td>
<td>D</td>
</tr>
<tr>
<td>04FED</td>
<td>Fedotieff, P. P.</td>
<td>"Der Ammoniaksodaprozess vom Standpunkte der Phasenlehre"; Z. Phys. Chem. (Leipzig); *49, 162 (1904)</td>
<td>Px, 0-45 °C, in NaCl sols.</td>
<td>B</td>
</tr>
<tr>
<td>48FRE</td>
<td>Frejacques, M.</td>
<td>"Les bases theoriques de la synthese industrielle de l'uree"; Chim. Ind.; *60, 22 (1948)</td>
<td>Hr, Kk, Pv, -20 to 150 °C.</td>
<td>B</td>
</tr>
<tr>
<td>57FRO</td>
<td>Frolich, G. J.</td>
<td>"Vapor liquid equilibria of aqueous systems containing ammonia and carbon dioxide"; Thesis, Polytechnic Institute of Brooklyn; (1957).</td>
<td>Hr, Kk, Pv, -20 to 150 °C.</td>
<td>B</td>
</tr>
</tbody>
</table>

65GIN/MAR: Ginzburg, D. M.; Markel', S. A.; Detinich, L. P.; "The system NaCl-NH$_4$Cl-NH$_3$-CO$_2$-H$_2$O at p = 1 atm"; J. Appl. Chem. USSR (Eng. Trans.); *45, 1762 (1972)

65GIN/PIK: Ginzburg, D. M.; Pikulina, N. S.; Litvin, V. P.; "The system NH$_3$-H$_2$S-H$_2$O"; J. Appl. Chem. USSR (Eng. Trans.); *38, 2071 (1965)

66GIN/PIK: Ginzburg, D. M.; Pikulina, N. S.; Litvin, V. P.; "The system NH$_3$-H$_2$S-H$_2$O at 600 mm"; J. Appl. Chem. USSR (Eng. Trans.); *39, 2225 (1966)

67GIO: Gioa, F.; "Assorbimento simultaneo de H$_2$S e CO$_2$ in soluzioni tampone di carbonate e bicarbonate di potassio"; Chim. Ind.; *49, 1287 (1967)

36GME: Gmelins Handbuch der Anorganischen Chemie; pp. 327-362, Verlag Chemie, Berlin, Germany (1936)
Goldberg, N. A.; Altschuler, L. N.; "Microscopic kinetics and mechanism for the synthesis of urea from ammonia and carbon dioxide"; Khim. Promst. (Moscow); *9, 638 (1962)

Goldberg, N. A.; Altschuler, L. N.; "Macroscopic kinetics and mechanism for the synthesis of urea from ammonia and carbon dioxide"; Khim. Promst. (Moscow); *1, 54 (1964)

Gorlovskii, D. M.; Gorbushenkov, V. A.; Kucheryavyi, V. I.; "Experimental values of the equilibrium degree of conversions of carbon dioxide into urea by the Bazarov reaction"; J. Appl. Chem. USSR (Eng. Trans.); *45, 1596 (1972)

76GOR/KOS: Gorlovskii, D. M.; Koscherenkov, N. N.; Kucheryavyi, V. I.; "Diagrams of the thermodynamics properties of the system NH₃-CO₂-CO(NH₂)₂-H₂O during the synthesis of urea"; J. Appl. Chem. USSR (Eng. Trans.); #49, 780 (1976)

78GOR/KOS: Gorlovskii, D. M.; Koscherenkov, N. N.; Kucheryavyi, V. I.; "Interpolation formulas for calculation of the pressure in the system NH₃-CO₂-CO(NH₂)₂-H₂O with the synthesis of urea"; J. Appl. Chem. USSR (Eng. Trans.); #51, 471 (1978)

Hori, S.; Ogami, N.; "The synthesis of urea from ammonia and carbon dioxide"; Koatsu Gasu Kyokaishi; *6, 256 (1942)

Ikeno, S.; "Granulation of fertilizer from ammonium carbamate solution"; Kogyo Kagaku Zaashi; *64, 627 (1971)

Janecke, E.; "Uber das System H₂O, CO₂ und NH₃"; Z. Elektrochem.; *35, 716 (1929)

Janecke, E.; "Uber das System H₂O-CO₂-NH₃, Fortsetzung"; Z. Elektrochem.; *36, 645 (1930)

| 74KAT/VAI: | Katkovskaya, K. Ya.; Vaineikis, A. A.; Dubrovskii, I. Ya.; "Influence of temperature on pH in the system H₂O-CO₂-NH₃"; Teploenergetika (Moscow); *7, 8 (1974) |
| 52KAW: | Kawasumi, K.; "Equilibrium of the CO₂-NH₃-Urea-H₂O system under high temperature and pressure. II. Liquid-vapor equilibrium in the loading mole ratio of NH₃ to CO₂"; Bull. Chem. Soc. Japan; *25, 227 (1952) |

Zr, Px, 150-190 °C	B
Zr; Kk, Pv, 155-190 °C, 0 to 35 mass percent CO₂, 0 to 35 mass percent NH₃.	B
Ke, 25-250 °C.	B
Kk, Pv, 130-170 °C, 30 to 185 atm.	B
Pv, Xd, 140-180 °C, L = 2.	B
Kk, Pv, 130-190 °C, L = 1.5 to 4.0.	B
Kk, Pv, 130-190 °C, L = 1.5 to 4.0.	B
Kawasumi, S.; "Equilibrium of the CO$_2$-NH$_3$-urea-H$_2$O system under high temperature and pressure. V. Liquid-vapor equilibrium in the presence of excess ammonia or carbon dioxide"; Bull. Chem. Soc. Japan; *27, 254 (1954)

Kinoshita, H.; "Equilibrium of urea-water system. II"; Rev. Phys. Chem. Japan; *21, 16 (1951)

Koneczny, H.; Trypuc, M.; "Influence of temperature on the equilibrium pressure over the system NaNO$_3$-NH$_3$-CO$_2$-H$_2$O"; Chem. Stosow.; *18, 15 (1974)

Kotula, E.; Kowalik, W.; "Determination of the equilibrium pressure of ammonia in the system NH$_3$-CO$_2$-H$_2$O-urea up to pressures of 2.5 MPa"; Chem. Stosow.; *24, 561 (1980)
Zc, Kk, Pv, 25 °C.

Zc, Kk, Pv, 25-80 °C.

Zc, Kk, Pv, 25-80 °C.

Zc, Kk, Pv, 25-80 °C.

Kk, Pv, 50-150 °C, boric acid and glycerol are also present.

Kk, Pv, 70-200 °C.

Kk, 155 °C.

Krasil'schikov, A. I.; "The physical chemical basis for the synthesis of urea"; Usp. Khim.; *7, 1042 (1938)
Zc, Kk, 135-200 °C.

Kk, Pv, 20-60 °C.

Kucheryavyi, V. I.; Gorlovskii, D. M.; "Reaction equilibria for the synthesis of urea from ammonia and carbon dioxide"; Khim. Promst. (Moscow); *11, 836 (1969)

Kucheryavyi, V. I.; Gorlovskii, D. M.; "The physical chemical behavior of vapor liquid equilibria in the system \(\text{NH}_3\text{-CO}_2\text{-CO(NH}_2\text{)}_2\text{-H}_2\text{O} \) with parameters for the synthesis of urea"; Dokl. Akad. Nauk SSSR; *186, 891 (1969)

Kucheryavyi, V. I.; Gorlovskii, D. M.; Konkina, T. N.; "The steps of the equilibria for the conversion of carbon dioxide to urea"; Khim. Promst. (Moscow); *3, 200 (1969)

Kucheryavyi, V. I.; Gorlovskii, D. M.; Polyakov, E. V.; "Dependence of equilibrium pressure in the system \(\text{NH}_3\text{-CO}_2\text{-CO(NH}_2\text{)}_2\text{-H}_2\text{O} \) (gas-liquid) on the temperature, autoclave charge density and \(\text{NH}_3\text{:CO}_2 \) ratio in the original component mixture"; J. Appl. Chem. USSR (Eng. Trans.); *42, 591 (1969)

Kucheryavyi, V. I.; Gorlovskii, D. M.; Konkina, T. N.; "Volume fractions of liquid and gas phases in the equilibrium system \(\text{NH}_3\text{-CO}_2\text{-CO(NH}_2\text{)}_2\text{-H}_2\text{O} \) at high temperatures and pressures"; J. Appl. Chem. USSR (Eng. Trans.); *42, 1020 (1969)

70KUC/GOR2: Kucheryavyi, V. I.; Gorlovskii, D. M.; "Densities of coexisting phases in the equilibrium gas-liquid system NH₃-CO₂-CO(NH₂)₂-H₂O at high temperatures and pressures"; J. Appl. Chem. USSR (Eng. Trans.); *43, 1693 (1970)

68KUC/ZIN: Kucheryavyi, V. I.; Zinov'ev, G. N.; Koshcherenkov, N. N.; "Liquid-vapor equilibrium in the system ammonia-carbon dioxide-urea-water at pressures up to 50 atm and temperatures in the range of 100-160°"; J. Appl. Chem. USSR (Eng. Trans.); *41, 795 (1968)

69KUC/ZIN: Kucheryavyi, V. I.; Zinov'ev, G. N.; "Calculation of the equilibrium distribution of NH₃, CO₂, and H₂O between fluids due to both transport and pressure in the systems NH₃-CO₂-H₂O and NH₃-CO₂-CO(NH₂)₂-H₂O"; Khim. Promst. (Moscow); *5, 354 (1969)

Lemkowitz, S. M.; "Phase and corrosion studies of the ammonia-carbon dioxide-water system at the conditions of the hot gas recirculation process for the synthesis of urea"; Dissertation, Delft, The Netherlands (1975).

Litvienko, M. S.; "Equilibria in the system consisting of hydrogen sulfide and carbon dioxide with solutions containing sodium and potassium carbonate"; Zh. Prik. Khim.; *25, 517 (1952)

Mezger, R.; Payer, T.; "Kohlensaure Ammoniumverbindungen"; GWF, Gas. Wasserfach; *68, 651 (1925)

Mezger, I. R.; Payer, P. T.; "Kohlensaure Ammoniumverbindungen"; GWF, Gas. Wasserfach; *68, 687 (1925)

Muhlbauger, H. G.; Monaghan, P. R.; "Sweetening natural gas with ethanolamine solutions"; Oil Gas J.; *55, 139 (1957)

| 640RA/GAM: | Oratovskii, V. I.; Gamol'skii, A. M.; Klimenko, N.N.; "Composition of the saturated vapor over aqueous ammonium sulfide solutions at high temperatures"; J. Appl. Chem. USSR (Eng. Trans.); *37, 2363 (1964) | Kk, Pv, 70-90 °C. |
| 600TS/TAN: | Otsuka, E.; Tanimoto, K.; "Reaction conditions and yield in urea synthesis"; Kogyo Kagaku Zasshi; *63, 254 (1960) | Kk, 100-210 °C. |

Rathgeb, K.; "Fluide Mischphasen und Phasengleichgewicht"; Buck, A.; Chimia, *29, 434 (1975)

Kk, Pv, 100-400 °F, CO, CH₄, N₂, and H₂ also added to mixture.
Pv, 200-500 °F.
Pv, 70-90 °C.
Pv, 100 and 150 °C, measurements also done in aqueous KNO₃ and K₂SO₄.
Zc, Kk, Pv, 80 °C
Pv, 20-90 °C.
Pv, 160 °C.

73SZA/BUC: Szarawara, J.; Buczek, Z.; "Examination of the phase equilibria in the system H₂O-CO₂-NH₃-CO(NH₂)₂ from 20 to 80 °C"; Przem. Chem.; *52, 697 (1973)

62TAK: Takahashi, T.; "Equilibrium calculations for the NH₃, CO₂, H₂O system using the van Laar equation"; Kogyo Kagaku Zasshii; *65, 837 (1962)

Zc, Da, Kk, Pv, 20-120 °C. B,C

Kk, Pv, 37.8 to 204 °C, 0.4 to 18.5 MPa, methane also present. A

Zc, Vt, 30-95 °C. B

Zc, Pv, 170-210 °C, L = 2 to 6, W = 0 to 1.2. B

Pv, 20-80 °C. B

Xd, 20-50 °C. B

Xd, 20-50 °C. B

Kk, Pv, 63-173 °C. B

Kk, Pv, 63-173 °C. B

Terres, E.; Behrens, H.; "Zur Kenntnis der physikalisch-chemischen Grundlagen der Harnstoffsynthese aus Ammoniak, Kohlensaure und Wasser"; Z. Phys. Chem. (Leipzig); *139A, 695 (1928)

Terres, V. E.; Weiser, H.; "Determination of the partial and total pressures of aqueous solutions of \(\text{NH}_3\text{-CO}_2 \) and their application to ammonia scrubbing and the concentration of ammoniacal liquor"; J. Gasbel.; *63, 705 (1970)

Terres, V. E.; Weiser, H.; "Beitrag zur Kenntnis der Amoniak-Kohlensaure-Verbindungen im Gleichgewicht mit ihren Wässerigen Lösungen"; Z. Electrochem.; *27, 25 (1921)

Tokuoka, M.; "On urea synthesis from carbon dioxide and ammonia"; Nippon Nogei Kagaku Kaishi; *10, 1333 (1934)

Tokuoka, M.; "On urea synthesis from carbon dioxide and ammonia Part II"; Nippon Nogei Kagaku Kaishi; *11, 107 (1935)
Tokuoka, M.; "On urea synthesis from carbon dioxide and ammonia Part III"; Nippon Nogei Kagaku Kaishi; *11, 174 (1935)

Trypuc, M.; "Examination of the equilibrium of the system KCl-NH₃-CO₂-H₂O in the presence of urea at 30 °C"; Chem. Stosow; *17, 135 (1973)

Trypuc, M.; "Examination of the equilibrium of the system KCl-NH₃-CO₂-H₂O and KNO₃-NH₃-CO₂-H₂O at the triple point"; Chem. Stosow; *25, 177 (1975)

Trypuc, M.; "Examination of the equilibrium of the system NaCl-NH₃-CO₂-H₂O in the presence of urea at 30 °C"; Chem. Stosow; *25, 95 (1981)

Trypuc, M.; "Examination of the equilibrium of the system NaCl-NH₃-CO₂-H₂O at 30 °C. and a urea molality of 8.26 mol kg⁻¹ at the crystallization point of NaHCO₃"; Chem. Stosow; *25, 261 (1981)

Trypuc, M.; Koneczny, H.; "Examination of the equilibrium of the system KCl-NH₃-CO₂-H₂O at 30 °C"; Chem. Stosow; *17, 147 (1973)

56TSI/KOF: Tsiklis, D. S.; Kofman, A. N.; "Solubility of carbon
dioxide in carbonated copper-ammonia solutions"; Khim.
Promst. (Moscow); *14, 398 (1956)

Pv, 0-60 °C.

57TSI/KOF: Tsiklis, D. S.; Kofman, A. N.; "Partial pressures of
ammonia, water, and carbon dioxide over carbonated copper
ammonia solutions"; Khim. Promst. (Moscow); *15, 277
(1957)

Pv, 10-60 °C.

83TU/CHA: Tu, H. S.; Chang, R. A.; Selleck, F. T.; "Three phase
equilibria computation in hydrocarbon-sour water
processing"; Chemical Engineering Thermodynamics,
pp. 405-416, Ann Arbor Science Publishers, Ann Arbor,
Michigan (1983)

Zc, Kk, Pv, 322 K

79VER: Verbrugge, P.; "Vapor-liquid equilibria of the ammonia
carbon dioxide-water system"; Delft University Press, The
Netherlands; (1979).

Zc, Kk, Pv, 40-90 °C, pressures up to 0.1 MPa.

65VLA/SHO: Vlasov, V. F.; Shokin, I. N.; Krasheninnikov, S. A.;
"Investigation of the equilibria in the gas phase over
solutions containing carbon dioxide, ammonia, and sodium

Pv, 100-180 °C, in the presence of Na₂CO₃.

63WIC: Wicar, S.; "Calculation of vapour-liquid equilibrium in the
system urea, ammonia, carbon dioxide, and water"; Brit.
Chem. Eng.; *8, 818 (1963)

Zc, Kk, Pv, 60-160 °C.

78WIL: Wilson, G. M.; "A new correlation of NH₃, CO₂, and H₂S
volatility data from aqueous sour water systems"; API
Publication 955, American Petroleum Institute, Washington,
DC; (1978).

Zc, Kk, Pv, 20-140 °C, 0 to 50 psia.

80WIL: Wilson, G. M.; "A new correlation of NH₃, CO₂, and H₂S
volatility data from aqueous sour water systems"; Report to
U.S. Environmental Protection Agency, EPA-600/2-80-0679;
Ada, OK (1980).

Zc, Kk, Pv, 20-140 °C, 0 to 50 psia.
Wilson, G. M.; Owens, R. S.; Roe, M. W.; "Sour water equilibria: ammonia volatility down to ppm levels effect of electrolytes on ammonia volatility pH vs. composition"; Research Report RR-34; Gas Producers Association, Tulsa, OK (1978).

Yakovkin, G. A.; "On the synthesis of carbamate from ammonia and carbon dioxide"; Zh. Prikl. Khim. (Leningrad); *1, 69 (1928)

Yanagisawa, Y.; Harano, Y.; Imoto, T.; "Vapor liquid equilibrium for ternary system of ammonia - carbon dioxide - water"; Nippon Kagaku Kaishi; *5, 917 (1973)

Yanagisawa, Y.; Yano, M.; Marano, Y.; Imoto, T.; "Vapor liquid equilibrium for quaternary system of urea-ammonia carbon dioxide-water"; Nippon Kagaku Kaishi; *6, 976 (1975)

A Bibliography of Sources of Thermodynamic Data for the Systems: $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{O}$, $\text{CO}_2 + \text{H}_2\text{S} + \text{H}_2\text{O}$, $\text{H}_2\text{S} + \text{NH}_3 + \text{H}_2\text{O}$, and $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{H}_2\text{O}$

BIBLIOGRAPHIC DATA

<table>
<thead>
<tr>
<th>REPORT NO.</th>
<th>PUBLICATION OR</th>
<th>PERFORMING ORGAN. REPORT NO.</th>
<th>PUBLICATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBS/SP-699</td>
<td></td>
<td></td>
<td>May 1985</td>
</tr>
</tbody>
</table>

TITLE AND SUBTITLE

A Bibliography of Sources of Thermodynamic Data for the Systems: $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{O}$, $\text{CO}_2 + \text{H}_2\text{S} + \text{H}_2\text{O}$, $\text{H}_2\text{S} + \text{NH}_3 + \text{H}_2\text{O}$, and $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{H}_2\text{O}$

AUTHOR(S)

R. N. Goldberg and D. K. Steckler

PERFORMING ORGANIZATION

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

SPONSORING ORGANIZATION

Design Institute for Physical Property Data
Project 811
American Institute of Chemical Engineers
New York, NY

ABSTRACT

Contained herein is a bibliography of sources of experimental and correlated thermodynamic data for the systems $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{O}$, $\text{CO}_2 + \text{H}_2\text{S} + \text{H}_2\text{O}$, $\text{H}_2\text{S} + \text{NH}_3 + \text{H}_2\text{O}$, and $\text{CO}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{H}_2\text{O}$. The types of data in this bibliography include all types of equilibrium data, including both equilibria in solution and vapor-liquid equilibrium data, enthalpies, heat capacities, and densities. There are 215 references cited.

KEY WORDS

ammonia; ammonium carbamate; bibliography; carbon dioxide; enthalpy; equilibrium constants; heat capacity; hydrogen sulfide; sour water; thermodynamics; urea; vapor-liquid equilibria; water

AVAILABILITY

- Unlimited
- For Official Distribution. Do Not Release to NTIS
- Order From National Technical Information Service (NTIS), Springfield, VA. 22161

NO. OF PRINTED PAGES

37
NBS Technical Publications

Periodicals

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau’s technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau’s scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20036.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s technological marketplace.

Order the following NBS publications—FIPS and NBSIR’s—from the National Technical Information Service, Springfield, VA 22161.

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.

36