win Hale

TEM-836

U. S. GEOLOGICAL SURVEY Field Library Albuquergue, New Mexico "GRANITE" EXPLORATION HOLE, AREA 15, NEVADA TEST SITE, NYE COUNTY, NEVADA--INTERIM REPORT, PAR'T A, STRUCTURAL, PETROGRAPHIC, AND CHEMICAL DATA

By F. N. Houser and F. G. Poole

OFFICE COFY DO NOT REMOVE U. S Geological Survey GW Albuquerque

Trace Elements Memorandum Report 836

STATES DEPARTMENT OF THE INTERIOR UNITED

GEOLOGICAL SURVEY

metadc502276

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

"GRANITE" EXPLORATION HOLE, AREA 15,

NEVADA TEST SITE, NYE COUNTY, NEVADA--INTERIM REPORT*

PART A, STRUCTURAL, PETROGRAPHIC, AND CHEMICAL DATA

By

F. N. Houser and F. G. Poole

July 1959

Trace Elements Memorandum Report 836

This report is preliminary and has not been edited for conformity with Geological Survey format and nomenclature

*This report concerns work done on behalf of Albuquerque Operations Office, U. S. Atomic Energy Commission.

Distribution

No. of copies

Albuquerque Operations Office (J. E. Reeves)	10
Division of Military Application, Washington (J. S. Kelly)	2
Division of Raw Materials, Denver (D. L. Everhart)	1
Division of Raw Materials, Washington (R. D. Nininger)	2
Division of Research, Washington (D. R. Miller)	1
Grand Junction Operations Office	1
Las Vegas Branch (M. E. Smith)	2
Technical Information Service Extension	2
Chemistry Division, Argonne National Lab. (W. M. Manning)	1
Chemical Tech. Div., Oak Ridge Natl. Lab. (F. R. Bruce)	1
Engineer Research & Development Lab., Ft. Belvoir, Va.	
(Chief, Special Projects Branch)	1
Health Physics Div., Oak Ridge Natl. Lab. (F. L. Parker)	4
Lawrence Radiation Lab., Livermore (G. W. Johnson)	25
Lawrence Radiation Lab., Mercury (J. Olsen)	3
Los Alamos Scientific Laboratory (J. H. Hall)	1
Stanford Research Institute, Menlo Park (R. M. Foose)	1
U. S. Naval Radiological Defense Lab., San Francisco (N. E. Ballou) .	1
U. S. Geological Survey:	
Alaskan Geology Branch, Menlo Park	1
Engineering Geology Branch, Denver	25
Fuels Branch, Denver	2
Geochemistry and Petrology Branch, Washington	5
Geophysics Branch, Washington	12
Military Geology Branch, Washington	2
Mineral Deposits Branch, Washington	2
Radiohydrology Section, Washington	6
Mercury, Nevada	6
TEPCO, Denver	10
TEPCO, Washington	7
	137

CONTENTS

																												Page
Introdu	ction	n.	٠	٠	•	0	۰	•	٠	•	•	•	٠	•	•	•	•	•	•	o	o	•	•	•	٠	•	•	7
Geology	• • •	• •	٠	۰	٠	•	٠	٠	•	•	•	÷	٠	٠	•	•	•	•	•	•	٠	٠	۰	•	•	•	•	16
St	ructi	ıre	•	۰	•	•	•	•	۰	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	16
Pe	trogi	ap]	hy	•	•	•	o	٠	٠	•	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	• •	24
	Ну	ydr (oti	ıer	ma	1	a	Lte	era	ati	lot	ı .	•	•	٠	•	•	•	•	•	•	٠	•	٠	•	•	٠	27
	Cł	nem	ist	try	7.	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	30

ILLUSTRATIONS

Page

Figure 1.	Index map showing location of tunnel area, Rainier Mesa,
	Marble area and Climax intrusive, Nevada Test Site,
	Nye County, Nevada
2.	Graphic log of the "Granite" exploration hole showing
	rock type, amount of altered rock, core recovery, and
	drilling time
3.	Rosette diagram showing amount and approximate direction
	of dip of 142 joints measured at selected intervals from
	0 to 400 feet in the "Granite" exploration hole,
	Area 15, Nevada Test Site, Nye County, Nevada 17
4.	Rosette diagram showing amount and approximate direction
	of dip of 81 joints measured at selected intervals from
	400 to 800 feet in the "Granite" exploration hole, Area
	15, Nevada Test Site, Nye County, Nevada 18
· 5.	Rosette diagram showing amount and approximate direction
	of dip of 75 joints measured at selected intervals from
	800 to 1,200 feet in the "Granite" exploration hole,
	Area 15, Nevada Test Site, Nye County, Nevada 19

TABLES

Page

Table 1.	Drilling data, "Granite" hole, Area 15, Nevada	
	Test Site, Nye County, Nevada	10
2.	Drilling cost, "Granite" hole, Area 15, Nevada	
	Test Site, Nye County, Nevada	14
3.	Summary of data on joint frequency, "Granite"	
	exploration hole, Area 15, Nevada Test	
	Site, Nye County, Nevada	20
4.	Results of compression tests conducted by	
	Nevada Testing Laboratories, Ltd., Las Vegas	
	Nevada ,	22
5.	Average of modal analyses, in volume percent,	
	of granodiorite and quartz monzonite of the	
	Climax stock, Nevada Test Site, Nye County,	
	Nevada	26

		Page
Table 6.	Normative mineral compositions for igneous rocks	
	from the Climax intrusive mass, Nevada Test	
	Site, Nye County, Nevada. Amounts shown are	
	weight percent	28
7.	Chemical analyses for igneous rocks of the	
	Climax stock, Nevada Test Site, Nye County,	
	Nevada. Amounts shown are weight percent	31
8.	Average chemical composition in weight percent	
	for granodiorite and quartz monzonite in the	
	Climax stock, Nevada Test Site, Nye County,	
	Nevada	37
9.	Semiquantitative spectrographic and equivalent	
	uranium analyses of granodiorite and quartz	
	monzonite from the Climax stock, Nevada Test	
	Site, Nye County, Nevada. Amounts shown are	
	weight percent	39

Table 10.	Chemical analyses for Cu, Pb, Zn, and S for	
	igneous rocks from the "Granite" exploration	
	hole, Nevada Test Site, Nye County, Nevada	44
11.	Lithologic log of the "Granite" exploration	
	hole, Area 15, Nevada Test Site, Nye County	
	Nevada, by F. N. Houser, F. G. Poole, G. A.	
	Izett, and C. E. Price	48

Page

"GRANITE" EXPLORATION HOLE, AREA 15, NEVADA TEST SITE, NYE COUNTY, NEVADA--INTERIM REPORT PART A, STRUCTURAL, PETROGRAPHIC, AND CHEMICAL DATA

By F. N. Houser and F. G. Poole

INTRODUCTION

The "Granite" exploration hole was core drilled to determine the character of the igneous rocks from the surface to a depth of 1,200 feet and the degree of structural anisotropism of the rock within 200 feet of a point 950 feet below the surface. This report summarizes the data on the structure, chemistry, petrology and alteration of the rocks exposed at the surface in the immediate vicinity of the drill site and in the core. No attempt has been made to interpret the data because much pertinent data remain to be obtained concerning the mineralogy and petrography of the rocks. The work reported herein was done on behalf of the Albuquerque Operations Office, U.S. Atomic Energy Commission,

The drill hole is in the southwestern part of the Climax stock in the north-central part of the Nevada Test Site (fig. 1). The Nevada State coordinates of the drill hole are N. 901,906.97 and E. 676,827.21; the collar elevation is about 5,113 feet. A graded dirt road passable by heavy equipment, such as truck-mounted drill rigs, connects the drill site with a gravel road leading from the Mercury Highway to Groom Lake. The drill hole is on one of several low southeast-trending ridges which

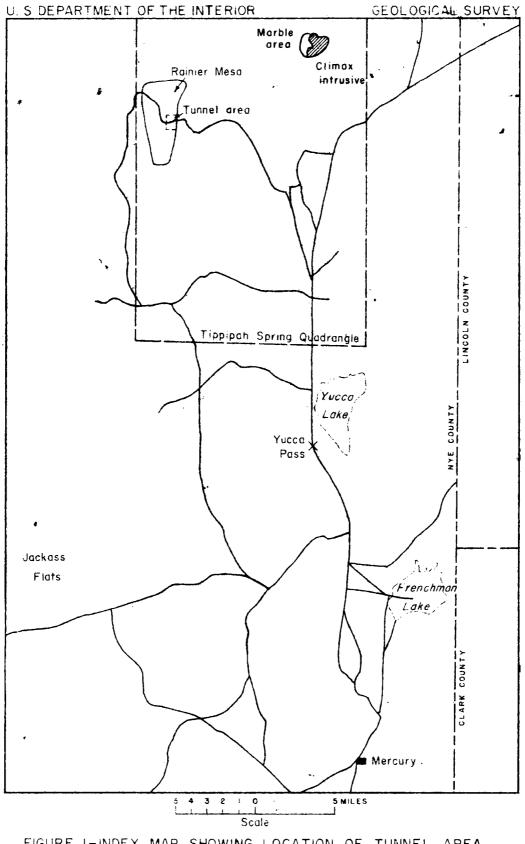


FIGURE I-INDEX MAP SHOWING LOCATION OF TUNNEL AREA, RAINIER MESA, MARBLE AREA AND CLIMAX INTRUSIVE NEVADA TEST SITE, NYE COUNTY, NEVADA

have 40 to 60 feet of relief. The intervening valleys contain intermittent streams and are partly filled with rock debris derived by weathering of the Climax intrusive mass.

The detailed information on the drilling operation, condition of the hole, and unit price schedule are included to facilitate future use of this hole, and to aid future planning and cost estimating for other holes in this type of terrane.

The "Granite" exploration hole was cored vertically to a depth of 1,200 feet by the Boyles Bros. Drilling Company, Salt Lake City, Utah. The hole was reamed to a diameter of 6 inches to 951 feet by the same company. Detailed drilling information is contained in table 1.

The unit drilling costs are presented in table 2. One detailed cost not listed in table 2, and perhaps of some significance, is the relative cost of diamond bits per foot cored when using the wire-line versus conventional coring equipment. According to Mr. Willden, field representative for the Boyles Bros. Company, the cost of diamond bits for this hole was about three times greater when using NX conventional coring equipment compared to the NC wire-line equipment.

The courtesy and cooperation extended the U.S. Geological Survey by Mr. Gerald Willden of Boyles Bros. Drilling Company, and by Mr. Seymour Myers and Mr. Walter Johnson of Holmes and Narver Inc., as well as many other personnel of both organizations, has been fully appreciated. Holmes and Narver, Inc., was the architect-engineering and contracting firm.

Item	Description	Date	Depth (feet)	
Coring:				
Started		3-27-59	0 to 1,200	
Completed		5-12-59		•
Reaming:	8 and 6 inch		0 to 951	
Started		5-14-59		
Completed		6-?-59		
Diameter of drill bits	3.565 inches 3 inches 8 inches 6 inches		20 to 1,090 1,090 to 1,200 0 to 12 12 to 951	. 10
Gquipment:				
Drills	Coring and drilling: Longyear Master Straitline Diamond core; (capacity 3,000 feet-NX)		0 to 1,200	
	Reaming: Joy 22HD Diamond Core (capacity 1,500 feet-NWX)		0 to 951	
Coring tools	NC wire-line (coring) NX-conventional (coring)		20 to 1,090 1,090 to 1,200	

Table 1.--Drilling data, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada

Item	Description	Date	Depth (feet)	
Reaming tools	8- and 6-inch diamond bits (drilling)		0 to 951	
Cemented intervals	To fix surface casing To prevent fluid loss and cave-in do do do do do do do do do do do		0 to 13 12 to 20 13 to 87.5 320 to 355 307 to 360 324 to 374 330 to 374 926 to 1,053 900 to 1,090 1,073 to 1,133	11
Drilling fluid	Water or small amounts of bentonite-type mud		0 to 480	
Casing	Bentonite-type mud <u>1</u> / 8 inch 3 inch (ID)		480 to 1,200 O to 12.8 953 to 1,041 <u>2</u> /	
ž				

Table 1.--Drilling data, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

Item	Description	Date	Depth (feet)	
Logging	McCullough Tool Co., gamma radiation	5 - 18-59	0 to 1,000	
	McCullough Tool Co., neutron radiation	5-18-59	0 to 1,009	
	Eastman Oil Well Survey Co., magnetic directional survey	5-21-59	0 to 1,150 <u>3</u> /	
	Eastmen Oil Well Survey Co., spontaneous potential and resistivity	5-21-59	0 to 1,141	
	Eastman Oil Well Survey Co., temperature	5-21-59	72 to 1,159	
	Dames [°] and Moore seismic, velocity	5-17-59 to 5-18-5	9	
	U. S. Geological Survey seismic, velocity	6-3-59 to 6-4-59		7
Core recovery <u>4</u> /	89.3 average, entire hole $5/$		20 to 1,200	
(percent)	92.4 average, NC wire-line coring 59.8 average, NX conventional coring		20 to 1,090 1,090 to 1,200	
Costs	See table 2, Cost schedule			

Table 1.--Drilling data, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

Table 1.--Drilling data, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

- 1/ Mud was supplemented in the interval 1,170 to 1,188 feet with cotton packing, cotton seed, thick mud wrapped in paper sacks, and one rubber ball.
- <u>2</u>/ Includes 76 feet of drill pipe, 12 feet plus of core barrel and diamond core bit-- total 88 feet of coring tools lost by mishap during cementing.
- 3/ At increments of 50 feet.
- 4/ For percent recovery by interval cored see Graphic log, figure 2.
- 5/ Based on 1,153.5 feet for which recovery data are available.

Table 2.--Drilling cost, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada

Description	Quantity	Unit	Unit price (dollars)
Mobilization for coring and drilling	1	Job	\$1,750.00
Coring and drilling (minimum diameter hole) surface to 1,000 feet	1,000	LF <u>1</u> /	15.20
Coring and drilling (6-inch hole) surface to 1,000 feet	1,000	LF	11.60
Coring and drilling (minimum hole) 1,000 feet to 1,200 feet	200	LF	17.90
Mobilization and demobilization for logging with crew		Hour	22.50
Mobilization and demobilization for logging without crew		Hour	14.50
Continuous bore hole survey (O to 1,000 feet)	1	Each	325.00
Sonic or velocity log (1,000 feet)	1	Each	
Induction log (1,000 feet)	1	Each	
Neutron-gamma ray log (0 to 1,000 feet)	1	Each	275.00
Electrical log (0 to 1,000 feet)	1	Each	450.00
Temperature log (0 to 1,000 feet)	1	Each	400.00
Surface casing	10	LF <u>1</u> /	9.50
Bailing equipment-furnishing	1	Job	350.00
Bailing equipment-operating	6	Hour	25.00
Vater injection equipment- furnishing	1	Job	250.00
Water injection equipment- operating	12	Hour	25.00

Description	Quantity	Unit	Unit price (dollars)
Pumping equipment-furnishing	1	Јор	\$1,900.00
Pumping equipment-operating	49	Hour	25.00
Seismic survey	1	Job	
Logging and surveying mileage service	1	Each	1,300.00
Standby time	6	Hour	22.50
Demobilization and moveout	1	Job	500.00
Additional set-up	1	J o b	650.00

Table 2.--Drilling cost, "Granite" hole, Area 15, Nevada Test Site, Nye County, Nevada.--Continued

 $\underline{1}$ / LF = linear foot.

GEOLOGY

The igneous rocks of the Climax stock that crop out in the vicinity of the exploratory hole are an equigranular granodiorite and a porphyritic fine- to medium-grained quartz monzonite. The contact between the two rocks is irregular, sharp, strikes west to northwest, and dips steeply to the south and southwest(?). The hole was collared in the porphyritic quartz monzonite about 50 feet south of the contact with the granodiorite.

Structure

The igneous rocks at the surface and penetrated by the exploration hole are well jointed and faulted. The most prominent joint set in the core dips 15° to 35° NE. and throughout the hole was assumed to have an average strike of N. 32° W., the same as that of the prominent northeast-dipping joint set mapped at the surface. In each 100 feet of hole, a 10-foot interval of core was oriented by using the strike (N. 32° W.) of the low-angle joints. The strike and dip of each joint were recorded on rosette diagrams (figs. 3 through 5). Because the method of orienting the core is inaccurate, the measured strikes of all other joints were plotted in the centers of the 45° quadrants and therefore reflect only their general trend. Each figure shows the joints observed in the four 10-foot intervals in each of the upper, middle, and lower 400-foot intervals of the hole. The rosette diagrams show the frequency of the fractures of various attitudes with depth, the distribution of the high-angle $(> 45^{\circ})$ joints, and the changes in dip of the set that strike N. 32° W. (See also table 3.) Joints that strike

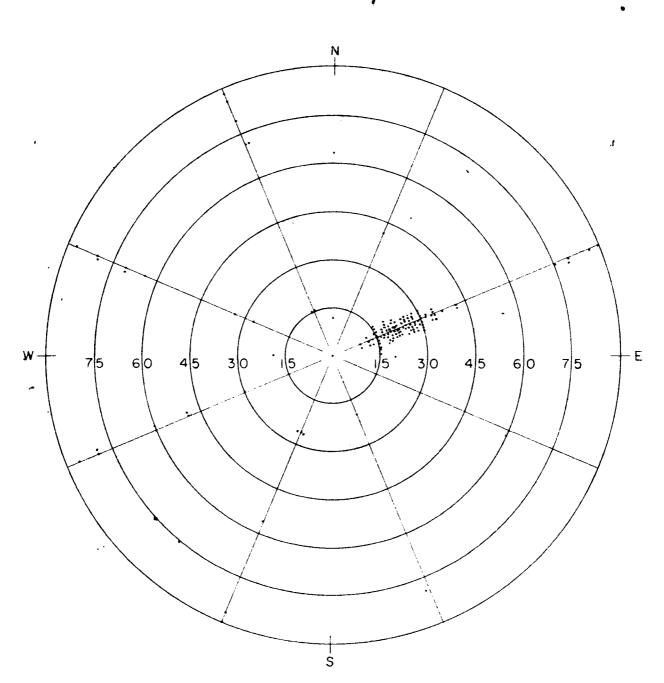


FIGURE 3-ROSETTE DIAGRAM SHOWING AMOUNT AND APPROXIMATE DIRECTION OF DIP OF 142 JOINTS MEASURED AT SELECTED INTERVALS' FROM O TO 400 FEET IN GRANITE EXPLORATION HOLE, UIS AREA, NEVADA TEST SITE, NYE COUNTY, NEVADA

· ·

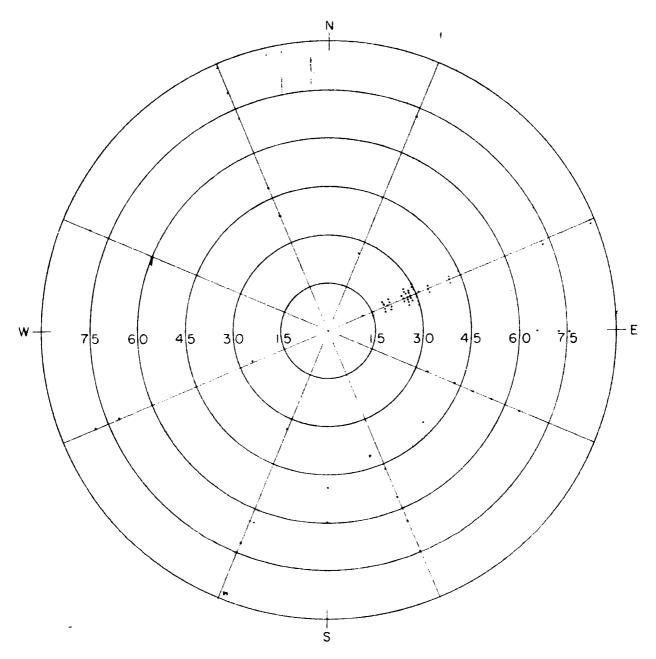


FIGURE 4-ROSETTE DIAGRAM SHOWING AMOUNT AND APPROXIMATE DIRECTION OF DIP OF 81 JOINTS MEASURED AT SELECTED INTERVALS FROM 400 TO 800 FEET IN GRANITE EXPLORATION HOLE, UI5 AREA, NEVADA TEST SITE, NYE COUNTY, NEVADA

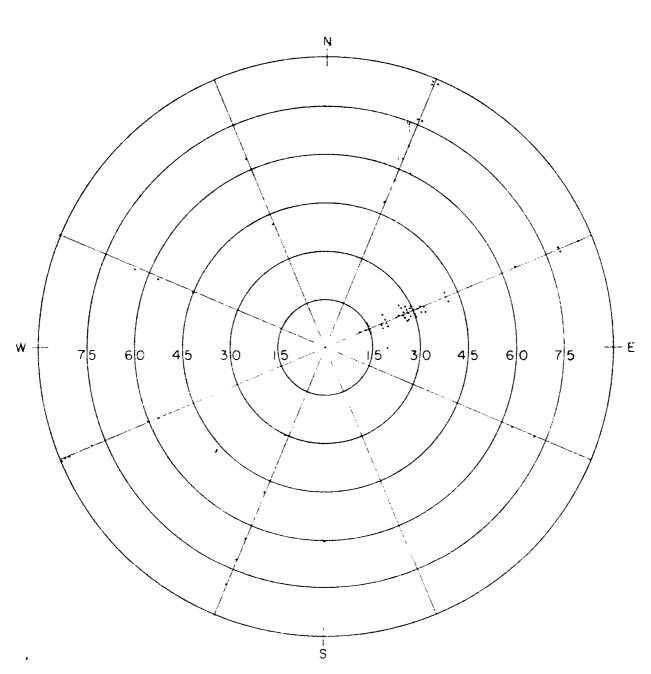


FIGURE 5-ROSETTE DIAGRAM SHOWING AMOUNT AND APPROXIMATE DIRECTION OF DIP OF 75 JOINTS MEASURED AT SELECTED INTERVALS FROM 800 TO 1200 FEET IN GRANITE EXPLORATION HOLE, UI5 AREA, NEVADA TEST SITE, NYE COUNTY, NEVADA

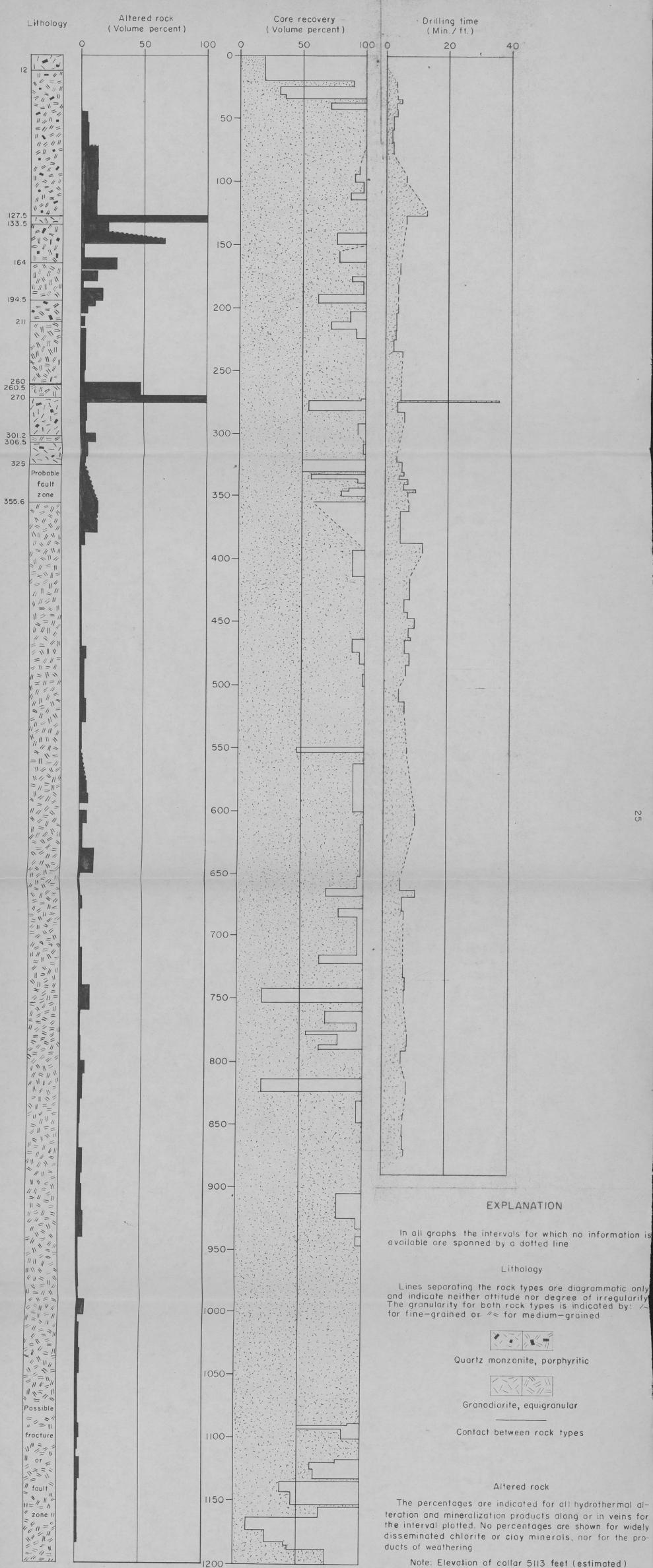
Depth	Length of	Num	ber of joints	s measured	Average joints per foot					
(feet)	core examined in selected intervals (feet)	Total	Low angle joints of N. 32 ⁰ W. set	High angle (>450)	All joints	Low angle joints of N. 32 ⁰ W. set	High angle (> 450)			
0-400	35.9	142	98	31	4.0	2.7	0.9			
400-800	37.2	81	43	31	2.2	1.2	0.8			
800-1,200	38.5	75	38	32	1.9	1.0	0.8			
Entire hole	111.6	298	179	94	2.7	1.6	0.8			

Table 3.--Summary of data on joint frequency, "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada

Lab. No.	Holmes and Narver No. <u>1</u> /	<u>Core size</u> Diameter	<u>(inches)</u> Length	Rock type	Depth of sample	Dip of pre-test natural fractures present in specimen <u>2</u> / (degrees)	Total load (pounds)	Core area (square inches)	Pounds per square inch	Type of fracture developed by test
6	HNG-1	2.375	2.375	Quartz monzo- nite	46.0- 46.5	35	40,350	4.43	9,110	Tension
7	HNG-2	2.375	2.375	do	121.5-	25	35,800	4.43	8,080	1
7A	HNG-2	2.375	2.125	do	122.0	25	39,100	4.43	8,830	Do
8	HNG-3	2.375	2.3125	Grano- diorite	244.0- 244.5	35	49,400	4.43	11,510	Do
9	HNG-4	2.375	2.375	do	343 .5- 344.0	None	29,800	4.43	6,720	Tension, few shear
10	HNG-5	2.375	2.375	do	447.0- 447.5	None	53,500	4.43	12,070	Tension
1	HNG-6	2.375	2.375	do	844.4- 845.1	Approx. 30	105,500	4.43	23,800	Tension, few shear
2	HNG-7	2.375	2.375	do	855 .5- 856.0	None	71,650	4.43	16,500	Tension

Table 4.--Results of compression tests conducted by Nevada Testing Laboratories, Ltd., Las Vegas, Nevada

- Table 4.--Results of compression tests conducted by Nevada Testing Laboratories, Ltd., Las Vegas, Nevada.--Continued
- 1/ Samples HNG-1 through HNG-5 were reported 4-24-59 (Ref. P. O. LV-68718, Lab. No. P-107). Specimens were cut and capped with standard mineral lead compound. Tests were performed with a Baldwin-Limi-Hamilton Universal Testing Machine, Model No. 120-H, and Baldwin Microformer Stress-Strain Recorder. Samples HNG-6 and HNG-7 were reported 5-9-59 (Ref. P. O. LV-68718, Lab. No. P-107). Specimens capped with plastic steel containing 80 percent steel (PSI 18,000 pounds).
- 2/ Assumed strike of joint represented in specimen is N. 32° W. (see text for details regarding this joint set). Only one joint was observed in each of the four specimens noted in this column.


.

Faults are difficult to recognize on the surface because of poor exposures and lack of lithologic markers. They are indicated in the core by much broken rock, clayey gouge, slickensides on fractures and by increased water loss. The only fault recognized in the core was between 325 and 355 feet, though the highly permeable rocks from 1,090 to 1,170 feet may represent a fault zone. The attitude of these faults is unknown; however, in the marble west of the Climax stock, post-intrusion faults strike W. to N. 45° W., and dip steeply north or south. Thus, the faults intersected in the hole probably strike northwest to west, and dip steeply to the north.

Petrography

Both rock types--granodiorite and quartz monzonite--mapped on the surface were penetrated by the "Granite" exploration hole. Quartz monzonite was encountered through six intervals from 0 to 127.5, 133.5 to 164.0, 194.5 to 211.0, 260 to 260.5, 270.0 to 301.2, and 306.7 to 325 feet; granodiorite is present in the remainder of the hole (fig. 2 and table 11).

In the core the granodiorite is light gray to greenish gray, equigranular and medium grained whereas the quartz monzonite is medium gray to light gray and contains phenocrysts in a fine- to medium-grained groundmass. The average mimeralogic compositions of the quartz monzonite and granodiorite as determined by a few modal analysis are given in table 5. These averages have not been adjusted for the amounts of the different facies of quartz monzonite that are represented in the core and crop out at the drill site. These results

Note: Elevation of collar 5113 feet (estimated)

Total depth

FIGURE 2 - GRAPHIC LOG OF THE GRANITE EXPLORATION HOLE SHOWING ROCK TYPE, AMOUNT OF ALTERED ROCK, CORE RECOVERY, AND DRILLING TIME

Rock	Granodiorite	Quartz monzonite
No. of modal	4	4
analyses		· · · · · · · · · · · · · · · · · · ·
Essential minerals:		
Quartz	28.6	27.3
Potassium feldspar		
Orthoclase	22.5	35.5
Microcline	0	Trace
Plagioclase	37.4	29.3
Type 1/	(calcic andesine)	(sodic andesine)
Biotite	6.5	4.2
Hornblende	0.1	Trace
Accessory minerals:		
Iron ore	0.8	0.9
Sphene	0.4	0.1
Apatite	0.1	0.05
Alteration minerals:		
Chlorite (excl. of pennin		0.7
Penninite	0.6	0.8
Sericite	1.4	1.2
Kaolinite	0.8	0
Epidote	0.08	0.05
Sum	100	100

Table 5Average of modal analyses	in volume percent, of granodiorite
and quartz monzonite of	the Climax stock, Nevada Test Site,
Nye County, Nevada	

 $\underline{1}$ / Provisional estimates based upon flat-stage extinction angles.

show that the porphyritic quartz monzonite contains more potassium feldspar, mainly orthoclase but less plagioclase, quartz, and biotite than the granodiorite. The plagioclase of the fine- to medium-grained part of the quartz monzonite appears to be slightly more sodic than the plagioclase of the granodiorite.

The normative mineral composition (norms) of the rocks (table 6) was calculated from the chemical analyses and reflect many of the chemical variations of the rocks in terms of theoretical minerals present. As shown in table 6 the quartz monzonite generally contains more orthoclase and quartz and less anorthite than the granodiorite. More or less equal amounts of albite merely reflect the rather constant Na₂0 content of the rocks. The ratio of orthoclase to total feldspar for quartz monzonite, however, is somewhat higher, though more erratic, than for granodiorite.

Hydrothermal alteration

Evidence of hydrothermal alteration of the quartz monzonite and granodiorite was found in much of the core from the exploration hole. The alteration products include clay minerals, chlorite, secondary feldspar, sericite, quartz, epidote and sulfide minerals, mainly iron sulfide. The clay minerals and chlorite occur in zones throughout the rocks and are concentrated with the other alteration products along the gently northeast-dipping joints.

				• · · · · · · · · · · · · · · · · · · ·	•		*	<u> </u>	A	
Column 1			2	3	4	5	6	7	8	9
Rock	Type <u>2</u> /		Granodi	iorite		Quartz monzonite				
ROCK	Facies <u>3</u> /	11	m <u>4</u> /	m	m	sill <u>5</u> /	m	m	m	f
Sample	e no. <u>6</u> /	HG-7	FP-65	FP-62	 G=800=0	HT-8	G-70	-70 FP-63 HG-10 G-277-0		
	ated from is in table .umn:	1	2	3	11	25	31	32	33	37
Orthoc	lase (or)	19.5	21.3	20.1	23.1	16.0	20.1	30.1	23.6	33.1
Albite	e (ab)	26.2	28.7	27.0	25.4	33.0	28.7	25.3	25.4	22.8
Anorth	ite (an)	16.7	14.8	18.2	16.2	20.5	17.4	8.1	13.5	13.6
Ilmeni	.te (il)	.7	.6	.9	.7	.9	.7	•4	.6	.7
Magnet	ite (mg)	2.5 -	2.3	2.8	2.5	2.5	1.9	.5	2.2	1.6
Hemati	te (hm)							.3		
Quartz	: (q)	29.3	28.6	26.6	27.2	20.7	25.6	30.2	31.0	22.7
Corund	lum (c)	.8	.6	.6	1.0	•2	.4	2.5	.7	1.0
Hypers	thene (hy)	2.7	2.1	2.5	2.9	4.4	3.6	.4	2.1	2.6
Apatit	e (ap)	.2	.2	.2	.2	.3	.2	.2	.2	.3
Sum <u>8</u> /	· · · · · · · · · · · · · · · · · · ·	98.6	99.2	98.9	99.2	98.5	98.6	98.0	99.3	98.4
or/ab	+ an + or	31	33	31	36	23	30	47	38	48
an/ab	+ an	39	34	40	39	38	38	24	35	37
an/ab + an Rock type as determined from norm 9/		g	g	g	q	g	g	q	q	q

Table 6.--Normative mineral compositions 1/ for igneous rocks from the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent.

Column	1	10	11	12	
Rock	Ty pe <u>2</u> /	Quar monzo		Granite	
	Facies <u>3</u> /	f	f <u>7</u> / a HG-19 H-367-1 39 40 72.7 46.1		
Sample	e no. <u>6</u> /	HG-8	HG-19	H-367-1	
	ated from sis in table .umn:	38	39	40	
Orthod	clase (or)	20.7	72.7	46.1	
Albite	e (ab)	26.2	4.6	16.9	
Anorthite (an)		15.2	.8	2.8	
Ilmenite (il)		.8	.8	.1	
Magnetite (mg)		2.5	.8	.2	
Hematite (hm)			.1		
Quartz	Quartz (q)		16.6	31.3	
Corund	Quartz (q) Corundum (c)		2.1	1.1	
Hypers	sthene (hy)	2.0	.3	.1	
Apatit	e (ap)	•2	.2	.1	
Sum <u>8</u> /	/	98.3	99.0	98.7	
or/ab	+ an + or	30	93	70	
an/ab		37	15	14	
deter	type as nined norm <u>9</u> /	g-q	gr	gr	

Table 6.--Normative mineral compositions 1/for igneous rocks from the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent--Continued

Table 6.--Normative mineral compositions 1/ for igneous rocks from the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent--Continued

- 1/ Weight percent. Theoretical mineral composition based on chemical analysis. CIPW system used in computations.
- 2/ Name assigned to original unaltered rock on the basis of megascopic petrology, chemical analyses and norms.
- 3/ Determined megascopically for granodiorite or quartz monzonite: f = fine-grained facies, m = medium-grained facies; for granite dikes: a = aplitic (fine grained), g = medium grained, p = pegmatitic (coarse to very coarse grained).
- 4/ Hydrothermally(?) altered.
- 5/ No facies designated but rock is medium grained.
- 6/ All samples with prefix "G" are from exploration hole and number indicates depth. Zero following depth number distinguishes specific series of samples. All other samples are from the surface.
- $\frac{7}{1}$ Hydrothermally altered--predominant product is secondary K-feldspar.
- 8/ Sum of normative minerals in rock are less than 100 percent as H₂O, MnO, and CO₂ determined in chemical analysis were not used in these CIPW norm calculations.
- $\frac{9}{g}$ = granodiorite, q = quartz monzonite, and gr = granite.

The clay minerals are predominantly montmorillonite though kaolinite was detected in a few samples. They make up relatively a small part of the total rock but are common in zones 1 to 15 feet thick, many of which appear to be associated closely with high-angle fractures.

The vertical distribution in the core of the minerals (other than the clay and chlorite) formed by hydrothermal alteration was determined by measuring to the nearest 0.01 foot the thickness of each altered zone. The average amount of altered rock is plotted on the bar graph (fig. 2) for given intervals of core. In general the altered igneous rocks are most abundant from the surface to depth of about 360 feet. In this interval both the granodiorite and quartz monzonite contain zones in which the altered rock is extensive.

Chemistry

The results of chemical analyses of 31 samples from core of the exploration hole and 8 samples from the surface are given in table 7. The average chemical composition of the medium-grained granodiorite (table 8) was computed from 13 analyses and it is thought to be representative of the granodiorite from 356 feet to bottom of the drill hole. For the quartz monzonite, the average composition (table 8) was not weighted for relative amounts of the fine- and medium-grained rocks and does not necessarily represent the bulk composition of the quartz monzonite mass.

		veigi	<u>nt percent</u>							
Rock	Type <u>1</u> /		Granodiorite							
KOCK .	Facies <u>2</u> /	m	m <u>3</u> /	m	m	m	m	m	m	
Column		1	2	`3	4	5	6	7	8	
	Number	HG-7	FP-65	FP-62	G-165-0	G-236-0	G-255	G-400-0	G⇔500-0	
	Type 4/	G	G	G	G	G	G	G	G	
Sample	Report no. IRC-	354	354	354	393	393	382	393	393	
	Lab. no.	153994	154000	153998	154558	154559	154466	154567	154561	
	Analysts 5/	1,2,3,4	1,2,3,4	1,2,3,4	1,2,4	1,2,4	1,4,2	1,2,4	1,2,4	
Locatio	on <u>6</u> /	S	S	S	Е	E	E	E	E	
S10 A12 Fe20 Fe0 Mg0 Ca0 Na20 K20) ₃) ₃	68.6 15.6 1.7 1.7 .64 3.6 3.1 3.3	69.6 15.5 1.6 1.5 .48 3.2 3.4 3.6	67.5 16.2 1.9 1.7 .70 3.9 3.2 3.4	65.5 16.1 2.5 1.2 .83 4.5 3.4 2.4	68.2 15.3 1.8 1.6 .68 3.9 3.0 3.0	66.2 16.4 1.5 2.3 1.2 4.1 3.2 3.0	70.8 14.9 1.6 1.2 .39 3.0 2.9 4.0	68.7 15.4 2.0 1.2 .53 3.4 3.0 3.4	
H20 T10 P203 Mn0 C02 Sum	2	.70 .38 .18 .06 .08 100	.54 .34 .16 .06 .10 100	.83 .46 .18 .07 .08 100	1.4 .43 .25 .06 .39 99	1.1 .38 .22 .05 .13 99	1.0 48 .18 .10 .10 100	.80 .26 .14 .06 .18 100	1.5 .34 .18 .07 .10 100	

Table 7.--Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent

-		per cent	Continuea	ندركة ببربين سكت اختصر سرعت						
Rock	Туре <u>1</u> /	Granodorite								
ROCK	Facies <u>2</u> /	m	m	m	m	m	m	, m		
Column		9	10	11	12	13	. 14	15		
	Number	G-600-0	G⇔700 - 0	G-800-0	G ∝900 ⇔0	G-1000-0	G-1100-0	G-1200-0		
Sample	Type <u>4</u> /	G	G	G	G	G	G	G		
	Report no. IRC-	393	393	393	393	393-	402	402		
	Lab. no.	154562	154563	154564	154565	154566	273776	273778		
	Analysts <u>5</u> /	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	1,2,4	32	
Locatio	on <u>6</u> /	E	Ė	E	E	E	E	Е		
Si0 ₂ A1 ₂ 03	3	68.1 16.2	68.2 15.3	68.1 16.1	67.3 15.7	67.4 15.9	65.3 16.4	66.1 16.3		
Fe ₂ 0 FeÖ		1.7 1.5	1.8 1.4	1.7 1.5	2.0 1.6	1.8 1.6	1.8 2.1	1.8 2.0		
Mg0 Ca0 Na20 K ₂ 0		67 3.5 3.2 3.5	.54 3.9 3.0 3.7	.60 3.5 3.0 3.9	.67 4.1 3.1 3.2	.76 4.0 3.3 3.3	1.3 3.9 3.2 3.6	1.2 3.8 3.2 3.4		
H20 T102 P205 Mn0		.88 .35 .18 .08	.82 .36 .20 .08	1.0 .37 .19 .08	.80 .40 .27 .09	.76 .40 .22 .08	.93 .48 .18 .10	.84 .47 .18 .10		
CO2 Sum		.06 100	.38 100	.07 100	.13 99	. 10 100	.14 99	.09 99		

Table 7.--Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent--Continued

KOCK F Column Sample R L	Type <u>1</u> / Facies <u>2</u> / Number Type <u>4</u> / Report no. IRC-	m 16 G400 C	m 17 G500	Gra 	modiorite m 19	m 20	m 21	m 22	m 23	
Column Sample	Number Type <u>4</u> / Report no. IRC-	16 G400 C	17 G500	18	19					
Sample R	Type <u>4</u> / Report no. IRC-	G400 C	G500			20	21	22	23	
Sample R	Type <u>4</u> / Report no. IRC-	С		G600						l
Sample R	Report no. IRC-				G700	G800	G900	G1000	G1100	
			· C	C	С	С.	С	С	С	
		397	397	397	397	397	397	397	402	E
A	Lab. no.	154629	154630	154631	154632	154633	154634	154635	273777	Γ
	Analysts <u>5</u> /	1,4,2	1,4,2	1,4,2	1,4,2	1,4,2	1,4,2	1,4,2	1,2,4	Ē
Location	6/	E	E	E	E	E	E	E	E	
Si02 A1203 Fe203 Fe0 Mg0 Ca0 Na20 K20 H20 Ti02 P205 Mn0 C02	ľ	67.9 15.6 1.5 1.6 .89 3.5 2.8 3.7 1.2 .36 .14 .04 .18	66.8 15.6 1.8 1.6 1.0 3.7 2.8 3.6 1.7 .40 .16 .06 .44	67.4 15.6 1.6 .89 3.7 2.8 3.6 1.5 .40 .16 .04 .44	67.7 15.8 1.8 1.4 .79 3.7 3.0 3.5 1.3 .36 .16 .04 .28	67.5 15.6 1.9 1.5 .94 3.6 2.9 3.6 1.4 .38 .16 .04 .29	67.6 16.0 1.7 1.6 .88 4.2 3.1 3.3 .82 .40 .19 .06 .14	67.4 16.0 1.8 1.6 .89 3.9 3.1 3.6 .94 .41 .21 .04 .17	65.8 16.4 2.0 2.0 1.2 3.9 3.2 3.4 .91 .48 .19 .10	

Table 7.--Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent--Continued

ε β

		<u>percent-</u>	-Continued						
Rock	Type <u>1</u> /	Grano- diorite	G	ranodiorit uartz mona	te and zonite	Qua	rtz monzon	ite	
NOCK	Facies <u>2</u> /	m	gm 65% qf 35%	uartz mon: gm 50% qf 50%	gm 40% gm 60%	m	m 100%	m	
Column		24	25	26	27	28	29	30	
	Number	G930-0	G⇔300	G-200	G-100	G-118	G-50-90	G-70	
	Type 4/	G	С	С	C	G	С	G	
Sample	Report no. IRC-	402	397	382	382	382	382	382	
	Lab. no.	273775	154628	154463	154462	154465	154461	154464	
	Analysts <u>5</u> /	1,2,4	1,4,2	1,4,2	1,4,2	1,4,2	1,4,2	1,4,2	
Locatio	on <u>6</u> /	E	E	E	E	E	E	E	
Si0 ₂ A1203 Fe203 Fe0		63.5 16.4 1.8 1.6	67.2 15.9 1.7 1.5	65.9 16.1 1.9 1.7	64.2 16.2 2.0 1.6	67.2 15.9 1.6 1.6	69.6 15.8 1.0 1.2	67.8 16.1 1.3 1.7	
Mg0 Ca0 Na ₂ 0 K ₂ 0		1.4 3.1 3.4 4.5	.86 3.5 2.9 3.9	1.1 3.4 2.8 4.0	1.0 3.7 2.8 3.9	.86 3.5 3.0 3.7	.61 2.7 2.9 4.8	.88 3.5 3.4 3.4	
H ₂ 0 T10 ₂ P ₂ 05 Mn0 CO ₂ Sum		1.8 .49 .19 .10 1.1 99	1.3 .38 .17 .04 .39 100	1.4 .44 .18 .08 .26 .99	2.2 .44 .19 .08 1.0 99	1.0 .40 .16 .08 .09 99	.96 .33 .12 .08 <.05 100	.83 .38 .15 .08 .06	

Table 7.--Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent==Continued

		per	centCo	ntinued						
	Type <u>1</u> /				Quartz m	onzonite				Granite
Rock	Facies <u>2</u> /	m	m	m	m	m 60% f 40%	f	f	_f <u>7</u> /	a
Column		31	32	33	34	35	36	37	38	39
Í	Number	FP-63	HG10	G-63 - 0	G-144-0	G=0-40	G∽277∽0	HG-8	HG-19	H-367-1
	Type <u>4</u> /	G	G	G	G	C	G	G	G	G
Sample	Report not IRC-	354	354	393	393	382	393	354	354	382
	Lab. no.	153999	153996	154556	154557	154460	154560	153995	153997	154467
	Analysts 5/	1,2,3,4	1,2,3,4	1,2,4	1,2,4	1,4,2	1,2,4	1,2,3,4	1,2,3,4	1,4,2
Location <u>6</u> /		S	S	Е	E	E	E	S	S	S
Al Fe Fe Ca Na K2	a0 a20 20	70.8 15.9 .6 .34 .16 1.8 3.0 5.1 1.1	70.7 14.9 1.5 1.5 .47 2.9 3.0 4.0	69.3 15.6 1.4 1.3 .49 3.3 3.0 4.0	66.2 17.3 1.7 .83 .59 3.4 3.1 3.2 2.6	67.3 16.4 1.5 1.6 1.0 3.6 3.3 3.4 1.3	67.1 16.5 1.1 1.4 .63 3.0 2.7 5.6 .96	68.2 16.1 1.7 1.5 .52 3.3 3.1 3.5 .80	67.3 16.6 .6 .10 .38 .54 12.3 .63	74.0 13.9 .15 .16 .02 .70 2.0 7.8 .64
H ₂ 0 T10 ₂ P ₂ 05 MnO		.22 .13 .02	.34 .14 .04	.36 .18 .06	.42 .24 .04	.44 .19 .08	.37 .20 .06	.40 .18 .04	.40 .17 .02	.06 .12 .02
CO2 Sum		.04 99	.10 100	.08 100	.34 100	.06 100	.20 100	.06 99	.15 100	<.05 100

Table 7, --Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. - Amounts shown are weight percent--Continued

Table 7.--Chemical analyses for igneous rocks of the Climax intrusive mass, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent--Continued

- 1/ Name assigned to original unaltered rock on the basis of megascopic petrology, chemical analyses and norms.
- 2/ Determined megascopically for granodiorite or quartz monzonite: f = fine-grained facies, m = medium-grained facies; for granite dikes: a = aplitic (fine grained), g = medium grained, p = pegmatitic (coarse to very coarse grained).

For the column showing composite samples, the facies line is used to indicate the relative proportions of the two rock types or two facies of one rock type in the composite sample.

- 3/ Hydrothermally(?) altered.
- 4/ G = grab, C = composite. Composite samples consist of equal amounts of rock taken at even 10-foot intervals beginning at the footage indicated by the sample number.
- 5/ Analysts indicated by numbers: 1 P. L. D. Elmore, 2 E. H. Barlow, 3 M. D. Mack, and 4 S. D. Botts.
- 6/ S = surface sample, E = sample from granite exploration hole, sample number indicates depth; zero following depth number distinguishes specific series of samples.
- $\frac{7}{1000}$ Hydrothermally altered--predominant product is secondary K-feldspar.

	Granodiorite (medium grained)	Quartz monzonite (fine to medium grained)
No. of analyses	13	10
si0 ₂	68.01	68.42
A1203	15.74	16.05
Fe ₂ 0 ₃	1.81	1.34
Fe0	1.54	1.30
MgO	0.64	0.62
CaO	3.74	3.10
Na20	3.14	3.05
к ₂ 0	3.36	4.07
н ₂ 0	0.93	1.08
Ti0 ₂	0.38	0.37
P205	0.20	0.17
MnO	0.07	0.06
co ₂	0.15	0.11
Sum	100	100

Table	8Average chemical com	position	in weight perc	ent for granodiorit	:e
	and quartz monzoni	te in the	Climax stock,	Nevada Test Site,	
	Nye County, Nevada	L			

The differences between the chemical analyses of the two major rock types are not great. The quartz monzonite in respect to the granodiorite contains: 1) more K₂O, 2) slightly more SiO₂ and Al₂O₃, 3) less total FeO (FeO+Fe₂O₃ recomputed to FeO) and CaO, and 4) very slightly less Na₂O.

In table 9 are given some of the data from spectrographic and radiometric analysis of samples from the exploration hole. The samples are listed in the same order as in table 6. There are few analytically significant differences in the elemental composition of altered and unaltered rocks. The altered quartz monzonite represented by sample HG19 (column 38), however, shows a slightly higher amount of eU, B, Ba, Pb, and Sr. The granite dike material of sample H367-1 (column 39) appears to be low in Cu but high in Pb.

Chemical analyses for Cu, Zn, Pb, and S were made on samples of granodiorite and quartz monzonite (table 10). For some of these analyses the theoretical sulfide minerals were computed. The total of sulfide minerals present ranges from about 0.1 to 0.7 percent by volume.

		-					•		
1	2	3	4	5	6	7	8	9	10
HG7	FP65	FP62	G165-0	G236-0	G255	G400-0	G500-0	G600-0	G700-0
1	1	1	3	3	2	3	3	3	3
270549	27056 7	270563	272303	27 2304	271844	272312	272306	272307	272308
4,2	4,2	4,2	3	3	2	3	3	3	3
0.002	0.004	0.001							-
0	0	0	0	0	0	0	0	0	0
•07 [°]	.07	•07	.03	.07	.07	.07	.07	•07	.07
.0003	.0003	.0003	.0003	.0003	.00015	.0003	.0003	.0003	.00015
0	0	0	0	0	0	0	0	0	0
.015	0.	.015	0	0	0	0	0	0	0
.0007	0.	.0007	.0007	.0007	.0007	0	0	0	.0007
.0007	.00015	.0007	•0007	.0007	-0007	.0003	.0007	.0003	.0003
.0007	.00 3	.0015	.015	.007	. 003	. 0007	. 0007	.0007	.0003
.0015	.0015	.0015	.0015	.003	.0015	.0015	.003	.0015	.0015
.007	0.	•003	•003	0	•003 😒 i	0	0	.003	0
0	0	0	0	0	0	0	0	0	0
0	.0015	0	. 0007	0	0	0	0	0	0
0	0	0	.0015	.0015	d	d	d	đ	đ
đ	Ð	0	0	0 了	0	0	0	0	0
Ó	0	0	0	.0003	0	0	0	0	0
-0015	.003	•0007	d	.0015	.0015	.0015	.0015	.0015	.0015
. 00 07	.0003	. 0007	.0007	.0007	.0007	.0007	. 000 7	.0007	.0007
₀ 0 7	.0:3	.07	•07	.07	•07	.07	.07	.07	•07
•007	.003	.007	.007	•007	.007	.007	•007 ·	.007	.007
.0015	10015	.0015	.0015	.0015	.0015	d	.0015	.0015	d
.00015	d	.00015	.00015	.00015	.00015	.00015	.00015	.00015	.00015
0	0	0	0	0	0	0	. Q	0	0
.015	007	.015	.015	.015	. 015	_ 007	.007	. 007	•00 7

Table 9.--Semiquantitative spectrographic and equivalent uranium analyses of granodiorite and quartz monzonite from the Climax stock, Nevada Test Site, Nye County, Nevada. Amounts shown are weight percent 1/ Note: To read line captions, fold out bottom of page 43.

Table 9Semiquantitative	spectrographic and equivalent uranium analyses of granodiorite and quartz	
	the Climax stock, Nevada Test Site, Nye County, Nevada Continued	
Amounts shown a	are weight percent. 1/	

11	12	13	14	15	16	17	18	19	20
G800 -0	G900-0	G1000-0	G1100-0	G1200-0	G400	G500	G600	G700	G800
3	3	3	5	5	4	4	4	4	- 4
272309	272310	272311	273776	273778	272783	272784	272785	272786	2727 87
3	3	3	4,1	4,1	4,3	4,3	4,3	4,3	4,3
			0.003	0.002	0.003	0.002	0.002	<0.001	<0.001
0	0	0	0	0	0	0	0	0	0
.07	.07	.07	.07	.07	•07	.07	.07	.07	.07
.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
0	0	0	.0015	0 ·	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
.0007	0	.0007	.0007	.0007	.0007	.0007	.0007	d	d
.0003	.0007	.0007	.0003	.0003	.0003	.0003	.0007	.0003	.0003
.0007	.003	.003	.0003	.0003	.0003	.0015	.003	•007	.0015
.0015	.0015	.003	.0007	.0015	.0015	.0015	.003	.0015	.0015
0	0	0	.007	0	.003	0	0	0	•003
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	.0007	.0007
d	d	đ	d	d	0	d	0	d	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
.0015	.0015	.0015	.0015	đ	.0015	.003	.003	.0015	.0015
•000 7	.0007	.00 07	.0007	.0007	.0007	.0007	.0007	.0007	.0007
.07	•07	.07	•07	.07	•07	.07	.07	•07	.07
.007	.007	.007	.007	.007	.007	.007	.007	.007	.007
đ	.0015	d	.0015	.0015	đ	d	.0015	đ	d
.00015	.00015	.00015	.00015	.00015	.00015	.00015	.00015	.00015	.00015
0	0	0	0	0	0	0	0	0	0
.007	.007	.007	. 007	.015	.015	.015	.015	.015	.015

				—					
21 G900	22 G1000	23 G1100	24 G930-0 <u>6</u> /	25 G300	26 G200	27 G100	28 G118	29 G50-90	30 G70
4	4	5	5	4	2	2	2	2	2
272788	272789	273777	273775	272782	271841	271840	271843		
4,3	4,3	4,1	4,1	4,3	2	2	2	2	2
0.001	0.002	0.003	0.003	0.003	-		-	-	_
0	0	0	0	0	0	0	0	0	0
.07	.07	.07	•07	•07	.07	.07	.07	.15	.07
.0003	.0003	.0003	.00015	.0003	.00015	.00015	.00015	.00015	.00015
0	0	0	0	0	0	0.	0	0	0
.03	0	0	0.	0	0	0	0	0	0
.0007	d	d	.0007	.0007	.0003	.0003	.0007	.0003	.0003
.0003	.0003	.0003	.0007	.0003	.0003	:0003	.00015	.00015	.00015
.0007	.0007	.0003	.0007	.007	.003	.003	.003	.0015	.0003
.0015	.0015	.0015	.0015	.0015	.0015	.0015	.0015	.0015	.0015
.007	0	.003	.003	0	.003	.003	. 003	.003	.003
0	0	0	•03	0	0	0	0	0	0
0	0	0	. 0	0	.0015	0	0	0	0
đ	d	d	0	d	đ	đ	đ	đ	đ
.015	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
.0015	.0015	d	d	.0015	.0015	.0015	.0015	.0015	.0015
.0007	.0007	.0007	.0007	.0007	.0007	.0007	•0003	.0003	.0003
.07	. 07	.07	.07	.07	.07	. 07	•07	•07	.07
.007	.007	.007	.007	.007	.007	. 007	•007	.003	.007
d	ď	.0015	.0015	d	.0015	.0007	.0007	.0007	.0007
.00015	.00015	.00015	.00015	đ.	.00015	d	0	d	0
0	0	0	0	0	0	0	0	0	0
.015	.015	.015	.015	.015	.007	-015	.015	.015	.015

Table 9.--Semiquantitative spectrographic and equivalent uranium analyses of granodiorite and quartz monzonite from the Climax stocike, Nevada Test Site, Nye County, Nevada.--Continued Amounts shown are weight percent. <u>1</u>/

Table 9Semiquantitative	spectrographic and equivalent uranium analyses of granodiorite and quartz	;
monzonite from	the Climax stock, Nevada Test Site, Nye County, NevadaContinued	
Amounts shown	are weight percent. 1/	

31	32	33	34	35	36	37	38	39
FF63	HG10	G63-0	G144-0	G0-40	G277-0	HG8	HG19 6/	G367-1
1	1	3	3	2	3	1	1 –	2
270564	270552	272301	27 230 2	271838	272305	270550	270559	271845
4,2	2	3	3	2	3	4,2	4,2	2
0.002	<0.001					< 0.001	0.007	0
0	0	0	0	0	0	0	0	0
.07	.07	.07	•07	•07	.15	.07	.15	.07
.0003	.00015	.00015	.00015	.00015	.0003	.0003	0	.0003
0	0	0	0	0	0	0	0	0
.015	0	0	0	0	0	.015	0	0
.0003	.0003	0	0	.0003	0	.0003	0	0
.0003	.0003	.0003	.00015	.0003	.0003	.0003	.00015	đ
0	.0003	•0007.	.0007	.0015	. 007	.0007	.0007	.00015
.0015	.0007	.0015	.003	.0015	.0015	.0015	.0015	.0015
.003	.003	.003	.003	.003	0	.007	.003	0
0	0	0	0	0	0	0	0	0
0	0	.0007	0	0	0	0	.0007	0
0	0	.0015	.0015	d	d	0	0	d
0	0	0	0	0	0	.007	0	0
0	0	0	0	0.	0	0	0	0
.007	0015ء	.0015	d	.0007	.0015	.0007	.007	.003
.0003	.0003	d	d	.0007	đ	.0007	.0003	0
.07	.07	.07	.07	- 07	.07	.07	•03	.03
.007	.007	.007	007	.007	. 003	.007	.007	.0015
.0007	.0007	d	d	.0007	d	.0015	.0007	.0007
d	d	0	0	d	0	d	0	0
0	0	0	0	.03	0	0	0	0
.015	.015	.015	.015	.015	.007	.015	.015	.003

Table 9.--Semiquantitative spectrographic and equivalent uranium analyses of granodiorite and quartz monzonite from the Climax stock, Nevada Test Site, Nye County, Nevada--Continued Amounts shown are weight percent.

> are reported to the nearest number in the series 7, 3, 1.5, 0.7, 0.3, 0.15, etc., in percent. abers represent midpoints of group data on a geometric scale. Comparisons of this type of :itative result with data obtained by quantitative methods, either chemical or spectrographic, : about 60 percent of the quantitative values fall within the assigned semiguantitative groups.

of sample, type of rock and location, see table 7.

r semiquantitative spectrographic analyses indicated by number: 1 - TDP-9797; 2 - TDS-9921; 952; 4 - TDS-9975; 5 - TDS-10041. No report number is indicated for eU analyses.

ndicated by number: 1 - N. M. Conklin, 2 - R. G. Havens, 3 - J. C. Hamilton, and 4 - L. M. Lee nt U analyses).

te visual detection limits are shown in parentheses. These values are approximate and for some concentrations lower than these values may be detected; for other elements the detection limit e attained. The letter "d" indicates the element was detected, but no value was assigned. on to elements listed the following were looked for but not found: As, Au, B, Cd, Dy, Er, Eu, f, Hg, Ho, In, Ir, Lu, Os, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sm, Sn, Ta, Tb, Te, Th, Tl, Tm, U, and W. ents for which chemical analyses are given in table 3 are not listed.

on to elements shown, sample HG-19 contains 0.003 B and B was detected but not determined in

Column		1	2	3	4	5	6	7 ^{°,}	8		
Dest	Type <u>1</u> /			Gran	odiorite						
Rock	Facies <u>2</u> /	<u>m</u>	m	m	m	m	m.	m	m		•
	No. 4/	G255	G1100-0	G1200-0	G400	G500	G600	G700	G800		
	Туре <u>5</u> /	G	G	G	С	C	C	С	C		
Sample	Rept. no. TDC-	9921	10041	10041	9975	9975	9975	9975	9975		
ľ	Serial no.	271844	273776	273778	272783	272784	272785	272786	272787		4
	Analysts <u>6</u> /	1,2	2,1	2,1	3,1,2	3,1,2	3,1,2	3,1,2	3,1,2		
Cu (pp	m)	55	<5	<5	16	18	77	39	15		
Pb (pp	m)	<5	15	15	21	31	49	23	26		
Zn (pp	m)	435	90	70	50	80	100	70	60		
S (per	cent)	0.47	0.14	€0.02	0.26	0.22	0.21	0.19	0.33		
	Chalcopyrite	.0166									
Computed	Galena	.0002]					
maximum theoreti	cal Sphalerite	.0650									
sulfides	Pyrite	.0510									
	Sum	.1328								1	

Tablel0.--Chemical analyses for Cu, Pb, Zn, and S for igneous rocks from the "Granite" exploration hole, Nevada Test Site, Nye County, Nevada

			10	11	10	1 10	1 .,	15	16	
	Type <u>1</u> /	9 Gr	12	13 14 15 Granodiorite and quartz monzonite			lo Quartz monzoni	te		
Kock Fa No Ty Sample Re Sa Ty Sample Re Sa Ar Cu (ppm) Pb (ppm) Zn (ppm) S (perce Computed maximum theoretica	Facies <u>2</u> /	m	m	m	m <u>3</u> /	gm 65% qf 35%	gm 50% qf 50%	gm 40% qm 60%	m	
	No. <u>4</u> /	G900	G1000	G1100	G930-0	G300	G200	G100	G118	
	Type <u>5</u> /	С	С	С	G	C	C	С	G	
Sample	Rept. no. TDC-	9975	9975	10041	10041	9975	9921	9921	9921	
_	Serial no.	272788	272789	273777	273775	272782	271841	271840	271843	
Sample Re Se An Cu (ppm) Pb (ppm)	Analysts <u>6</u> /	3,1,2	3,1,2	2,1	2,1	3,1,2	1,2	1,2	1,2	
Cu (pp	m)	5	19	₹5	13	35	45	55	25	
Pb (pp	em)	18	13	15	15	35	20	े < 5	< 5	
Zn (pp	m)	60	80	90	95	60	< 30	375	≤ 30	
S (per	cent)	0.02	0.23	0.07	, 0.45	0.38	0.85	0.90	0.39	
	Chalcopyrite				, <u>, , , , , , , , , , , , , , , , , , </u>				.0072	
Computed	Galena					1			.0002	
•	Sphalerite								.0030	
									.7246	
	Sum								.7350	

Table 10.--Chemical analyses for Cu, Pb, Zn, and S for igneous rocks from the "Granite" exploration hole, Nevada Test Site, Nye County, Nevada--Continued

£5

Column			17	18	19				
	Туре	e <u>1</u> /	Quarts	Quartz monzonite					
KOCK	Rock Facies <u>2</u> /		m	m	m 60% f 40%	-			
	No.	<u>4</u> /	G50-90	G70	G0-40				
	Туре	<u>5</u> /	С	G	С				
Sample	Rept	. No. TDC-	9921	9921	9921				
	Seri	Lal no.	271839	271842	271838				
	Anal	lysts <u>6</u> /	1,2	1,2	1,2	-			
Cu (p	opm)		20	5	45				
Pb (p	opm)		30	< 5	90				
Zn (p	opm)		< 30	< 30	45				
S (percent)		0.14	0.06	0.06					
		Chalcopyrite		.0015					
maximum - theoretical		Galena	· ·	.0002	L.				
		Sphalerite	· ·	.0030					
sulfide	25	Pyrite		. 1092					
		Sum		.1139					

Table 10--Chemical analyses for Cu, Pb, Zn, and S for igneous rocks from the "Granite" exploration hole, Nevada Test Site, Nye County, Nevada--Continued

,

-

Table 10.--Chemical analyses for Cu, Pb, Zn, and S for igneous rocks from the "Granite exploration hole, Nevada Test Site, Nye County, Nevada--Continued

- 1/ Name assigned to original unaltered rock on the basis of megascopic petrology, chemical analyses and norms.
- 2/ Determined megascopically for granodiorite or quartz monzonite: f = fine-grained facies, m = medium-grained facies.
- $\underline{3}$ / Hydrothermally altered-predominant product is secondary K-feldspar.
- 4/ All samples with prefix "G" are from exploration hole and number indicates depth. Zero following depth figure distinguishes specific series of samples. All other samples are from the surface.
- 5/ G = grab, C = composite. Composite samples consist of equal amounts of rock taken at even 10-foot intervals beginning at the footage indicated by the sample number.
- 6/ Analysts indicated by numbers: 1 W. D. Goss, 2 H. H. Lipp, and 3 Claude Huffman.

Interval	Footage		ing time		racovery	Water loss <u>1</u> /	Lithologic description
(feet)		Min	Min/ft	Feet	Percent	gal/min	and remarks
0.0-20.0	20.0	2/			30		Granodiorite, porphyritic,
20.0-25.0	5.0	$\frac{2}{17}$	3.4		90	1.9 .	fine-grained (0-12 ft)
25.0-30.5	5.5		•		32	4.2	medium (12-37.5 ft), iron-
30.5-34.5	4.0	15	3.8		36		stained fractures common to
34.5-37.5	3.0	15	5.0		100		27.5 ft slightly argillized,
							biotite not bleached.
37.5-42.5	5.0	17	3.4		72	1.9	Granodiorite, porphyritic,
42.5-48.7	6.2	22	3.5		100		medium-grained, little iron
48.7-58.4	9.7	26	2.7		100		stain, common pyrite dis-
58.4-68.7	10.3	21	2.0		100	4.3	seminated through rock and
68.7-78.3	9.6	24	2.5				along tight fractures that
78.3-87.5	9.2						are bordered by argillized
87.5-94.5	7.0				95		rock with and without bleached
94.5-100.3	5.8	34	6.8		91	1.4	biotite. Galena noted from
100.3-109.0	8.7	1			98		88-89 ft. Some fractures
109.0-114.9	5.9				88		<pre>coated with yellow iron(?)</pre>
114.9-122.0	7.1				100		hydroxide. Rock very solid
122.0-125.5	3.5	45	13.0		100		for drilling and coring
							from 42 to 58.4 ft.
125.5-133.5	8.0	53	6.6		100	6.5	From 127.5 ft granodiorite,
							equigranular, fine-grained, greenish-gray; disseminated pyrite.

Table 11.--Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada

Logged by F. N. Houser, F. G. Poole, G. A. Izett, and C. E. Price

Interval (feet)	Footage	Dril: Min	ling time Min/ft		recovery Percent	Water loss <u>l</u> / gal/min	Lithologic description and remarks
133.5-140.8 140.8-149.9 149.9-151.0 151.0-155.0 155.0-164.0	7.3 9.1 1.1 4.0 9.0	79	8.7		100 77 100 79	3.3 2.1	Granodiorite, porphyritic, medium-grained, argillized in part, and feldspathized(?) in part; biotite altered from 151-161 ft, common pyrite.
164.0-173.0 173.0-175.0 175.0-179.5 179.5-189.5	9.0 2.0 4.5 10.0	41 40	4.6 4.0	9.0 2.0 4.0 9.0	100 100 89 98	2.7 2.6	Granodiorite, equigranular, medium-grained, feldspathized, sericitized, and argillized (intensely from 174 to 189.5) in part; pyrite common in veins and disseminated through rock; trace galena from 175 to 179.5 ft.
189.5-196.0 196.0-203.0 203.0-211.0	6.5 7.0 8.0	29 29	4.1 3.6	4.0 7.0 7.0	62 100 88	2.3 1.8	From 194.5 granodiorite, porphyritic, medium-grained, partly argillized and felds- pathized; carbonate lining fractures (192.5-193).
211.0-216.5 216.5-224.0 224.0-233.5 233.5-237.7 237.7-263.6	5.5 7.5 9.5 4.2 25.9	20 25 27 23	3.6 3.3 2.8 5.5	4.0 7.0+ 9.5 4.5 25.9	73 93+ 100 100 100	2.2 1.5	Granodiorite, equigranular, medium-grained, partly argillize and feldspathized; traces of epidote; abundant pyrite. In- tensely argillized and crumbly from 214 to 217. Core partly granodiorite, porphyritic, fine-grained, from 260 to 260.5 ft.

Table 11.--Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

Interval	Footage	Drill	ing time	Core	recovery	Water loss <u>1</u> /	Lithologic description
(feet)		Min	Min/ft	Feet	Percent	gal/min	and remarks
263.6-272.3	8.7	47	4.8	8.9	100	1.2	From about 270, granodiorite,
272.3-272.9	0.6	18	36.0	0.5	96	-	porphyritic, fine to medium
272.9-281.5	8.6	34	4.0	4.7	55	1.2	grained, green gray possibly fro
281.5-290.8	9.3	57	6.1	9.3	100	1.4	argillic alteration to mont-
290.8-301.2	10.4				94	1.0	morillonite; some feldspathic alteration; pyrite abundant in veinlets and irregular masses, trace galena.
201 2 204 7	2.5			··· ··· ··· ··· ··· ··· ··· ··· ··· ··		0.7	
301.2-304.7 304.7-307.8	3.5 3.1				100	0.7	Granodiorite, equigranular, medium-grained; pyrite common.
307.8-317.7	9.9	43		9.8	98		From 306.7 granodiorite, por- phyritic, fine-to medium-grained partly feldspathized and biotite bleached; pyrite common along fracture; some fractures partly argillized; carbonate along some fractures.
317.7-322.3	4.6	17	3.7	4.7	100		Interval 325-355.6 broken rock
322.3-330.5	8.2	43	5.2	4.2	50 100	1.8	fragments and clay with some
330.5~333.0	2.5	15 16	6.0	2.5	1 0 0 57	2.0	slickensidesprobably steeply dipping faulted zone; clay is
333.0-336.5 336.5-340.0	3.5 3.5	25	4.6	2.0 3.3	57 94	2.0	probably product of argillic
340.0-344.0	4.0	25	6.0	3.3 4.0	94 100	2.2	alteration; pyrite on fractures
J40.04J44.V	4.0	<u> </u>	0.0	4.0		£.£	arceracion, pyrice on reactures,

Table 11.-- Lithologic log of the "Granite" exploration hole, Areal5, Nevada Test Site, Nye County, Nevada--Continued

Interval (feet)	Footage	Dril Min	ling time Min/ft	<u>Core</u> Feet	recovery Percent		Lithologic description and remarks
344.0-346.3 346.3-350.0 350.0-355.3 355.3-355.6	2.3 3.7 5.3 0.3	22 27	9.6 7.3	2.0 3.0 5.3 0.2	87 81 100 60	1.9	Cemented twice from about 310 - 360.7 and once from about 310 - 374 to prevent caving.
355.6-360.7	5.1	40	7.8				From about 356 granodiorite, equigranular, medium-grained, partly argillized and feldspathized.
360.7-386.5	25.8		5.0	25.8	100	4.3	Granodiorite, light-gray to medium- gray, medium-grained, equigranular; biotite is dominant dark mineral; alteration products are clay, chlorite, calcite, feldspar, epidote, and hematite; alteration minerals are commonly associated with frac- tures that are low angle $(25^{\circ}-30^{\circ})$ and high angle $(55^{\circ}-75^{\circ})$; pyrite is present along the low-angle fractures but pyrite is less than 1 percent of m ck. Core is comp tent, except 368 ft - 369 ft, and 382 ft - 384 ft owing to fracturing and argillic alteration.

Table 11.--Lithologic log of the "Granite" exploration hole, Area15, Nevada Test Site, Nye County, Nevada--Continued

Interval ' (feet)	Footage	Dril Min	ling time Min/ft		recovery Percent	Water loss <u>l</u> / gal/min	Lithologic description . and remarks
386.5-393.5 393.5-413.9 413.9-431 431-441.2 441.2-446.2 446.2-454	7.0 20.4 17.1 10.2 5.0 7.8		12.0 8.0 6.2 7.0 9.6	7.0 19.5 17.1 10.2 5.0 7.8	100 90 100 100 100	0.7 1.1	Granodiorite, light-gray to medium-gray, medium-grained, equigranular; biotite is common and occurs in books; argillic alteration along low- and high- angle fractures, but most intense along high-angle fractures; biotite is altered to chlorite N in fracture zones and shows incipient alteration to chlorite away from some fractures; calcite, epidote, and hematite along some fractures. Low-angle fractures occur about 2 per foot and high- angle fractures about 1 per foot. Pyrite occurs most commonly along low-angle fractures, but some high-angle fractures are coated with pyrite; however, pyrite is less than 1 percent of rock. Core is generally competent except from 391.6-392.5 ft; 396-397 ft; 418-419 ft; and 436 ft.

Table 11.--Lithologic log of the "Granite" exploration hole, Area B, Nevada Test Site, Nye County, Nevada--Continued

Interval (feet)	Footage	Dril Min	<u>ling time</u> Min/ft		recovery Percent	Water loss <u>l</u> / gal/min	Lithologic description and remarks
454-461 461-464 464-474 474-483 483-491.5 491.5-501.5 501.5-511.2	7.0 3.0 10.0 9.0 8.5 10.0 9.7		7.7 8.3 6.2 8.0 6.8 4.6	7.0 3.0 9.0 8.7 8.5 9.8 9.7	100 90 96	2.9 1.5 1.4 1.9	Granodiorite, light-gray to medium- gray, medium-grained, equigranular, biotite in books, a few phenocrysts of potash feldspar, argillic and chloritic alteration along low and high-angle fractures; oth er altera- tion products are feldspar, calcite, of and epidote; at 478 ft a 3-in. quartz-filled fracture. Pyrite occurs as disseminations along low- angle fractures; and is less than 1 percent of rock. Average fracture intensity is about 1.5 low angle and 1.0 high angle per foot. Core is generally competent except 464 ft - 465 ft; 474 ft - 476 ft; and 507 ft.

Table 11.-- Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

Interval (feet)	Footage	Dril Min	<u>ling time</u> Min/ft		recovery Percent	Water lo s s <u>l</u> / gal/min	Lithologic description and remarks
511.2-521.4 521.4-548.9 548.9-553			6.3 7.3 er in hole th 553 ft.	10.2 27.5 1.9 April 12	100 46	1.1 t	Granodiorite, light-gray to medium-gray, medium-grained, equigranular; biotite is mostly fresh and occurs in books; alteration products are clay, chlorite, calcite,
553-561.6 561.6-600	8.6 38.4			8.6 35.5			are clay, chlorite, calcite, c epidote, and hematite. Pyrite occurs along low-angle (25°-32°) fractures and is less than 1 percent of rock. Average fracture in- tensity is about 2 per foot (low angle) 1 per foot (high angle). Core is generally competent except at 597 ft, 553 ft, and 575 ft.
600≈601 601≈610 610≈652	1.0 9.0 42		10.0	1.0 9.0 41.0	100 100 97	1.5	Granodiorite, light-gray to medium-gray, medium-grained, equigranular, biotite is fresh and occurs in books; alteration products are clay, chlorite and epidote. Chloritic alteration is mostly associated with fractures, argillic alteration is most intense along high-angle fractures; hydrous iron oxides and alteration feldspars not

Table 11.--Lithologic log of the "Granite" exploration hole, Area 5, Nevada Test Site, Nye County, Nevada--Continued

Interval (feet)	Footage	<u>Drill</u> Min	ing time Min/ft		recovery Percent		Lithologic description and remarks
		- - -				ч 	conspicuous. Pyrite occurs almost exclusively along low- angle fractures, but the pyrite is less than 1 percent of rock. Fracture intensity is about 2 per foot (low angle), 1 per foot (high angle). Core is mostly competent except at 623 to 624 ft and 648 to 649 ft.
652-663.3 663.3-669.3 669.3-679.3 679.3-685.6 685.6-716	11.3 6.0 10.0 6.3 30.4		5.3 10.0 6.0 6.3	10.7 4.2 10.0 5.0 28.9	100 80	0.8 0.8 2.3	Granodiorite, light-gray to medium-gray, medium-grained, equi- granular, biotite is commonly fresh and occurs in books; altera- tion minerals as above; low-angle (25°-32°) and high-angle (55°-75°) fractures occur at the rate of 1 per foot; argillic alteration most common along high-angle frac- tures; pyrite is restricted to low- angle fractures and forms less than 1 percent of rock; rock is usually competent except altered zones at 665 ft to 667 ft, 670 ft, and 712 ft to 713 ft.

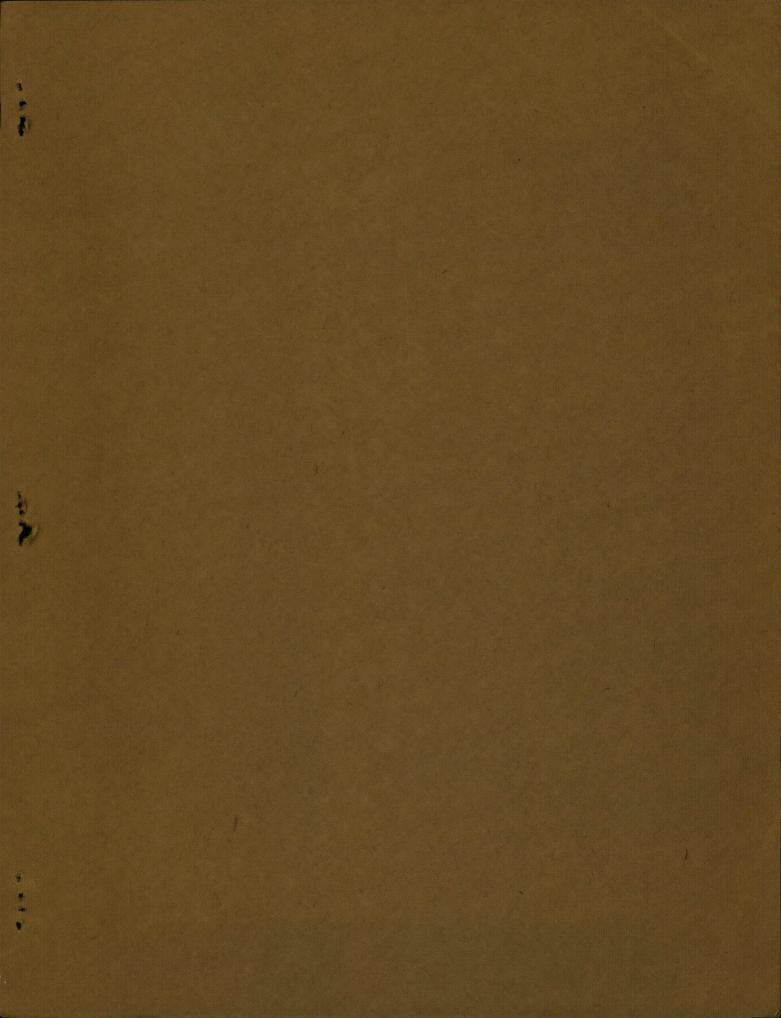
Table 11.--Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

Interval (feet)	Footage	<u>Dril</u> Min	<u>ling time</u> Min/ft		recovery Percent	Water loss <u>l</u> / gal/min	Lithologic description and remarks
716-722 722-732 732-742 742-753	6.0 10.0 10.0 11.0		6.5 7.0 6.8	3.9 10.0 10.0 2.2	65 100 100 20	.4 .4- .4 -	Granodiorite, light-gray to medium- gray, medium-grained, equigranular, biotite is common mafic mineral and occurs in books; alteration including argillation and chloritization are common along fractures. Other alteration products are calcite, epidote and sericite. Low-angle and high-angle fracture intensity is about 2 and 1 per foot, respec- tively. Iron sulfide occurs as dis- seminations along low-angle fractures but sulfide content is less than 1 percent. In the main, the core is competent except at 723 ft to 724 ft and 744 ft to 753 ft.
753-760 760-769 769-775.5 775.5-778.3 778.3-786 786-790 790-800	7.0 9.0 6.5 2.8 7.7 4.0 10.0		7.8 7.5 6.0	7.0 6.3 6.2 1.5 6.2 2.6 10.0	100 70 95 55 80 65 100		Granodiorite, light-gray to medium- gray, medium-grained, equigranular, biotite is common and occurs in books; alteration along fractures consists of clay, chlorite, and epi- dote. Fracture intensity and compe- tence, as above but more common from 762 ft to 769 ft, 775.5 ft to 778.3 ft and 786 ft to 790 ft. Pyrite is common along low-angle fractures, but content is less than 1 percent of rock.

Table 11.--Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

مر

Interval (feet)	Footage	<u>Dril</u> Min	<u>ling time</u> Min/ft		<u>ecovery</u> Percent	Water loss <u>l</u> / gal/min	Lithologic description and remarks
800-809 809-814 814-824 824-830.9 830.9-848.6	9.0 5.0 10.0 6.9 17.7		7.5	5.0 2.0 6.9 16.8	100 20 100 95	3.1	Granodiorite, light-gray to medium-gray, equigranular, medium-grained, common low- angle joints, and sparse to common steeply dipping joints;
848.6-858.3 858.3-868.4 868.4-871.5 871.5-905 905-914 914-924 924-932.5 932.5-939.7	9.7 10.1 3.1 33.5 9.0 10.0 8.5 7.2		6.2 6.5 6.6	9.7 3.1 33.5 7.2 8.0 8.1 7.2	100 100 80 80 95 100	1.1	alteration products: common clay, chlorite, carbonate; spars to common potassium feldspar and quartz; and sparse pyrite (< 1 percent).
939.7-946.2 946.2-955.6 955.6-964.0 964.0-1089.3 1089.3-1090. 1090.3-1093 1093-1101 1101-1117 1117-1120 1120-1125	3 1.0		Ϋ́	6.2 9.4 8.4 125.3 0.9 1.4 6.8 16.0 2.4 3.0	95 100 100 90 50 85 100 80 60	3.6	


Table 11. --Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

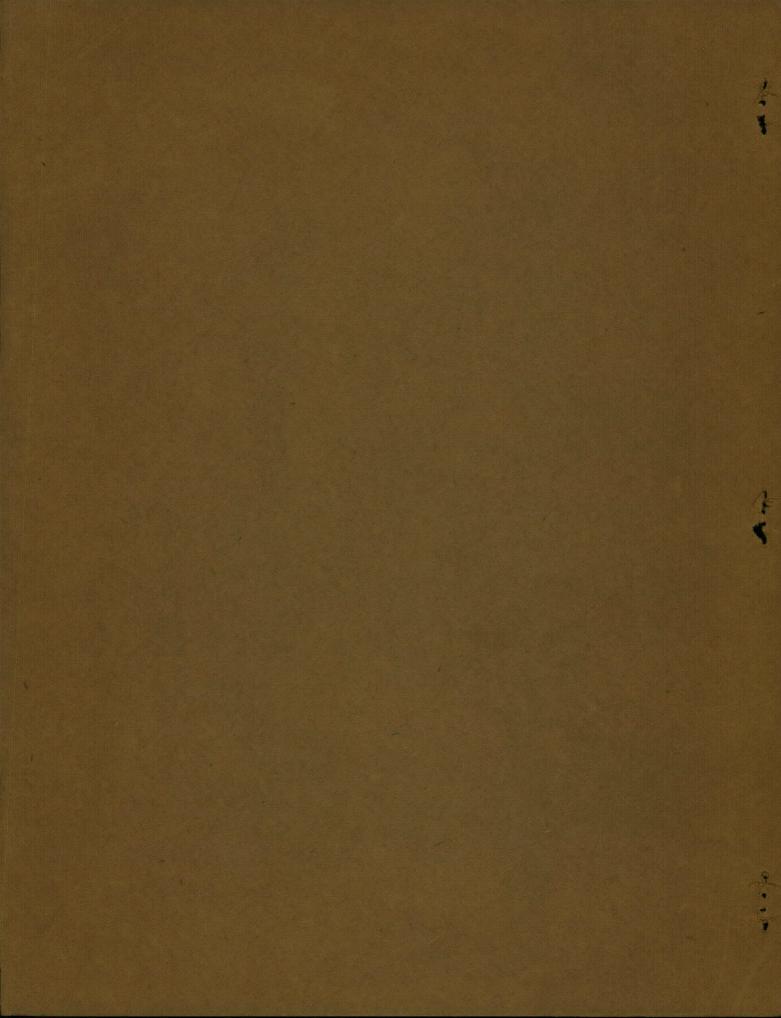

Interval (feet)	Footage	Drill Min	ing time Min/ft	<u>Core</u> Feet	recovery Percent	Water loss <u>l</u> / gal/min	Lithologic description and remarks
1125-1133	8.0			5.0	63		
1133-1135	2.0			2.0	100		
1135-1143	8.0			3.0	37		
1143-1153	10.0			4.5	45		
1153-1155	2.0			2.0	100		
1155-1163	8.0			5.4	67		
1163-1173	10.0			1.0	10		
1173-1183	10.0			2.5	25		
1183-1185	2.0	}		0.8	40		
1185-1188.5	3.5			1.5	43		
1188.5-1200	11.5			8.3	72		
Total	1200			-			

Table 11.--Lithologic log of the "Granite" exploration hole, Area 15, Nevada Test Site, Nye County, Nevada--Continued

1/ Average loss for interval cored. Computed by C. E. Price and Alfred Clebsch, Jr., USGS.

2/ Blank spaces indicate no data available.

