TE1 841 U.S. Goological Survey P.O. Box 617 Albuquerque, New Mexico 87106

TEI-841

13

GEOLOGY OF THE PLUTO SITE, AREA 401, NEVADA TEST SITE, NYE COUNTY, NEVADA By Ross B. Johnson and John R. Ege

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

metadc502034

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

GEOLOGY OF THE PLUTO SITE, AREA 401, NEVADA TEST SITE, NYE COUNTY, NEVADA*

By

Ross B. Johnson and John R. Ege

April 1964

Report TEI-841

This report is preliminary and has not been edited for conformity with Geological Survey format and nomenclature.

*Prepared partly on behalf of the U.S. Atomic Energy Commission.

UNITED STATES DEPARTMENT OF THE INTERIOR Geological Survey

Washington 25, D. C.

April 17, 1964

Mr. James E. Reeves, Manager Nevada Operations Office U.S. Atomic Energy Commission P. O. Box 1676 Las Vegas, Nevada

Dear Mr. Reeves:

Transmitted herewith, are two copies of TEI-841, "Geology of the Pluto Site, Area 401, Nevada Test Site, Nye County, Nevada," by Ross B. Johnson and John R. Ege, April, 1964.

We plan to release this report to the public in the open files.

Sincerely yours,

V.R. Wilmenth, by Erstelel

V. R. Wilmarth Assistant Chief Geologist Office of Engineering Geology

Enclosures

Distribution - AEC

No. of copies

Nevada Operations Office (J. E. Reeves)	2
Nevada Operations Office (Technical Library)	4
Director of Military Application, Washington	l
Division of Military Application, Washington	2
San Francisco Operations Office (J. F. Philip)	1
Division of Peaceful Nuclear Explosion (R. Hamburger)	1
Division of Research, Washington (D. R. Miller)	l
Division of Technical Information Extension	1
Engineer Research and Development Lab., Ft. Belvoir, Va.	
(Chief, Special Projects Branch)	l
Health Physics Div., Oak Ridge Natl. Lab. (F. L. Parker)	l
Lawrence Radiation Lab., Livermore (R. E. Batzel)	2
Lawrence Radiation Lab., Livermore (D. E. Rawson/N. M. Short)	1
Lawrence Radiation Lab., Livermore (A. V. Shelton)	l
Lawrence Radiation Lab., Mercury (W. D. Richards)	5
Lawrence Radiation Lab., Mercury (D. T. Schueler/N. M. Fillip)-	ì
Lawrence Radiation Lab., Mercury (J. L. Olsen)	1
Los Alamos Scientific Laboratory (J. H. Hall)	1
Los Alamos Scientific Laboratory (R. W. Newman)	l
Marquardt Corp., Van Nuys, Calif. (S. S. Berman)	3
Sandia Corp., Albuquerque, (D. B. Shuster)	2
Stanford Research Institute, Menlo Park (R. B. Hoy)	1
Roland F. Beers, Inc	14
Hazleton-Nuclear Science Corp	3
Headquarters, USAF/AFTAC, Washington (Wayne Helterbran)	ĩ
U.S. Coast and Geodetic Survey, Mercury	l
Field Command, Defense Atomic Support Agency, Albuquerque	3
Advanced Research Projects Agency, Washington (C. C. Bates)	2
Lincoln Laboratories, Lexington, Mass	l
United Earth Sciences, Alexandria, Va	l
University of Michigan, Ann Arbor, Mich	1
U.S. Coast & Geodetic Survey, Washington	l
Texas Instruments, Inc., Dallas (R. Arnett)	1
Fenix & Scisson, Inc., Las Vegas	1
· · -	<u> </u>
	04

USGS - TEI - 841

Distribution - USGS

No. of copies

Director	l
Conservation Division, Mineral Classification Branch Water Resources Division	l
Radiohydrology Section, Washington	10
Radiohydrology Section, Denver (W. E. Hale)	2
Publications Section. Washington	2
Ground Water Branch, Washington	ī
Quality of Water Branch, Washington	l
Surface Water Branch, Washington	l
Branch Area Chief, GW	
Denver, Colo	l
Menlo Park, Calif	1
District Geologist, Albuquerque	1
District Hydrologist, Carson City	l
A. M. Piper, Menlo Park, Calif	1
W. A. Beetem, Denver, Colo	l
Ground Water Office, Las Vegas, Nev	14
Geologic Division	
Office of Engineering Geology	l
Library, Washington	l
Denver	2
Menlo Park	l
Alaskan Geology Branch	l
Astrogeology Branch	l
Crustal Studies Branch	1
DAPU (provision for future open-filing)	10
Field Geochemistry & Petrology Branch	l
Military Geology Branch	2
New England Branch	l
Regional Geophysics Branch	2
Geologic Data Center, Mercury	5
Southwestern Geology Branch	1
Special Projects Branch, Denver	20
WAPU (Wenonah Bergquist)	2
	91

CONTENTS

The has December 201	-
Introduction	
General Geology	15
Igneous rocks	15
Extrusive rocks	15
Intrusive rocks	17
Structural geology	18
Ground-water conditions	19
Geology of the air chamber site	22
Lithologic description	22
Structure	22
Faults	22
Joints	24
Petrography	28
Texture and fabric	28
Mineralogy	30
Alteration and weathering	31
Chemical composition	32
Major chemical constituents	36
Minor chemical constituents	37
Physical properties	37
Porosity and density	37
Gas permeability	44
Magnetic susceptibility	44
Elasticity and strength	50
Elasticity	50
Strength	54
Correlation of various physical properties	55
Method of study-	55
Correlation of physical property parameters	8ľ
Compressive strength versus dynamic Young's	04
modulus	8),
Borogity versus compressive strength	2), 2),
Durante Youngla modulus yongus dry bulk density	94 87
Momotio quecentibility versus dry bulk density	01
Magnetic susceptibility versus dynamic foung's	Q-7
modulus and compressive strength Koungla modulus	87
Static loung's modulus versus dynamic loung's modulus	07
	93
Descriptions of cores from test noies	90
Test noie Fiuto-i	70
Test noie Pluto-2	T00
Test note Fiuto-3	111
Test noie Pluto-4	ל <u>דד</u>
Test note Pluto->	120
Kererence cited	T5(

ILLUSTRATIONS

Figure 1.	Index map of Area 401, Nevada Test Site	8		
2,	Geologic map and cross section of Area 401, Nevada Test Site-	9		
3.	Geologic map of area adjacent to test holes Pluto-1 and Pluto-3, Area 401, Nevada Test Site 11			
4.	Geologic map of area adjacent to test hole Pluto-5, Area 401, Nevada Test Site	12		
5.	Gravity map of Area 401, Nevada Test Site. Faults generalized from figure 2	13		
6.	Index map of Area 401, Nevada Test Site, where electrical resistivity and seismic measurements were made	14		
7.	Alteration zones from cores within dacite porphyry, Area 401, Nevada Test Site	23		
8.	Joint diagram of 163 poles of surface joints in area adjacent to test holes Pluto-1 and Pluto-5, Area 401, Nevada Test Site 26			
9-34.	Stress-strain curves of rock core			
9.	Sample Pluto-lE	56		
10.	Sample Pluto-1Fa	57		
11.	Sample Pluto-1G	58		
12.	Sample Pluto-1H	59		
13.	Sample Pluto-lJ	60		
14.	Sample Pluto-1L	61		
15.	Sample Pluto-1M	62		
16.	Sample Pluto-lN	63		
17.	Sample Pluto-lP	64		
18.	Sample Pluto-1R	65		
19.	Sample Pluto-1U	66		
20.	Sample Pluto-1W	67		

ILLUSTRATIONS--Continued

Figures 9-34. Stress-strain curves	of rock coreContinued	
------------------------------------	-----------------------	--

Figure	21.	Sample Pluto-1X	68
	22.	Sample Pluto-lY	69
	23.	Sample Pluto-1Z	70
	24.	Sample Pluto-1AA	71
	25.	Sample Pluto-1BB	72
	26.	Sample Pluto-lCC	73
	27.	Sample Pluto-1DD	74
	28.	Sample Pluto-lEE	75
	29.	Sample Pluto-3D	76
	30.	Sample Pluto-3E	77
	31.	Sample Pluto-3J	78
	32.	Sample Pluto-5C	79
	33.	Sample Pluto-5G	80
	34.	Sample Pluto-5S	81
	35.	Comparison of statically determined Young's modulus with the unconfined compressive strength of dacite porphyry samples from Area 401, Nevada Test Site	83
	36.	Comparison of dynamically determined Young's modulus with the unconfined compressive strength of rock samples from test hole Pluto-1, Area 401, Nevada Test Site	85
	37.	Comparison of porosity with unconfined compressive strength or rock samples from test hole Pluto-1, Area 401, Nevada Test Site	of 86
	38.	Comparison of dynamically determined Young's modulus with porosity of rock samples from test hole Pluto-1, Area-401, Nevada Test Site	88
	39.	Comparison of dynamically determined Young's modulus with dry bulk density of rock samples from test hole Pluto-1, Area 401, Nevada Test Site	89

ILLUSTRATIONS--Continued

Por	0
TOR	÷

Figure 40	. Comparison of dynamically determined Young's modulus with magnetic susceptibility of rock samples from test hole Pluto-1, Area 401, Nevada Test Site	90
41 41	. Comparison of statically determined Young's modulus with dynamically determined Young's modulus of rock samples from test hole Pluto-1, Area 401, Nevada Test Site	91
	TABLES	
Table 1.	Water levels at the Pluto Site, Area 401, Nevada Test Site	20
2.	Interpretation of electrical resistivity vertical profile obtained at test hole Pluto-1, Area 401, Nevada Test Site	21
2a.	Petrographic modal analyses of test-hole dacite porphyry core thin sections from Area 401, Nevada Test Site	29
3.	X-ray analyses of core samples from Area 401, Nevada Test Site	33
4.	Chemical analyses (in percent) of core samples from Area 401, Nevada Test Site	34
5.	Semiquantitative spectrographic analyses of core samples from Area 401, Nevada Test Site	35
6.	Density and porosity measurements of core samples from Area 401, Nevada Test Site	38
7.	Porosity and density measurements of core samples from test hole Pluto-1, Area 401, Nevada Test Site, taken at approximately 10-foot intervals	41
8.	Comparison of grain density of four samples determined by water saturation and powder-density methods	- 43
8 a.	Averages for physical properties of dacite porphyry, Area 401, Nevada Test Site	45
9.	Permeability to nitrogen of five samples from test hole Pluto-1 Area 401, Nevada Test Site	' 46
10.	Magnetic susceptibility of core samples from Area 401, Nevada Test Site	47
11.	Elastic moduli determined by measurement of resonant frequency of core samples from Area 401, Nevada Test Site	51

TABLES--Continued

Table	12.	Unconfined compressive strength and strain analyses by static methods of core samples from Area 401, Nevada Test Site	52
	13.	Comparison of strain analyses between first (A) and last (B) cycles of compression tests on core from Area 401, Nevada Test Site	53
	14.	Unconfined compressive strength, Young's modulus, and Poisson's ratio for partly saturated core samples from test hole Pluto-1, Area 401, Nevada Test Site	82

GEOLOGY OF THE PLUTO SITE

AREA 401, NEVADA TEST SITE, NYE COUNTY, NEVADA

By Ross B. Johnson and John R. Ege

INTRODUCTION

Geologic studies by the U.S. Geological Survey in support of the U.S. Air Force's Project Pluto in Area 401 of the Nevada Test Site were made on behalf of the U.S. Atomic Energy Commission. The Survey was requested to make a detailed geologic investigation of the area and to provide basic geologic data for the use of the Marquardt Corporation, contractor to the Air Force, in the design, construction, and testing of a pilot underground air-storage chamber for the Pluto nuclear-powered ram-jet.

Area 401 is in the south-central part of the U.S. Atomic Energy Commission's Nevada Test Site and consists of about 9.6 square miles including Wahmonie Flat (fig. 1). The area is approximately 12 miles northwest of Mercury, Nev., and is easily reached from Mercury by either the Cane Spring Road or the Jackass Flats Highway. Area 401 does not have officially delimited boundaries, but it is largely included between Nevada State coordinates N. 747,000, N. 759,000, E. 645,000, and E. 666,000. Geographically, the area generally is bounded on the southwest by the low drainage divide between Wahmonie Flat and Jackass Flats, on the northwest by the southeastern slopes of Lookout Peak, on the north and northeast by small rugged hills that are unnamed, and on the south by the northern slopes of Skull Mountain.

The area of principal interest consists of about 3 square miles in the northeast corner of Area 401 (fig. 2) and is bounded by Nevada State coordinates N. 753,000.00, N. 759,000.00, E. 651,000.00, and E. 666,000.00.

Figure 1.-- Index map of geologic map (figure 2) in Area 401, Nevada Test Site

Figure 2.--Generalized geologic map and cross section of Area 401, Nevada Test Site, Nye County, Nevada

EXPLANATION

Altered flows and breccias Mild to extreme alteration

Contact

Fault Dashed where approximately located; queried where inferred. U,upthrown side, D,downthrown side

Test hole

In order to provide an adequate geologic background, particularly in structure, petrography, and geologic history, Area 401 was mapped in detail at a scale of 1:12,000 (fig. 2). Two prospective chamber sites were mapped by planetable and telescopic alidade to delineate smaller structural features (figs. 3, 4). These were compiled on topographic base maps, scale of 1:600, prepared by Pafford and Associates of Los Angeles, Calif. The maps were reduced photographically to a scale of 1:1,200 for publication. To obtain a more accurate 3-dimensional picture of the geology and to investigate ground-water conditions, five exploratory test holes were cored to depths ranging from 111 to 778 feet (p. 96-126).

Gravity, seismic, and resistivity surveys were made of the area (figs. 5, 6) to supplement geologic studies by providing subsurface information on the bulk physical properties of the rock, changes in rock types, variation in water content, and major structural features.

The authors thank Dr. John C. Manning, Geologic Consultant to the Marquardt Corp., for his cooperation in the field. We also thank Mr. Howard D. MacDonald, Engineer with the Marquardt Corp., for his explanation of the engineering design, construction, and function of the pilot chamber.

11

Figure 3-- Geologic map of area adjacent to test holes Pluto-1 and Pluto-3, Area 401, Nevada Test Site

Figure 4.-- Geologic map of area adjacent to test hole Pluto-5, Area 401, Nevada Test Site

Figure 5.-- Gravity map of Area 401, Nevada Test Site Faults generalized from figure 2

EXPLANATION

Gravity contour, interval =1 milligal H, area of gravity high L, area of gravity low

-- - 139 ---

O - 137.8 Gravity station, measurement in milligals Gravity data by D.L.Healey and C.H.Miller, May 1961

U ____?___ Fault

Dashed where inferred; queried where doubtful. U, upthrown side; D, downthrown side

Figure 6.-- Index map of part of Area 401, Nevada Test Site, showing spacing of seismic shot points around test holes Pluto-1,-3, and-5.

GENERAL GEOLOGY

Area 401 is largely covered by thin gravels capping a pediment that dips $3^{\circ}-6^{\circ}$ SE.; the pediment gravels merge with the valley alluvium along Cane Spring Wash to the south. Where exposed, mainly on the steeper slopes in the northern and eastern parts of the area (fig. 2), the bedrock consists mostly of extrusive igneous rocks with some associated breccias of limited areal extent. A few thin beds of consolidated sedimentary rocks occur between some of the extrusive rocks. The extrusive rocks dip gently to the east, are highly faulted and jointed, and are locally sheared. These rocks commonly are highly weathered and intensely altered in the shear zones and along some of the fault's. A few small dikes crop out in the southeast corner of the map area.

Igneous rocks Extrusive rocks

Extrusive rocks in Area 401 consist entirely of lava flows and their associated breccias. All these rocks are very similar chemically although the oldest flows are somewhat more silicic than the youngest flows. Petrographically, the lower flow rocks are dacites, whereas the younger rocks are most commonly andesites. The dacite is porphyritic with phenocrysts of plagioclase, biotite, andesine, hypersthene, hornblende, and rare quartz in a glassy or stony groundmass. Fine grains of magnetite are disseminated throughout the rock. The andesite is also porphyritic, but the phenocrysts differ from those of the dacite in that biotite is uncommon, andesine is absent, hornblende is common, and a few crystals of diopside and hypersthene are present. The youngest andesite flows in the northeast corner of the mapped area (fig. 2) are nearly basaltic, the plagioclase being somewhat more calcic and diopside and hypersthene more abundant than in the older andesite flows.

In general, the rocks of individual flows are banded and have stony interiors surrounded by a zone of porphyritic glass, which, in turn, has a rind of dense black or gray glass. The glass zones vary in thickness within the individual flows and, locally, are absent.

The mapped units in the extrusive rocks are lenticular and limited in areal extent. The lenticularity of these units is apparently due to the flows having followed the low areas of the land surface that existed at the time of volcanic eruption. Many of the flows and breccias are less than several thousand feet in extent.

The breccias associated with the dacite and andesite flows consist mainly of small to large fragments of flow rock in a fine matrix of rock fragments, glass, and cinders. The percentage and size of the fragments vary locally in the individual and separate breccias. The breccias are less dense than the flow rocks and are more easily weathered.

Several zones of highly altered dacite and associated breccias occur in the north-central part of the mapped area (fig. 2). Abundant cryptocrystalline quartz was deposited in these zones by hydrothermal solutions which permeated the country rock. Locally, alteration of the dacite has obliterated the character of the original rock. Hydrothermal alteration has been most extensive along shear zones. Locally in the eastern part of the area, small irregular veins of cryptocrystalline quartz occur in the less altered rocks.

The highly weathered rocks are near the surface, but weathering is also apparent at depth. The most intensely weathered rocks contain the greatest pore space, in the form of connnected or nonconnected cavities and fractures.

Intrusive rocks

Several narrow diorite porphyry dikes cut dacite and andesite flow rocks in the southeastern part of the area (fig. 2). Their chemical and mineralogical compositions are similar to those of the andesitic rocks and suggest that the dikes may have been magma conduits for some of the younger andesite flows. The dikes appear to be vertical, or nearly so, and may increase in width at depth. Intrusive breccias are associated with the dikes at many localities.

Three well-defined zones are apparent in each dike: an interior crystalline zone, a transition zone, and an outer glassy zone. The interior zone consists of medium to coarse phenocrysts of calcic plagioclase, hornblende, some pyroxene, and rare biotite in a groundmass of microscopic crystals of the same minerals. The groundmass constitutes 70 percent of the rock and contains disseminated fine grains of magnetite. The interior zone is bounded on both sides by a transition zone of fine to medium phenocrysts of calcic plagioclase, hornblende, pyroxene, and, rarely, biotite in a groundmass of microscopic crystals of the same minerals. The groundmass constitutes nearly 70 percent of the rock. Fine grains of magnetite also occur in the groundmass of the transition zone, and the pyroxene phenocrysts are locally altered to iron oxides.

The border zones of the dikes are composed of medium to coarse phenocrysts of calcic plagioclase and fine to medium phenocrysts of hornblende, pyroxene, and biotite in a groundmass of dense black glass. Phenocrysts of hornblende are abundant; those of biotite are rare. The glassy groundmass constitutes 50 to 60 percent of the rock and contains clusters of finely disseminated crystals of pyrite and magnetite.

The interior zones of the dikes are most easily weathered; so, topographically, each dike is expressed as two linear ridges. The ridges are formed by the transition and outer zones and are separated by a gentle swale covered by a thin mantle of alluvium that represents the interior zone.

Structural geology

Geologic structures in Area 401 (fig. 2) include normal faults, shear zones, and joints that are primarily the results of regional uplift and major block faulting that occurred throughout Nevada and much of the southwestern United States in late Tertiary time. The normal faults trend northwest to northeast and dip steeply. The predominant movement along the faults has been vertical; the maximum vertical displacement probably does not exceed 100 feet. Nearby, however, there are large faults that commonly have 500 feet of vertical displacement and locally may exceed 1,000 feet. Many faults are arcuate, some are sinuous, and a few are straight. Most are forked. Locally, the rocks adjoining the fault planes are distorted, and many faults are filled by gouge and marked by slickensides. Many more faults undoubtedly are hidden by alluvial deposits and pediment gravels that cover large parts of Area 401.

Shear zones occur in altered and unaltered dacite porphyry and dacite breccia in the central part of the area; locally the rock in these zones has been crushed into fragments less than an inch across. The shear zones trend north and northeast, dip from about 45° to nearly vertical, and they may be as much as 1,300 feet long and 200 feet wide. Hydrothermal alteration is greatest in these shear zones.

<u>18</u>

The rocks in Area 401 are intricately jointed throughout, having wide variations in the magnitude, attitude, and spacing of the joints. The diversely oriented joints extend from a few inches to more than several hundred feet along their strikes. Most of the prominent joints are straight, but many are wavy or arcuate. Most of the smaller joints are irregular along strike; locally they are wavy, curved, and for short distances straight. Dips of the joints range from about 10° to vertical, but most dips are $40^{\circ}-60^{\circ}$ and $70^{\circ}-90^{\circ}$.

Ground-water conditions

A perched water table occurs throughout most of Area 401 with recorded depths to its static water level ranging from 81.0 to 167.0 feet below the land surface. The perched water occurs in a zone of highly fractured rock with many open joints and may extend to depths exceeding 261 feet (p. 96-126) before rocks having low-fracture permeability are penetrated.

Table 1 shows the depth to water level measurements taken in core holes for a 1-month period during excavation of the pilot chamber. Fluctuations in the water level in the Pluto-6 and -7 holes, which are located very close to the underground chamber, may reflect the drawdown effect caused by mine pumping operation during excavation.

Electrical resistivity vertical profiles in Area 401 indicate zones of saturation at depths between 24 and 136 feet, 460 and 900 feet, and 1,050 and 1,800 feet (table 2). Therefore, other layers of perched water may be in permeable zones between the regional water table, which is assumed to be at a depth of about 1,700 feet, and the known perched water table.

	4 <u>-</u>				
Drill hole	Location (Nevada coordinates)	Drill- collar elevation (feet above sea level)	Date Logged (1962)	Depth to water level (feet)	water level (feet above sea leval)
Pluto-4	N. 756,261.85 E. 661,491.41	4,152	June 29 July 21-26	109 1/ 109.59 max 109.61 min 109.57	4,043 <u>1</u> / 4,042
Pluto-5	N. 753,602.00 E. 662,558.45	4,041	June 23 June 29 July 21-26	80 77 2/ 80.93 max 80.95 min 80.91	3,961 3,964 <u>2</u> / 3,960
Pluto-6	N. 754,696.75 E. 662,440.83	4,091	June 24 June 29 July 21-26	160 182 1/ 167.00 max 168.60 min 166.38	3,931 3,909 <u>1</u> / 3, 924
Pluto-7	N. 754,708.20 E. 662,540.16	4,091	June 29 July 21-26	181 2/ 159.19 max 159.29 min 159.03	3,910 <u>2</u> / 3,932
Pluto-10	N. 754,228.79 E. 662,801.60	4,060	June 24 June 29 July 21-26	130 125 2/ 129.03 max 129.21 min 128.82	3,930 3,935 <u>2</u> / 3,931
Pluto-11	N. 754,128.95 E. 662,796.37	4,060	June 24 June 29 July 21-26	125 127 2/ 125.85 max 125.98 min 125.65	3,935 3,933 <u>2</u> / 3,934
Pluto-12	N. 754,328.63 E. 662,806.83	4,060	June 24 June 29 July 21-26	125 125 2/ 128.49 max 128.63 min 128.30	3,935 3,935 <u>2</u> / 3,932

1/ Average of 5 measurements taken over a 6-day period.

2/ Average of 4 measurements taken over a 6-day period.

Table 2--Interpretation of electrical resistivity vertical profile obtained at test holePluto-1, Area 401, Nevada Test Site

Resistivity layer	Depth interval (feet)	Resistivity (ohm-meter)	Remarks
1	0-0.85	42	Soil.
2	0.85-3.4	420	Dry weathered dacite.
3	3.4-24	88	Layers 3 to 6 are dacite. Layers 3
4	24-136	13	with the difference in resistivity a function of porosity differences
5	136-460	33	between the two layers. Layer 4 has
6	460-approx. 900	10-20	about 17.5 percent and appears to be completely saturated. Layer 6 is saturated dacite.
7	Approx. 900-1,050	Greater than layers 6 and 8.	This layer may represent a decrease in porosity in dacite or a welded tuff layer.
8	Approx. 1,050-1,800-	21	Possibly saturated dacite with increased porosity, or may be bedded tuff.

[Interpretation by R. A. Black and R. M. Hazlewood]

GEOLOGY OF THE AIR CHAMBER SITE Lithologic description

The dacite porphyry is exposed in small scattered and isolated outcrops northeast and southeast of test holes Pluto-1 and -3 (figs. 3, 4). At these outcrops the dacite varies in color from light gray to buff, reddish brown, and dark greenish gray. The fresh rock is light gray. Weathered dacite is buff or reddish brown, the most highly weathered being buff. The hydrothermally altered rocks are generally greenish gray although, locally, alteration has not changed the gross color of the rocks (fig. 7).

Texturally, the rock is porphyritic and is composed of more or less isolated medium-grained phenocrysts (1/2 to 1 mm) set in a **groundmass** of glass. The phenocrysts are plagioclase, biotite, and, rarely, hornblende and hyperstheme. The groundmass consists mainly of devitrified to partly devitrified glass and constitutes from 50 to 75 percent of the rock. It contains rare lithic fragments of lava and metamorphic rock. Structurally, the porphyry is lenticular in cross section, flow banded, massive, and locally vuggy.

Structure

Faults

Several faults were mapped in the areas of two prospective sites (figs. 3, 4). A north-northwest trending fault, downthrown on the east, extends across the northeast corner of site 1 near test holes Pluto-1 and -3 (fig. 3). The amount of displacement could not be measured, and there is no apparent distortion of the rock adjoining the fault. Another northwest-trending fault, downthrown to the west, cuts across the southwest corner of site 1 (fig. 3) and extends into the area of site 2 (fig. 4) near

Figure 7.--Alteration zones from cores within dacite porphyry, Area 401, Nevada Test Site

A

A'

test hole Pluto-5. This fault trends northwest, apparently passing within a few feet of test hole Pluto-5, and is exposed about 200 feet north of the hole. It may extend south along strike for almost a mile. Several small faults cut the diorite porphyry dike that crops out between these two sites. The faults probably extend for short distances into these sites; however, they could be mapped with certainty only in the vicinity of the dike.

Cores recovered from the drill holes indicate that faulting occurred at only a few places. At 463.5 feet below the surface, the drill hole at Pluto-1 penetrated a nearly vertical 1/2-inch wide fracture having slickensided walls and filled with material that may be fault gouge. Another piece of rock recovered from a depth of 660 feet in Pluto-1 has been broken and crushed; it contains 1/2-inch-thick bands of slickensided clay gouge. For 11 feet above and below the gouge zone, the core consists of broken rock intersected by many fractures that have numerous slickensided surfaces. This evidence suggests that at this depth the drill hole intersected, or nearly intersected, a high-angle normal fault.

Cores recovered from test hole Pluto-5 at 153 feet, 270 feet, and 281 feet below the surface show that the rock was crushed into many small fragments and that most of the fracture surfaces display slickensides. The highly broken rock was cemented later by fine-grained calcite; locally, isolated fragments are surrounded by calcite. The rocks were probably torn and crushed by movement along high-angle normal faults.

Joints

The joints were mapped in great detail in the areas of the prospective sites. They are grouped according to magnitude as master, primary, secondary,

and tertiary. Master joints are those that are the longest, widest, most persistent, most parallel, and most regular. Primary joints are persistent and strike nearly normal to the master joints; secondary joints extend for 10 to 20 feet along strike, are irregular, and have variable dips; and tertiary joints are minute irregular fractures that are observed only on fresh clean surfaces of outcrops.

The attitudes of the master and primary joints at the two sites have been diagrammed and shown on the geologic maps (figs. 3, 4) near the individual outcrops that were examined. The general strike of the joints is shown by the direction of the wedge-shaped bars, and the dip by the length of the bars. The center of the semicircle represents 0° of dip (horizontal joints) and the circumference of the semicircle represents 90° of dip (vertical joints). A more precise method of graphically representing joints has been used to prepare figure 8, which not only shows the strike and dip, but also the direction of the dip of the joints. This joint diagram (fig. 8) is a compilation of the attitudes of 163 joints measured at rock exposures near the prospective chamber sites and represents an upper hemispheric equal-area plot of the joint poles. By use of the upper hemisphere, the plotted poles fall in the same quadrant as the dip directions. The strike directions are read normal to the dip directions.

The attitudes of all the joints measured in the areas of sites 1 and 2 show a strong northeast trend and a vertical to nearly vertical dip. There are six strong joint trends. The joints of the dominant set strike N. 40° E. and dip 60° SW. The five other major joint sets have average attitudes of N. 80° W., 80° SW.; N. 50° W., 60° SW.; N. 65° W., vertical; N. 80° E., vertical; and N.-S., 30° E. The last may follow the flow banding.

Figure 8.-- Joint diagram of 163 poles of surface joints in area adjacent to test holes Pluto-1 and Pluto-5, Area 401, Nevada Test Site. Plotted on upper hemisphere, contour interval 1 percent

The strikes of the joints observed in the core of the test holes could not be determined, but most of the joints dip 40 to 60° or are nearly vertical. The joints in individual sets are from less than 1 inch to as much as 5 feet apart, averaging 6 inches apart. The most highly fractured rock occurs at joint intersections where fractures reach their highest density. A maximum average fracture density of 3.5 fractures per foot of core was recorded in the interval 84.0-135.0 feet in test hole Pluto-1. In test hole Pluto-3, maximum fracture density of slightly more than 2.0 fractures per foot of core was recorded for the interval 81.3-163.8 feet, and a fracture density of slightly less than 2.0 was recorded for the interval 187.4-210.0 feet. For test hole Pluto-5 the maximum fracture density is 2.3 in the interval 72.6-99.4 feet. The values given for fracture density in the cores are not the maximum except for those nearly horizontal fractures that cut the drill hole at right angles. The higher the angle of the fractures, the lower the fracture-density values shown by the core. Fractures that are nearly vertical or vertical and are almost parallel to the drill hole would intersect the core at only a few places, regardless of how closely they are spaced. Thus, an inadequate picture is shown of the density of high-angle and vertical joints, which are commonly master and primary joints.

At exposures of fresh rock and in the cores most of the joint surfaces are slightly rough, but some are slickensided with polished and striated surfaces. Most of the joints are closed, but a few are open and show evidence of having been channels for the downward or lateral movement of ground water. Examination of the core from the test holes shows that many open joints, especially at greater depths, have been sealed by deposits of calcite, montmorillonite, iron oxide, and manganese oxide.

Petrography

Petrographic studies of the cores from the five test holes in Area 401 were made to determine the mineralogic, textural, and structural characteristics of the rock, as well as to determine the effects of weathering and alteration. Thin sections were cut from 21 samples of fresh, weathered, and altered rock from depths of 65.5, 83.3, 109.8, 130.0, 158.0, 217.5, 260.0, 400.0, 450.0, and 550.0 feet in test hole Pluto-1, from a depth of 221.0 feet in test hole Pluto-3, and from depths of 13.0, 35.5, 75.5, 102.0, 120.0, 167.0, 224.5, 276.0, 298.0, and 311.0 feet in test hole Pluto-5. These samples are considered to be representative of the host rock for the underground chamber. Study of the thin sections has shown that this rock may be mineralogically classed as a dacite porphyry because of the amounts of quartz, sanidine, plagioclase, biotite, hornblende, and hypersthene phenocrysts (table 2-A).

Texture and fabric

The dacite is a hypocrystalline porphyry having fine- to mediumgrained hypidiomorphic phenocrysts in a groundmass of slightly devitrified perlite to completely devitrified glass with abundant microlites. Locally, the microlites are arranged subparallel to each other and to the flow banding to give the rock a slightly trachytic texture. The phenocrysts are largely scattered and isolated in the groundmass and are not well packed or interlocked. The vuggy or vesicular character of the rock, noted at several places, may be the result of weathering or of expanding gas in the lavas. In the fresh rock the cavities are mostly nonconnected and locally they may be amygdules. Variations in porosity appear to be largely a function of weathering and alteration; weathering tends to increase the porosity, whereas hydrothermal alteration tends to decrease the porosity.

Table 2a.-- Petrographic modal analyses of test-hole dacite porphyry core thin sections from Area 401, Nevada Test Site

Sample No. Pluto-	Depth (feet)	Quartz	Glass	Plagioclase	Biotite	Hornblende	Hypersthene	Iron oxides	Calcite
1A	65.5	Trace	58,5	35.4	2.9	1.6	0.2	1.5	
18	83.3	Trace	79.2	13.4	4.4	0.9		1.7	0.9
lD	109.8	0.2	71.0	21.0	4.2	1.9	0.6	1.3	
lF	130.0	Trace	70.8	12.3	0.9			2.8	13.2
1G	158.0	0.1	73.5	16.4	8.0			1.9	
ιк	217.5	Trace	77.1	17.7	4.2			1.0	
IM	260.0	Trace	71.1	24.3	2.7			1.9	Trace
15	400.0	0.1	71.0	17.8	2.4			2.8	5.8
lU	450.0	Trace	77.1	17.2	2.9			2.4	Trace
ıx	550.0	Trace	75.0	19.2	4.4			1.4	Trace
verage		Trace	72.0	19.5	3.7	0.4	0.1	1.9	1.9
ЗН	221.0	Trace	67.4	25.8	3.6			2.0	1.2
5A	13.0		72.5	22.1	2.3			3.0	0.2
5B	35.5	0.5	75.2	. 18.4	3.9			1.5	0.7
5D	75.5	Trace	73.5	16.4	6.3			3.6	
5E	102.0		71.1	23.5	2,5			2.9	
5F	120.0	0.1	46.6	27.9	2.3			3.3	20.0
5H	167.0	Trace	70.5	25.9	1.7			1.9	
5L	224.5	Trace	49.5	10.5	1.2			1.8	37.2
5P	276.0	0.5	70.5	20.5	5.4			2.9	
5Q	298.0	0.2	63.1	28.7	2.3			2.3	3.3
5R	311.0	0.2	78.1	17.6	1.5			2.5	0.4
verage		0.2	67.1	21.2	2.9			2.6	6.2

[Analyses are given in percentage of total volume of rock]

Mineralogy

Fresh, unweathered, and unaltered dacite porphyry occurs only locally and consists mainly of plagioclase, biotite, and magnetite in a groundmass of perlitic glass. Such rocks occur locally at depths less than 100 feet in the site areas. Perlite is the major constituent and comprises an average of 72.0 percent, by volume, of the dacite. The perlitic cracks commonly form complete spheroids in the glass, which is colorless or light gray. The glass is slightly devitrified, most commonly along adjoining perlitic cracks and along the edges of phenocrysts. Small felsitic aggregates of quartz and feldspar occur in scattered patches. Deuteric action has left reaction rims on most of the hornblende and hypersthene phenocrysts and on some of the biotite phenocrysts.

Crystals of sanidine, which are generally rare although common locally, occur as unaltered euhedral to subhedral crystals as much as 2 mm across. A few quartz microlites are scattered in the groundmass. The largest phenocrysts in the rock are zoned plagioclase crystals as much as 6 mm in diameter. The outer zones are oligoclase and andesine, ranging from An_{25} to An_{40} in composition. Numerous andesine microlites in the groundmass glass are An_{35-50} . Plagioclase crystals comprise an average of 20.0 percent, by volume, of the rock. Biotite phenocrysts as much as 1.5 mm in diameter compose 3.7 percent of the rock. They are unaltered except for reaction rims and contain a few scattered inclusions of sanidine and magnetite. The biotite is reddish brown and mainly euhedral although some crystals have battlemented ends. Locally, small euhedral crystals of olive-green hornblende and pleochroic hypersthene,

less than 1 mm in diameter, compose less than 0.5 percent of the rock. Euhedral to anhedral crystals of magnetite are disseminated throughout the rock and constitute almost 2.0 percent of the rock by volume.

Alteration and weathering

The dacite porphyry is commonly altered hydrothermally and weathered at various depth intervals. Hydrothermal alteration is most intense in the areas penetrated by test holes Pluto-4 and -5 and below 300 feet in Pluto-1 (p. 96-126). The effect of weathering is apparent in both the fresh and hydrothermally altered rocks, which occur randomly throughout the rock drilled. In general, the most weathered rock is near the surface at depths less than 160 feet, but moderate weathering has occured along fractures as deep as 650 feet.

Locally, opal, deposited from silica-bearing hydrothermal solutions, constitutes a large percentage of the rock. The hydrothermal solutions also reacted with the rock constituents to form montmorillonite, dolomite, calcite, epidote, chlorite, and gypsum. The montmorillonite and other clay minerals were derived, in large part, by hydrothermal action on the groundmass glass and, to a lesser extent, from plagioclase. Dolomite formed from magnesium- and calcium-bearing minerals such as hornblende and hypersthene in close association with plagioclase. Epidote is closely associated with chlorite, and both are formed from alteration of plagioclase, biotite, hornblende, and hypersthene. Gypsum has been formed locally as blebs and stringers by the introduction of calcium- and sulfur- bearing hydrothermal solutions.

Weathering, accelerated mainly by the action of downward-moving meteroric waters, has caused mild to severe changes in the mineralogic, textural, and structural form of the fresh and hydrothermally altered rock. The groundmass has been most susceptible to attack. It has been
oxidized to a reddish brown and changed to a mixture of clay minerals. Generally, the perlitic cracks are no longer discernable. The phenocrysts remain relatively unaffected, but the edges of most of the magnetite grains are oxidized. Pore space is greatest in the most intensely weathered rocks and occurs either as connected or as nonconnected cavities that commonly are partly or entirely filled with clay minerals, calcite, iron oxides, and rarely with an unidentified zeolite.

X-ray analyses of 14 samples (table 3) were made of representative rock specimens from depths of 83.3, 130.0, 450.0, and 550.0 feet in test hole Pluto-1, from depths of 83.5 and 108.0 feet in test hole Pluto-2, from a depth of 221.0 feet in test hole Pluto-3, from depths of 99.0 and 252.5 feet from test hole Pluto-4, and from depths of 13.0, 35.5, 75.5, 224.5, and 311.0 feet in test hole Pluto-5. The minerals identified are cristobalite, clay (montmorillonite and illite), mica, feldspar, dolomite, and calcite; the results of the analyses are given in a numerical code that represents the percentage-range of the minerals found (table 3).

Chemical composition

Rapid rock chemical analyses and semiquantitative spectrographic analyses were run for 23 samples. The results of the rapid rock analyses are given by the percentages of oxides present (table 4); the samples were analyzed by methods similar to those described by Shapiro and Brannock (1956, p. 19-56). The results of spectrographic analyses of these rock samples are given by percentages of elements present, and only the elements detected are reported (table 5).

Table 3.--X-ray analyses of core samples from Area 401, Nevada Test Site

Analyst: Theodore Botinelly

[Analyses code: 1 = 775 percent; 4 = 10 to 25 percent; 2 = 50 to 75 percent; 5 = 10 percent; 3 = 25 to 50 percent;]

Sample No. Pluto-	Depth (feet)	Cristobalite	Clay	Mica	Feldspar	Dolomite	Calcite
lB	83.3	4	3	4	4		
lf	130.0	4	3	4	2 - 3		
lU	450.0	2-3	3	5	4		
lX	550.0	2 - 3	3		3		
2D	83.5	3	3		2 - 3		
2 F	108.0	3	3		3		
ЗН	221.0	3	4	5	4		
4 F	99.0	3	4		3		
4 T	252.5	3	4		2 - 3		
5A	13.0	3	4		4	******	*****
5в	35.5	3	3		4		5
5D	75.5	2-3	4		4		
5L	244.5	5	4	5	3	5	5
5R	311.0	3	3		4		

Sample Pluto-	Depth (feet)	Si0 ₂	Al203	Fe203	Fe0	MgO	Ca0	^{Na} 2 ⁰ 3	к ₂ 0	H ₂ 0	Ti0 ₂	P205	MnO	^{C0} 2
			Unweat	thered to	slightl	y weath	ered una	altered d	acite	all'ons	di l			
14	65.5	64.0	15.9	2.4	1.1	1.8	3.8	2.3	3.1	4.8	0.50	0.28	0.09	<0.05
	109.8	64.5	16.2	2.4	1.1	1.4	3.7	2.6	3.7	3.6	.48	.24	.08	<.05
lF	130.0	62.6	16.2	3.1	.27	1.8	4.4	2.2	1.2	6.7	.50	.27	.02	.15
IX	550.0	63.8	16.2	4.3	.18	1.2	3.0	2.6	3.6	3.8	.58	.24	.03	.10
2D	83.5	61.7	16.7	5.2	.09	1.6	4.1	2.8	2.8	3.7	.68	.30	.05	<.05
2F	108.0	61.4	17.2	5.3	.13	1.4	4.6	3.0	2.6	3.2	.70	.32	.05	<.05
5D	75.5	60.6	17.4	4.7	.37	1.4	4.1	2.9	2.8	4.4	.73	.32	.04	.06
Average		62.7	16.5	3.9	.46	1.5	4.0	2.6	2.8	4.3	.60	.28	.05	.06
			Moder	ately to	severely	y weathe	red una	ltered da	cite					and the second second
1.0	02.2	611 0	13.0	3.0	0.16	1.9	47	1.6	1.1	6.9	0.47	0.20	0.05	1.20
1B 1K	217 5	63 5	16.6	3.3	.30	1.2	4.2	2.7	3.4	3.1	.52	.26	.05	.62
15	400.0	63.4	15.4	3.8	.11	1.6	3.9	2.6	3.6	3.3	.54	.23	.09	1.60
10	450.0	64.4	15.7	4.1	.06	1.3	3.2	2.6	3.6	3.5	.57	.24	.05	.53
ЗН	221.0	62.2	15.7	4.7	.10	1.4	3.8	2.3	3.8	4.0	.52	.24	.08	.88
4F	99.0	59.5	16.2	4.9	.06	2.2	5.9	2.6	2.2	4.4	.66	.28	.14	1.20
4T	252.5	60.1	16.4	4.3	.05	2.2	3.2	2.0	2.6	7.8	.60	.27	.06	.32
5A	13.0	58.6	15.4	6.1	.05	1.3	5.4	2.2	2.6	5.4	70	.28	.16	1.90
Average		62.1	15.7	4.3	.11	1.6	4.3	2.3	2.9	4.8	.57	.25	.08	1.03
			Unwe	athered 1	to slight	tly weat	hered a	ltered da	cite					
	100.0	60.2	17.0	27	1 10	1.0	4.9	27	2.8	3.5	0.76	0.30	0.06	0.60
10	167.0	μ7 7	12.5	3.1	2.20	3.4	12.8	2.2	2.2	2.8	.58	.24	.40	10.10
5P	276.0	59.5	16.1	4.1	1.30	2.5	4.8	3.0	3.1	3.8	.73	.30	.10	.90
50	298.0	60.4	16.2	3.5	1.80	2.3	5.2	3.0	2.8	2.8	.70	.29	.08	1.00
5R	311.0	58.7	15.6	5.1	.68	2.9	3.7	2.1	3.4	5.4	.71	.28	.06	1.50
Average	+	57.3	15.5	3.9	1.48	2.6	6.3	2.6	2.9	3.7	.70	.28	14	2.8
			Mode	erately to	o severe	ly weath	nered al	tered roo	:k			1		
	1		1	1	1		15.0	1		E E	0.59	0.01	0.12	0.00
5B	35.5	46.5	12.1	5.3	.14	1.0	15.0	1.6	2.5	5.5	0.58	29	0.12	1 3
5E	102.0	59.8	16.5	5.0	20	1.4	12.6	2.4	1.0	4.0	.11	21	.54	13.5
70	224.5	41.5	1	2.0	0.00	0.4	1 12.0	1.0	1	1	1	1		1
Average		49.3	13.2	4.3	1.31	2.9	10.9	1.9	2.4	4.8	.59	.25	.25	8.2

Table 4.--Chemical analyses (in percent) of core samples from Area 401, Nevada Test Site

									_			_											
Sample No. Pluto	lA	lB	1D	lF	lk	1S	10	ıx	2D	2F	ЗН	4F	4T	5A	5B	5D	5E	5F	5H	5L	5P	5Q	5R
Depth (feet)	65.5	83.3	109.8	130.0	217.5	400.0	450.0	550.0	83.5	108.0	221.0	99.0	252.5	13.0	35.5	75.5	102.0	120.0	167.0	224.5	275.0	298.0	311.0
Si Al Fe Mg	M M 3 1.5	M 7 3 1.5	M M 3 1	M 7 3 1	M M 3 1	M M 3 1	M M 3 1	M M 3 1	M M 5 1	M M 5 1	M M 3 .7	M M 3 1	M M 3 1.5	M M 3 1	M 7 3 1	M M 3 1	M 7 3 1	M 7 3 1	M 7 3 2	M 7 2 3	M 7 3 1	M 7 3 1	M 7 3 1.5
Ca	5 2	5 1.5	3	3 1.5	3	5 2	3	2	3	3	2	5	3 1.5	3	M 1.5	3	3 1.5	3 1.5	M 2	M 1.5	3 1.5	3 1.5	2
K Ti Mn	3 .3 .07	1.5 .2 .05	3 .3 .07	1 .2 .02	3 .3 .05	3 .3 .07	3 .3 .05	3 .3 .02	3 .3 .05	3 .3 .03	.2 .03	2 .2 .15	3 .2 .05	3 .2 .1	3 .2 .07	3 .3 .02	3 .3 .03	3 .3 .03	3 •2 •2	3 .15 .3	3 .3 .05	3 .3 .03	3 .3 .05
Ba Be Ce	.15 .0002 <.02	.1 0 <.02	.15 .00015 <.02	.15 0 <.02	.2 .00015 <.02	.2 .00015 <.02	.2 0 <.02	.15 .00015 <.02	.15 0 <.02	.15 .00015 <.02	.15 .00015 <.02	.15 0 <.02	.15 0 <.02	.15 0 <.02	.1 0 <.02	.15 .00015 <.02	.15 0 <.02	.1 0 <.02	.07 0 <.02	.07 0 <.02	.15 0 <.02	.15 0 <.02	.15 0 <.02
Co Cr Cu	.001 .0015 .001	.0007 .0015 .0015	.0007 .0015 .0015	.0007 .0015 .0015	.0007 .0015 .0015	.001 .002 .0015	.0007 .002 .0015	.0007 .0015 .0015	.0015 .002 .0015	.0015 .003 .0015	.001 .001 .0015	.0015 .002 .0015	.0015 .003 .0015	.0015 .003 .0015	.001 .003 .002	.0015 .003 .002	.0015 .002 .0015	.0015 .002 .002	.0007 .002 .002	.001 .001 .0015	.0007 .002 .003	.001 .002 .0015	.001 .002 .0015
Ga La Nb	.002 .007 0	.002 .007 0	.003 .007 0	.002 .007 0	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.003 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 .0015	.002 .007 0	.002 .007 0	.002 .007 0	.002 .007 .0015	.002 .005 .0015
Pb Sc Sr	.003 .001 .07	.0005 .002 .001 .05	.002 .005 .001 .07	.0007 .002 .001 .05	.0007 .003 .001 .07	.0007 .003 .002 .05	.001 .002 .001 .05	.0007 .002 .001 .07	.002 .002 .002 .07	.002 .002 .002	.0007 .002 .001 .07	.0015 .002 .0015 .07	.001 .003 .0015 .07	.002 .002 .0015 .07	.001 .002 .0015 .07	.0015 .002 .002 .05	.0015 .002 .0015 .07	.0015 .002 .002 .07	.001 .0015 .0015 .07	.0007 .0015 .001 .05	.001 .002 .0015 .07	.0015 .002 .002 .1	.0015 .0015 .0015
Th V Y	.03 .007 .003	0 .005 .002	0 .007 .003	0 .007 .003	0 .007 .003	0 .007 .003	0 .007 .003	0 .005 .002	0 .01 .003	0 .02 .003	0 .005 .002	0 .01 .003	0 .01 .002	0 .01 .003	0 .01 .003	0 .02 .003	0 .01 .003	0 .015 .003	0 .01 .003	0 .007 .002	0 .01 .002	0 .01 .002	0 .01 .002
Yb Zr	.0003 .02	.0002 .015	.0003 .02	.0003 .015	.0003 .02	.0003 .015	.0003 .015	.0002 .015	.0003 .01	.0005	.0003 .015	.0003 .015	.0003 .01	.0003 .015	.0003 .01	.0003 .02	.0005	.0003 .02	.0003	.0002	.0003 .01	.0003 .01	.0003
11/1	<.01	0	0	0	<.01	<.01	0	0	<.01	<.01	0	0	0		0	~•01	0	0	0	U	0	U	0

Table 5.--Semiquantitative spectrographic analyses of core samples from Area 401, Nevada Test Site

- [M, >10 percent]
- 35

Major chemical constituents

The large amount of glass in the groundmass prohibited an estimation of the chemical composition of the host rock by petrographic methods. Samples from rocks showing varying degrees of hydrothermal alteration and weathering, as well as from unaltered rock, were selected for chemical and spectrographic analyses (tables 4 and 5, respectively). The classification by alteration and weathering shown in table 4 was based on petrographic examination. Analyses of the dacite porphyry have shown that it may be classified chemically as rhyodacite due to the high percentage of silica in the groundmass glass.

Hydrothermal alteration and weathering change the composition of the dacite porphyry. The large amounts of CaO and CO2 in certain specimens is a good indicator of the amount of alteration and weathering and is represented by secondary calcite. The ratio of ferrous oxide (FeO) to ferric oxide ($Fe_{2}0_{3}$) is also an indicator of hydrothermal alteration and weathering. The percentage of FeO was increased greatly by alteration and decreased moderately by weathering. Fe_2O_3 was not affected by alteration but was increased slightly by weathering. In unweathered and unaltered dacite the amount of FeO is much less than Fe_20_3 , but in rocks subjected to hydrothermal alteration the percentage of FeO may approach or exceed the percentage of Fe_20_3 . The amount of MgO and MnO may be 4 or 5 times greater in the altered rock than in unaltered rock. MgO was increased slightly in percentage by weathering and was increased moderately by alteration, whereas MnO was increased moderately by weathering and was increased greatly by alteration.

The remaining oxides also demonstrate a tendency to increase or decrease as the result of hydrothermal alteration and weathering but

do not change so strikingly as those oxides mentioned above. SiO_2 and Al_2O_3 was decreased moderately by alteration and slightly in percentage by weathering. The percentage of H_2O was decreased slightly in the dacites subjected to alteration, but was increased slightly in weathered rocks. Alteration tended to increase slightly the amount of TiO_2 , whereas weathering appears to have reduced slightly the amount of TiO_2 .

Minor chemical constituents

Spectrographic chemical analyses (table 5) were made for the same samples used in the rapid rock chemical analyses (table 4) to determine the minor elements in the dacite porphyry and to ascertain the effect of weathering and hydrothermal alteration on the amount, distribution, and occurrence of the minor elements. There are no noticeable deviations in the percentages of most of the minor elements found as the result of hydrothermal alteration or weathering. The percentages of barium, copper, and lead are not affected by weathering, but the barium and lead tend to decrease slightly and copper tends to increase moderately upon alteration. The percentages of nickel and vanadium are not changed by alteration and are only slightly decreased by weathering. Beryllium is increased by weathering but appears to have been eliminated by alteration. Zirconium is decreased slightly by weathering and alteration.

Physical properties

Porosity and density

Porosity, grain density, and dry bulk density measurements were determined on core samples from the 5 test holes (tables 6 and 7). These measurements were determined by saturation in either water or

		1		
Sample No. Pluto-	Depth (feet)	Porosity (percent)	Grain density (g/cc)	Dry bulk density (g/cc)
1A 1B 1C 1D 1E 1F 1Fa 1G 1H 1J 1K 1L 1M 1N 1P 1Q 1R 1S 1T 1U 1V 1W 1X 1Y 1Z 1AA 1BB 1CC 1DD 1E 1FF	65.5 83.3 101.0 109.8 127.5 130.0 144.0 158.0 173.0 190.0 217.5 240.0 271.0 298.0 326.0 354.0 378.0 400.0 421.0 450.0 478.0 520.0 550.0 580.0 625.0 643.0 673.0 686.0 721.0 758.0 776.0	11.5 45.5 16.3 9.3 13.7 19.7 17.2 14.8 5.5 10.6 10.9 7.1 11.2 10.8 12.6 8.9 10.0 8.1 8.3 8.1 5.9 8.3 16.4 11.8 12.4 11.6 11.3 10.1 5.3 4.1 9.3	2.46 2.47 2.52 2.52 2.52 2.42 2.50 2.55 2.42 2.17 2.61 2.58 2.54 2.54 2.54 2.54 2.52 2.52 2.52 2.51 2.51 2.51 2.51 2.51 2.51 2.52 2.51 2.52 2.51 2.52 2.52 2.53 2.55 2.55 2.52 2.53 2.55 2.55 2.55 2.52 2.53 2.55 2.55 2.55 2.55 2.55 2.52 2.52 2.53 2.55	$\begin{array}{c} 2.28\\ 1/1.35\\ 2.11\\ 2.29\\ 1/2.09\\ 1/2.09\\ 1/2.01\\ 1/2.12\\ 2.17\\ 2.29\\ 1.94\\ 2.32\\ 2.32\\ 2.39\\ 2.25\\ 2.26\\ 2.22\\ 2.30\\ 2.25\\ 2.31\\ 2.25\\ 2.31\\ 2.36\\ 2.29\\ 2.31\\ 2.36\\ 2.29\\ 2.15\\ 2.26\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.39\end{array}$
2A 2B 2C 2D 2E 2F	12.5 45.0 65.0 83.5 102.0 108.0	19.8 6.7 12.6 9.3 10.4 5.1	2.61 2.61 2.59 2.60 2.62	2.09 2.43 2.28 2.35 2.33 2.48

Table 6.--Density and porosity measurements of core samples from Area 401, Nevada Test Site

	والمراجع المراجع والمراجع المراجع المراجع المترافي	والمتكار والفراري ومقير ومعارفه والمراجع والمراجع والمراجع	وبالانتفاعات الاتفاعيد الماعا منصار	
Sample No. Pluto-	Depth (feet)	Porosity (percent)	Grain density (g/cc)	Dry-bulk density (g/cc)
3A 3B 3C 3D 3E 3F 3G 3H 3J 3K 4A 4B 4C 4D 4E 4F 4G 4H 4J 4K 4L 4M 4N 4P 4Q 4R 4S	62.0 100.0 130.0 161.5 164.0 190.5 207.5 221.0 232.5 258.5 57.0 64.0 80.0 83.5 92.5 99.0 106.5 117.5 130.0 148.0 153.5 178.0 148.0 153.5 178.0 189.0 204.5 214.5 223.0 237.0	29.9 25.7 2.0 13.4 13.0 8.0 12.2 7.8 11.6 5.6 14.9 23.4 13.8 11.3 9.7 9.8 8.5 6.1 16.1 6.0 9.2 3.3 4.8 2.3 4.7 4.2 3.7	2.51 2.48 2.59 2.49 2.50 2.50 2.50 2.52 2.56 2.50 2.57 2.57 2.57 2.57 2.59 2.59 2.59 2.59 2.59 2.60 2.61 2.62 2.55 2.55 2.58 2.58 2.58 2.58 2.58 2.5	$\frac{1}{1}, 1.76$ $\frac{1}{1}, 1.84$ $\frac{1}{2.43}$ 2.24 $\frac{1}{2.17}$ 2.30 2.28 2.32 2.26 2.36 $\frac{1}{2.18}$ $\frac{1}{1.97}$ $\frac{1}{2.21}$ $\frac{1}{2.31}$ $\frac{1}{2.34}$ $\frac{1}{2.34}$ $\frac{1}{2.34}$ $\frac{1}{2.37}$ $\frac{1}{2.34}$ $\frac{1}{2.34}$ $\frac{1}{2.34}$ $\frac{1}{2.34}$ $\frac{1}{2.38}$ $\frac{1}{2.48}$
5A 5B 5C 5D 5E 5F 5G 5H 5J 5L	13.0 35.5 59.0 75.5 102.0 120.0 148.0 167.0 193.5 224.5	15.7 15.9 13.4 9.0 14.6 9.9 5.3 4.4 3.0 7.0	2.60 2.56 2.61 2.58 2.57 2.61 2.59 2.57 2.63 2.56	$\frac{1}{2.19}$ $\frac{1}{2.15}$ $\frac{1}{2.26}$ $\frac{1}{2.35}$ $\frac{1}{2.35}$ $\frac{1}{2.45}$ $\frac{1}{2.46}$ $\frac{2.55}{1}$ $\frac{1}{2.39}$

Table 6.--Density and porosity measurements of core samples from Area 401, Nevada Test Site--Continued

Sample No. Pluto-	Depth (feet)	Porosity (percent)	Grain density (g/cc)	Dry-bulk density (g/cc)
5M 5N 5P 5Q 5R 5S	238.0 257.0 276.0 298.0 311.0 318.0	9.0 7.7 3.2 9.2 12.8 4.5	2.61 2.58 2.56 2.57 2.55 2.55 2.57	$ \begin{array}{r} 2.37 \\ \underline{1}/2.38 \\ \underline{1}/2.48 \\ \underline{1}/2.33 \\ \underline{1}/2.23 \\ \underline{1}/2.42 \\ \end{array} $

Table 6.--Density and porosity measurements of core samples from Area 401, Nevada Test Site--Continued

<u>1</u>/ Density determined by kerosene-saturation method; all other measurements by water-saturation method.

Table 7	7Porosi	ty and	density	y measurem	ments of	core	samples	from	test	hole Plut	0-1,
	Area	401,	Nevada '	lest Site,	taken a	at app	proximate	ely l	D-foot	interval	.s

[Method used: Kerosene saturation]

Depth (feet)	Porosity (percent)	Grain density (g/cc)	Dry bulk density (g/cc)	Depth (feet)	Porosity (percent)	Grain density (g/cc)	Dry bulk density (g/cc)
37.6 49.7 60.2 71.4 80.0	29.2 23.7 14.2 3.7 24.5	2.55 2.49 2.45 2.45 2.45 2.45	1.81 1.90 2.10 2.35 1.85	430.0 440.0 450.0 460.0 470.0	10.1 10.0 7.5 11.5 15.0	2.57 2.58 2.53 2.55 2.55 2.56	2.31 2.32 2.34 2.26 2.17
88.7 100.0 109.7 120.0 130.0	11.9 21.7 1.8 20.2 21.9	2.45 2.45 2.47 2.49 2.55	2.16 1.92 2.43 1.98 1.99	480.0 490.0 499.3 509.4 520.6	8.7 11.3 7.0 13.6 8.0	2.54 2.56 2.54 2.56 2.55	2.32 2.27 2.36 2.21 2.35
140.0 150.0 160.0 171.5 180.0	19.9 14.7 14.0 11.5 11.9	2.57 2.56 2.56 2.54 2.55	2.06 2.18 2.21 2.25 2.24	530.0 540.0 550.0 559.0 570.0	15.3 10.1 8.5 8.3 7.0	2.56 2.55 2.55 2.55 2.55 2.53	2.17 2.29 2.33 2.33 2.35
190.0 200.0 210.0 220.0 230.0	8.4 7.1 11.7 7.6 7.0	2.54 2.54 2.55 2.53 2.52	2.32 2.36 2.25 2.34 2.34	579.4 590.0 600.0 610.0 620.0	8.4 9.5 7.2 5.6 6.4	2.55 2.56 2.53 2.55 2.55	2.33 2.31 2.35 2.40 2.39
239.5 250.0 260.0 270.0 280.0	9.9 9.9 10.5 9.4 7.1	2.54 2.54 2.56 2.55 2.53	2.29 2.29 2.29 2.31 2.35	630.0 640.0 652.0 657.3 670.0	8.0 6.2 9.9 10.1 14.1	2.54 2.55 2.54 2.54 2.54 2.53	2.34 2.39 2.29 2.28 2.17
289.6 300.0 310.0 320.0 330.0	13.3 13.8 8.9 8.4 9.6	2.56 2.56 2.55 2.55 2.55 2.55	2.22 2.20 2.32 2.33 2.30	680.0 689.5 700.0 710.0 720.0	11.6 10.0 5.2 9.4 10.4	2.55 2.56 2.56 2.56 2.56 2.57	2.26 2.30 2.42 2.32 2.30
340.0 350.0 360.0 370.0 380.0	10.8 8.0 6.4 11.8 10.6	2.55 2.56 2.53 2.56 2.57	2.28 2.35 2.37 2.26 2.30	730.0 740.0 750.0 760.0 770.0	9.0 8.7 5.7 6.9 7.1	2.57 2.56 2.55 2.56 2.55	2.34 2.34 2.40 2.39 2.37
390.0 400.0 410.0 420.0	10.0 11.1 9.1 8.8	2.55 2.57 2.56 - 2.55	2.29 2.28 2.33 2.33	775.0	6.4	2.59	2.42

kerosene. Kerosene saturation was used for rock samples that disintegrated when water saturation was attempted. The two methods are identical except that the calculations on kerosene-saturated samples are corrected to take into account the different specific gravities of the two liquids.

The grain densities of four core samples were determined by the powder-density method (table 8). This procedure is much slower than the water-saturation method, but more accurate for those samples which have some nonconnected pore space. The results of the two methods are within 0.03 g/cc in all samples measured. This indicates, first, that the water saturation method is generally reliable for these rocks and, second, that these rocks do not have a large percentage of nonconnected pore space.

The porosity, grain density, and dry bulk density analyses (tables 6 and 7) show great variability in the rock. Because the elasticity and strength of the rocks appear to be closely related to porosity and density, the wide range in the porosity and density values suggests that the elasticity and strength of the rocks also are variable. Porosity of these rocks ranges from 1.8 to 45.5 percent with an average porosity of 10.7 percent. The grain density of the dacite porphyry ranges from 2.17 to 2.63 g/cc and averages 2.5 g/cc. The dry bulk density of the dacite porphyry ranges from 1.35 g/cc to 2.55 g/cc and averages 2.27 g/cc.

The porosity and density are affected by the kind and extent of weathering and hydrothermal alteration to which the rocks have been subjected. Porosity is a particularly good indicator of whether the rocks are weathered or altered. The average porosities of the unweathered to slightly weathered fresh dacite porphyry and altered dacite porphyry are 11.5 and 7.9 percent, respectively. The porosities average 14.9 and 12.5 percent, respectively, in moderately to severely weathered unaltered dacite porphyry

	A	
Sample No. Pluto-	Grain density (g/cc) (water-saturation method)	Grain density (g/cc) (powder-density method)
2C	2.61	2.59
2E	2.60	2,62
4A	2.57	2.60
5F	2.61	2.59
	3	

Table 8.--Comparison of grain density of four samples determined by water-saturation and powder-density methods

and altered dacite porphyry (table 8-A).

Gas permeability

Laboratory tests to determine gas permeability values were made for core samples representative of the dacite porphyry. The results of the permeability tests (table 9) indicate that there is no direct relation between permeability and depth. With the exception of the core sample from 670 feet, the table shows that the free paths of the nitrogen molecules are greatly reduced as the pressures on the samples are increased. A barely discernible fracture parrallel to the long direction of the core accounts for the fact that the sample from 670 feet has the highest porosity and permeability of any tested.

Magnetic susceptibility

Magnetic susceptibility measurements of cores from all of the test holes in Area 401 were made in the laboratory. The magnetic susceptibility of the dacite porphyry (table 10) ranges widely from $3,394.8\times10^{-6}$ units (c.g.s. system) in an unweathered sample that was highly altered hydrothermally to 19.5×10^{-6} units in a very severely weathered rock sample that was unaltered. The magnetic susceptibility of all the samples tested averaged 837.0×10^{-6} units.

The magnetic susceptibility of these rocks appears to be a good indication of weathering and hydrothermal alteration. Although there are some notable exceptions, weathering tends to decrease the susceptibility and alteration tends to increase it. In unweathered to slightly weathered unaltered samples the magnetic susceptibility averages 986.2×10^{-6} units, whereas in moderately to severely weathered unaltered rock the average magnetic susceptibility is 481.0×10^{-6} units, or less than half. Unweathered to slightly weathered to slightly weathered to slightly weathered to slightly weathered to slightly average magnetic susceptibility is 481.0×10^{-6} units, or less than half.

Explanation of	Description	Physical properties					Pluto-l							P.	luto-3						Pluto-6				SI	haft, a	nchor, and o	chambe	er						Grand average	es				
alteration zones			Zone Ia 108-136 ft	(N)	Zone I 0-164 ft	(N)	Zone II 164-550 ft	(N)	Zone III 550-670 ft	(N)	Zone IV 670-778 f	t (N)	Zone Ia 110(?)-156 ft	(N)	Zone I 0-160 ft	(N)	Zone II 160-263 ft	(N)	Zone II 160-475 ft	(N)	Zone III (1 475-640 ft	N) 2 640	Zone IV +0-1,000 ft	(N)	Zone Ia 110-135 ft	(N)	Zone I 0-165 ft	(N)	Zone II 165-180 ft	(N)	Zone Ia	(N)	Zone I	(N)	Zone II (1	N)	Zone III	(N)	Zone IV	(N)
I	Light-gray, severely weathered and unaltered.	Porosity (percent)	5.5	2	17.1	22	9.9	58	9.1	15	8.2	16	5.1	2	24.3	2	11.2	11	13.0	3	12.7	2			7.9	2	22.0	6	14.4	11	6.2	6	18.6	30	10.8	83	9.5	17	8.2	16
Ĩo	Lenses of light-gray fresh rock.	Grain density (g/cc)	2.50	2	2.50	22	2,54	58	2.54	15	2.56	16	2.48	2	2.50	2	2.54	11	2.60	3	2.61	2			2.56	2	2.61	6	2.59	11	2.51	6	2.52	30	2.54	83	2.55	17	2.56	16 ,
1111		Dry bulk density (g/cc)	2.36	2	2.07	22	2.28	58	2.31	15	2.35	16	2.35	2	1.80	2	2.25	11	2.26	3	2.28	2			2.36	2	1.95	11	2.44	10	2.36	6	2.02	35	2.27	82	2.30	17	2,35	16
1111	Brownish-gray, moderately weathered, unaltered to	Saturated bulk density (g/cc)-			2.37	1	2.37	4 -				-	2.36	1			2.34	4							2.44	2	2.26	6	2.37	11	2.41	3	2.27	7	2.36	19				
(///) (///) (///) II	slightly altered.	Natural-state bulk density (g/cc)				-						-													2.43	2	2.23	6	2.32	11	2.43	2	2.23	6	2.32	11				
(111)		Young's modulus (10 ⁶ psi)	8.13	1	2.90	3	3.84	16	4.37	2	4.78	2	9,19	l			4.25	9							4.76	2	1.64	5	4.16	7	6.71	4	2.36	8	4.03	32	4.37	2	4.78	2
		Poisson's ratio	.2940	1	.0976	3	.1395	16	.1761	. 2	.102	0 2	.1692	1			.1227	9							.2226	2	.2050	5	.1923	7	.2273	4	.1647	8	.1464	32	.1761	2	.1020	2
411	Transitional between zones	Modulus of rigidity (10 ⁶ psi)	3.14	1	1.31	3	1.69	16	1.86	2	2.16	2	3.93	1			1.88	9							1.95	2	.67	5	1.74	7	2.74	4	.94	8	1.75	32	1.86	2	2.16	2
	II and IV, banded brownish gray and greenish gray.	Longitudinal velocity (ft/sec)	18,205	1 10	0,016	3 1	.1,431	16 1:	2,189	2	11,505	2				11	1,726	9							13,561	2 8	,276	5	12,475	7	15,109	3	8,929	8	11,742	32 12	2,189	2	11,505	2
	Greenish-gray, unweathered	Transverse velocity (ft/sec) Static:	9,824	1 6	5,963	3	7,391	16	7,635	2	8,133	2				7	7,582	9							7,933	2 1	,931	5	7,569	7	8,563	3	5,693	8	6,595	32 7	7,635	2	8,133	
	and altered.	Young's modulus (10 ⁶ psi)			1.74	3	3.47	11	2.11	5	4.82	4					3.56	5															1.74	з	3.44	16	2.11	5	4.82	4
		Poisson's ratio (10 ⁶ psi)			.22	2	.16	11	.15	2	.28	3					.18	4															.22	2	.16	15	.15	2	.28	2
		Unconfined compressive strength (psi)		9	9,200	3 1	4,900	11 13	3,833	3	15,533	3				14	4,360	5															9,200	3	14,731	16 13	3,833	3	15,533	3
		Magnetic susceptibility (-10 ⁶ cgs)	1,597.3	1 1	L,353.6	7	657.8	17	659,6	4	1,381.7	3	1,755.7	2	1,039.6	2	550.7	11	168.2	10	394.3	9	1,635.2	3	1,865.3	2	,353.3	13	956.8	9	1,767.8	5	1,324.9	22	256.1	47	475.8	13	1,508.5	6

Not to scale

Table 8A .-- Averages for physical properties of dacite porphyry, Area 401, Nevada Test Site

[N, number of samples analyzed]

.

Table 9.--Permeability to nitrogen of five samples from test hole Pluto-1, Area 401, Nevada Test Site

Depth (feet)	Porosity (percent)	Pe:	rmeability	/ (millida)	rcys) measure	d at differe	ent pressure	s
		14.7 (psi)	100 (psi)	250 (psi)	500 (psi)	1,000 (psi)	l,500 (psi)	2,000 (psi)
320	8,4	<0.1	<0.005	<0.005	0.0005	0.0005	0.00067	0.0017
450	7.5	<.1	<.005	<.005	<.0001	<.0001	<.0001	<.0001
579	8.4	< . 1	<.005	<.005	.00017	.00013	.00014	.00014
670 <u>1</u> /	14.1	1.7	1.4	1.1	. 8	1.1	<u>2/</u>	<u>2/</u>
750	5.7	<•1	<.005	<.005	.0006	.0005	.0015	.0017

[Analyses by D. D. Dickey and E. F. Monk]

1/ Very small fracture present.

2/ Flow too rapid for accurate measurement with equipment used.

Sample No. Pluto-	Depth (feet)	Magnetic susceptibility (10 ⁻⁶ cgs)	Alteration zone
1A 1B 1D 1E 1F 1Fa 1Fd 1G	65.5 83.3 109.8 127.5 130.0 144.0 156.0 158.0	2,040.6 1,115.1 1,597.3 1,004.8 944.1 990.1 1,679.3 1,700.9	Light-gray, severely weathered, unaltered with lenses of fresh rock.
16b 16d 1H 1Ha 1Hc 1J 1K 1L 1M 1N 1P 1R 1S 1T 1U 1W 1X	167.0 172.8 173.0 175.0 183.0 190.0 217.5 240.0 271.0 298.0 326.0 378.0 400.0 421.0 450.0 520.0 550.0	1,773.3 985.0 920.5 1,373.6 1,440.7 903.8 695.2 1,032.0 393.9 176.2 113.9 158.2 193.2 195.4 326.5 223.7 277.6	Brownish-gray, moderately weathered, unaltered to slightly altered.
1Y 1Z 1AA	580.0 625.0 643.0	634.1 1,002.1 300.9	Transitional brownish- and greenish-gray.
1BB 1CC 1DD 1EE 1FF	673.0 686.0 721.0 758.0 776.0	964.9 370.4 986.5 1,579.8 1,578.8	Greenish-gray, unweathered, altered.
2A 2B 2C 2D	12.5 45.0 65.0 83.5	324.8 545.9 374.8 406.3	

Table 10.--Magnetic susceptibility of core samples from Area 401, Nevada Test Site

		• <u></u>	
Sample No. Pluto-	Depth (feet)	Magnetic susceptibility (10 ⁻⁶ cgs)	Alteration zone
2E 2F	102.0 108.0	329.1 488.4	
3A 3B 3C 3Ca	62.0 100.0 130.0 156.0	1,077.6 1,001.6 1,903.9 1,607.4	Light-gray, severely weathered, unaltered with lenses of fresh rock.
3D 3E 3Ea 3Eb 3Ec 3Ed 3F 3G 3H 3J 3K	161.5 164.0 167.2 172.2 175.0 180.0 190.5 207.5 221.0 232.5 258 5	1,430.0 474.7 409.0 605.3 712.2 462.9 344.5 757.1 274.7 274.5 313.2	Brownish-gray, moderately weathered, unaltered to slightly altered.
4A 4B 4C 4E 4F 4G 4H 4J 4M 4P 4Q 4R 4R	57.0 64.0 80.0 83.5 92.5 99.0 106.5 117.5 130.0 153.5 178.0 189.0 204.5 214.5 223.0	19.5 22.7 35.0 102.1 127.5 281.0 565.4 613.7 734.8 897.3 670.1 444.5 558.6 220.5 475.9	

Table 10.--Magnetic susceptibility of core samples from Area 401. Nevada Test Site--Continued

Sample No. Pluto -	Depth (feet)	Magnetic susceptibility (10 ⁻⁶ cgs)	Alteration zone
5A 5B 5C 5D 5E 5F 5G 5H 5J 5K 5L 5M 5N 5P 5Q 5R 5S	13.0 35.5 59.0 75.5 102.0 120.0 148.0 167.0 193.5 208.0 224.5 238.0 257.0 257.0 276.0 298.0 311.0 318.0	481.1 601.3 969.0 1,149.2 662.1 768.2 2,475.2 3,257.8 3,394.8 2,768.8 2,053.2 460.3 516.6 1,797.9 667.4 175.7 626.9	

Table 10.--Magnetic susceptibility of core samples from Area 401, Nevada Test Site--Continued

porphyry has an average magnetic susceptibility of $1,333.4\times10^{-6}$ units, and moderately to severely weathered altered dacite porphyry has an average susceptibility of $1,105.5\times10^{-6}$ units.

Elasticity and strength

Dynamic elastic properties were determined for samples taken from the cores of test holes Pluto-1, -3, -4, and -5 (table 11). Young's modulus, Poisson's ratio, transverse velocity, longitudinal velocity, and the modulus of rigidity were calculated from measurements of the resonant frequencies of rock cores.

Static tests were run in the laboratory to determine Young's modulus, Poisson's ratio, and unconfined compressive strength on rock cores from test holes Pluto-1, -2, -3, and -5 (table 12).

Elasticity

Elastic moduli determined on air-dried samples in the laboratory by dynamic tests are Young's modulus, modulus of rigidity, Poisson's ratio, longitudinal velocity, and transverse velocity (table 11). Young's modulus and Poisson's ratio were also determined by static tests (table 12).

Dynamic Young's moduli for the dacite porphyry in Area 401 range from 1.04X10⁶ to 8.13X10⁶ psi, averaging 3.91X10⁶ psi, whereas static Young's moduli range from 0.76X10⁶ to 7.81X10⁶ psi, averaging 3.90X10⁶ psi overall. The range in Poisson's ratio, as determined by dynamic tests, is from 0.0277 to 0.3305, averaging 0.135 overall. Static measurements of Poisson's ratio range from 0.08 to 0.39, averaging 0.20 in all the samples tested. Table 13 compares the strain analyses between the first and last cycles of compressive tests. In the 28 rock samples for which Young's modulus and Poisson's ration were determined by

Sample No. Pluto-	Depth (feet)	Young's modulus (10 ⁶ psi)	Modulus of rigidity (10 ⁶ psi)	Poisson's ratio	Longitudinal velocity (ft/sec)	Transverse velocity (ft/sec)	Sample No. Pluto-	Depth (feet)	Young's modulus (10 ⁶ psi)	Modulus of rigidity (10 ⁶ psi)	Poisson's ratio	Longitudinal velocity (ft/sec)	Transverse velocity (ft/sec)
1D	109.8	8.13	3.14	0.2946	18,205	9,824	ЗE	164.0	2.05	.94	.0894	8,244	5,513
lFa	144.0	2.37	1.14	.0395	9,141	6,330	3Ea	167.2	2.93	1.33	.1015	10,069	6,706
10	150.0	3.05	1.54	.1851	11,428	7,104	3Eb	172.2	5.92	2.54	.1654	13,960	8,851
IG	158.0	2.69	1.26	.0675	9,478	6,455	3Ec	175.0	7.08	2.86	.2378	15,999	9,384
, IGD	101.0	4.70	2.06	.1408	11,999	8,223	3Ed	180.0	4.66	2.03	.1479	12,629	8,119
lGd	172.8	5.14	2.29	.1223	13,294	8,721	3F	190.5	4.45	2.10	.0595	11,886	7,910
1H	173.0	4.02	1.68	.1964	12,051	7,407	3G	207.5	3.83	1.81	.0580	11,432	7.813
lHa	175.0	3.80	1.65	.1515	11,456	7,342	ЗК	258.5	3.52	1.61	.0932	10,623	7,115
lHc	183.0	3.71	1.70	.0912	11,024	7,353							
1J	190.0	3.59	1.63	.1012	11,876	7,517	4B	64.0	1.35	.61	.1065	6,858	4,494
		A State of the					4C	80.0	3.14	1.18	.3305	13,811	6,170
lK	217.5	5.13	2.34	.0962	12,828	8,575	4D	83.5	1.04	.51	.0327	5,718	3,974
lL	240.0	4.59	1.87	.2111	12,577	7,611	4E	92.5	1.77	.88	1/	7,355	5,185
IM	271.0	3.39	1.52	.1151	9,679	6,956	4F	99.0	2.22	1.08	.0277	8,228	5,734
1N	298.0	3.25	1.41	.1525	10,741	6,763							
1P	326.0	2.44	1.17	.0427	8,937	6,177	4K	148.0	5.79	2.24	.2924	14,871	8,057
							4R	223.0	6.93	3.16	.0965	14,537	9,714
1R	378.0	3.36	1.42	.1831	10,920	6,802							
15	400.0	3.39	1.41	.2021	11,190	6,837	5A	13.0	4.32	2.08	.0385	12,070	8,362
10	450.0	4.23	2.00	.0575	11,488	8,319	5B	35.5	1.56	.74	.0541	7,051	4,841
IW	520.0	4.05	1.56	.2981	13,320	7,145	5C	59.0	2.95	1.30	.1346	10,051	6,532
IX	550.0	2.70	1.26	.0714	9,671	6,571	5J	193.5	4.39	2.07	.0604	11,111	7,599
112	500.0						5M.	238.0	4.56	1.98	.1515	12,272	7,864
	580.0	4.44	1.86	.1935	12,461	7,681							
12	625.0	4.31	1.86	.1586	11,916	7,590	5N	257.0	6.07	2.93	.0358	13,893	9,640
	721.0	4.37	2.04	.0659	11,494	7,836	5P	276.0	3.41	1.34	.2724	11,563	6,467
TLL	//6.0	2.13	2.28	.1381	11,515	8,430	5Q.	298.0	4.44	2.01	.1049	11,989	7,965
2 N	- meeulte			•			5R	311.0	2.70	1.06	.2617	10,256	5,826
2 1	o results	•					5S	318.0	5.25	2.29	.1463	12,848	8,271
3D	161.5	2.48	1.09	.1429	9,139	5,899							

Table 11.--Elastic moduli determined by measurement of resonant frequency of core samples from Area 401, Nevada Test Site

[Air-dried specimens]

1/ Not representative.

52

Table 12.--Unconfined compressive strength and strain analyses by static methods of core samples from Area 401, Nevada Test Site

Sample No. <u>1</u> / Pluto-	Depth (feet)	End parallelism (inches)	Core condition	Unconfined compressive strength (psi)	Young's modulus (10 ⁶ psi)	Secant range (psi)	Poissan's ratio (U)	Remarks X = No. of loading cycles OD = oven dried
1E	127.5	0.0010	Poor. Solution-filled fracture. Perpendicular and parallel to platens. Ends chipped.	7,300	0.76	1,100-3,900	0.30	X = 1. Failure by shear. Only one failure was along preexisting fracture plane. OD.
lFa	144.0	.0012	Good. Slightly chipped on ends. Sides slightly pitted.	9,100	1.68	600-4,500	.17	X = 3. OD.
10	158.0	.0004	Good. Small vugs	11,200	2.78	600-5,600	.19	X = 4. OD.
lH	173.0	.0006	Good. Many small vugs. Slight chip	14,600	4.51	600-6,600	.20	X = 3. OD.
1J	190.0	-0006	Good. No fractures	16.300	3.45	600-6 600	26	X = 1 0D
lL	240.0	.0004	Good. One solution-filled fracture	18,200	4.36	600-6,700	2/	Do.
			diagonal from top to bottom.				-	
IM	271.0		Good. One very small solution- filled fracture.	14,300	3.49	600-5,000	.16	X = 3. OD.
lN	298.0	.0007	Good. Many vugs. No fractures	12,600	2.74	1,800-6,500	.17	X = 1. OD.
1P	326.0	.0008	Good. One fracture diagonal from top to right side.	12,000	2.56	600-5,100	.16	X = 3. OD.
1R.	378.0	.0004	Good. No fractures	15,000	3.27	600-5,700	.15	X = 1. OD.
15	400.0	.0003	do	16,700	4.00	600-5,600	.26	X = 4. OD.
10	450.0	.0002	do	16,000	3.49	600-5,000	.12	X = 3. OD.
IW	520.0	.0003	do	17,000	3.55	700-8,600	.10	Do.
IX	550.0	.0004	Good. Small vugs	11,200	2.78	600-5,600	.19	Do.
1Y	580.0	.0005	Good. No fractures. Chip on one end.	16,000	2.74	560-6,200	.18	X = 1. Chip on one end probably caused unequal longitudinal deformation. OD.
1Z	625.0	.0010	Good. Small fractures	12,900	2.40	600-5,500	<u>2</u> /	X = 2. Failed along fracture. OD.
1AA	643.0	.0010	Good. No fractures	12,600	2.72	600-6,700	.11	X = 1. OD.
1CC	686 0	.0003	Poor. Fracture and many small vugs-	5,900	2.69	600-2,800	<u>2/</u>	X = 3. Failed along fracture. OD.
ICC .	000.0	.0003	75° to platens.	5,500	5.02	880-4,500	<u></u> /	existing fractures. OD.
lDD	721.0		Good. No fractures	12,000	3.70	600-5,000	.31	X = 3. OD.
1EE	758.0	.0008	do	13,200	4.58	600-5,500	.36	X = 1. OD.
1FF	776.0		Good. Few pits, no fractures. Slight chip on one end.	21,400	4.10	500-550	.16	x = 1.
2A	12.5	.0006	Good. No fractures	13,400	3.54	600-7,400	.23	X = 3. OD.
3D	161.5	.0004	do	16,900	2.91	600-6,300	.14	X = 1. OD.
ЗE	164.0	.0004	do	10,700	2.15	600-5,100	.25	X = 3. OD.
3F	190.5		Good. Few pits, one solution-filled fracture on each end.	15,300	E = 4.81 (max); E = 4.54 (avg); E = 4.27 (min).	<u>9</u> /600-5,600 and <u>4</u> /1,100-5,600	.18	X = 6.
ЗG	207.5	.0006	Good. A solution-filled fracture extending across both ends. Many small and medium vugs.	14,400	2.46	600-5,700	.13	X = 2.
зJ	232.5	.0005	Good. One small fracture	14,800	5.21	600-8,000	.30	X = 1. OD.
4C	`80 . 0	.0009	Good. Two medium fractures. Small and medium vugs and chips on both ends.	13,800	3.03	600-3,300	.08	X = 4.
4H	117.5	.0006	Fair. Two fractures extending length of core.	15,300	6.80	600-7,400	.18	X = 3. Unequal longitudinal deforma- tion due to movement along hidden internal fracture. OD.
4K	148.0	.0008	Poor. Large and small fractures	17,900	E = 7.58	<u>3/600-5,600</u>	.27	X = 1. Failure occurred along
			Vugs.		(max); E = 6.96 (avg); E = 6.33	and <u>4</u> /1,100-5,600		fracture plane.
4P	204.5	.0008	Good. Small fractures parallel	20,600	7.81	600-6,300	.25	X = 3. Did not break along
4Q	214.5	.0035	to platens. Fair. Several filled fractures	5,000	3.86	600-4,200	2/	<pre>fractures. OD. X = 3. Failed on fracture at angle f 700 to be better </pre>
4R	223.0		Good. Lineation approximately 60°	21,500	E = 7.08	600-5.700	.21	x = 4.
			from platens.		(max); E = 6.80 (avg); E = 6.54 (min).			
5C	59.0	.0004	Poor. Three major solution-filled	8,800	2.50	600-2,800	.18	X = 5. Some failure along pre-
5G	148.0	.0031	Fair. Many solution-filled fractures.	5,300	3.42	600-4,500	.16	<pre>existing fractures. OD. X = 2. Failed along fractures. OD.</pre>
5J	193.5	.0012	Good. Many small solution-filled fractures. Both ends slightly chipped.	22,100	6.94	$\frac{3}{600-5,600}$ $\frac{4}{1,100-5,600}$.39	X = 1.
5M	238.0	.0010	Good. Small solution-filled fractures normal to platens.	13,900	5.38	600-5,600	.19	X = 6.
55	318.0	.0004	Good. No fractures	16,500	5.48	600-5,700	.31	<pre>X = 1. Compressive strength value approximate.</pre>

.

1/ Sample number refers also to hole number.

2/ Not representative.

3/ Young's modulus used to determine range.

4/ Poisson's ratio used to determine range.

Table 13.--Comparison of strain analyses between first (A) and last (B) cycles of compression tests on core from Area 401, Nevada Test Site

Sample No. Pluto-	Static modu (10 ⁶	Young's llus psi)	Poisson	's ratio	Stress range (psi)
	A	В	A	B	
1G	2.45	2.45		0.15	600-3300
4Q	3.27	3.86			600-4200
5G	2.81	3.51	0.20	.21	600-3300
4P	7.61	8.18	.30	.21	600-6000
lDD	3.55	2.62	.42	.31	6 00- 3300
12	2.42 2.40				600-5500
IW	3.81	3.59			712 - 57 0 0
lX	2.22	2.44			600-2800
10	3.67	3.49	.09	.14	<u>1/ 1100-5000</u> 2/ 600-5000
1BB	2.35	2.39			600-2200
lFa	1,27	1.68	.14	.17	600-4500
lH	4.48	4.51	.22	.20	600-6600
ML	3.33	3.49	.14	.16	600-5000
1P	2,39	2.56	.18	.16	600-5100
ЗE	1.79	2.15	.23	.23	600-2300
2A	2,96	3.37	.21	.24	600-4000
4H	6.60	6.80	.17	.18	600-7400
5C	2.62	2.50	.18	.18	600-2800

[Analysts: R. A. Speirer and J. C. Thomas]

1/ Poisson's ratio.

2/ Static Young's modulus.

both dynamic and static methods, there is only a slight correlation between the numerical values for the two moduli on the same core sample. The average of these 28 samples is rather close for Young's modulus, 3.87×10^6 psi by dynamic methods as compared to 3.74×10^6 psi by static methods. However, the Poisson's ratio averages 0.14 by dynamic methods as compared to 0.19 by static methods. No correlation was found between the values for Young's modulus or Poisson's ratio and the degree of weathering or alteration in these rocks.

The laboratory values for Young's modulus are probably considerably lower than they would be if the tests had been made in place because the many incipient joints in the dacite porphyry, which are tightly sealed at depth, would have had no appreciable effect. Variations in the measurements of the elastic moduli of a particular rock sample by the two methods are due mainly to inhomogeneities in the rock, such as differences in number of fractures, in porosity, and in grain size. Closer agreement between the measurements by dynamic and by static methods may be attained on harder materials, and perfect agreement between the methods may be approached in testing completely isotropic substances.

Values of the modulus of rigidity, as determined by dynamic tests, range from 0.51×10^6 to 3.16×10^6 psi (table 11) in the samples tested, with an overall average modulus of 1.72×10^6 psi. The longitudinal velocity ranges from 5,718 to 18,205 ft/sec, and the transverse velocity ranges from 3,974 to 9,824 ft/sec on these samples. The overall average for longitudinal velocity is 11,343 ft/sec and that for transverse velocity is 7,271 ft/sec.

Strength

The unconfined compressive strengths of the samples of dacite

porphyry tested range from 5,000 psi to 22,100 psi (table 12) averaging 13,800 psi overall. Stress-strain curves of 26 of these samples are illustrated on figures 9 through 3⁴. Unconfined compressive-strength tests on 80-percent-saturated specimens show a substantial reduction in the strength of the rock (table 1⁴). The strength of the partly saturated samples ranges from 6,400 psi to 13,100 psi, averaging 10,200 psi overall.

Sampling tends to select the strongest, as well as the most elastic, rocks. Some of the rock is so friable that drilling reduces it to mud or sand. Furthermore, at many places the rock is so fractured that cores of sufficient length for testing are not obtained. Incipient and healed joints tend to lower the strength of the rocks; figure 35 shows a comparison of Young's modulus with the unconfined compressive strength of rocks having variously oriented fractures. It may be generally assumed that the rocks from Area 401 with an unconfined compressive strength of less than 5,000 psi failed before testing procedures were completed.

Correlation of various physical properties

Method of study

An attempt was made to compare values for compressive strength, Young's modulus, dry bulk density, magnetic susceptibility, and porosity of the rocks in order to understand the relations of these properties. Physical properties were paired as follows: unconfined compressive strength versus Young's modulus, porosity versus unconfined compressive strength, porosity versus Young's modulus, dry bulk density versus Young's modulus, dynamic Young's modulus versus static Young's modulus, and magnetic susceptibility versus Young's modulus. The

Figure 9.- Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 10.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 11.- Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 12.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 13.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 14.-Stress-strain curve of rock core from Area 401, Nevada Test, Nye County, Nevada

Figure 15.- Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 16-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 18.- Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 19. —Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 20.: Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 21.— Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 22.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 23.-Stress-strain curve of rock core trom Area 401, Nevada Test Site, Nye County, Nevada

Figure 25.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 26-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 27.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 28-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 29.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 30-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 31.-Stress-strain curve of rock coreTMC 3. from Area 401, Nevada Test Site, Nye County, Nevada

Figure 32.— Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 33.-Stress-strain curve of rock core from Area 401, Nevada Test Site, Nye County, Nevada

Figure 34.- Stress-strain curve of rock core from Area 401, Nevada TestSite, Nye County, Nevada

Table 14.--Unconfined compressive strength, Young's modulus, and Poisson's ratio for partly saturated core samples from test hole Pluto-1, Area 401, Nevada Test Site [Analysts: T. C. Nichols, R. A. Speirer, and J. C. Thomas]

Depth (feet)	Core size (inches)	End parallelism (inches)	Core condition ^{1/}	Unconfined compressive strength (psi)	Secant Young's modulus psiXlO6(E)	Poisson's ratio range (u)	Secant range (psi)	Remarks ² /
325.3-326.0	4-3/8 x 2-1/8	0.0020	Good. No fractures. Slightly chipped one end.	10,400	2.63	0.29	300-5,700	Predominant failure was along a shear fracture. Unaltered moderately weathered rock.
325.3-326.0	2 x l	.0008	No fractures. Large chip one end.	6,400	2.55	not ob- tained	1,300-6,400	Predominant failure was along a shear fracture. Unaltered moderately weathered rock.
256.1	4-3/8 x 2-1/8	.0020	Good. Two preexisting fractures.	11,000	4.21	.22	600-5,100	Predominant failure was along a shear fracture, but not along preexisting fracture. Unaltered moderately weathered rock.
505.8-506.4	2-15/16 x 1-1/2	.0010	Good. No fractures	8,500	7.05	.27	600-6,800	Predominant failure was along a shear fracture. Slightly altered unweathered rock.
680.0-680.80	2 x l	.0006	do	8,300	3.41	•30	1,300-7,600	Predominant failure was along a shear fracture. Moderately altered unweathered rock.
770.8-771.4	3 x 1-1/2	.0010	do	12,500	3.28	.06	600-6,800	Predominant failure was along a shear fracture. Moderately altered unweathered rock.
722.2-723.3	3-1/16 x 1-1/2	.0004	Good. One small chip	13,100	4.66	.10	600-7,400	Predominant failure was along a shear fracture. Moderately altered unweathered rock.

1/ Samples were brought to constant moisture content in 80 percent relative humidity chamber.

2/ Cores were cycled until no more permanent set was observed.

SAMPLES FROM AREA 401, NEVADA TEST SITE, NYE COUNTY, NEVA DA

results are plotted on figures 36 to 41.

Correlation of physical property parameters

Compressive strength versus dynamic Young's modulus.--A scatter diagram was drawn by plotting Young's modulus values (E) on the Y axis against compressive strength values (C) on the X axis (fig. 36). A total of 13 points was used. The plotted values show a linear relation. A linear regression was established, and the standard error was calculated. Constants were derived for this particular core, and they were substituted in the standard straight-line equation as shown below:

Equation 1.
$$E = 0.4X10^6 + 219C$$
, $E = Young's modulus;$
Equation 2. $C = E - 0.4X10^6$, $C = compressive strength$.

The standard errors (S), or the limits within which 68 percent of all cases will fall, are respectively:

Equation 3. 1
$$S_e = 0.4X10^6$$
 psi from the theoretical value (Young's modulus);

ł

Equation 4. 1 S_c = \pm 1800 psi from the theoretical value (compressive strength).

<u>Porosity versus compressive strength</u>.--Porosity values plotted against compressive strength values suggest that a good inverse correlation exists between these properties (fig. 37). A total of 14 points was used. The compressive strength decreases with increasing porosity. A linear equation was fitted to the data.

Equation 5. C = 23,380-824 P, C = compressive strength, psi P = porosity, in percent.

The standard error is:

Equation 6. $1 S_{c} = + 1,018.8 \text{ psi.}$

This equation may be valid only between certain porosity limits.

STRENGTH OF ROCK SAMPLES FROM TEST HOLE PLUTO-I, AREA 401, NEVADA TEST SITE

<u> 9</u>8

Beyond these limits the linear relation may not be valid.

Dynamic Young's modulus versus dry bulk density.--Scatter diagrams were made by plotting Young's modulus against porosity and dry bulk density (figs. 38 and 39). A direct relation seems to exist between dynamic Young's modulus and the dry bulk density, as both values increase in respect to each other. An inverse correlation appears to exist between Young's modulus and porosity. The trend between these parameters, however, is not linear, but slightly curvilinear. The dry bulk density versus Young's modulus values were taken because, on inspection, they appeared to have a better trend. The value obtained for the curve is:

Equation 7. $E = 13.04 \times 10^{6} D + 3.33 \times 10^{6} D^{2}$, E = Young's modulus, D = dry bulk density.

The standard error is:

Equation 8. S_y = + 0.6X10⁶ psi (approximate) Young's modulus. <u>Magnetic susceptibility versus dynamic Young's modulus and compressive</u> <u>strength.--</u> Values for magnetic susceptibility were plotted against dynamic Young's modulus (fig. 40).

In this case there is no apparent correlation between these two properties. Negative results were also obtained when magnetic susceptibility was compared to compressive strength.

Static Young's modulus versus dynamic Young's modulus.--There is a direct correlation between the two Young's moduli obtained by static and dynamic methods (fig. 41). The equation of the line is:

Equation 9. $Y_d = 0.8 \times 10^6 + 0.88 \times 10^6 Y_s$ psi, $Y_d = dynamic Young's modulus,$ $Y_s = static Young's modulus.$

The standard error is:

Equation 10. $1 S_{yd} = \pm 0.53 \times 10^6 psi.$

At a point below $Y_d = 3.50 \times 10^6$, the majority of plots fall under the line of best fit, and above this point the majority of plots lie over it. This may indicate a characteristic of the rock or be an indication of the different methods of obtaining the two Young's moduli values.

The results of this study of the rocks in Area 401 indicate an inverse relation between porosity versus unconfined compressive strength and Young's modulus, and a direct relation between dynamic and static Young's moduli. There is no apparent relation between compressive strength and magnetic susceptibility, nor between Young's modulus and magnetic susceptibility.

SUMMARY

The location of the Pluto nuclear reactor made it necessary to construct the proposed underground air-storage chamber in Area 401. Large parts of Area 401 are underlain by weathered, hydrothermally altered, locally mineralized, and structurally complex rocks unsuitable for construction of the underground air chamber. Nevertheless, geologic and geophysical studies did show that in several areas underlain by dacite porphyry there are potentially suitable sites for the air chamber. Two of these sites (figs. 3 and 4) were mapped and studied in greater detail for purposes of further predicting and evaluating the characteristics of the subsurface rocks, the excavation hazards, and occurrence of ground water. Five exploratory test holes, core to depths ranging from 111 to 778 feet, were drilled in the two sites to obtain data on the subsurface structure, petrography, chemistry, and physical properties of the dacite porphyry.

Partings along flow banding, joints, inactive faults, and shear zones have broken the rocks extensively in Area 401. In the areas (figs. 3 and 4) of potentially favorable sites, joints with highly variable orientations and partings along flow banding are present at all depths tested by drilling. Shear zones and wide persistent faults, however, are not found in these areas. The partings along the flow bands decrease in number with depth, the dominant joints strike rather consistently northeast and northwest, and all fractures at depth are tighter because of the weight of the overburden and the effective sealing of many joints by calcite. A few joints are open and show evidence of having been channels for the downward or lateral movement of ground water.

Defined on the basis of petrography and chemistry the rocks in the two potential sites are divided into three lithologic zones: (1) light-gray intensely weathered unaltered dacite porphyry having local lenses of fresh rock that extends into the vicinity of Pluto holes 1 and 3 from the surface to a depth of 160 feet, (2) brownish-gray moderately weathered unaltered dacite porphyry that extends from 160 to 560 feet, and (3) greenish-gray hydrothermally altered dacite porphyry that extends from 560 to 1,000 feet. Figure 7 and table 8a show that the properties of the dacite porphyry vary in each of these three zones.

The fresh rock tends to be strong because it is largely amorphous to medium grained. The crystals in the rock however, are not well interlocked or packed due to the large amount of groundmass glass; therefore, the dacite porphyry is weaker and more inelastic than an otherwise similar rock with an interlocking groundmass. The average unconfined compressive strength of the fresh dacite is 11,200 psi, and the average dynamic Young's modulus is 6.71 psi X 10^6 . The porosity of the fresh dacite porphyry averages 6.2 percent. The intensely weathered unaltered dacite, which comprises the bulk of the upper zone, has an average unconfined compressive strength of 9,200 psi, an average static Young's modulus of 1.74 psi X 10^6 , and an average porosity of 18.6 percent. The comparatively high porosity within 160 feet of the surface is due to the effect of weathering on the groundmass glass of the dacite porphyry.

In the moderately weathered unaltered zone between 160 and 560 feet in depth the unconfined compressive strength averages 14,731 psi, the average static Young's modulus is 3.44 psi X 10^{-6} , and the average porosity is 10.8 percent. Some values for the unconfined compressive

strength in this intermediate zone are as much as 21,400 psi.

In the hydrothermally altered zone between 560 and 1,000 feet the unconfined compressive strength averages 15,533 psi, the average static Young's modulus is $4.82 \text{ psi X } 10^{-6}$, and the average porosity is 8.2 percent.

Descriptions of cores from test holes

Test hole Pluto-1

Nevada State Coordinates: N. 754,788.50; E. 662,480.56

Logged by John C. Manning and Ross B. Johnson

Description	Interval (feet)	Core recovery (percent)
Cased. Ditch shows same as below	0 - 35	
Dacite porphyry, weathered, white to light-gray;		
predominantly devitrified glass; medium-grained		
crystals; 15 percent phenocrysts of biotite with		
accessory magnetite and rare hornblende. Appears		
to be impervious except along joints. Normal		
joints indistinct, highly weathered. Several	35 - 36.	5 50
nearly vertical shear joints show slickensides	36 .5- 45	70
and small movement. Driller reports small water	45 - 48.	6 90
loss. Core recovery good, but few core segments	48.6- 53	80
longer than 4 in. Much of core comes out of	53 - 5 8	95
barrel fragmented, but not ground up	58 - 64	85
Dacite porphyry, same as above, but harder, and much		
less weathered. Glassy groundmass partly		
devitrified, but much stronger than unit above.		
Jointing: prominent sets dip 30° to 40°, 60°,		
and nearly vertical (from horizontal plane)		
spacing 4 to 6 in.; some joint surfaces are		
coated with claylike material, and some joints		
have been sealed. Sample Pluto-1A at 65.5 ft		

Description	Interval (feet)	Core recovery (percent)
(footage at top of sample)	64 - 68.6	95
Dacite porphyry, same as above, but grades within 2 :	ft	
to more deeply weathered rock with a color chan	ge	
from gray to buff. Lower 18 ft much softer that	n	
gray dacite above; jointing not nearly so promin	nent,	
a few joints show minor shearing, and a few have	e	
been sealed by clay. Spacing indefinite, but m	ore	
widely spaced than in unit above. Rare lithic		
fragments of dark basic lava and highly disturb	ed	
carbonate rock. Calcite vein (1/2 in) at 85 ft	•	
Rock more porous than unit 2 above. Sample Plu	to-	
1B at 83.3 ft	68.6- 91.2	90
Dacite porphyry, similar to above but firmer, less		
porous, and less weathered groundmass. Gray to		
buff with many closely spaced dark joint planes	•	
Dark material coating joints appears to be mang	anese	
stained clay. Few thin calcite veins. Scatter	ed	
lithic fragments as in unit above. Groundmass	appears	
to be strong, but massive rock is cut by numerous	us	
clay partings. Lower 10 ft is harder and has f	ewer	
clay partings and more pronounced jointing.		
Orientation of joints same as in units above.		

Description	Interval (feet)	Core recovery (percent)
Sample Pluto-1C at 101.0 ft; sample Pluto-1D	<u> </u>	
at 109.8 ft	91.2-118	90
Dacite porphyry, similar to above. Color white to		
buff, glassy groundmass firm, but a little		
more weathered than unit above. Few widely		
scattered noncalcareous lithic fragments of		
dark lava. Scattered thin calcite veins. Few		
sealed fractures and jointing similar to above		
with 1- to 2-foot spacing. Most joints tight.		
Sample Pluto-1E at 127.5 ft	118 -129.1	95
Dacite porphyry, same as above. Joints dip 60°.		
Lost circulation at 143 ftcore shows		
broken fragments and short interval of poor		
recovery. Scattered small crystals of		
pyrite. Sample Pluto-1F at 130 ft;		
sample Pluto-Fa at 144 ft	129.1-146	95
Dacite porphyry; same as above. Joints dip 45° to		
60°. Joints not sealed as well as in unit		
above. Lost circulation at 154 ft where core		
shows open vertical crack and a horizontal		
fracture. At 154 ft rock shows slight		
banding that becomes more apparent downward.		
Sample Pluto-1G at 158 ft	146 -160	90

Description	Interval (feet)	Core recovery (percent)
Missing core (not recovered). Lost water	160.6-162	0
Dacite porphyry, similar to above, but with a gradual		
change in character of the rock from 162 to		
163.5 ft. At 163.5 ft and below rock is		
hard, somewhat porous. Vuggy, from 163.5		
to 173 ftrock is much jointed and some		
vertical cracks lined with iron oxide.		
In spite of fractures, rock cores well		
with good recovery. From 173 to 213 ft rock		
has several jointed blocky zones with open		
fractures. Below 213 ft rock is firmer and		
joints appear to be sealed tighter. Core		
from 213.5 to 221 ft in single piece. Joints		
dip 60° (2 sets), 45°, 75°. Banding at 15°		
from horizontal. Lost water 165 ft	162 - 221	95
Dacite porphyry, coarse-grained, reddish color due		
to partly devitrified glass. Phenocrysts are		
mainly biotite and feldspar with rare quartz.		
Phenocrysts make up 20 percent of rock; glass,		
75 percent. Sample Pluto-1H at 173 ft; sample		
Pluto-1J at 190 ft; sample Pluto-1K at 217.5 ft.		

	Description			Core recovery (percent)
Same	as above, firm and hard with joints well sealed,			
	except for vertical cracks at 251-252 ft and			
	253-257 ft. Sample Pluto-lL at 240 ft; sample			
	Pluto-1M at 271 ft	221	-273	95
Same	as above, firm and hard except for friable zone			
	from 293-297 ft where core recovery was poor.			
	Vertical jointing prominent, most joints are			
	tight and coated with iron oxide. At 291 and			
	300-301 ft joints are partly filled with thick			
	(1/4- to 1-in.) coating of chalcedony and	273	- 293	95
	crystalline quartz. Sample Pluto-1N at 298	293	-297	65
	ft; sample Pluto-1P at 326 ft	297	-330	95
Same	as above, firm and hard with sealed joints.			
	Some joints in this interval show thin seam			
	of clay which may be due to hydrothermal			
	alteration of glassy groundmass. Rare lithic			
	fragments of dark lava (1/4 to 2 in.) in lower			
	part of this interval. Sample Pluto-1Q at	330	-367	97
	354 ft	367	-371	95
Same	as above, firm and hard; some cores come out			
	of core barrel in $4-$ and 5-foot lengths of			
	solid rock. Joints tight and well sealed			
	except for a few vertical joints that separate			

	Description		al)	Core recovery (percent)	
	during coring. Sample Pluto-1R at 378 ft;	371	-379	95	
	sample Pluto-1S at 400 ft; sample Pluto-1T	379	-383	90	
	at 421 ft	383	-424	95	
Same	as above, firm, hard rock with joints				
	tightly sealed. Rock comes out of core barrel				
	in 5- to 7-foot lengths. Rare lithic fragments				
	of dark lava (1/8 to 1/2 in.). Sample Pluto-1U				
	at 450 ft	424	-454	98	
Same	as above; firm, hard rock	454	-463.5	98	
Same	as above, but rock is softer, somewhat friable,				
	and shows moderate amount of weathering. Nearly				
	vertical joint at 463.5 ft with 1/2 in. of iron				
	oxide and calcite, and showing slickensides (may				
	be small fault with thin gouge zone). Joints				
	below 463.5 ft show effects of hydrothermal				
	alteration, but no slickensides. Rock in this				
	interval generally softer and more friable than				
	rock above	463.	5-474	80	
Same	as above, vertical joint sealed with calcite,				
	and vugs filled with crystalline (2 to 4 mm)				
	calcite. One piece of core 9 in. long, and				
	rest of core broken and crumbled	474	-477	90	
Same	as above, but much firmer with 8- to 18-in.				
	pieces of core; joints sealed. Rock somewhat				
	weathered and more porous than rock above				

Description	Interval (feet)	Core recovery (percent)	
463 ft. Sample Pluto-1V at 478 ft	477 -491	97	
Dacite porphyry, rock is weathered almost beyond			
recognition to a soft porous dark-brown mater	ial		
that looks like dried mud (but is definitely			
not caused by drilling operations)	491 -491.5	85 (?)	
Dacite porphyry, soft, porous, white to gray iron-			
stained, much weathered. Joints coated with			
soft iron oxide. Manganese dendrites along			
joint surfaces indicate weathering, but			
intense degree of alteration in the massive			
rock suggests hydrothermal alteration in this			
zone. Core is not ground up, but is broken			
into small (1- to 4-in.) sections with rounde	d		
outlines	491.5-496	90	
Same as above, but less altered	496 -499	95	
Same as above, becoming firmer and less altered.			
Vertical joints still show effects of			
alteration, but rock away from joints is			
harder and fresher than rock in interval just			
above	- 499 -504	95	
Dacite porphyry, firm, hard rock with joints tight	ly		
sealed. In interval from 514 to 524 ft there			

	Description	Inte (fe	erval ect)	Core recovery (percent)
	was a single piece of core that broke coming			
	out of core barrel into two pieces, one 9 1/2			
	in. long and the other 9 ft 2 1/2 in. long.			
	Sample Pluto-1W at 520 ft	504	- 534	98
Same	as above, firm, hard rock with tight joints			
	(vertical, 60° and 25°). Color, buff to			
	reddish. Sample Pluto-1X at 550 ft	534	- 553	98
Same	as above, firm, hard rock, but with zones of			
	bluish-green color interspersed with the			
	normal buff to reddish color. The patches			
	of green are composed of altered glass, and this			
	material is softer than the surrounding reddish			
	glass. There are clots (1 to 2 mm) of magnetite			
	crystals and considerable calcareous material			
	throughout the rock matrix as well as along the			
	joints. The joints (especially the vertical			
	joints) have been sealed with calcite and			
	a mixture of iron oxide and clay. There are			
	open vugs along a joint at 580 ft with calcite			
	crystals (1 mm) lining the cavities. Most			
	joints are tight and well sealed. Core comes			
	from the core barrel in long lengths. Where			
	the joints come apart in the core, there are no			
	Description	Interval (feet)	Core recovery (percent)	
------	--	--------------------	---	
	slickensides or evidence of movement along the	·	<u>, , , , , , , , , , , , , , , , , , , </u>	
	joints. There has been a moderate amount of			
	hydrothermal alteration, but the massive streng	th		
	of the rock does not seem to have been			
	significantly affected. There are rare elongate	•		
	lithic fragments of dark rock (1/4 to 3/4 in.)			
	in this interval. The interval from 574 to			
	576 ft has been more strongly altered and			
	the joints are not so tightly sealed. Small			
	calcite-lined vugs throughout this interval.			
	Sample Pluto-lY at 580 ft	553 - 583	98	
Same	as above. Core broken into small fragments in			
	2 zones at 600 to 601 ft and at 605.5 to			
	606.5 ft. Broken zones have been much more			
	deeply altered than surrounding rock, but there			
	is no evidence of extensive movement in these			
	zones. Except for the two broken zones, the			
	core is firm and hard with all joints tightly			
	sealed. Sample Pluto-1Z at 625 ft	583 - 625	98	
Same	as above, but with 4- to 5-foot zones of coarses	r		
	grained rock (crystals make up 40 percent			
	of rock) with horizontal banding of alter-			
	nating dark-green and light-green bands of			

Test hole Pluto-1--Continued

Description	Interval (feet)	Core recovery (percent)
color. Zone of friable and fragmented core		
at 633 ft. Joints tight. Rare dark lithic		
fragments of lava or metamorphic rock. Sam	ple	
Pluto-1AA at 643 ft	625 -645	98
Similar to above, but rock is reddish to white a	nd	
is more weathered than interval above. Join	nts	
are filled with soft material (iron oxide a	nd	
clay) that washes out during coring. Verti	cal	
joint from 646 to 647 ft had about 1/2 in.	of	
soft filling that was not recovered with tw	0	
halves of core which came out of core barre	1	
in two long pieces. Massive rock softer an	đ	
more weathered than reddish dacite porphyry		
above. Some slickensides along fractures i	n	
core. Joints: vertical and 2 sets at 60° w	ith 645 -649	75
horizontal	649 -653	95
Rock same as above, but much altered and broken.		
Rock is friable and is intersected with		
many fractures; some zones in core come out		
of core barrel as sand; many core fragments		
show slickensides. Core has $1/2$ in. of		
slickensided clay gouge at 660 ft. This		
whole zone (653-664 ft) has been broken and		

Test hole Pluto-1--Continued

	Description	Interval (feet)	Core recovery (percent)
cı	rushed, probably by faulting, and core comes	653 - 659	70
fı	rom or is very near a fault zone. Evidence,	659 -661	80
fr	rom core, indicates a high-angle fault	661 - 664	7 0
Same as	s above, but firmer rock in lower 1 ft of		
ir	nterval. Calcite crystals (1 to 2 mm) in		
or	pen vugs (1/16 to 1/4 in.) at 669 ft	664 -670	60
Dacite	porphyry as in interval above 645 ft, firm,		
ha	ard rock, grades from reddish to greenish-		
gr	ray color at about 672 ft. Prominent vertica	1	
jc	oints tightly sealed with calcite and clay.		
Ro	ock comes from core barrel in long solid		
le	engths except for broken interval at 679 ft.		
Ro	ock is hard in broken zone and fragmentation		
of	f core is probably due to drill hole		
pe	enetrating an intersection of joint planes.		
Sa	ample Pluto-1BB at 673 ft; sample Pluto-1CC		
at	t 686 ft	670 -690	98
Same as	s above, firm, hard greenish-gray rock. Core	1	
Ъl	locky with small fragments in several zones		
ir	n interval from 717 to 737 ft. Where core		
ie	s broken rock is hard, and broken zones are		
pı	robably due to drill hole penetrating joint		

Test hole Pluto-1--Continued

	Description	Inter (fee	val t)	Core recovery (percent)
	intersections. Few 1/2-inch light-gray	690	- 717	95
	streaks at 25° with horizontal (flow banding).	717	- 727	80
	Tight joints widely spaced. Sample Pluto-1DD	727	- 737	85
	at 721 ft; sample Pluto-lEE at 758 ft	737	-774	98
Same	as above, but finer grained and smaller pro-			
	portion of crystals (20 percent crystals in			
	rock); greenish-gray to gray partly devitrified	L		
	glass matrix. Lower 2 ft broken with some			
	shearing (slickensides) along 60° joints and			
	vertical joints, with minor claylike			
	alteration along joints. Sample Pluto-1FF			
	at 776 ft	• 77 ⁴	-778	85
Total	depth 778 ft.			
	4 1/2 in. O. D. casing cemented at 24 ft with			
	screw cap (hand tight) on top.			
Acid	bottle run to 778 ft showed hole deviation			
	from vertical less than 1°.			

Test: hole Pluto-1--Continued

Nevada State Coordinates: N. 755,967.40; E. 664,320.80

Description	Interval (feet)	Core recovery (percent)
Overburden cased. Six ft of 4 1/2-in. casing		
cemented into bedrock. Cored with large		
casing bit to seat casing, and core not		
saved (diameter too large to put in core box	0 - 6	
lithology same as below)	6 - 11	95
Dacite porphyry, gray to red color. Coarse-grain	ed,	
firm hard rock with about 30 percent crystal	S	
in dense groundmass of partly devitrified		
reddish glass. Crystals are mainly feldspar		
(2 to 4 mm) and biotite (2 to 6 mm) with		
accessory magnetite and rare fine-grained py	rite.	
This core is from weathered zone, and rock i	8	
slightly porous with a moderate amount of		
weathering. Joints: vertical and 25° with		
horizontal, but most prominent set at 45°.		
Joints closely spaced and some are open at t	his	
depth, but rock cores well. Sample Pluto-2A		
at 12.5 ft	11 - 38	95
Same as above, rock firm and hard, but core break	S	
into short lengths (2 to 6 in.) coming out o	f	
core barrel. Core from 45.5 ft to 47 ft cam	e	

	Description	Interval (feet)	Core recovery (percent)
	out of barrel in small fragments, but total		
	recovery was still very good. Prominent		
	joints at 60° with horizontal. Sample		
	Pluto-2B at 45 ft	38 - 48	95
Same	as above, rock firm and most joints sealed.		
	Joint at 66 ft shows slickensides. Rock		
	somewhat altered in lower part of this		
	interval with rare dark grains of sulfide(?)		
	mineral. A few open vugs up to $1/4$ in. in		
	diameter. From 70 to 82 ft core is broken		
	into fragments. In this interval crystals		
	make up 40-50 percent of rock volume. Sample	48 - 68	95
	Pluto-2C at 65 ft	68 - 82	90
Same	as above, rock fairly hard with moderate		
	amount of weathering. Joints appear		
	fairly tight, but core is broken up into		
	fragments and short pieces (2 to 6 in.) as it		
	comes from core barrel; some fractures in		
	core follow joint pattern, but many are random;		
	Sample Pluto-2D at 83.5 ft	82 -89	90
Same	as above, rock moderately hard but altered;		
	slickensides on several fracture planes.		

Test hole Pluto-2--Continued

Description Ir	terval feet)		Core recovery (percent)
Occasional open vugs as above. Crystals make			
up 50 to 60 percent of rock volume. Many dark			
grains and films of blue-black mineral,			
malleable and nonmagnetic. Rock is intersected			
by many random fractures although vertical	89	- 92	98
fractures are most common. Some prominent	92	- 97	98
70° joints and fractures. Rock is moderately	97	- 99	8 0:
strong, but is broken into small blocks by	99	-101	90
closely-spaced fractures. Massive strength	101	-105	90
of rock is low as compared with strength of solid	105	-107	75
pieces. Sample Pluto-2E at 102 ft; sample Pluto-	107	-109	95
2F at 108 ft	109	-111	95
Hole was abandoned at 111 ft 10 in. Intensive and			
repeated fracturing at this locality has			
apparently produced a zone of jointed and			
broken rock with many closely spaced and random			
fractures. This does not look like a fault zone,			
although the slickensides on a few fracture			
surfaces show some movement in the broken rock.			
Six ft of 4 1/2-in. O. D. casing with a screw cap			
(hand tight) is cemented into bedrock and			
sticks up about 8 in. above the ground			
surface. The hole is dry and empty.			

Test hole Pluto-2--Continued

Nevada State Coordinates: N. 754,807.80; E. 662,506.58

Description	Interval (feet)	Core recovery (percent)
Overburden	0- 31	0
Dacite porphyry, white to buff, medium-grained		
(1 to 2 mm). Almost completely weathered		
to clay. Rare quartz with abundant		
feldspar and biotite crystals (1 to 2 mm) in		
claylike matrix of completely devitrified		
volcanic glass. Crystals make up approximatel	y	
25 percent of rock. Matrix and feldspar		
crystals are so weathered as to obscure the		
original texture of the rock. Rock is very		
soft and is plastic when it comes from core	31 - 33	30
barrel wet. Joints: 2 sets at 45°, 25°.	33 - 43	1
Joints are not prominent in this interval	43 - 53	50
due to plastic nature of rock. Poor core	53 - 58	80
recovery in upper part of interval was due	58 - 64	80
to rock washing away during drilling.	64 - 73	0 (lost)
Hornblende crystals are visible in lower	73 - 83	80
part of this interval. Sample Pluto-3A	83 - 93	90
at 62 ft; sample Pluto-3B at 100 ft	93 -100	90

	Description	Interval (feet)	Core recovery (percent)
Same	as above, but very much harder and less weathe	red;	<u></u>
	gray to green in color, medium grained with		
	crystals making up about 40 percent of rock;		
	crystals of feldspar, biotite, and hornblende		
	(1 to 4 mm). Rock somewhat porous with joints	l	
	filled with iron oxide, clay, and calcite.		
	Joints: vertical and 2 sets at 45°. Sample	100-119	0 (lost)
	Pluto-3C at 130 ft	119-136	95
Same	as above, but with hard and soft zones, de-		
	pending on intensity of weathering, from 136		
	to 164 ft. From 164 to 210 ft rock is firm		
	and hard with red streaks in upper part		
	grading to mottled reddish color for most of		
	lower part of this interval. Crystals of		
	biotite, feldspar, and relict hornblende		
	make up about 40 to 50 percent of rock.		
	Weathering has affected glassy matrix and		
	crystals, producing a somewhat porous,		
	moderately hard rock. Some lithic fragments		
	of dark lava or metamorphic rock. Joints:		
	vertical, 2 sets at 60°, 25°. Scattered		
	open vugs (1/16 to 3/16 in.) in core.		

Test hole Pluto-3--Continued

Description	Interval (feet)	Core recovery (percent)
This interval matches rock of same depth in		4 <u>19-4</u>
test hole Pluto-1, and in this core rock		
grades from greenish-gray altered dacite		
above to reddish-gray dacite below without		
any apparent contact. Sample Pluto-3D at		
161.5 ft; sample Pluto-3E at 164 ft; sample	136-162	90
Pluto-3F at 190.5 ft; and sample Pluto-3G	162-171	95
at 207.5 ft	171-210	98
Same as above, firm hard rock, red to gray in		
color; joints as above; most joints tight		
and sealed with thin seams of iron oxide,		
clay, and calcite. Some joints separate	, -	ŝ
during coring, but most core in this interval		
came from core barrel in long (2 to 6 ft)		
solid lengths. Where core is broken, as		
in zone from 218 to 219 ft, rock is hard, and		
broken zone is probably due to drill hole	210-218	90
penetrating an intersection of 2 or more	218-219	60
joint planes. Most joints in this interval	219-227	0 (lost)
are vertical and are tightly sealed. Sample	227-235	98
Pluto-3H at 221 ft; sample Pluto-3J at	235-24 <u>5</u>	95
232.5 ft; and sample Pluto-3K at 258.5 ft	245 - 263	98

Description	Interval (feet)	Core recovery (percent)
Hole abandoned at 263 ft.		
24 ft of 4 $1/2$ -in. O. D. casing set on		

bedrock; cemented at surface for 1 1/2

ft. Hole is dry and empty.

Test hole Pluto-3--Continued

Nevada State Coordinates: N. 756,261.85; E. 661,491.41

Description	Inte (fe	rval et)	Core recovery (percent)
Overburden	. 0	- 39	0
Dacite porphyry, coarse-grained with crystals of			
hornblende, biotite, feldspar (72 mm) making up			
50 percent of rock volume. Groundmass is partly			
devitrified red to gray glass. Both groundmass			
and crystals are weathered. At 39-55 ft rock is			
soft; at 51-55 ft rock is intensively weathered			
and has consistency of stiff clay; at 55-72 ft			
same as above but much firmer, although somewhat			
weathered; at 72-113 ft rock similar to above,			
but with mottling consisting of irregular blocks	,		
of coarse-grained rock in finer matrix. Blocks	ŗ		
vary from 1 to 8 in. in diam. Rock is mainly			
firm and hard with tight joints sealed with	39	- 41	25
calcite at 60° from horizontal in interval from	41	- 48	30
76 to 100 ft. Between 100 to 113 ft joints	48	- 51	50
are tight but not well sealed and core joints	51	- 55	20
along joint surfaces. Joints: 2 sets at 60°	55	- 61	95
(dominant), 1 vertical set, one 45° set (local).	61	- 71	98
Sample Pluto-4A at 57 ft; sample Pluto-4B at	71	- 76	96
64 ft; sample Pluto-4C at 80 ft; sample	76	- 86	98
Pluto-4D at 83.5 ft, sample Pluto-4E at	86	- 95	98

Description	Inte (fe	erval et)	Core recovery (percent)	
at 92.5 ft; sample Pluto-4F at 99 ft; and sampl	e 95	- 104	98	
Pluto-4G at 106.5 ft	- 104	- 113	98	
Same as above, firm rock with most joints well seale	d			
from 113 to 130 ft. From 130 to 175 ft joints				
are tight, but not well sealed. Core is blocky				
and comes out of barrel in short pieces and sma	11			
fragments. Intensity of fracturing throughout				
massive rock is about the same between 130 to 1	75			
ft as in interval above, but with joints not				
tightly sealed and numerous fractures resulting				
in broken core. The rock is mostly firm;				
however, it seems softer in lower part, but thi	S			
may be due to lack of cementing material along				
joints and other fractures. In lower part of	113	-118	98	
interval rock shows banding (1/2 in.) at 45°	118	-128	98	
and rock tends to break along banding. Dominan	t 128	-134	90	
joints: 2 sets at 60°, 1 at 90°, and 1 at 45°	134	-137	80	
(local). Few small vugs (1/16 to 3/16 in.).	137	-143	98	
Few lithic fragments of altered lava. Joints	143	- 146	98	
below 130 ft are coated with iron oxide and	146	-152	90	
clay, while those above 130 ft are cemented	152	-160	90	
with calcite, with some clay and iron oxide.	160	-164	98	
Sample Pluto-4H at 117.5 ft; sample Pluto 4 J	164	- 166	80	

Test hole Pluto-4--Continued

	Description	Inte (fe	erval et)	Core recovery (percent)	
	at 130 ft; sample Pluto-4K at 148 ft; and	166	-170	85	
	sample Pluto-4L at 153.5 ft	170	- 175	95	
Same	as above, core in short lengths and fragments				
	(as above) to 188 ft. From 188 to 224 ft, core				
	is in longer lengths with few fragmented zones.				
	Rock is hard with prominent red and gray flow				
	banding. Dark-gray zone at 202-209 ft with				
	calcite and bright-green clay filling joints;				
	joints are well sealed in this interval and core				
	is in 1- to 3-foot lengths. From 209 to 222 ft,				
	rock is slightly weathered and joints are not as				
	well sealed as in interval above; rock is softer				
	and more porous in this interval. Rock is hard				
	with tight joints from 222 to 224 ft. Flow				
	banding at various inclinations throughout interva	l			
	(25° to 45° horizontal). Joints: 2 sets at 60°				
	with horizontal (prominent), 45° (local), vertical				
	(well sealed), filled with calcite and iron oxide				
	with clay. Many joints are cemented with thin				
	calcite filling, and core tends to break across				
	rather than along these joints. Sample Pluto-4M a	t			
	178 ft; sample Pluto-4N at 189 ft; sample Pluto-4P	I			
	at 204.5 ft; sample Pluto-4Q at 214.5 ft and sampl	e			

Test hole Pluto-4--Continued

	Description	Interval (feet)	Core recovery (percent)
	Pluto-4R at 223 ft	175 - 224	95
Same	as above. From 225 to 230.5 ft, rock is		
	weathered and soft, and core breaks into small		
	fragments. From 230.5 to 241 ft, rock is much		
	harder with tight joints and with red and gray		
	flow banding at 45° to 60°; joints are sealed		
	by calcite, and the hard rock tends to break		
	across rather than along the joints. Two		
	dominant joint sets of 60° with horizontal.		
	From 241 to 253 ft rock is intensively		
	weathered and is very soft. In this interval		
	(240-253 ft) there is one 6-inch piece of		
	core, one 3-inch piece, and a few 1-inch		
	fragments; the rest of the recovered core is		
	like coarse sand and gravel. Core has not		
	been ground up during coring; pieces of soft		
	core several inches long come out of core		
	barrel, and air-slack to a coarse sandy		
	aggregate within a few hours. The whole		
	pieces of core do not show slickensides, and		
	there is no visible evidence of faulting or	224 -230	80
	shearing in this zone. This is an intensively	230 -240	98
	weathered zone, and the massive rock has very	240 -244	65

Test hole Pluto-4--Continued

Description	Inte (fe	rval et)	Core recovery (percent)
little strength. Sample Pluto-4S at 237 ft;	244	- 249	60
sample Pluto-4T at 252.5 ft	249	- 253	60
Same as above; friable, weathered rock that comes			
out of core barrel as sand with a few rounded			
fragments of rock	253	-261	3 0
Total depth 261 ft			
4 1/2-in. O. D. casing cemented in rock at 51 ft with	h		
screw cap (hand tight) on top.			

Test hole Pluto-4--Continued

Nevada State Coordinates: N. 753,602.00; E. 662,558.45

Description	Inte (fe	erval eet)	Core recovery (percent)
Drilled weathered rock with rock bit. Cored with			
3 5/8-in. casing bit; core described but			
not saved	0	- 6	0
Dacite porphyry, firm, hand, coarse-grained rock			
with 30 to 40 percent crystals of feldspar,			
biotite, and hornblende (1 to 4 mm) in a			
partly devitrified groundmass of reddish-gray			
glass. Vertical joints and seams filled with			
calcite and with clay and iron oxide. Rock is			
"case hardened" near surface due to weathering			
while other weathering processes have produced			
a much softer rock a few feet below the			
surface	6	- 11	50
Same as above, but with soft friable zones where			
weathering has penetrated deeply into rock			
mass, mostly along vertical joints. Massive			
rock away from weathered joint planes is firm			
and hard. Joints: vertical joints are			
dominant and are filled with up to $1/2$ in. of	11	- 15	90
calcite-iron oxide-clay cement, and most	15	- 24	85
joints are tight. Weathered rock breaks across	24	- 31	75

	Description	Inte (fe	rve et)	1)	Cor recov (perc	re very cent)
	rather than along joints. Sample Pluto-5A at					
	13 ft; sample Pluto-5B at 35.5 ft	31	-	36	95	5
Same	as above, from 50.5 to 75 feet rock is firmer					
	with longer core segments, and varies in color					
	from reddish gray to greenish gray. Joints, up					
	to $1 \ 1/3$ in. wide, are filled with calcite and					
	clay with some iron oxide; rock breaks across					
	joints in this interval. From 75 to 89 ft					
	rock is softer with friable zones and zones	36	-	46	90)
	where core is broken into small fragments.	46	-	5 ¹ 4	90)
	Joints less well cemented than in interval	5 ¹ 4	-	62	98	3
	above and rock breaks along joints. Joints:	62	-	72	98	3
	2 sets dominant at 60° with horizontal.	72	-	79	98	3
	Occasional vertical joints and many small	79	-	83	90)
	random calcite-filled joints. Occasional	83	-	87	85	5
	lithic fragments of altered lava	87	-	89	85	5

Same as above, but rock firmer and core segments are larger (2 to 6 in.) from 89 to 94.5 ft. From 94.5 to 104.5 ft rock is firm with tight well-sealed joints and core segments are longer (6 to 18 in.); color varies from reddish gray to greenish gray, joints sealed by calcite

		Core
Description	Interval	recovery
	(feet)	(percent)

and iron oxide with clay; a few lithic fragments of greenish altered lava. A few calcite-lined vugs. From 104.5 to 113 ft rock is firm, but more altered than in interval above, and core is in short segments and small fragments; joints tight, but coated with iron oxide and clay and not well sealed; core breaks along joints; color red to gray. From 113 to 138 ft rock is firm and hard with most joints well sealed with calcite and a green claylike material; core segments are 6 in. to 2 ft; rock is greenish gray and reddish gray in alternating zones that are several feet thick; this is evident during drilling, as drilling water changes color in ditch from greenish to reddish. Green zones may represent more intensive hydrothermal alteration; rock is generally firmer, and joints are better sealed in green zones. From 138 to 145 ft rock is softer and more weathered; core breaks in short segments along joints. From 145 to 153 ft rock is firm, greenish-gray in color, and with tight well-89 - 93 sealed joints. At 153 ft there is a

90

	Description	Interval (feet)		Core recovery (percent)	
	brecciated zone 1 1/2 in. thick that has been	93	- 99	95	
	completely sealed by fine-grained calcite	99	-105	80	
	cement. In general, the reddish zones are	105	-108	90	
	softer than the greenish zones. Joints:	108	-112	90	
	vertical and 2 sets at 60° with horizontal;	112	-116	90	
	45° joints locally; many random hair-line	116	- 126	95	
	fractures cemented with calcite. Sample	126	-135	98	
	Pluto-5E at 102 ft; sample Pluto-5F at 120 ft;	135	-143	90	
	sample Pluto-5G at 148 ft	143	-153	98	
Same	as above; firm greenish-gray rock with all				
	joints tight and most joints well sealed;				
	prominent vertical joint from 164 to 170				
	ft with filling of calcite ($1/8$ to $1/4$ in.)				
	that cements joint so that core breaks				
	across rather than along joint. Core				
	segments are 3 to 18 in. Occasional lithic				
	fragments of dark lava. Reddish-gray interval				
	from 190 to 195 ft where rock is firm and				
	joints are well sealed to 218 ft. Rock breaks				
	along some joints, because calcite and clay				
	cement is weaker than massive rock on low-angle				
	joints. Joints: vertical and prominent				
	set at 45°. Many random fractures, tightly				

Test h	lole	Pluto-	5(Cont	inued
--------	------	--------	----	------	-------

 	Description	Inte (fe	rval et)	Core recovery ((percent)	
	sealed. Rock has been subjected to extensive	153	-161	98	
	hydrothermal alteration with the introduction	161	-171	98	
	of calcite, sulfides, and perhaps chlorite as	171	-181	98	
	the greenish alteration product of the glassy	181	-191	98	
	matrix. Sample Pluto-5H at 167 ft; sample	191	- 198	98	
	Pluto-5J at 193.5 ft; sample Pluto-5K at	198	-208	98	
	217 ft	208	- 218	98	
Same	me as above; purplish and reddish zones interspersed				
	with predominant greenish-gray color; rock is				
	firm with many joints and fractures that are				
	sealed with white calcite. Rock was				
	intensively fractured at some time, and				
	subsequent alteration by hydrothermal				
	processes has filled and sealed the fractures.				
	In places, as at 270 to 271 ft, wide veins				
	(1 in.) of calcite contain fragments of the				
	rock broken from the walls of the fractures				
	and now frozen in the white calcite vein				
	material. Minor slickensides are also present				
	as evidence of brecciation and shearing in the				
	massive rock prior to the period of alteration.				
	Few lithic fragments of dark lava or metamorphic				
	rock. Joints: rock core tends to break along				

Test hole Pluto-5--Continued

Test	hole	Pluto-	5Continu	led
------	------	--------	----------	-----

Description	Interval (feet)		Core recovery (percent)
predominant 60° and 45° joints. Vertical joints			
and random fractures are well sealed, and core			
does not break along these. Core segments are			
mostly 6 to 18 in. There is a soft slickensided,			
willing of 226.5-227.5 ft. In addition to the			
calcite veins and fracture fillings, the	218	-227	95
groundmass of the green rock is filled with tiny	227	- 237	95
veinlets and selvages of a green claylike	237	- 247	98
alteration product. Sample Pluto-5L at 224.5 ft;	247	- 257	98
sample Pluto-5M at 238 ft; sample Pluto-5N at	257	-267	98
257 ft; sample Pluto-5P at 276 ft	267	-277	98
Same as above, firm, coarse-grained greenish-gray			
rock. Sealed joints and fractures as above.			
Slickensides along sealed fractures at 281			
and 284 ft. Porous, vuggy core at 310-311 ft.			
Joints, as above; joints, spaced from 6 to			
18 in. In lower part of hole, white veinlets			
that seal fractures contain clay as well as			
calcite; where clay predominates over calcite	277	-287	98
as fracture-sealing material, the joints and	287	-296	98
fractures are tight but not well sealed. Core	296	- 303	94
breaks along clay-filled joints. Sample	303	-309	94
Pluto-5Q at 298 ft; sample Pluto-5R	309	- 313	98

Description	Inte (fe	rval et)	Core recovery (percent)
at 311 ft; sample Pluto-5S at 318 ft	313	-322	98
Total depth 322 ft			
4 1/2-in. O. D. casing cemented in rock at 6 ft with			
screw cap on top.			

Test hole Pluto-5--Continued

REFERENCE CITED

Shapiro, Leonard, and Brannock, W. W., 1956, Rapid analysis of silicate rocks: U.S. Geol. Survey Bull. 1036-C, p. 19-56.

