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The purpose of this study is to determine which of

three forecasting methods provides the most accurate

short-term forecasts, in terms of absolute and mean absolute

percentage error, for a unique set of data. The study

applies three forecasting techniques--the Box-Jenkins or

ARIMA method, cycle regression analysis, and multiple

regression analysis--to quarterly sales tax revenue data.

The final results show that, with varying success,

each model identifies the direction of change in the future,

but does not closely identify the period to period fluctu-

ations. Indeed, each model overestimated revenues for

every period forecasted. Cycle regression analysis, with

a mean absolute percentage error of 7.21, is the most accurate

model. Multiple regression analysis has the smallest

absolute percentage error of 3.13.
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CHAPTER I

OVERVIEW AND INTRODUCTION TO THE STUDY

Overview

The purpose of this study is to determine which of three

forecasting methods provides the most accurate short-term

forecasts, in terms of absolute percentage error, for a

unique set of data. The study applies three time series

forecasting techniques--the Box-Jenkins method, cycle

regression analysis, and multiple regression analysis--to

quarterly sales tax revenue data. It introduces these

three methods and outlines the final models that were fitted

to the data.

Introduction

Time series analysis is an approach which has gained

increased use in forecasting since the late 1960s. "The

basic premise underlying time series methods is that the

best predictors of the future values of a data series are

the past values of the series itself" (2, p. 104). Time

series analysis can be divided into two categories--time

domain and frequency domain. In the former case, the

analysis is based on measuring and identifying the com-

ponents of a series. These components include trend, cycle,
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seasonality, and random shocks. Examples of time domain

techniques range from very simple methods such as trend

lines and exponential smoothing to more sophisticated

techniques such as multiple regression and the Box-Jenkins,

or ARIMA, method. The acronymn stands for autoregressive

integrated moving average and represents the family of

models made popular by Box and Jenkins' book. These terms

are defined in Chapter III. (The reader will note these

two terms Box-Jenkins and ARIMA, are used interchangeably

in this study).

The second category, frequency domain techniques,

decomposes a time series into sine waves with varying fre-

quencies; therefore, the component parts are related to

frequency rather than time. Examples of this analysis

include the periodogram method, Fourier analysis, spectral

analysis, and cycle regression analysis (3).

These examples are only a sample of the numerous

forecasting techniques available to the analyst today.

With so many techniques available, the trend in fore-

casting is to look at these separate techniques not in

terms of winning and losing, but in terms of how each

differs from the other, and under what circumstances a

certain technique is most appropriate (1). In the same

manner, this study does not attempt to determine the
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best of these three forecasting methods in the universal

sense but seeks only to identify the one that performs

most accurately on one time series data set.

Description of Data

The time series data employed in this study are a

set of 45 observations of quarterly sales tax revenues

for the City of Denton, Texas from the final quarter of

1974 to the final quarter of 1985. The data are listed in

Appendix A.

Limitations of the Study

This study evaluated only three forecasting techniques.

Clearly, there are numerous other methods that would have

been applicable to the quarterly time series data. The

data set was not large and was, therefore, a limitation;

furthermore, two methods only using 26 of the original 45

observations is a serious consideration.

The results of this study pertain only to the one

data set employed, and are not generalizable.
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CHAPTER II

REVIEW OF THE LITERATURE

Introduction

In the first section of this chapter, two major fore-

casting studies are presented with emphasis on three

separate issues: (1) general findings, (2) common recom-

mendations, and (3) comments on the specific methods

employed in this thesis. In the second section, relevant

articles dealing with ARIMA models, multiple regression

analysis, and cycle regression analysis are reviewed.

The third section discusses the practice of combining

forecasting techniques.

Background

Two of the most comprehensive forecasting studies to

date are Mahmoud's "Accuracy in Forecasting: A Survey"

and "Accuracy in Forecasting: An Empirical Investigation"

by Makridakis, et al. The former study is a summary of

empirical investigations pertaining to forecasting. Special

emphasis is given to assessing the accuracy of different afore-

casting techniques (4). After reviewing approximately

120 sources, the author provides three general conclusions.

First, he found that

5
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simple forecasting methods perform reasonably well

in comparison to the sophisticated forecasting

methods. Secondly, most of the studies indicate

that quantitative methods are more accurate than

qualitative methods. Thirdly, forecasting accuracy

can be improved by combining techniques (4, p. 155).

The Makridakis study analyzes and reports the results

of a forecasting competition in which expert participants

analyzed and forecasted many real life time series. (It

is usually referred to as the M-Competition.) The study

is concerned mainly with the post-sample forecasting

accuracy of the time series methods. Specifically, twenty-

four extrapolation methods were tested on 1001 time series

for 6-18 time horizons. (The Box-Jenkins, Lewandowski,

and Parzen methodologies used a sample of 111 time series)

(5).

The Makridakis study has been described as "the most

exhaustive undertaken to date in terms of number and variety

of extrapolation methods considered" (7, p. 273). Results

of the analysis show that (1) Lewandowski's method is

best for yearly and quarterly data, and both Holt and Holt-

Winter's exponential smoothing methods are equivalent;

(2) the Bayesian forecasting method and the Box-Jenkins

method are about the same as single exponential smoothing;

(3) on the macro level, the simple methods are superior

to the sophisticated methods; (4) on the micro level, the
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sophisticated methods are the best; and (5) for seasonal

data, exponential smoothing, deseasonalized regression,

Bayesian forecasting and Parzen- methods are almost

identical (4).

One very clear finding, evident in both studies, is

that there does not exist one forecasting technique that

is "best" or "right" for every situation. In the commen-

tary on the M-Competition, one author listed that con-

clusion as one of the three major contributions of the

study (7). The authors of the M-Competition urge the fore-

casting user to discriminate in his/her choice of methods

according to the type of data (yearly, quarterly, monthly),

the type of series (macro, micro, etc.) and the time

horizon (5).

The two studies' recommendations are based on this

idea of no "best" technique. One should try "rather to

understand how various forecasting approaches and methods

differ from each other and how information can be provided

so that forecasting users can be able to make rational

choices for their situation" (5, p. 112). Mahmoud echoes

this conclusion by stating, "What is needed is an under-

standing of when and under what circumstances one method is

to be preferred over the other" (4, p. 154). The fore-

casting trend of the future, as recommended by Armstrong
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and Lusk, is that "specific hypotheses should be formulated

and tested [as opposed to exploratory research] to

determine which methods will be most effective in given

situations" (2, p. 261).

Of the three methods being evaluated in this paper--

the Box-Jenkins method, cycle regression analysis, and

multiple regression analysis--the Box-Jenkins method

received the most attention in both the Mahmoud and

Makridakis studies. Simple linear regression trend fitting

is evaluated in both studies and will be presented as the

method most similar to multiple regression analysis. Cycle

regression analysis per se is not evaluated in either study.

As mentioned in Chapter I, the Box-Jenkins technique

is considered to be a sophisticated forecasting method and,

as such, its results are quite often compared to those of

the simple forecasting techniques in terms of accuracy.

Mahmoud concludes that simple forecasting methods perform

more accurately than, or at least as accurately as, sophis-

ticated methods. He cites three leading articles (one of

which is the M-Competition) that confirm this conclusion.

In his own study of fourteen time series, the Box-Jenkins

technique outperformed simple methods in only one series

(4).
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Following are brief summaries of the findings of

studies reviewed by Mahmoud that employed the Box-Jenkins

technique:

1. The Box-Jenkins method and other quantitative
methods provided better forecasting than qual-
itative ones in the majority of the studies
cited.

2. Six studies reported that the Box-Jenkins method
was superior to regression analysis. One
study indicated both methods performed about
the same.

3. The Box-Jenkins analysis was found to be 20
percent more accurate than those using heuristics.

4. The Box-Jenkins method was found to be more
robust than econometric models in three studies;
two studies showed that the Box-Jenkins method
did at least as well as large econometric models.

5. Comparing Box-Jenkins and exponential smoothing
methods, one study showed Box-Jenkins superior,
one study showed exponential smoothing superior,
and one study showed them performing equally.

6. In a comprehensive study of 111 time series,
(one by Makridakis that preceeded the M-
Competition), results showed Box-Jenkins models
were outperformed by the simple naive, moving
average, and exponential smoothing methods (4).

The M-Competition evoked the following reactions and

observations regarding the Box-Jenkins method:

1. The participants stated that the Box-Jenkins
methodology was the most time-comsuming (5).

2. Newbold questions how an "ARIMA model would be
seriously outperformed by an exponential smooth-
ing procedure which is really based on a
specific ARIMA model, which might have been
chosen. . . ignoring the presence of outliers
can lead to the choice of the 'wrong' ARIMA
structure" (9, p. 278).
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3. Pack, a Box-Jenkins forecaster, defends time and
human interference in the ARIMA methodology.
He believes there were serious questions re-
garding the validity of the experimental design
of the M-Competition. These include a single
forecast time origin, averaging over different
time series, averaging over lead times, and
focusing on a sequence of highly positively
correlated lead times (10).

4. The Box-Jenkins analyst of the M-Competition argues
that, if the geometric mean squared one-step-
ahead error is applied to the quarterly and
monthly series of the M-Competition, results
show, for short term forecasts, "The more
complex techniques, in particular Box-Jenkins,
are a little better; whereas for longer term
forecasts it does not really matter which
method is used" (1, p. 287).

Makridakis, for whom the M-Competition is named, points

out that "sophisticated methods, such as Box-Jenkins . .

do their best on forecasts approximately three to four

periods ahead" (5, p. 297). He says, however, they were

designed to minimize the mean squared error on one-period

ahead forecasts. He theorizes that this discrepancy can be

attributed to the sophisticated methods "correctly identi-

fying the overall trend, but [not following] period-to-

period fluctuations because of the high amount of random-

ness involved" (5, p. 297).

Regression Methods

Since the relatively new cycle regression algorithm

was not incorporated in either Mahmoud's survey or the
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M-Competition, findings concerning the regression method

must be addressed. In Mahmoud's survey, regression analysis

was compared to moving average and exponential smoothing in

four different studies from 1965-1972. Results showed

that regression analysis was the most accurate technique

for longer-term forecasts; however, it was consistently

outperformed by the other two techniques in short-term

forecasts. In 1981, a study by Dalrymple and King comparing

these three techniques indicated that the regression

method was the most accurate used in the study (4). Linear

regression analysis, however, did not fare as well in the

M-Competition. In fact, it was considered one of the worst

overall forecasting tools (5). However, deseasonalized

regression analysis used on seasonal data had approximately

the same overall mean absolute percentage error as expo-

nential smoothing, the Bayesian method, and the Parzen

method (4). A summary statistic of the M-Competition

estimated the percentage of time that the Box-Jenkins

method is better than the regression method. For the

first four forecasting horizon periods, those percentages

are 64.0, 68.5, 72.1, and 65.8 respectively (5). (It

should be noted that this is simple linear regression

analysis, not multiple regression analysis.)
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Other Studies and Methods

This section briefly covers additional literature on

the Box-Jenkins method and regression models. It also

introduces the development of cycle regression analysis.

The Box-Jenkins technique has become quite popular

since the publication of their book, Time Series Analysis,

Forecasting and Control, in 1970. Throughout the 1970s,

this technique was compared to other forecasting methods.

Some researchers believe the popularity of the Box-Jenkins

method was based on the fact that several studies found it

to be at least as accurate as the complex econometric models

of the U. S. economy (5). One such study, for example,

concluded "the Box-Jenkins results were significantly

better in all cases and, except for GNP, they provide better

forecasts by a factor of almost two to one" (8, p. 153).

Numerous other studies reached similar conclusions; however,

some researchers concluded that it was the inability of

econometric models to accommodate structural change in the

economy that truly gave the ARIMA models the edge (6). In

at least one study, the outcome was reversed between

these two methods, and the ARIMA model was the worst

performing of the two compared (6). Other studies comparing

Box-Jenkins with methods such as exponential smoothing,

moving averages, stepwise autoregression, etc. are equally
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as contradictory; yet, until Makridakis & Hibron (1979),

Makridakis et al (1982), and Mahmoud (1982), the Box-

Jenkins method was generally believed to be at or near the

top of the forecasting techniques. As seen earlier in

this chapter, these more recent studies have reversed this

thought; however, these particular studies are not completely

accepted. There continues to be questions regarding the

ability of the particular analyst in a specific study to

fit precisely the proper Box-Jenkins model, so a fair

comparison can be made.

The majority of the literature in the last decade

dealing with regression forecasting techniques has centered

around econometric models. These structural models are

usually quite complex and use numerous equations containing

mainly macroeconomic variables (3). Multiple regression

analysis then is a simplified version of these larger

models.

In 1972, Cooper compared regression forecasts and auto-

regressive forecasts of thirty-three dependent variables

from seven macroeconomic models. Results showed the auto-

regressive models outperformed the regression models in

eighteen of thirty-three cases (3). Similar conclusions

were reached by Cooper and Nelson when they compared the

Federal Reserve Bank of St. Louis' regression method and an
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autoregressive model on forecasts of six variables. One

year later, Behravesh found forecasts obtained from

regressive equations to be superior to those generated

by an autoregressive scheme (3). Another study, titled

"The Forecasting Record of the 1970's," compared econo-

metric models only to other econometric models. As the

M-Competition and Mahmoud's survey showed, no one fore-

casting technique was the most accurate for the seventeen

variables reviewed. Each technique had strengths and

weaknesses (3) .

As noted with the somewhat contradictory studies of

Box-Jenkins methodology, not all regression models perform

equally well. In fact, just as the Box-Jenkins analyst

of the 1980s attributes the poor performance of the ARIMA

method to the misspecification of the model, the econo-

metricians of the 1970s felt that their methods were also

being applied inappropriately and therefore were not actually

outperformed by the ARIMA models (5; 10).

Finally, a study incorporating both an ARIMA model

and regression analysis must be considered. These two

methods were applied to monthly sales tax revenues, and fore-

casts were made for five months. Multiple regres ion analysis

was utilized with a trend variable and dummy variables

for seasonality. With few exceptions, this is the regression
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model used in this thesis. Final results showed that the

ARIMA model and the regression method had average absolute

percentage errors of 3.2 percent and 3.6 percent, respec-

tively. The author concluded that "both techniques capture

the directional changes. . . but neither method anticipated

the sharp drop in receipts" in the final forecasting period

(3, p. 387). The study pointed out that the higher cost

of constructing and maintaining the ARIMA model could

make the regression model the more attractive of the two

methods, even though the ARIMA model slightly outperformed

it (3).

Cycle Regression Analysis

The final method used in this study is the frequency

domain technique called cycle regression analysis. It was

first introduced by Simmons and Williams in 1982. The

family of frequency domain techniques includes Fourier

analysis, spectral analysis, the periodogram, and the

Cosinor test. Until recently, these techniques have been

used extensively and successfully in biological and

physical sciences as well as in engineering. Now they

are being adapted to the business world (15).

The other methods have limitations which cycle

regression attempts to overcome. For example, unlike the

periodogram, cycle regression analysis is not restricted
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to equally spaced observations. The Cosinor test and the

periodogram method require a priori knowledge of the

sinusoidal periods. The cycle regression method does not

require such knowledge; therefore, it is more objective

than the other two methods. The Fourier method also

requires a priori knowledge of "either the number of

trigonometric terms to be included or the fundamental

frequency" (12, p. 46). Again in cycle regression analysis,

these are done objectively by the heuristic steps of the

method (13).

In their 1982 introductory article, Simmons and Williams

found cycle regression analysis superior to the period-

ogram method in estimating amplitudes, angular frequencies,

and phases. The algorithm was also successful in fore-

casting Texas Instrument common stock prices in the short-

term future (15). A second study, by the same authors,

compared cycle regression analysis with stepwise multiple

regression analysis for three separate dependent variables:

political regime, civil conflict, and energy consumption.

In every case, cycle regression analysis had a higher

percentage variation explained than did multiple regression

analysis (16) .

Although the cycle regression algorithm used in

this study is objective and automatic (computer generated

with no human interference), this is not true of the algorithm
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used in the two studies previously discussed. The one

subjective step in the earlier algorithm involved analyzing

the autocorrelations of the residuals to find an initial

estimate for the cycle period. Specifically, the analyst

was required to determine significant valleys and subsequent

peaks in the autocorrelations. Designation of significance

was left to the analyst's judgment (14). Since 1983,

three methods have been presented to eliminate this sub-

jective step. Two of the methods will be discussed here;

the second method is the one employed in this study.

Simmons et al first developed an objective method

that employed a t-like statistic to determine when "the

autocorrelations have dropped to a significant negative

value, and increased to a significant positive value"

(14, p. 99-100). The method was based upon a procedure

involving sample autocorrelations from the Box-Jenkins

methodology. Validation tests of this procedure show that,

in almost all cases, "estimates obtained by the t-value

method were closer to the true periods than those obtained

by the original procedure" (14, p. 100). Their second

method incorporates spectral analysis in estimating the

cycle period. Validation tests on the technique currently

are being conducted; preliminary findings show that the

spectral analysis step enhances the overall analytical

capabilities of cycle regression methodology (13).
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Combining Forecasts

In Mahmoud's survey of forecasting techniques, an

entire section is dedicated to reviewing the literature

on combining techniques. Without exception, every study

he reviewed reported some type of improvement when a

composite forecast was used (4). Although there are a

number of methods of combining techniques, this study will

limit itself to taking a simple average of forecasts. The

M-Competition chose only to look at two methods of combining

forecasts--the simple and the weighted average methods.

The author called the simple average "Combining A," and

it consisted of an average of the following six methods:

exponential smoothing, adaptive response rate exponential

smoothing, Holt's exponential smoothing, Brown's linear

exponential smoothing (all of which were deasonalized),

Holt-Winters linear and seasonal exponential smoothing, and

the Automatic Carbone-Longini. "Combining A" was a weighted

average based on the sample covariance matrix of percentage

errors of the same six methods (5). Both "Combining A"

and "Combining B" performed better than virtually all of

the individual methods, including the six methods used in

the combination, as well as the other methods in the

M-Competition; futhermore, the simple average technique

performed better than the weighted average method (5).
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A later study by Makridakis and Winkler, however,

showed differential weighting outperforming a simple

average method (4). The most recent study by Makridakis

and Winkler evaluated only simple average combinations.

Fourteen forecasting methods and 111 time series were used.

The following three conclusions were reached: (1) The

specific methods included in a combination had little

influence on the accuracy of the forecasts; (2) although

accuracy increased with each additional method used, a

saturation point was reached after four or five methods;

(3) as the number of methods used in a particular combination

increased, the variability of the accuracy of the different

combinations decreased (4).

In conclusion, Reeves and Lawrence point out that

interactive computer forecasting packages allow analysts

to produce multiple forecasts with respect to a single

objective. Generally, "The single forecast which comes

closest to satisfying the chosen objective is then selected,

and the remaining forecasts are discarded" (11, p. 271).

They believe this process may not make the best use of

all the available information because discarded infor-

mation may contain information not available in the

selected forecast. This is possible because the discarded

information may be based on "different assumptions, dif-

ferent variables, or different relationships among variables"

(11, p. 271).
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CHAPTER III

METHODOLOGY

Introduction

This chapter outlines the time series methodology

employed in this study. Specifically, it discusses (1)

the research type, (2) the research models and (3) the

application of the models.

Research Type

In this paper, time series analysis is tested for its

forecasting capabilities. Time series analysis can be

divided into two categories, time domain and frequency

domain, as defined in Chapter I. Of the three types of

time series analysis tested, two--Box-Jenkins and multiple

regression--are time domain; the third--cycle regression--

is a frequency domain technique. The two time domain

techniques can also be subcategorized as follows: Box-

Jenkins is an extrapolation method which predicts future

values based on relevant statistical features of past

data (1). Multiple regression is considered a causal

model.

22
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Research Models

Three distinct models were used in this study. In

statistical forecasting, a model is defined as an "algebraic

statement telling how one thing is statistically related

to one or more other things" (5, p. 5). The first model

tested in this study is the Box-Jenkins or ARIMA model.

Basically, Box-Jenkins is an algebraic statement showing

how "observations on the same variable are statistically

related to past observations on the same variable"

(6, p. 5). It is important to note that an ARIMA model

is really a family of models from which the researcher

chooses the most appropriate specification.

Box-Jenkins analysis is based on the idea that the

time-sequenced observations in a data series may be statis-

tically dependent. An ARIMA model can include both an

autoregressive term (AR) and a moving average (MA) term.

An AR term is expressed as a function of past values of

itself at varying time lags. The MA term is a function of

previous error values. In addition, differencing enters

the period to period change in the series. (It can be

expressed algebraically as: Xt t Xt-.) The I in

ARIMA stands for integrated, which is the process that

converts the differenced series back to the original forms

(5). Algebraically, the AR and MA terms are expressed:
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AR (1): zt = C + 0z t-l + at

MA (1): zt = C -0 at-l + at

where zt is the variable whose time structure is described

by the process; C is a constant term related to the mean

of the process; 01zti is the AR term and is a fixed

coefficient, 01, multiplied by a past z term; 0 1at-1 is the

MA term and 01 is a fixed coefficient multiplied by a past

random shock, at'-l; and at is a current random shock (6).

The ARIMA model is further described as an ARIMA

(pdq)(P4,D,Q)s where p is the nurber of lagged autoregressive

terms, d is the order of differencing used to make the

series stationary, and q is the number of lagged errors,

or shocks, in the moving average component. The capital

letters (P, D, Q) represent the seasonal component in

the model. The s is the periodicity of the process. The

actual development of the model involves three stages

(5):

1. Identification. One of the keys to this stage
is transforming the time series so it is sta-
tionary. Transformation options include log-
arithms, raising to powers, and centering. An
additional transformation for eliminating trend
or drift is differencing. Plots of the estimated
autocorrelation functions (acf) and partial
autocorrelation functions (pacf) are examined
to give the researcher a feel for any patterns
in the data. An autocorrelation function is a
graphic representation of autocorrelation coef-
ficients. These coefficients "measure the

-will, OWN 0 'A"Wimmi
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direction and strength of the statistical
relationship between ordered pairs of obser-

vations on two variables" (6, p. 35). The

partial autocorrelation function is similar
to the acf, but instead of representing the

relationships only between ordered pairs,
the pacf takes into account the effects

of intervening values (6). The acf and

pacf are then used as guides for choosing
an appropriate ARIMA (p,d,q) (P,Q,D)s model.

2. Estimation. Estimates of the coefficients

0 and 8 are chosen during this stage. An

iterative nonlinear estimation process is used.
Several computer programs perform this esti-
mation.

3. Diagnostic Checking. This stage primarily

checks that the random shocks (a ) are inde-

pendent. Since one cannot actually observe
shocks, the residuals (at) are observed.
More precisely, a residual acf is constructed,
and t-values and the summary Box-Pierce chi-

square statistic are calculated (6). The
Box-Pierce statistic is used to "determine

whether several autocorrelation coefficients

are significantly different than zero" (4,
p. 269). It is based on the chi-squared
distribution of the autocorrelation coef-

ficients. If the autocorrelation coefficients

are not significantly different from zero,
the data generating those autocorrelations
are considered random (4). If these diagnostic

checks do not prove satisfactory, the iterative
process, common in ARIMA modeling, is begun
again.

The second method used in this study is a cycle

regression algorithm involving spectral analysis. The

algorithm estimates the sinusoidal or harmonic components

in times series data. This is done by employing Marquardt's

compromise to estimate amplitude, period, and phase

simultaneously (8). Marquardt's compromise is a nonliner
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regression procedure that accurately and quickly con-

verges to least squares estimates (6).

Spectral analysis is used in this algorithm to

determine the initial period of the harmonic. Technically,

the method is used to estimate the angular frequency of

the dominant harmonic which is in turn used to estimate

the period. The spectral analysis method estimates a

spectrum, or the spectral density function, of the time

series being analyzed. Its primary objective is to deter-

mine the "most significant components in terms of their

contribution to the total variance in the data" (7, p. 23).

A spectrum decomposes this total variance into that explained

by components of various frequencies. In this way,

spectrums can be used to detect sinusoidal components in

the data (7).

The following steps outline the general algorithm

for cycle regression. They include a "starting procedure

that fits trend and one harmonic, steps for adding addi-

tional harmonics, and a stopping procedure" (8, p. 31).

Step 1: The starting procedure is to estimate the
trend and first harmonic. Linear regression
is used to obtain the initial estimates of
the intercept and slope parameters. Auto-
correlations are computed from residuals,
and the spectral density function is computed
from these autocorrelations (8). The
spectral density function is estimated at
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different frequencies with the frequency
corresponding to the highest peak, (i.e.,
highest spectral density function value)
singled out. This frequency is multiplied
by 21r to obtain the initial estimate of
the angular frequency of the dominant
harmonic (7; 8).

The initial estimate is used by cycle regression analysis

to determine the estimates of amplitude, phase, and

period of the harmonic (7). It is at this point that

Marquardt's Compromise is used to move from the initial

estimates described above to the final estimate for

the trend and the first harmonic. The appropriate equation

is as follows:

Xt = B0 + B t B2 Sin B3 (t + B4 ) + et

where:

B + B1 t represents the linear trend;

the parameters B2 , B3 and B4 determine the amplitude;

period, and phase respectively of the first harmonic;

et is a random variable (7).

The stopping procedure involves a partial F-test to

establish significance of the harmonic. If it is not

found significant, Step 1 is repeated. If it is found to

be significant, Step 2 is followed.

Step 2: Parameters for k harmonics when k = 1 are
estimated in this step. Estimates obtained
for trend in Step 1 are used again. For
the initial estimate of B (angular fre-
quency), the estimate froAB3 is used for
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all harmonics until the kth harmonic where
the spectral density function procedure is
used to obtain the initial estimate. For
the initial estimate of B3+ (phase), the
estimate of B in Step 1 is used for all
harmonics except the kth harmonic. The
model uses 0.1 for that harmonic. For the
initial estimate of B31 (amplitude),
the amplitudes found ir tep 1 are summed
and divided by k. The final estimates for
trend and k harmonics are found through
Marquardt's compromise using the above
estimates in the following equation:

K

Xt 0 1B + B t + :F.. B3i-l Sin B3i (t + B3i+l) + et
i=1

The stopping procedure again applies a partial F-test to

determine the significance of the kth harmonic. If signi-

ficance is established, k is increased by 1, and Step 2

is repeated. If it is not significant, the model obtained

from the equation above is used. (8; 7).

The third method employed in this study is multiple

regression analysis. It is merely an extension of simple

linear regression, and attempts to explain changes in the

dependent variable (Y) in terms of changes in two or more

independent variables (X1 X2  ' . . X). In this study,

as in many regression studies, dummy variables are used

to account for seasonal variation in the data. In general

terms, the multiple regression model is written:

Y = a + b X + bX + . b + X + e
= 1 t 2t k kt t
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where Y represents the dependent variable whose values are

explained by the model. Parameters a and b are estimated

by the least squares principle; a is considered the inter-

cept and b is described as a partial slope since the

regression equation no longer fits a simple straight line,

and e denotes the error term (3). The error term is a

very important factor when applying multiple regression

analysis to time series data. As in the ARIMA model,

the researcher must be aware of the possibility of auto-

correlated error terms. Examining the autocorrelations

of the residuals visually as well as calculating the

Durbin-Watson statistic are two means of testing for auto-

correlation. The Durbin-Watson statistic tests for the

most important type of autocorrelation--first-order

linear correlation. The statistic is defined as the "ratio

of the sum of squares of successive differences of resi-

duals to the sum of the squared residuals" (2, p. 161). A

value of approximately 2 indicates the absence of first

order autocorrelation (2).

Application

The time series data analyzed in this study are

quarterly sales tax revenues for the City of Denton, Texas

from the final quarter of 1974 to the final quarter of

1985. This constitutes 45 observations; however, the ARIMA
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model eventually fit the last 26 observations only. The

pattern of the data appeared to change around the 20th

observation; consequently, after numerous attempts at

fitting an ARIMA model to the entire set proved unsuccess-

ful, the decision was made to model the most recent 26

observations. The same decision was made with regard to

the cycle regression model. The multiple regression model,

however, used the original data in its entirety.

The final ARIMA model, using (p, d, q) (PI, D, Q)s

notation, is (0,1,0) (1,1,1)4. To achieve a more stationary

time series, a natural logarithmic transformation was

performed. The nonseasonal component fits one auto-

regressive term and one moving average term, both at lag

four. Seasonal differencing completes the final model.

The ARIMA model was chosen using two statistical

packages--IDA and Minitab. Minitab was only used in cal-

culating initial estimates for the parameters needed in

the model. IDA was used primarily in a trial and error

fashion with the acf and pacf plots, histograms, and the

Box-Pierce statistic serving as the major sources of

feedback.

The cycle regression method was applied through a

computer program obtained from Dr. LeRoy Simmons of the

Business Computer Information Systems Department of North
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Texas State University. All parameters needed for the

final forecasting model were computed automatically by

Dr. Simmons' program. A short program that can be run on

an IBM personal computer was written to solve the final

forecasting equation. The final cycle regression model

fit three significant harmonics to the tax revenue data.

In the multiple regression model, the quarterly tax

revenues served as the dependent variable, and six inde-

pendent variables were assigned to the equation. X was

a dummy variable that basically divided the data set into

two sections--before and after the 20th observation;X12

was time (1 . . . 45) which accounted for trend; X was

time squared which accounted for the nonlinearity of the

time series; X4 through X6 were dummy variables representing

the seasonal factor of the quarterly data. The statistical

package of SPSSx was used for this regression analysis.

Chapter IV presents the final equations used in these

three models. The point forecasts, generated from these

equations, are discussed, and interpretations and con-

clusions are given.
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CHAPTER IV

FINDINGS AND CONCLUSIONS

Introduction

In the first section of Chapter IV, final equations,

diagnostic statistics, forecasts, and interpretations are

presented separately for each model. The second section

compares the forecasts of the three models in terms of

absolute percentage error and mean absolute percentage

error; two summary tables are provided. The third section

discusses overall conclusions regarding individual models

as well as the study itself.

The Box-Jenkins Method

Numerous variations from the ARIMA family models were

fitted to the tax data, both in its original state and

after a natural logrithmic transformation had been per-

formed. The most satisfactory model was found using the

transformed data. As discussed in Chapter II, only the

final 26 observations from the original 45 quarters were

used in the analysis.

The multiplicative model fitted to the transformed

time series is (0,1,0)(1,1,1)4. It is expressed:

33
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0(B )VdV D = e (B )
4 zt Q at

where

0(B4) is the seasonal autoregression term at lag 4,

V d VDis nonseasonal differencing at length 1
multiplied by seasonal differencing at length 4

zt is the variable whose time structure is described
by the process

eQ(B ) is the seasonal moving average term at lag 4

at represents random shocks

(Note: B represents backshift notation where B4zt = z t -

(8). The following parameter estimates are used in the

equation:

seasonal autoregressive coefficient (0) = -.9
seasonal moving average coefficient (e) = .65

Both coefficients are significant at the .05 level with

t-values of 86.46 and 6.05, respectively. The Box-Pierce

statistic is 17.96, which is below the critical value of

30.1 for 19 degrees of freedom (8). This statistic, as

discussed in Chapter III, is a test for correlation among

the random shocks of a time series and is based on the

residual autocorrelations.

Forecasts of sales tax revenues for two time horizons

(the first two quarters of 1986) were calculated from this

model. Table I shows the forecasts, the actual revenues,

and the absolute percentage errors.
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Table I

BOX-JENKINS METHOD

Absolute

Time Horizon Actual Forecast Percentage Error

1 $1,270,681 $1,420,057 11.76

2 $1,119,925 $1,295,177 15.65

The Box-Jenkins model projects revenues of $1,420,057

for the first quarter of 1985. This is approximately

$150,000 over the actual revenues generated for that

quarter. The second quarter projection is approximately

$175,250 over the actual amount generated. The absolute

percentage errors (APE) of 11.76 and 15.63 were the largest

of the three models used in the study. These two errors

produce a mean absolute percentage error (MAPE) for the

combined time horizons of 13.71. The M-Competition reported

the MAPE for the Box-Jenkins methodapplied to quarterly

data for the time horizons 1 and 2,as 7.6 and 8.2, respec-

tively (4).

There are several possible explanations for these

large errors. The most obvious is rather simple and

straightforward--the model was not specified correctly.

The Box-Jenkins methodology is complex, and most analysts
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believe time and experience are required to truly fit the

proper models consistently. In fact, C.W.G. Granger noted

that "it has been said to be so difficult that it should

never be tried for the first time" (6, p. 112). In

addition, the amount of subjectivity in fitting the model

allows for a wide range of possible solutions; consequently,

the risk of not specifying the "right" process increases.

In the M-Competition commentary, Geurts states "that it

is probable for two experienced Box-Jenkins forecasters to

examine identical autocorrelations, partial autocorre-

lations. . . and then to specify different models" (2, p. 268).

Another possibility is that the overall trend is being

detected, since the direction of both forecasts are correct,

but the process is not following the "period-to-period

fluctuations because of the high amount of randomness"

(5, p. 297).

Cycle Regression Analysis

The most satisfactory cycle regression model, in terms

of forecasting, used only the final 26 observations of the

time series. This abbreviated set of data limited the

search for significant harmonics. Instead of proceeding

until an insignificant one was identified, the algorithm

stopped after three significant harmonics were identified.

This is due to a limit imposed by the program. In an
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attempt to prevent overfitting of the data, half the

number of observations is the maximum number of parameters

that can be used in this program; therefore, with 26

observations, the program will fit a maximum of 13 parameters.

Since each sine wave has three parameters, (amplitude,

period, and phase) and trend accounts for two more para-

meters (constant and slope), a fourth harmonic would have

fit a total of 14 parameters--one more than the maximum

allowed by the program.

As outlined in Chapter II, the general equation for

cycle regression analysis is

xt = B0 + Blt + B2Sin B3(t + B 4 + et

where

B and B are the intercept and slope parameters,0 .lit
respectively

B2 , BA, B4 are the parameters for amplitude, period,
and p ase respectively

et is a random variable (9).

The following equation includes the final parameters

generated by the cycle regression algorithm:

Y = 380069.4 + 30325.12t+ 67998.81sin(.2923369(t+2.024837))
+ 79239.75sin(3.128417(t+.1025962))
- 58777.58sin(l.546734(t+.6198372))

t = 27, 28

Table II presents the forecasts, the actual revenues,

and the percentage errors for the cycle regression method.
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TABLE II

CYCLE REGRESSION ANALYSIS

Absolute
Time Horizon Actual Forecast Percentage Error

1 $1,270,681 $1,359,366 6.98
2 $1,119,925 $1,203,288 7.44

The forecast generated from cycle regression analysis

overestimates revenues for two time horizons by $88,685

and $83,363, respectively. This method provided the

smallest MAPE (7.21) of the three methods used in the study.

Since this method requires no human intervention, subjectivity

is not an issue. There are, however, certain advantages and

disadvantages that can be addressed. The method's objective-

ness allows for extremely quick and easy forecasts. The

only time consuming step is solving the final equation,

and this step was shortened considerably by a basic program

run on a personal computer. One disadvantage of the method

is its relatively newness to the family of frequency domain

techniques. It has not been tested to the extent of the

other two methods. In addition, the program for cycle

regression analysis cannot, at present, be purchased in a

large statistical package as can the other two methods.

M&A
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Multiple Regression

All 45 observations of the time series data are included

in the multiple regression model. Tax revenue serves as

the dependent variable, and it is regressed on six indepen-

dent variables. Of the six independent variables used,

four are dummy coded. (Descriptions of the variables are

provided at the end of Chapter III.) The following equation

represents a multiple regression model with six independent

variables.

Yt = a + b1 X1 t + b2 tX2 . . . + B6X 6t + et

To forecast from this equation for two time horizons,

t is given the values of 46 and 47, and the coefficients

for a, b, and XI through X6 are inserted:

Y = 242581.38 + 9387.24 + 1772.17(46) + 432.96(46 2
+ 60770.90

Y = 242581.38 + 9387.24 + 1772.17(47) + 432.96(47 2
- 36787.63

(Note: In quarter 46, X4 and X6 have values of zero; in

quarter 47, X4 and X5 have values of zero)

The value of 2.03 for the Durbin-Watson statistic is

significant at the .05 level. To accept the null hypothesis,

i.e., to conclude that first order autocorrelation is not

present, the following equation must be satisfied:

du(d (4 - du

where du, for n = 45 and k = 7, = 1.24

1.24(2.03(2.76 (7;3).

MAW,
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Table III provides the summary values of actual revenues,

forecasts, and percentage errors for the multiple regression

model.

TABLE III

MULTIPLE REGRESSION ANALYSIS

Absolute
Time Horizon Actual Forecast Percentage Error

1 $1,270,681 $1,310,403 3.13

2 $1,119,925 $1,254,882 12.05

Multiple regression analysis provides the single best

forecast estimate in this comparative study. The forecast

overestimated the revenues for the first time horizon by

only $39,722. This is less than half of the error associated

with the next best model--cycle regression analysis. This

estimate, of course, provides the smallest APE (3.13) of

the study. The model, however, did not prove consistent in

the second time horizon; revenues are overestimated by

almost $315,000 in that case, and the APE quadrupled to

12.05. The MAPE of 7.59 drops multiple regression analysis

to second in the overall rankings.

As the only causal model used in the study, multiple

regression analysis requires human intervention to determine

m'oft
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the number and make-up of the independent variables. X

in this study was chosen to divide the data into two time

periods--before and after the building of a large retail

mall in the City of Denton. It is believed this event could

have contributed to a pattern change seen in the data

around the 20th observation. This independent variable,

however, is not significant. In fact, in addition to the

constant that proved to be significant, there are only two

other independent variables that are significant--X5

which represents the first quarter of the year and accounts

for seasonality and X3 which represents time squared and

accounts for nonlinearity in the data.

Even though the Durbin-Watson statistic shows this

model to be free of first order autocorrelation, a plot

of the residuals still contains a wave-like characteristic

that is indicative of autocorrelation. Differencing the

series is one method of reducing autocorrelation; however,

first order differencing would only address first order

autocorrelation, which has already been ruled out. The

differencing, therefore, would need to be performed at

varying lengths to try to reduce or eliminate the auto-

correlation that is not of the first order. A model with

additional dummy coded variables that further explains the

cyclical component of this data set might produce improved
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results. Finally, a model that includes independent vari-

ables that reflect the changing nature of the local economy

might also generate improved forecasts.

Summary Tables

Table IV is a composite of the three previous tables

presented in this chapter.

TABLE IV

SUMMARY

Absolute

Methodology Actual Forecast Percentage Error

Time Horizon 1
Box-Jenkins $1,270,681 $1,420,057 11.76

Cycle regression $1,359,366 6.98

Multiple regression $1,310,403 3.13

Time horizon 2

Box-Jenkins $1,119,925 $1,295,177 15.65

Cycle regression $1,203,288 7.44

Multiple regression $1,254,882 12.05

Table V presents the mean absolute percentage error

(MAPE) for each method for two combined time horizons.
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TABLE V

MAPE--TWO TIME HORIZONS

Methodology MAPE

Box-Jenkins 13.71

Cycle regression 7.21

Multiple regression 7.59

Conclusions

Armstrong and Rusk, in their opening commentary of

the M-Competition, suggest that "determining which methods

will be most effective in given situations," as opposed to

exploratory research, should be the pursuit of further

research (1, p. 261). This comparative study attempts to

follow their suggestion. The purpose of the study is to

find the most accurate of the three forecasting techniques,

in terms of APE and MAPE, for one set of time series data.

The three methods employed in this study are dissimilar

in many ways--two are time domain techniques and one is

a frequency domain technique. The Box-Jenkins method is a

very complex and subjective one; cycle regression analysis,

on the other hand, is a quick, automatic, and objective

method; and multiple regression analysis is a causal model;
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Yet each of these methods is a time series technique and,

as such, must address the possibility of autocorrelation

among the residuals. The various diagnostic checks were

reported throughout the study, but a warning still needs

to be included regarding autocorrelation. If it is present,

the variance of parameter estimates of a model are affected

and the precision, or significance, of those estimates can

be greatly overestimated. This does not, however, affect

the "unbiased" status of the estimates (7).

In Chapter II, the benefits of combining forecasts

werediscussed; however, this procedure does not provide

superior forecasts here because each model in this study

overestimates future revenues.

In summary, the multiple regression analysis had the

smallest APE for any method for either time horizon--3.13.

Over both time horizons, however, cycle regression analysis

was the most accurate. But, when considering which method

should be used as the best predictor of quarterly sales

tax revenues, a case by case analysis is still recommended.

In this way, the analyst can decide how factors, such as

the sophistication of the methodology, time required in

analysis, subjectivity, experience, and human intervention,

count in selecting a final forecasting model.
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QUARTERLY SALES TAX REVENUES
CITY OF DENTON

Year Sales Tax Revenues

Quarter 4, 1974

1975

1976

1977

1978

1979

1980

1981

1982

238051

237199
281928
243754
293110

281460
250067
335475
281156

363058
263610
290138
366233

399293
370928
399173
460436

403093
425124
471492
516990

552794
517176
629642
585387

709389
584962
608122
658992

739050
627057
744828
704844
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QUARTERLY SALES TAX REVENUES CITY OF DENTON--Continued

Year Sales Tax Revenues

1983

1984

837146
755165
808769
900216

1062377
926680

1012962
1074098

1304289
1047116
1162843
1241014

1985
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