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This paper is an investigation of several basic
properties of noetherian rings. Chapter I gives a brief
introduction, statements of definitions, and statements
of theorems without proof. Some of the main results in
the study of noetherian rings are proved in Chaptér II.
These results include proofs of the equivalence of the
maximal condition, the ascending chain condition, and
that every ideal is finitely generated. Some other
results are that if a ring R is noetherian, then R[x] is
noetherian, and that if every prime ideal of a ring R is

finitely generated, then R is noetherian.
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CHAPTER 1

INTRODUCTORY CONCEPTS

This thesis investigates some of the properties of
Noetherian rings. The definitions and basic theorems which
are assumed are stated in this chapter. For proofs of these
theorems see [Z and S]. The structure and properties of
Noetherian rings are developed in Chapter II.

It is assumed that the reader is familiar with the
basic properties of commutative rings and ideals in commut-
ative rings. All rings considered in this thesis are
commutative rings with a unity. Addition of ring elements
is denoted by +. Multiplication of elements is denoted by -,
although the symbol will be omitted except when needed for
clarity. The additive identity is denoted by 0 and the unity
(multiplicative identity) is denoted by 1. Set containment
is denoted by <, with proper containment denoted by <.

A nonenpty subset N of a ring R is called an ideal of R

provided %,y in N and r in R imply x~y in N and rx in N.

An element b in a ring R is called a zero divisor if

there exists a non-zero element c¢ in R such that bec = 0;

b is called a proper zero divisor if b is a zero divisor

and b # 0,



A ring is called an integral domain (or éimply a domain)
if it contains a unity 1 # 0 and containé no proper zero
divisors.

A ring R (with a unity 1 # 0) is called a field if for
each non-zero element b in R, there exists an element ¢ in
R such that be = 1.

Let D be a domain and let § = {(a,b)|a,beD and b # 0}.

Then (a,b) and (c,d) in S are equivalent, written (a,b) . (c,d),

if and only if ad = bc. It follows that . forms an equiva-
lence relation on 8, and thus defines a partition of S. Now

for (a,b) = S, let

-1
£=ab " = {(xy) ¢ 5|(xy) - (ab)}
Then let K = {%| (a,b) & 8} and define two binary operations
such that if %, % e K, then
a , ¢ _ adthe a ¢ _ ac
5td= pa *™5p a3 ba

Then {K; +,+} is a field which is called the guotient field

of D.

A subring R of a field F is called a maximal proper

subring of F if and only if (0} < R < F and if there does
not exist a subring R' of F such that R < R' < F. Equiva-
lently, R is a maximal proper subring of F if and only if
(0) < R < F and if there exists a subring R' of F such that

R o R' < F then R = R'.



An ideal A in a ring R is called a proper ideal if it

is not the zero ideal and not R itself; i.e., if (0) < A < R.

A is said to be a prime ideal in R if c¢,d ¢ R and ¢cd ¢ A

implies that either ¢ ¢ A or d ¢ A. If A is an ideal in R,
then A is maximal in R provided there does not exist an
ideal B £ R such that A < B < R; i.e., A is maximal in R if
B is an ideal in R such that A < B < R implies B = R. An

ideal A in a ring R is called a principal ideal if there

exists an element b in R so that A = {br|{reR}. The element
b is called the generator of the ideal A, and A is denoted
by (b). An ideal A in R which is generated by several
elements Bys8gs0res8 € R, denoted by A = (al,az,...,an),'
consists of all finite sums of the form I r;a; where r; eR.

i _
The ideal A = (al,az,...,an) is called a finitely generated

If A and B are ideals in R, then the sum A + B is
defined by A + B = {a+blacA and b e B}, and the product A-B
is defined by A-B = {iglaibi|ais;A, b, B, and n=1,2,...}.
The sum A + B and product A+B are both ideals in R. It is
easily seen that A,B ¢ A + B and A,B » A-B.

If A is an ideal in R, then the radical of A, denoted

by vA, is the set {xz;R|Xne:A for some positive integer n}.
The VA is itself an ideal in R which contains A. The

quotient of A by B 1s defined as

A:B = {xeR|XB = A}.



Theorem 1.1: If A is an ideal in R, then VA = g P,
o
where the intersection is taken over all the prime ideals

in R which contain A,

It follows immediately from the above theorem that
if P is a prime ideal in R, then /P = P.

An ideal Q in a ring R is primary if and only if
a,beR, abeQ and a ¢ Q implies p™ ¢ Q for some positive
integer m.

Theorem 1.2: Let Q be a primary ideal in a ring R.

If P = /O, then P is a prime ideal. Moreover, if abe Q and
afQ, then beP. Also, if A and B are ideals in R such
that Ab « Q and A &4 Q, then B« P.

Theorem 1.3: TLet Q and P be ideals in a ring R. Then

Q is primary and P is its radical if and only if the following
conditions are satisfied:

(1) Q<= Pp;

(2) 1If bep, then p" e 0 for some positive integer m;

(3) If abeQ and a#¢Q, then beP.
Note: (3) is equivalent to

(3') If abeQ and b#P, then acQ.

Let A be an ideal in a ring R. Then a prime ideal

P in R is said to be a minimal prime ideal belonging to A

if & =@ P and there is no prime ideal P' in R such that

Ao P' < P.



Theorem 1.4: If A is an ideal in a ring R and Pc R

a prime ideal such that A< P, then A < VA ® P; i.e., an
ideal and ité radical are contained in precisely the same
prime ideals.

It follows from 1.4 that if Q is a primary ideal in R,
then v/Q = P is the only minimal prime ideal belonging to Q.

Theorem 1.5: If A is an ideal in a ring R, then the

set R/A = {x+A|x ¢ R} with addition and multiplication defined
by [x+A] + [y+A]l = (x+y) + A and [x+A] - [y+A] = (xy) + A

where x,v ¢ R is a ring, called the residue class ring of

R by A.

A non-empty subset S of a ring R is a multiplicative

system in R if and only if 0 ¢ S, and a,b ¢ S implies that

a*b £ 8. Let S be a multiplicative system in D, then

D, = {

S la,b e D, and b ¢ S}

oo

is called the gquotient ring of D with respect to the multi-

plicative system S. If P is a proper prime ideal of D, then

DN\P defined by
DNP = {x € D|x ¢ P!}

is a multiplicative system in D, and DD\P is usually denoted

simply as D, so that

Dp = %Ia,beD, and b ¢ P}.



If A is an ideal of D, then AD defined by

S

e A, b, gD

i g and m & J+}

is called the extension of A to DS (or A extended to DS).

If B is an ideal of D., then B 0 D is called the contraction

s’
of B in D (or B contracted to D).

Let R be a ring and x an indeterminate. Then
n .
Rix] = { 2 aixl ] a; ¢ R and n ¢ J o the positive integers}.
i=0
Theorem 1.6: If R is a domain, then R[x] is a domain.

Theorem 1.7: If A, B, and C are ideals in a commutative

ring R, then A:BC = (A:B):C.

Theorem 1.8: If A and B are ideals in a commutative
1

ring R, then A:Bn+ = (A:Bn):B = (A:B):Bn for any n ¢ J+,
the positive integers.

Theorem 1.9: If A and B are ideals in a commutative

ring R, then A:B = R if and only if B & A.

Theorem 1.10: If A and B are ideals in a commutative

ring R, then A:B = A: (A+B).

Theorem 1.11: If A and {Bi} are ideals in a commut-

m
ative ring R, then A: I B, = 0 (A:B.)
- . i . i
i=1 i=1
Theorem 1.12: If A and B are ideals in a commut-
: m m
ative ring R, then ( 1 A,):B = 0 (A.:B).
. i . i
i=1 i=1

Theorem 1.13: If A and B are ideals in a commutative

ring R, then vAB = VANB = vA 0 v/B.

Theorem 1.14: If A and B are ideals in a commutative

ring R, then VA¥B = V/ = | = o /A + VB.



Theorem 1.15: If A and B are ideals in a commutative

ring R and if Ak = B for some positive integer k, then

/A = /B.

Theorem 1.16: If A is an ideal in a commutative ring

R, then /;% = vA.

Theorem 1.17: If an ideal A of a ring R has

n k nji k

{al,a2,...,ak} as a basis, then A" has { m a; | Zn, =n
i=1 i=

and 0 < n; < n} as a basis.



CHAPTER II

NOETHERIAN RINGS

Definition 2.1: A ring satisfies the ascending chain

condition for ideals iff given any sequence of ideals

i a o j
Al,Az,... of R with Al = A2 1= R An ..., there exists
an integer n such that A=A, for all m > n.

Definition 2.2: An ideal A is said to be finitely

generated if there exists an n such that A = (al,az,...,an).

Definition 2.3: A ring R is said to satisfy the

maximum condition iff every non-empty set of ideals of R,

partially ordered by inclusion, has a maximal element.

Theorem 2.1: Let R be a ring. The following
three stateﬁents are equivalent:

(1) R satisfies the ascending chain condition.

(2) R satisfies the maximum condition.

(3) Every ideal of R is finitely generated.

Proof: Show that (1) implies (2). Suppose the maximum
condition does not hold. Then there exists a non-empty set
of ideals, partially ordered by inclusion such that it does
not have a maximum element. Therefore there exists Al’ an
ideal in R such that Al is not maximal. Hence there is an
< A,. Now A

1 2
such that A

A2 such that A

exists A

2 cannot be maximal. Thus there

< A, < A, and A. is not maximal.

3 1 2 3 3



Therefore there is A such that A, < A, < ... < A_ and A_is
n 1 2 h n

not maximal. Hence there is An+l such that

Al < A2 < .. < An < An+1 < ... and thus a contradiction to

the ascending chain condition. Show that (2) implies (3}).
Suppose the maximum condition holds. Show A is finitely
generated. Let A be an ideal in R. Now consider (0). Now
{0) @ A and either (0) = A or (0) < A. TIf (0) = A, then we
are finished; otherwise there exists 0 # a; € A such that
(al) < A. Now either (al) = A Or (al) < A. If (al) = A,
then we are finished and A is finitely generatedf Suppose
(al) # A. Then there is a, € A\(al) and (al,az) c A. Either
(al,az) = A or (al,az) < A. I (al,az) = 2, then wé are done
and A is finitely generated. This process leads us to an
ascending chain of ideals (al) < (al,az) < (al,az,a3) < wnay

a; € A. The maximum condition assures us that there is a

maximal element in the set. Say (al,az,...,an). Moreover
(al,az,...,an) = A, for if (al,az,...,an) # A, then there
exists an a ¢ A\(al,az,...,an) and (aj,a,,...,a) <
(al,az,...,an,a), contradiction. Thus A is finitely

generated by {al,az,...,an}. Show that (3) implies (1).
Suppose A is finitely generated and there exists an
ascending chain of ideals such that Aj c Ay, c ...« An [ T

X0

and U Ai = A. Show that the chain terminates. Since A is

i=1
finitely generated A = (al,az,...,ak). Now this means that
a; € Ai r 8y € Ai',..., a € Ai . Let n = max(ll_,lz_,...,lk).

1 2 k Jj
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Then Ail = An, Aiz cl An,..., Aik a An. Thus (al,az,...,ak)
[s.0]
c An. Hence A < An, and hence iEfHF:An. Now An(: Am for

allm > n and Am o An for all m. Thus Am = An for all m > n.
And the ascending chain condition holds.

Definition 2.4: A ring R is noetherian iff R satisfies

any of the three conditions of Theorem 2.1.

Theorem 2.2: If R is a noetherian ring and A is an

ideal in R, then there exists a positive integer n such that
(vA&)" « A.
Proof: Suppose A is an ideal in R. Then

/A = (a;,a ;+-.sa ) since every ideal in R is finitely

2
generated. So for each a, € VYA there exists n, € J, such

that aini £ A, Let n = n,+n +...+nm. Now

1 72
ki ko k

%, so {al a, -...-am_m} is a basis

n —
(\/ﬁ') - (a.l,a.zf-..,am

for (VA)®, 0 < k; < n, Ky+ky+...+k = n. Thus

172
n1+n2+...+nm =n = k1+k2+...+km. Thus there is 1 < j < m
such that k. > n.. PFor if not, then k. +k.,+...+k < n.
k. 373 N N 1 72 K m
Hence a. - ¢ A. Therefore a, l-a2 2-...-am M ¢ A since

aj 1 ¢ R for all i. Hence every generator of (/K)n is in A.
Thus (vVA)" & A.

Theorem 2.3: Let R be a noetherian ring and Q primary

in R. Also suppose A,B are ideals in R such that AB ©Q,
then AS Q or 8" Q for some positive integer n.
Proof: Suppose A,B are ideals in R such that AB o Q.

Suppose A¢ Q. Now B = (b, ,b -.sb.) . There is an a £ A\Q.

2!
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Lgt bi £ {bl,b .,b_}. Now abie:Q, thus since a ¢ Q,

27" t
nj ny Ng
bi £ Q for some nie:J+. Also b1 ""’bt £ Q. Let
. no_ n n
Lo [ =
n1+n2+...+nt n. Claim B Q. Now B (bl’b2""'bt) .
51 82 St . .
So {b1 -b2 '...°bt | s; are nonnegative integers and
8., +8,+ +s, =n} is a basis for B" Let b sl-b 52- b St
1 2 ‘v . » t - . 1 2 LI I 1 t
be any one of the generators of B". Since B tS,t.. .45, = n
= nl+n2+...+nt there is 1 < j < t so that s_j > n.. For if
not, then sl+sz+...+st < n, a contradiction. Then
S, = m= 8.

bj J = bj ]bj J where mj = sj~n. > 0. Thus bj J e and it
S1, S2 St

follows that bl b b

2 - 8 % t
of Bn is in 9. Thus B" o 0.

]
¢ Q. That is every generator

Theorem 2.4: If Q is a primary ideal of a noetherian

ring R and if A and B are ideals of R such that AB = Q,

then either A = Q or (/ﬁ)n < Q for some positive integer n.
Proof: Let Q be a primary ideal of a noetherian ring R.

and let A and B be ideals of R such that AB = Q. Suppose

A # Q. By Theorem 2 there exists an meJ, such that

(/§)m < B. Thus by Lemma 1 there is an nE:J+ such that

B @ 9. Hence [(vVB)™" = B" =gq. Ana therefore (vB)™ < 0.

Theorem 2.5: If R is a noetherian ring, then any

homomorphic image of R is noetherian.

Proof: Let £ be a homomorphism such that £:R + R'

where R' = {£(r)[reR}. Let A} = A; « ... = Al = ... be
an ascending chain of ideals in R'. Then f_l(Ai) Cﬁf-l(Aé)
<L, o f—l(Aa)Cl ... where fﬂl(Ai) are ideals in R and we

have an ascending chain of ideals in R. There is an n e N
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-1 ' _ "1 1 1
such that £ “(A}) = £ "(A]) for all n>m. And Ap

— ~1 ¥ . -1 ' — ! '
= f(f (Am)) = f(f (An)) = An for all n>m, Thus R
is noetherian.

Theorem 2.6: If A is an ideal of a noetherian ring R,

then the residue class ring R/A is noetherian.

Proof: R/A is the homomorphic image of R under the
natural map £ defined by £(r) = r+A for all reR. Thus
R/A is noetherian by Theorem 2.5.

Theorem 2.7: If A, B, and C are ideals of a ring R

such that (1) B= C, (2) B 0 A =C 0 A, and (3) B/A = C/A,
then B = C.

Proof: Let ceC. Now B/A = {b+A|be B} and
C/A = {c+A|ceC}. Since B/A = C/A, there exists some beB
such that b+A = c+A. Hence c-b = acA for some acA. Now
beC since beBg C. Thus ¢c-b = acC. Hence acA Nl C=24A B
and acB. 8So c = atbeB. Therefore C & B and B = C.

Theorem 2.8: Let A be an ideal in a ring R. If A and

R/A are both noetherian rings, then R is alsoc a noetherién ring.
Proof: Suppose A is an ideal in R, and let |

Aj & A, & ... A ... be any ascending chain of ideals in

R. Now Al N Ac A2 1 Aag ... An l A2 ... is an ascending

chain of ideals in A, since A, 0 A for each ie;J+ is an ideal

in A. Thus there is an ra:J+ such that An o a = Ar 0 A,

for all n>r. Now consider A;/A @ A,/Aa ...= A /A o ...

an ascending chain of ideals in R/A. There isans ed, such

that An/A = AS/A for all n>s. Let M = max{s,r}. For all
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n = [t =
For all n>m An A Am A, An/A Am/A, and Amc: An' Thus
by Theorem 2.7 A = Ap for all n>m. Thus R is noetherian.

Theorem 2.9: If A, an ideal of a ring R, is not prime,

then there exist B and C ideals in R such that A < B, A < C,
and BC « A.

Proof: Suppose A is an ideal of a ring R and is not
prime. Since A is not prime there exist b {2 and ¢ ¢ A such
that bceA. Let b,ceR such that b and ¢ f£A. Then
A < A+(b) and A < A+(c). Let A+(b) = B, and let A+(c) = C.

Now A < B and A < C and [A+(b)][A+(c)] = A%+ (b)A+(c)a+ (b) (c)

= a2+ (b)A+(c)A+{bc). Now A2 o A, (b)A = A, (c)A c A, and
(bc) © A, since bc ¢ A. Thus BC < A,

Theorem 2.10: Everv ideal in a noetherian

ring R contains a product of prime ideals.

Proof: Let S = {A, ideal in R|A does not contain a
product of primes}. Now clgim S is empty. Suppose S is not
empty. Since R is noetherian, S has a maximal element. Call
it P, Now P is not prime for if it were prime, then it would
contain a product of primes. Thus there exist ideals B and
€ in R such that P < B, P < C, and BC = P. Also B ¢ S and
C ¢ S. Hence each of B and C contains a product of prime
ideals. Thus BC contains a product of prime ideals. Thus
P contains a product of prime ideals, a contradiction to the
supposition. Hence S is empty.

Theorem 2.11: If R is noetherian, then R([x] is

ncetherian,
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Proof: Suppose (0) # A is an ideal in R[x]. For each
n>0 let A= {reR|r=0 or rxn+...+alx+aOeA}. We note that
An is an ideal in R and Anca An+l' Suppose a,b(:An and ¢ £ Ry

then there exist fl(x), f2(x)E:A such that

n

fl(x) = ax+...+a,x+a,. and fz(x) = bx +...+b1+b0. Moreover,

1 0
fl(x)-fz(x) = (a-b)x +...+(al bl)x+(aO bo) e A. Hence,

either a-b = 0 is in An or a=b # 0 is the leading coefficient
of a polynomial in A of degree n and again a-b € An' Also
cfl(x) = (ca)xn+...+calx+ca0 is a polynomial in A of degree

n with leading coefficient ca. Thus ca ¢ A, and An is an

ideal in R. Now An = An+1 follows from the fact that if

b e Ay then either b = 0 and is in A, Or b is the leading
coefficient of a polynomial f(x) in A of degree n, and hence
is the leading coefficient of the polynomial xf(x) in A of

degree n+l, Thus b ¢ An and An =) An

+1 +1°

Since R is noetherian there is a positive integer t

such that A_ = A for all n > t. Moreover, each A is

t

finitely generated, say An = (rnl,rnz,...,rnjn). For each

r,»0<n<¢t, 1 <j<i, let £f (x) be a polynomial in
3 ]

A of degree n with leading coefficient r, - Let B be the

ideal generated by the polynomials fn (x). That is,

(f:J
04

B, and hence A is finitely

B = ({fn'(x)|0-irlitq Iuij.ijn}) (x),...,foin(x),...,

|

J
£, (x),e..,fp . (®x})). We prove A
tl Tn

generated. It is clear that B= A, since the fn (x) are in
J
A. Let g(x) be any polynomial in A of degree k' > 0. We

prove g(x) is in B by induction on k the degree of g(x).
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For k = 0, glx) = 99 and, since 99 is the leading

coefficient of a polynomial in A of degree %ero, it follows
n
that = is in A.. Now g(x) = = I  S.rqg.
aing(x) gy 1 0 g (x) 99 sIp %5 04
= ¥ sg.fn.(x) € B where s. ¢ R, 1 < j < 1 . Thus B
= 5Ly s5%05 jeErr =22
contains all polynomials in A of degree zero.

Now suppose B contains all polynomials in A of degree
less than k and let g(x) be any polynomial in A of degree

k, say g{x), = rxk+...+g1(x)+q0,.r¢ 0. For k<t, r EAk'
in
hence r = .5, S.rk. for some s. ¢ R. Consider h(x)
i J=1 T3773 ]
in
_21 ijkj(x) e B= A. Now h{x) has leading coefficient
J—_‘

r and is of degree k. And

i

n
h(x) = .E sjfk_(x) = s, f (X)+...+s; fki (x)
j=1 3 1 n n
k k
= g (r, x +...+c }+...+8, (rp, s +...+c,
1 kl 1 i, in i,
_ k, -
= (slrk +...+si ci)x +"'+(Slrk +...+si .,
1 n 1 n
= rxk+...+h0.
.k k .
Thus w(x) = g(x)-h(x) - (rx +...+g0)~(rx +...+h0) is a

polynomial in A of degree less than k and hence by the

induction hypothesis is in B.

i
n
Otherwise, if k> t, then 1:'811_2;k = At and r = jél sjrtj
for some j e R. Consider mix) = jzl ijk_t-ft-g(x) eB o A.
Now
in
_ k-t
mi{x) = E ij ft.(x)
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= g xk—t(r X, 4G, ) .. FS (ry, X + +d, )
1 \t‘.1 1 i
n n n
= (slrt +o.0F8, Iy, )xk+.. +s, d,
1 Ih "in n n
= rx +...H0,.
: k k .
Thus n(x) = g{x)-m{x) = (rx +...+g0)m(rx +...+m0) is a

polynomial in A of degree less than k and hence is in B.
Hence g (x) = n(x)+m(x) is in B and A < B. Thus A = B.

Definition 2.5: Let A be an ideal of a ring R. Then

A is irreducible if and only if it is not a finite inter-

section of ideals of R properly containing A; otherwise A
is reducible.

Theorem 2.12: Every ideal in a noetherian ring is a

finite intersection of irreducible ideals.

Procf: Let F be the set of all ideals of R which are
not finite intersections of irreducible ideals. Suppose
F # 0. Then there exists an ideal B which is a maximal
element in F. Let E be any ideal of R which properly
contains B; then E ¢ F. Hence E is a finite intersection

of irreducible ideals. Since B ¢ F, B is not irreducible.

Hi

Thus B A OA, ... 1 Ak’ and B < Ai’ for 1 < i < k.

2
i, n&
Now A, = .01 Ay, where Aj. is irreducible, A, = A, . where
1 i=1"+1 i Ny 2 i=1 i
» . ] — ﬂ h 3
A, is irreducible, ..., and Ay i=1 Ak where Ak, 1s

irreducible. Thus B is a finite intersection of irreducible
ideals, a contradiction. Hence F = § and the theorem follows.

Theorem 2.13: If R is a noetherian ring, then every

irreducible ideal of R is primary.
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Proof: We prove that if A is an ideal of R and A is
not primary, then A is reducible. Since A is not primary
there exist a,b &€ R such that ab ¢ A, b ¢ A and no power
of a is in A.

Consider A:{a) « A:(az) D .. o A:(an) < ... which is
an ascending chain of ideals of R. For if x ¢ A:(ai) then
x(ai)cﬂ A and xai £ A. Now Xai-a £ A implies xai+1 £ A

itl ;). Hence

n+1).

We prove A = [a+(a™)] 0 [A+(b)] where A < A+(an)

which means that x(a ) 2@ A. Thus ¥ ¢ A:(al+

there exists an integer n such that A:(xn) = Az (a

and A < A+(b). Clearly Ac [A+(a™)] 0 [A+(b)]. Let

X € [A+(an)] 1 [A+{b)]; then x = a. +r al = a+r b, for

171 2 "2
ajra, € A, rl,r2 £ R. Thus rlan = a2—a1+r2b and
rlan+1 = a[az—al+r2b] = {az—al]a+r2[ab] e A. Thus
r, € A:(an+l) = A;an. Hence rlan e A and x = al+r1an e A.
Therefore A = [A+(a™)] 0 [A+(b)] where A < A+(a") and

A < A+{b) since a™ £ A and b ¢ A. Thus A is reducible.

Theorem 2.14: Every ideal in a noetherian ring can

be represented as a finite intersection of primary ideals.

Proof: The theorem follows from Theorems 2.12 and 2.13.
n
Definition 2.6: A representation A = igi Qi, where the

Q, are primary ideals, is called a primary representation of

the ideal A. The Qi are called the primary components of A

and vQ; are called the associated prime ideals of A.
n
Definition 2.7: A primary representation A = 'ﬂlQi is
1=

said to be irredundant if it satisfies the following

conditions:
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(1) no Qi contaihs the intersection of the other
primary components, i.e. O Q. & Q. for i=1,2,...,n.
. ]#i ] 1

(2) /O, # /q for i#j.

Theorem 2.15: Every ideal in a noetherian ring has

a finite irredundant representation.
n

Proof: Suppose A = (0

1=

Tet Qi be the intersection of all those primary components

Qi is a primary representation.
1

which have the same associated prime. That is, if

vQi, = vQi, = ... = VQi ., then take Q! = Qj, Lo, ... o3

li

Now Qi is primary and MQi = “Qir and A ﬂ-Qi. In this way
r i

we make the associated primes distinct. Next delete one

at a time those ideals Qi which contain the intersection

of the remaining ones.

Definition 2.8: A minimal element in the family of

associated prime ideals of an ideal A of a ring R is called

an isolated prime ideal of A.

Theorem 2.16: Let R be a ring, A an ideal of R such

that A has a finite irredundant primary representation

A = izl Q. and let P, = /5;. A prime ideal P of R contains
A if and only if P contains some P.. Thus, the isolated
prime ideals of A are the minimal elements of the family of

prime ideals of R which contain A.

n
- i n
Proof: TIf P = Pi for soge i, thin P o Pi = Qi o) ilei
= i oA = Do, = ) 5 0.
A. Conversely if P A i=1Ql iElQl' then P Ql for
some 1. Thus, P o VQi = Pi.
Let S = {P|P is a minimal element of the family of all

primes containing Al. Pi is an isolated prime of A if and

r®
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only if P. € 5. Suppose P, £ 8. Then P does not properly
contain any prime ideal P containing A. Hence, Pi b Pj for
all 1 # 1 and Pi is isolated. |

Now suppose Pi is an isolated prime of A. Then P, » A
and P, contains no Pj for which i # j. We claim Pi e S.
Suppose there is a P € S such that Pi > P. Then P, >pP® A.
Hence P = Pj for some j # i. And P, » Pj’ a contradiction.
Therefore Pi is in S.

Theorem 2.17: Suppose that an ideal A in a ring R has

n
a finite irredundant primary representation, A = 191 Qi' and
let P be any prime ideal in R. Then P = /6; for some i if

and only if there exists an element a € R such that a ¢ A

and P = VA: (a).

n
n
k=1 Qk

= n 0 p,., 8ince A is irredundant Q. 0 .  Thus
{k¢i Qk) Ql Q1 o KA1 Qk

- [1 [
there is an a ¢ i Qk such that a # Qi' That is, a ¢ kgi Qk’

a # A. Now prove A:(a) is primary and P is its radical.

Proof: Suppose P = VQi for some i and A =

since A:(a) = {beR[b(a) = A}, alA:(a)] & A= Q,, a £ Q..

Hence A:(a) < /Q. = P. Now aQ, = (21 ¢ ) 0 Q. = A. Thus
b8 i 17k i

ek
Q; @ A:(a) and hence P = /ﬁz'a J/A: (a). Therefore, if x ¢ P,
then x ¢ YA:(a) and x" ¢ A:(a) for some n ¢ J+. Now suppose
bc € A:(a), b ¢ P = /6;, then prove c ¢ A:{a). So

[aclb = a[bec] & a[A:(a)] & A= Qs b ¢ P imply ac ¢ Q-

- n no. =
Also ac £ (a) Thus ac ¢ (k iQk) Ql A and

n 3 L]
k#le #

c € A:(a). Hence A:(a) 1s primary and P is its radical.



20

Suppose there is an a ¢ A and P = VA:(a). Now
n n n
A:(a) = (0 Q.):(a) = 0 [Q.:(a)]l. And P = vA:(a) = [ vQ.:(a).
l=1 1 1:1 1 l=l 1

If a ¢ Qi' then for every y ¢ R, va ¢ Qi’ and y ¢ Qi:a.
Thus R c:Qi:(a) which implies that R = Qi:(a). Also
0;:(a) Jﬁ;?TET‘j R = 0;:(a). Therefore /6I?T§T = R.
suppose a £ Q.. We claim /GITTET = /GI. Now Q. <0Q.:(a)
is always true. SO a[Qi:(a)] o Qi' and a # Qi imply that

Qi:(a){ﬂ /5; = P. Thus Q, = Q.:(a) « /_;, and hence

/@I o /Qi:(a) o //6I = %6;. Therefore VQi:(a) = /51-

Hence P = JQil il /Q12 n... 10 Q5. where {Qin} is the

subset of {Qi} with a ¢ Qir' That is P = Pil n Pi2 Q...

i} Pir =) Pil'Pi2°""Pir' Thus P o Pij for some j, but

Pco P. for all r. Hence P = P.. for some P,.. That is
ir ij ij

P = /Qi for some 1i.

n m
Theorem 2.18: If A = ,0.0Q0. = 10! are two different
i=l=1 i=171 :
irredundant representations, then n = m and VQi = Qﬁ in

some order.

Proof: Let P, = /Q, for each i. There exists an
a £ R such that a ¢ A and A:(a) is primary for Pi. Thus
Pi = /6? = Pj for some j. Hence {Pi}cn {Pi} and similarly
{Pi} = {Pi}' Therefore {Pi} = {Pj} and they have the same
number of elements. Thus m = n. We are now guaranteed
that primes in.one irredundant representation are the primes
in the other irredundant representation, possibly in a
different arrangement.

Example: Let F be a field and F[x,y] the polynomial

ring in two indeterminates., Now (xz,xy) = (xz,xy,yz) n (x)
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and (xz,xy) = (xz,y) 1 (x). There we have (xz,xy) having

two different finite irredundant primary representations.

However, V(x2 yxy,y2) = (X,¥) and /(42 ) = (x,y}. Of course
J{x) = (x). Furthermore, for every positive integer n,

(xz,xy,yn) 1 {x) is an irredundant primary representation
n

for (xz,xy). Moreover, if (xz,xy) = _ﬂlQi is any finite
1=

irredundant primary representation, then n = 2 and the

associated prime ideals of (xz,xy) are (x) and (x,vy).

We also have (1) (xz,y) is primary but is not a prime
power, and (2) (xz,xy) has prime radical (x), but is not
primary.

Theorem 2.19: If A is an ideal of a ring R with a
n
finite irredundant primary representation A = _ﬂlgi, then

1=
A is semi-prime if and only if each Q5 is a prime ideal of R.

Proof: An ideal A is semi-prime if and only if A = VA.
n
Suppose Qi are prime ideals. Let x ¢ VE. Then x" ecA = ingi,
and thus x" ¢ Q; for all i. Since the Q; are prime, X €Q;

n
for all i. Therefore x ¢ [ Q; = A. Hence vA <A, and
i=]

since A « VA is always true, vA = A. Thus A is semi-prime.

Now suppose A is semi-prime. Thus A = VA = /' n 0
q Q:

. i
i=1
n n n
= 1/, = 0P,. Weclaim 2 P. is an irredundant repre-
j=1 1 i=1 % n i=1 2

sentation. Suppose _ﬂlPi is not an irredundant represen-
1~
tation. Then there exists a j ¢ J, such that p, = {1 P..
+ ‘ 1 i#7 1
Then A = /A= 4p, = 0./, »> 19, > A which implies
1451 T iA3T0ET ipgnd P
A = iijQi' a contradiction to irredundancy of the Qi'

Thus the Pi's representation is irredundant.
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Let j be an arbitrary element in {1,2,...,n}. Let

n
a e VOj. Since ,2 /9, # 1 /0., there exists b ¢ ERCI

J" :] 1=1 l?’:J
such that b £ ﬂ /_I . Now ab ¢ /_m oLo¢n /F_) = A C3Qj,

i#j
which implies that ae Qj' and b ¢ VO 5 Thus vQ j c:Qj_
Hence Qj = /6;, and since Qj is primary /Qj is prime.

Therefore Qj is prime.

Theorem 2.20: Let A and B be ideals of a ring R, with

A finitely generated. If AB = A, then there exists an

element b ¢ B such that [l1-b]JA = (0).

Proof: Suppose A = (al,az,...,an) = (al,az,...,an,O).
Let Al = (ai,ai+l,...,an,0) so that Al = A, Ah = (an,O),
and An+1 = (0).

We prove by induction on i the existence of an element

bi ¢ B such that [1-b. ]Ac: Al for i=1,2,...,n+l. In parti-

cular bn+1 = b. For i=1, 4 = Al and bl = 0. Thus

[1-b]A = [1-0]A = 1A A=A, ©A,.

Hence true for i=1.
Now suppose there is a bi £ B such that [1—bj]A c Ai. Then

,a_,0)B.

since AB = A, [1—bi]A = [l—bi]AB a AiB = (a Biyqreeerdy
Thus [1-bi}ai € [l—bi]Ai = [(a Y+ {a. +1) ..;(an+(0)]B

= a,B+a, Bt...+a B, and hence [l-b;la, = i Z.biya ., where
bij, € B and a, ¢ A,;, for i<k <n. Now [1-b,-b..]a

= k§i+lbikak ¢ Ay,q- Let 1-b. . = [1-b,1[1-b,-b..]. Then
bi+1 £ B. Therefore [1l-b, +l]A = [l-bi][l—biwbii]A

= [l_bi_b ][ (a; )+Al+1] [1~bi—bii]([l—bi]A) o [l-bi*bii}A
= [l—bi—b ][(a )+A, +1] = [1~bi—bii]ai+[l-bi—bii]Ai+l

o Ai+l+Ai+1 = Ai+1‘ Hence [1~bn+1]A = An+l = (0).
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Theorem 2.21: If A is a proper ideal in a noetherian

[s+]

n

ring R, then ﬂlA {reR{[l-al+xr = 0 for some acA}.
n=

il
i

H

Proof: Let r e {reR|[l-al-r

0 for some acA}. Then

r = ar = azr = a3r = ...=ar= ... . That is r ¢ A for
[¢0)
allneJ , thus r ¢ 1 Al
+ =1
I n n
Let B = 0 A" and consider AB. Now AB = 1 Q. where
n=1 =11

/ﬁ; = P,, and AB is irredundant. Prove AB = B. It is
sufficient to show B < AB since AB < B is always true. So
we need to show B o Qi' i=1,2,...,n. BSince AB g Qi’
i=1,2,...,n, either B = Q. or (/EY* <= Q, for some n £ J_.
But if (VA" « Q,, then B ad” a (VAT a Q.. Thus B = Q,,
i=1,2,...,n, and B © iElQi = AB. Hence AB = B. By the
previous theorem there is an a ¢ A such that (1-a)B = (0).
Therefore if b ¢ B, then (l1-a)b = 0. Thus b & {reR|
[l-a]r = 0 for some a ¢ A}. Hence nzlAn = {reR|[1—a]r =0

for some achAl.

Theorem 2.22: Let A be a proper ideal of a noetherian

ring R. Then nglAn = (0) if and only if no element of the
set 1-A = {l-alaecA} is a zero divisor in R.

Proof: We need to show that if there is a z ¢ 1-A
such that z is a zero divisor then nzlAn # (0). Let
l1-a = z ¢ 1-A be a zero divisor in R. Then there is an
r#0 and r ¢ R such that [l-alr = 0. Thus r ¢ {reR|
[l1-alr = 0 for some a ¢ A} = nzl n
Conversely if no element in 1-A is a zero divisor, then

A%, Hence 0 A" # (0).
n=1

2 A" = {rer|{l-alr = 0} = {0} = (0).
n=1
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Theorem 2.23: Let A and B be ideals in a noetherian

ring R. Then A" = B for some n € J, if and only if
A < V/B.

Proof: Suppose /A < VB. Now A o (vA)! a /A « /B.
Thus A" < vB. So there exists a k such that (/ﬁ)k = B.
Thus A" o (vB)X o B.

Suppose A" = B. Let y ¢ /A. Then there exists a.t
such that yt € A, Thus ytn e A" = B. Hence ytn et B and
y ¢ vB. Therefore /A = vB.

Theorem 2.24: If every prime ideal of a ring R is

finitely generated, then R is noetherian. That is, every
ideal of R is finitely generated.

Proof: We prove the contrapositive. That is, if there
is an ideal of R that is not finitely generated, then there
is a prime ideal of R which is not finitely generated.
Suppose there exists an ideal of R that is not finitely
generated. The set S of ideals which are not finitely
generated is nonempty. Appealing to Zorn's Lemma, S must
contain a maximal element. Call it I. We claim I is a
prime ideal. Suppose to the contrary that I is not a prime
ideal. There exist a and b ¢ R such that ab ¢ I, a ¢ I,
and b ¢ I.

Now I+(a) is finitely generated, since I < I+(a).

Let I+(a) = (il+r

1 2 72

r; ¢ R. Let J = I:(a) = {yeRlyaeI}. Now Ja<= I. For if

® ¢ Ja, then x = bha for some b £ J; then x = ba ¢ I. Also

i+ ees a_+r i i an
a,i,+r,a, = na), with 1] e I d
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I < I:(a), since b ¢ I:{(a) and b ¢ I. Thus J = I:(a) is
finitely generated and hence Ja is finitely generated.
We prove I = (il,i2,...,in)+Ja. That (il,iz,...,in)+Ja

ex T is clear since ii £ I and Ja @ I. Suppose z £ I; then

]

¢ I+(a) and z = ul(11+r1a)+...+un(1n+rna)

= i e 0. i en . .
ulll+ +unln+(ulrl+ unrn)a, u. ¢ R Thus

(u1r1+,,,+unrn)a = z—(u111+...+un1n) e I, where

U'O_ L) +OUO -
ulrl+ 4pnrn e J Hence (ulr1 +unrn)a e Ja Therefore

z = u111+...+un1n+(ulrl+...+unrn)a € (11,12,...,1n)+Ja.
It follows that I « (il,iz,...,in)+Ja and thus
I = (il’iZ""’in)+Ja is finitely generated, a contra-

diction. Thus I is a prime ideal.
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