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This paper is an investigation of several basic

properties of noetherian rings. Chapter I gives a brief

introduction, statements of definitions, and statements

of theorems without proof. Some of the main results in

the study of noetherian rings are proved in Chapter II.

These results include proofs of the equivalence of the

maximal condition, the ascending chain condition, and

that every ideal is finitely generated. Some other

results are that if a ring R is noetherian, then R[x 1 is

noetherian, and that if every prime ideal of a ring R is

finitely generated, then R is noetherian.
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CHAPTER I

INTRODUCTORY CONCEPTS

This thesis investigates some of the properties of

Noetherian rings. The definitions and basic theorems which

are assumed are stated in this chapter. For proofs of these

theorems see [Z and S]. The structure and properties of

Noetherian rings are developed in Chapter II.

It is assumed that the reader is familiar with the

basic properties of commutative rings and ideals in commut-

ative rings. All rings considered in this thesis are

commutative rings with a unity. Addition of ring elements

is denoted by +. Multiplication of elements is denoted by -,

although the symbol will be omitted except when needed for

clarity. The additive identity is denoted by 0 and the unity

(multiplicative identity) is denoted by 1. Set containment

is denoted by c, with proper containment denoted by <.

A nonempty subset N of a ring R is called an ideal of R

provided x,y in N and r in R imply x-y in N and rx in N.

An element b in a ring R is called a zero divisor if

there exists a non-zero element c in R such that bc = 0;

b is called a proper zero divisor if b is a zero divisor

and b 0 0.
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A ring is called an integral domain (or simply a domain)

if it contains a unity 1 # 0 and contains no proper zero

divisors.

A ring R (with a unity 1 # 0) is called a field if for

each non-zero element b in R, there exists an element c in

R such that bc = 1.

Let D be a domain and let S = {(a,b)Ia,bED and b # 0}.

Then (a,b) and (c,d) in S are equivalent, written (a,b) ~ (c,d),

if and only if ad = bc. It follows that ~ forms an equiva-

lence relation on S, and thus defines a partition of S. Now

for (a,b) E S, let

a _ -
= ab~ = { (x,y) c S I (x,y) ~ (a,b)}}.

Then let K = { (a,b) E S} and define two binary operations

such that if b, d K, then

a c=_ ad+bc andac ac
b d bd a b d bd

'Then {K; +,.} is a field which is called the quotient field

of D.

A subring R of a field F is called a maximal proper

subring of F if and only if (0) < R < F and if there does

not exist a subring R' of F such that R < R' < F. Equiva-

lently, R is a maximal proper subring of F if and only if

(0) < R < F and if there exists a subring R' of F such that

R C R' < F then R = R'.
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An ideal A in a ring R is called a proper ideal if it

is not the zero ideal and not R itself; i.e., if (0) < A < R.

A is said to be a prime ideal in R if c,d c R and cd e A

implies that either c c A or d c A. If A is an ideal in R,

then A is maximal in R provided there does not exist an

ideal B E R such that A < B < R; i.e., A is maximal in R if

B is an ideal in R such that A < B < R implies B = R. An

ideal A in a ring R is called a principal ideal if there

exists an element b in R so that A = {brr E R}. The element

b is called the generator of the ideal A, and A is denoted

by (b). An ideal A in R which is generated by several

elements al,a2 ,...,an E R, denoted by A = (ai,a2 ,...,an),

consists of all finite sums of the form E r a. where r. R.

The ideal A = (aia2,...,an) is called a finitely generated

ideal.

If A and B are ideals in R, then the sum A + B is

defined by A + B = {a+bla c A and b EB}, and the product A-B

n
is defined by A-B = { E aib.|a E A, b. c B, and n = 1,2,...}.

The sum A + B and product A-B are both ideals in R. It is

easily seen that A,B e A + B and A,B A-B.

If A is an ideal in R, then the radical of A, denoted

by 7K, is the set {x E R xn E A for some positive integer n}.

The v is itself an ideal in R which contains A. The

quotient of A by B is defined as

A:B = {xeRIxB c A}.
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Theorem 1.1: If A is an ideal in R, then VA = n P
aca

where the intersection is taken over all the prime ideals

in R which contain A.

It follows immediately from the above theorem that

if P is a prime ideal in R, then VP = P.

An ideal Q in a ring R is primary if and only if

a, b EcR, ab E Q and a g Q implies bm c Q for some positive

integer m.

Theorem 1.2: Let Q be a primary ideal in a ring R.

If P = v, then P is a prime ideal. Moreover, if ab E Q and

al Q, then be P. Also, if A and B are ideals in R such

that Ab a Q and A d Q, then B c P.

Theorem 1.3: Let Q and P be ideals in a ring R. Then

Q is primary and P is its radical if and only if the following

conditions are satisfied:

(1) Q P;

(2) If b E p, then bm esQ for some positive integer m;

(3) If abEQ and a , Q, then b E P.

Note: (3) is equivalent to

(3') If abEQ and b P, then aEQ.

Let A be an ideal in a ring R. Then a prime ideal

P in R is said to be a minimal prime ideal belonging to A

if A c P and there is no prime ideal P' in R such that

A c P' < P.
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Theorem 1.4: If A is an ideal in a ring R and PE R

a prime ideal such that A P, then A V AC P; i.e., an

ideal and its radical are contained in precisely the same

prime ideals.

It follows from 1.4 that if Q is a primary ideal in R,

then / = P is the only minimal prime ideal belonging to Q.

Theorem 1.5: If A is an ideal in a ring R, then the

set R/A = {x+Ajx E R} with addition and multiplication defined

by [x+A] + [y+A] = (x+y) + A and [x+A] - [y+A] = (xy) + A

where x,y E R is a ring, called the residue class ring of

R by A.

A non-empty subset S of a ring R is a multiplicative

system in R if and only if 0 S, and a,b E S implies that

a-b c S. Let S be a multiplicative system in D, then

DS= {a a,b E D, and b E S}

is called the quotient ring of D with respect to the multi-

plicative system S. If P is a proper prime ideal of D, then

D\P defined by

D\P = {X E Dlx t P}

is a multiplicative system in D, and DD\P is usually denoted

simply as D so that

D = {a a,bED, and b P}.
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If A is an ideal of D, then ADS defined by

m

AD = { E a.b. a. c A, b. E D, and m c J }
' 1 1 1 S +

is called the extension of A to DS (or A extended to Ds).

If B is an ideal of D , then B fl D is called the contraction

of B in D (or B contracted to D) .

Let R be a ring and x an indeterminate. Then
n.

R[x] = { E a x 1  a. R and n J+, the positive integers}.
i=0

Theorem 1.6: If R is a domain, then R[x] is a domain.

Theorem 1.7: If A, B, and C are ideals in a commutative

ring R, then A:BC = (A:B):C.

Theorem 1.8: If A and B are ideals in a

ring R, then A:Bn+1 = (A:Bn) :B = (A:B) :Bn for

the positive integers.

Theorem 1.9:

ring R, then A:B =

Theorem 1.10:

ring R, then A:B =

Theorem 1.11:

ative ring R, then

Theorem 1.12:

ative ring R, then

Theorem 1.13:

ring R, then -- =-

Theorem 1.14:

commutative

any n E J,

If A and B are ideals in a commutative

R if and only if B c A.

If A and B are ideals in a commutative

A: (A+B).

If A and {B.} are ideals in a commut-

m m
A: E B. = fl (A:B).

i=1 1 i=1
If A and B. are ideals in a commut-

e
m m
fl A.):B = fl (A.:B).

i=1 i=1
If A and B are ideals in a commutative

/AflB = /X Af .

If A and B are ideals in a commutative

ring R, then /A+B = /'V+ > A + B



Theorem 1.15: If A and B are ideals in a commutative

ring R and if Ak : B for some positive integer k, then

Theorem 1.16: If A is an ideal in a commutative ring

R, then , =VA.

Theorem 1.17: If an ideal A of a ring R has

n k ni k
{a 1 1 a2,... , ak } as a basis, then A has {-TT a n=n

i=1 1 i=1
and 0 < n. < n} as a basis.



CHAPTER II

NOETHERIAN RINGS

Definition 2.1: A ring satisfies the ascending chain

condition for ideals if f given any sequence of ideals

A ,A2,... of R with A C A2 0 ... 0 A C..., there exists

an integer n such that Am = An for all m > n.

Definition 2.2: An ideal A is said to be finitely

generated if there exists an n such that A = (ai,a2 ,...,an).

Definition 2.3: A ring R is said to satisfy the

maximum condition iff every non-empty set of ideals of R,

partially ordered by inclusion, has a maximal element.

Theorem 2.1: Let R be a ring. The following

three statements are equivalent:

(1) R satisfies the ascending chain condition.

(2) R satisfies the maximum condition.

(3) Every ideal of R is finitely generated.

Proof: Show that (1) implies (2). Suppose the maximum

condition does not hold. Then there exists a non-empty set

of ideals, partially ordered by inclusion such that it does

not have a maximum element. Therefore there exists A1, an

ideal in R such that A is not maximal. Hence there is an

A2 such that A < A2. Now A2 cannot be maximal. Thus there

exists A3 such that A1 < A2 < A3 and A3 is not maximal.

8
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Therefore there is An such that Al < A2 < ... < An and An is

not maximal. Hence there is An+i such that

A < A < ... < A < A+< ... and thus a contradiction to
1 2 n n+1

the ascending chain condition. Show that (2) implies (3).

Suppose the maximum condition holds. Show A is finitely

generated. Let A be an ideal in R. Now consider (0). Now

(0) C A and either (0) = A or (0) < A. If (0) = A, then we

are finished; otherwise there exists 0 # a1EA such that

(a1 ) c A. Now either (a1 ) = A or (a1 ) < A. If (a1 ) = A,

then we are finished and A is finitely generated. Suppose

(a1 ) # A. Then there is a2 E A\(a1 ) and (a1 ,a 2 ) [ A. Either

(a1,a2 ) = A or (a1,a2 ) < A. If (a1 ,a2 ) = A, then we are done

and A is finitely generated. This process leads us to an

ascending chain of ideals (a1) < (a 1 ,a 2 ) < (a 1 ,a 2 ,a 3 ) < .. ,'

a. E A. The maximum condition assures us that there is a

maximal element in the set. Say (a1 ,a2 ,...,an). Moreover

(ai,a2,...,an) = A, for if (a1 ,a2 ,...,an) # A, then there

exists an a c A\(ai,a2 ,...,an) and (ai,a2 ...,an) <

(a1,a2''''an'a), contradiction. Thus A is finitely

generated by {aI,a2,...,an}. Show that (3) implies (1).

Suppose A is finitely generated and there exists an

ascending chain of ideals such that A1 C A2 c[... C Anc ...
00

and U A. = A. Show that the chain terminates. Since A is
i=1

finitely generated A = (al,a2,...,ak). Now this means that

a1 E A , a2 E A. ,..., aks A. . Let n = max(il,i2 ,...,ik).
1 2 k j j



10

Then Ail c An, Ai2 C An,. ..,Aik c An. Thus (al,a2,...,ak)
00

c An. Hence A c An, and hence U AiC0An. Now An C Am for
n=1 n

all m > n andA czAn for allim. Thus Am =An for all m > n.

And the ascending chain condition holds.

Definition 2.4: A ring R is noetherian iff R satisfies

any of the three conditions of Theorem 2.1.

Theorem 2.2: If R is a noetherian ring and A is an

ideal in R, then there exists a positive integer n such that

(A)n cC A.

Proof: Suppose A is an ideal in R. Then

= (a1 ,a2 ,...,am) since every ideal in R is finitely

generated. So for each a c/ there exists n sEJ+ such

that a.n1 e A. Let n = n +n +...+n . Now
1 12 in
nk 1  k2  km

(/X)n = (a,a2,...,am n. So {ak -a2 k *..k.amm} is a basis

for (VA)n, 0 < k. < n, k +k +...+k = n. Thus
- -1 2 mn

n1+n2 +.. .+nm = n = k +k 2+. ..+km. Thus there is 1 < j < m

such that k. > n.. For if not, then k1+k2 +. ..+km < n.

Hence a. 3 E A. Therefore a1  -a2  -...- am A since

a. k R for all i. Hence every generator of (/)n is in A.

Thus ( /)n C A.

Theorem 2.3: Let R be a noetherian ring and Q primary

in R. Also suppose A,B are ideals in R such that AB C-Q,

then A c Q or Bn 0 Q for some positive integer n.

Proof: Suppose A,B are ideals in R such that AB C Q.

Suppose Ag Q. Now B = (bi,b2 ,...,bt). There is an a c A\Q.
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Let b. E {b ,b2,...,bt}. Now ab. iQ, thus since alQ,

b niQ for some n eJ+. Also b 1nt,...,btnt Q. Let

n +n2+...+nt= n. Claim Bn c Q. Now Bn = (b,b2,...,bt)

si s2 s
So {b1 -b2  -... "bt I si are nonnegative integers and

s 

22tst

s+s2+1...+st =n} is a basis for Bn. Let bi s-b2s2-...-btt

be any one of the generators of Bn. Since s1 +s2 +...+st = n

= n+n2+...+nt there is 1 < j < t so that s. > n.. For if

not, then sI+s2+...+st < n, a contradiction. Then

b. 3 = b. ib. where m. = s.-n. > 0. Thus b. sQ and it
j J J - J

si s2Jst
follows that b1  b2  ...bt E Q. That is every generator

of B is in Q. Thus Bnc Q.
n

Theorem 2.4: If Q is a primary ideal of a noetherian

ring R and if A and B are ideals of R such that AB Q,

then either A c Q or (/)n a Q for some positive integer n.

Proof: Let Q be a primary ideal of a noetherian ring R.

And let A and B be ideals of R such that AB C Q. Suppose

A 0 Q. By Theorem 2 there exists an msEJ+ such that

( B) m B. Thus by Lemma 1 there is an n E J+ such that

Bn C Q. Hence [(/)mn a Bn cQ. And therefore (/)mn Q.

Theorem 2.5: If R is a noetherian ring, then any

homomorphic image of R is noetherian.

Proof: Let f be a homomorphism such that f:R + R'

where R' = {f(r) Ir c R}. Let A' A' ... c A' c ... be

an ascending chain of ideals in R'. Then f 1(A) f (A)

... f~(A') c ... where f (A!) are ideals in R and we
nd1

have an ascending chain of ideals in R. There is an n )N
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-1 -1such that f (A') = f (A') for all n >m. And A'
m n m

-1 -1
= f(f (A')) = f(f (A')) = A' for all n>m. Thus R'

m n n

is noetherian.

Theorem 2.6: If A is an ideal of a noetherian ring R,

then the residue class ring R/A is noetherian.

Proof: R/A is the homomorphic image of R under the

natural map f defined by f(r) = r+A for all rcE R. Thus

R/A is noetherian by Theorem 2.5.

Theorem 2.7: If A, B, and C are ideals of a ring R

such that (1) B c C, (2) B fl A = C fl A, and (3) B/A = C/A,

then B = C.

Proof: Let c E C. Now B/A = {b+Alb E B} and

C/A = {c+Alc EC}. Since B/A = C/A, there exists some b E B

such that b+A = c+A. Hence c-b = a c A for some a c A. Now

b c C since b c B c C. Thus c-b = a C. Hence a E A 1 C = A fl B

and a EB. So c = a+b c B. Therefore C e B and B = C.

Theorem 2.8: Let A be an ideal in a ring R. If A and

R/A are both noetherian rings, then R is also a noetherian ring.

Proof: Suppose A is an ideal in R, and let

A 1c A2 ... c An ... be any ascending chain of ideals in

R. Now Al fl AcA2 flAc ... cAn fl A c... is an ascending

chain of ideals in A, since Ai fl A for each is J+ is an ideal

in A. Thus there is an r E J+ such that An i A = Ar f A,

for all n >r. Now consider Al/A c A2 /A e ... C An/A c...

an ascending chain of ideals in R/A. There is an s E J+ such

that An/A = As/A for all n > s. Let M = max{s,r}. For all
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For all n > m A nfl A = A fl A, A IA = A IA, and A c A . Thus
- n m n m m n

by Theorem 2.7 An = Am for all n >m. Thus R is noetherian.

Theorem 2.9: If A, an ideal of a ring R, is not prime,

then there exist B and C ideals in R such that A < B, A < C,

and BC e A.

Proof: Suppose A is an ideal of a ring R and is not

prime. Since A is not prime there exist b / A and c /A such

that bc eFA. Let b, c E R such that b and cIj A. Then

A < A+(b) and A < A+(c) . Let A+(b) = B, and let A+(c) = C.

Now A < B and A < C and [A+(b)] [A+(c)] = A +(b)A+(c)A+(b) (c)

= A +(b)A+(c)A+(bc) . Now A 2 A, (b)A c A, (c)A e A, and

(bc) a A, since bc E A. Thus BC e A.

Theorem 2.10: Every ideal in a noetherian

ring R contains a product of prime ideals.

Proof: Let S = {A, ideal in RIA does not contain a

product of primes}. Now claim S is empty. Suppose S is not

empty. Since R is noetherian,S has a maximal element. Call

it P. Now P is not prime, for if it were prime, then it would

contain a product of primes. Thus there exist ideals B and

C in R such that P < B, P < C, and BC c P. Also B I S and

C S. Hence each of B and C contains a product of prime

ideals. Thus BC contains a product of prime ideals. Thus

P contains a product of prime ideals, a contradiction to the

supposition. Hence S is empty.

Theorem 2.11: If R is noetherian, then R[x] is

noetherian.
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Proof: Suppose (0) A is an ideal in R[x]. For each

n > 0 let A = {rLE RIr=0 or rxn+...+a x+a EA}. We note that
-n 1 0

An is an ideal in R and An An+1. Suppose a,bLEAn and cLc R;

then there exist f1 (x), f2 (x) cLA such that

f (x) = axn+. . .+a 1 x+a0 and f2 (x) = bxn+.. .+b1 +b0 . Moreover,

f1 (x) -f 2 (x) = (a-b)xn+...+(a 1 -b 1 )x+(a 0 -b 0 ) E A. Hence,

either a-b = 0 is in An or a-b 0 0 is the leading coefficient

of a polynomial in A of degree n and again a-b E An. Also

cf1 (x) = (ca)xn+...+ca1 x+ca0 is a polynomial in A of degree

n with leading coefficient ca. Thus ca L An and An is an

ideal in R. Now A n A follows from the fact that if
n n+1

b e An, then either b = 0 and is inAn+l or b is the leading

coefficient of a polynomial f(x) in A of degree n, and hence

is the leading coefficient of the polynomial xf(x) in A of

degree n+1. Thus b L An+i and A nc An+i'

Since R is noetherian there is a positive integer t

such that At= An for all n > t. Moreover, each A is

finitely generated, say An = (rn ,rn, ... r n ). For each

rn .0' n < t, 1 < j < in, let fn (x) be a polynomial in

ni.

i d e a g e e r a t d b t h e p o l n o m i l s n .x ) T h a i s 3
J

B = ({fn(x)10< n < t, 1<j <jn}) = (f0  Oi(x),...,

3 1 n

ft (x),...,fti (x)). We prove A = B, and hence A is finitely
1 n

generated. It is clear that B C A, since the fn (x) are in

J
A. Let g(x) be any polynomial in A of degree k > 0. We

prove g(x) is in B by induction on k the degree of g(x).
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For k = 0, g(x) = g0 and, since g0 is the leading

coefficient of a polynomial in A of degree Zero, it follows
.Ln

that g (x) = g 0 is in A0. Now g (x) = g 0 = j1sjro.

in

= E s f0 (x) s B where s. R, 1 < j < in. Thus B
j=1

contains all polynomials in A of degree zero.

Now suppose B contains all polynomials in A of degree

less than k and let g(x) be any polynomial in A of degree

k
k, say g (x). = rx +...+g1 (x)+g0 , r #0 . For k < t, r E Ak,

n

hence r = E s .rk . for some s. c R. Consider h (x)
in j=1. 7 3

= E s .fkj(x) E B C A. Now h (x) has leading coefficient
j=1 J 3

r and is of degree k. And

i
n

h (x) = E s fk (x) = s fk (x)+...+s fki (x)
j=l i 1 n n

= sI (rk xk+...+c 1)+...+s (rk, sk+...+c )
n nn1 n

kk
(s rk +...+s.c .) xk+...+ (syrk+...+s .c )}

k1 in i1 n n

= rx +.. .+h0

Thus w(x) = g (x)-h (x) - (rxk+...+g0)-(rxk+...+h0) is a

polynomial in A of degree less than k and hence by the

induction hypothesis is in B.
n

Otherwise, if k > t, then r Ak =At and r = 1srt
n k-tj

for some j R. Consider m(x) = kEs.x - 1g3(x) F-B A.
j=1 J tf.gx

Now

i
n k-

m(x) = sxk-t f (x)
j=1 I t
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k-t t t
= s x (rt x +...+d 1 )+...+s. (rt x +...+d.

1 n Ln n

k
= (s1rt +...+s. rt. )x +...+s. d.

1 n in n n

= rxk+...+m0'

Thus n(x) = g (x)-m(x) = (rxk+...+g 0 )-(rxk+...+m 0 ) is a

polynomial in A of degree less than k and hence is in B.

Hence g (x) = n(x)+m(x) is in B and A c B. Thus A = B.

Definition 2.5: Let A be an ideal of a ring R. Then

A is irreducible if and only if it is not a finite inter-

section of ideals of R properly containing A; otherwise A

is reducible.

Theorem 2.12: Every ideal in a noetherian ring is a

finite intersection of irreducible ideals.

Proof: Let F be the set of all ideals of R which are

not finite intersections of irreducible ideals. Suppose

F # 0. Then there exists an ideal B which is a maximal

element in F. Let E be any ideal of R which properly

contains B; then E F. Hence E is a finite intersection

of irreducible ideals. Since B E F, B is not irreducible.

Thus B = A1  1 A2 11 ... fi Ak, and B < A., for 1 < i < k.
ni n2 where

Now A = , fl A1 . where Al. is irreducible, A2 = A2 .1 i=1 1 nk2 =1

A2i is irreducible, ... , and Ak = 1 Aki where Aki is

irreducible. Thus B is a finite intersection of irreducible

ideals, a contradiction. Hence F = 0 and the theorem follows.

Theorem 2.13: If R is a noetherian ring, then every

irreducible ideal of R is primary.
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Proof: We prove that if A is an ideal of R and A is

not primary, then A is reducible. Since A is not primary

there exist a,b c R such that ab c A, b i A and no power

of a is in A.

Consider A: (a) c A: (a ) c ... A:(an) c ... which is

an ascending chain of ideals of R. For if x c A: (a ) then

i i i . 1+1
x(a ) c A and xa E A. Now xa -a E A implies xa E A

which means that x(ai+1) A. Thus x E A:(ai+l). Hence

there exists an integer n such that A: (xn) = A: (an+l

We prove A = [A+(an) ] f [A+(b) ] where A < A+(an

and A < A+ (b) . Clearly A c [A+(an) ] f [A+ (b) ] . Let

x c [A+(an)] I [A+(b)] - then x = a1 +r1 an = a2 +r 2 b, for

al, a2 E A, r1,r2 E R. Thus r1an = a2-a1+r2b and

r ian+l= a[a 2 -a 1 +r 2 b] = [a 2 -a1 ] a+r 2 [ab] E A. Thus

rL E A: (an+1) = A:an. Hence r1 an LcA and x = a1 +rlan E A.

Therefore A = [A+(an)] fl [A+(b)] where A < A+(an) and

A < A+(b) since an 4 A and b A. Thus A is reducible.

Theorem 2.14: Every ideal in a noetherian ring can

be represented as a finite intersection of primary ideals.

Proof: The theorem follows from Theorems 2.12 and 2.13.
n

Definition 2.6: A representation A = fl Q., where the
:L=1 i

Q. are primary ideals, is called a primary representation of

the ideal A. The Q are called the primary components of A

and are called the associated prime ideals of A.
n

Definition 2.7: A primary representation A = .lU Q. is
i=1 I

said to be irredundant if it satisfies the following

conditions:
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(1) no Q. contains the intersection of the other

primary components, i.e. f Q. q Q. for i=1,2,...,n.
j#i-J 1

(2) / V v'T for i# j.
SJ

Theorem 2.15: Every ideal in a noetherian ring has

a finite irredundant representation.
n

Proof: Suppose A = n Q. is a primary representation.
i=1 1

Let Q! be the intersection of all those primary components

which have the same associated prime. That is, if

= 1i2 ' = r, then take Q1 = Qi fQi2 . Qir'

Now Q! is primary and /QT = /Qir andA = IQn. Tnthis way

we make the associated primes distinct. Next delete one

at a time those ideals Q! which contain the intersection

of the remaining ones.

Definition 2.8: A minimal element in the family of

associated prime ideals of an ideal A of a ring R is called

an isolated prime ideal of A.

Theorem 2.16: Let R be a ring, A an ideal of R such

that A has a finite irredundant primary representation
n

A = . Q., and let P. = /d V. A prime ideal P of R contains
i=1 1 1 1

A if and only if P contains some P . Thus, the isolated

prime ideals of A are the minimal elements of the family of

prime ideals of R which contain A.
n

Proof: If P e P. for some i, then P o P. O Q. n f Q.
n n

= A. Conversely if P A = flQ. H Q., then P Q Q. for
j=11i i=11 1

some i. Thus, P / = P..

Let S = {PIP is a minimal element of the family of all

primes containing A}. P . is an isolated prime of A if and
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only if Pi c S. Suppose P. E S. Then P. does not properly

contain any prime ideal P containing A. Hence, P P. for

all j # i and P. is isolated.

Now suppose P. is an isolated prime of A. Then P. A

and P. contains no P. for which i # j. We claim P. E S.
2. ~J1

Suppose there is a P e S such that P. > P. Then P. > P Q A.

Hence P P. for some j # i. And P. i P., a contradiction.

Therefore P. is in S.

Theorem 2.17: Suppose that an ideal A in a ring R has
n

a finite irredundant primary representation, A = a Q, and
i=1 2

let P be any prime ideal in R. Then P = /Q for some i if

and only if there exists an element a c R such that a A

and P = /A:(a).
n

Proof: Suppose P = for some i and A = k=lIk

- (ki Q ) Q.. Since A is irredundant Q. k i .k' Thus

there is an a c , kQ such that a Q.. That is, a c kiQ,

a t A. Now prove A:(a) is primary and P is its radical.

Since A: (a) = {b Rb(a) A}, a[A: (a)] c A c Q., a I Q .

Hence A: (a) c = P. Now aQ. c ( fl.Q) fl Q. = A. Thus
2.2. k#i k i

Q . c A: (a) and hence P = /Q v /A: (a) . Therefore, if x P,

then x TA: a and xn c A: (a) for some n J +. Now suppose

bc e A: (a) , b i P = /, then prove c A: (a) . So

[ac]b = a[bc] 6 a[A: (a)] c A c Q , b P imply ac c Q .

Also ac c (a) c .Q . Thus ac e (iQkf) fQi = A and

c E A:(a). Hence A:(a) is primary and P is its radical.
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Suppose there is an a j A and P = A: (a). Now
n n n

A:(a) = ( QflQ):(a) = fl [Q.:(a)]. And P = /A:(a)T= fl /.:(a)T.
i=1' i=1 1=1

If a e Q., then for every y c R, ya c Q., and y Q :a.

Thus R c:Q.: (a) which implies that R = Q : (a) . Also

Q (a) C /Q :(a) R = Q.: (a) . Therefore Q.F: (a) = R.

Suppose a iQ We claim /Q : (a) = V. Now Qi Q,: (a)

is always true. So a[Q.: (a)] Q., and a Q. imply that

Q.: (a) /T = P. Thus Q. c Q.: (a) e /5~, and hence

1 / (a) / = Therefore Q: (a) =/.

Hence P =.l/fl f ./ninwhere {Q. } is the

subset of {Q} witha Qir. That is P = P flP fl ...

f P. P. -P ... P. . Thus P P.. for some j, but
ir il i2 ir 213

P P. for all r. Hence P = P.. for some P... That is
2r13 213

P = for some i.
n m

Theorem 2.18: If A = i Q. = fl Q! are two different
j=1I i=121

irredundant representations, then n = m and Q = /Q in

some order.

Proof: Let P. = /Q for each i. There exists an
21 21'

a c R such that a i A and A:(a) is primary for P . Thus

P. = = P' for some j. Hence {P.} c {P!} and similarly

{P'.} {P.}. Therefore {P.} = {P} and they have the same

number of elements. Thus m = n. We are now guaranteed

that primes in one irredundant representation are the primes

in the other irredundant representation, possibly in a

different arrangement.

Example: Let F be a field and F[x,y] the polynomial

2 2 2
ring in two indeterminates. Now (x ,xy) = (x ,xy,y ) n (x)
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and (x2y) (x 2 ,y) fl (x). There we have (x2,xy) having

two different finite irredundant primary representations.

However, x2 yy2 ) = (x,y) and (x2,y)= (x,y) . Of course

= (x). Furthermore, for every positive integer n,

(x2 ,xyyn) (x) is an irredundant primary representation
n

for (x2,xy) . Moreover, if (x2 ,xy)= 1 Q. is any finite
i=1

irredundant primary representation, then n = 2 and the

associated prime ideals of (x2,xy) are (x) and (x,y).

We also have (1) (x2,y) is primary but is not a prime

power, and (2) (x2,xy) has prime radical (x), but is not

primary.

Theorem 2.19: If A is an ideal of a ring R with a
n

finite irredundant primary representation A = .n1 Q., then

A is semi-prime if and only if each Q is a prime ideal of R.

Proof: An ideal A is semi-prime if and only if A = A.
n

Suppose Q. are prime ideals. Let x E /A. Then xn EA = 1Q

and thus xn E Q. for all i. Since the Q are prime, x EQ.
1 n

for all i. Therefore x E n Q. = A. Hence VA A, and
i=1 1

since A c 1/X is always true, VT = A. Thus A is semi-prime.

Now suppose A is semi-prime. Thus A = A = / n

i=1
n n n

= fl = n P.. We claim f P. is an irredundant repre-
i=l 1 i=1 1 n i=11

sentation. Suppose , P. is not an irredundant represen-
1=1 i

tation. Then there exists a j E sJsuch that P. U P..
+ 1 i J 1

Then A = IA = 1 P. = U.I/~ Uif Q. A which implies
i#jl i#J 1 ifj1

A = AQ, a contradiction to irredundancy of the Q

Thus the P. 's representation is irredundant.
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Let j be an arbitrary element in {1,2,...,n}. Let
n

a c /Q~. Since n /d~T# f /7, there exists b /,
J 1ij 1 i=1 1  ij

such that b t Q~~ = A. Now ab c fl~ a ( n -) = A CQ.,
1=1 i J ifj J

which implies that a c Q, and b _ A5~. Thus /Q~~ cQ ..
J J J -J

Hence Q. = /Q~, and since Q. is primary /Q~~ is prime.
JJ J J

Therefore Q. is prime.
J

Theorem 2.20: Let A and B be ideals of a ring R, with

A finitely generated. If AB = A, then there exists an

element b c B such that [1-b]A = (0).

Proof: Suppose A = (ai,a2,...,an) = (ai,a2 ,...,an,0).

Let A = (a.,a. ,...a ,0) so that A = A, A = (a ,0),
1 i i+1' ~ n 1 n n

and An+1 = (0).

We prove by induction on i the existence of an element

b. E B such that [1-b.]A c A. for i=1,2, ... ,n+1. In parti-

cular bn+ =b. For i = 1, A = A1 and b1 = 0. Thus

[1-b] A = [1-0]A = 1A = A = A c:A1 . Hence true for i=1.

Now suppose there is a b. E B such that [1-b.]A A.. Then
1 J 1

since AB = A, [1-b.]A = [1-b.]AB e A.B = (a.,a. ,...a ,0)B.
1 1 1 i'i+l''n

Thus [1-b]a. E [1-b.]A. e [(a.)+(a. )+...+(a +(0)]B
1 1 1 1 1 i+1 n n

a.B+a.i B+..,+a B, and hence [1-b.]a. = kEkbika , where

bi E B and a E A., for i < k < n. Now [1-b.-b. .]a.
kk 1 - 1 11 1

n

k=Ei+l bikak e A . Let 1-b [1-b.][1-b.-b..]. Then

bi+1 E B. Therefore [1-bi+1]A = [1-b.] [1-b.-bi i]A

= [1-b.-b..][(a.)+A ] = [1-b.-b..]([1-b.I]A) [1-b.-b..i]A.
1 11 i i+1 1 11 1 1 11 1

- [1-b.-]b. .I][+(a )+A I] = [1-b.-b..ii]a.+[1-b.-bi..i]A.

cA. +A. = A.+. Hence [1-b +]A = A =1(0).
i+1 i+I i+1 n+1 n+1 =()



23

Theorem 2.21: If A is a proper ideal in a noetherian
00

ring R, then fl An = {rERI [1-a] -r = 0 for some aA}.
n=1

Proof: Let r c {rER l[1-a] -r = 0 for some aA}. Then

r = ar = a2r = air = ... = anr = ... . That is r An for
00

n
all n E J+, thus r E fnA.

+ CO n=1 n

Let B = fl An and consider AB. Now AB = fl Q. where
n=1 i=1

= P., and AB is irredundant. Prove AB = B. It is

sufficient to show B CAB since AB c B is always true. So

we need to show B c Q, i=1,2,...,n. Since AB Qi,

i=1,2, ... ,n, either B Q or (/ )n Q for some n J+'

But if (,/-)n Q , then B e An (/ )n c Q.. Thus B c Q ,
n

i=1,2,...,n, and B c Qi = AB. Hence AB = B. By the

previous theorem there is an a c A such that (1-a)B = (0).

Therefore if b c B, then (1-a)b = 0. Thus b e {rERI
00

[1-a]r = 0 for some a c A}. Hence nf An = {rERI [1-a]r = 0
n= I

for some acA}.

Theorem 2.22: Let A be a proper ideal of a noetherian

ring R. Then fl An = (0) if and only if no element of the
n=1

set 1- A = {1-alaEA} is a zero divisor in R.

Proof: We need to show that if there is a z c 1-A

such that z is a zero divisor then aAn # (0). Let
n=1

1-a = z c 1-A be a zero divisor in R. Then there is an

r # 0 and r c R such that [1-air = 0. Thus r {rRJ
00 0

[1-air = 0 for some a E A} = fl An. Hence fi An (0).
n=1 n=1

Conversely if no element in 1-A is a zero divisor, then
00

fl An = {rERI [1-a]r = 0} = {0} = (0) .
n=1
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Theorem 2.23: Let A and B be ideals in a noetherian

ring R. Then An c B for some n E J+ if and only if

Proof : Suppose /A e 5. Now An n (/A) nc c, /B.

Thus An c- 4/. So there exists a k such that (/)k c B.

Thus Ank (v)k B.

Suppose An c B. Let y c /d. Then there exists a t
t tn n tn

such thaty LcA. Thus y EA cB. Hence y c B and

y c V. Therefore / c / .

Theorem 2.24: If every prime ideal of a ring R is

finitely generated, then R is noetherian. That is, every

ideal of R is finitely generated.

Proof: We prove the contrapositive. That is, if there

is an ideal of R that is not finitely generated, then there

is a prime ideal of R which is not finitely generated.

Suppose there exists an ideal of R that is not finitely

generated. The set S of ideals which are not finitely

generated is nonempty. Appealing to Zorn's Lemma, S must

contain a maximal element. Call it I. We claim I is a

prime ideal. Suppose to the contrary that I is not a prime

ideal. There exist a and b c R such that ab c I, a 4 I,

and b g I.

Now I+(a) is finitely generated, since I < I+(a).

Let I+(a) = (ii+ria,i2 +r 2 a,...,an+rna), with i. E I and

r. E R. Let J = I:(a) = {yERjya I}. Now Jac I. For if
J

x E Ja, then x = ba for some b J; then x = ba I. Also
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I < I:(a), since b E I:(a) and b g I. Thus J = I:(a) is

finitely generated and hence Ja is finitely generated.

We prove I = (iii21''i n)+Ja. That (i,i2 '...,i)+Ja

e I is clear since i. E I and Ja C I. Suppose z c I; then

z c I+(a) and z = u1 (i1+r 1a)+...+un(i+ra)

= u 1 i 1 +...+uJi + (u1r1+...+unrn)a, u. R. Thus

(u r +,,,+unrn)a = z-(u i1+...+u i ) E I, where
ii1 n n 1 1 n n

u r +...+ur eJ. Hence (u r+...+u r )a Ja. Therefore
1 1 n n 1 1 n n

z = u i +...+ui +(u r +...+u r )a E (i ,i2''' ' )+Ja.

It follows that I e (i1,i2 ,...,in)+Ja and thus

I = (i1 ,i 2 ... , in)+Ja is finitely generated, a contra-

diction. Thus I is a prime ideal.
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