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In 1943 R. C. Buck showed that a sequence x is con-

vergent if some regular matrix sums every subsequence of x.

Thus, for example, if every subsequence of x is Cestro sum-

mable, then x is actually convergent. Buck's result was

quite surprising, since research in summability theory up

to that time gave no hint of such a remarkable theorem.

The appearance of Buck's result in the Bulletin of the

American Mathematical Society created immediate interest

and has prompted considerable research which has taken the

following directions: (i) to study regular matrix transfor-

mations in order to shed light on Buck's theorem, (ii) to

extend Buck's theorem, (iii) to obtain analogs of Buck's

theorem for sequence spaces other than the space of conver-

gent sequences, and (iv) to obtain analogs of Buck's theorem

involving processes other than subsequencing, such as

stretching. The purpose of the present paper is to con-

tribute to all facets of the problem, particularly to (i),

(iii), and (iv).

In 1944 R. P. Agnew obtained a result closely related

to Buck's theorem. Given a bounded sequence x and a regular



matrix A, Agnew was able to demonstrate the existence of a

subsequence y of x such that each limit point of x is a

limit point of Ay. Recently, J. A. Fridy has obtained a

theorem similar to Buck's in which "subsequence" is replaced

with "rearrangement." In addition, he has characterized Z
by showing that x EZ if there is a sum preserving Z-Z

matrix that transforms every rearrangement of x into 1.

In 1970 I. J. Maddox obtained what might be considered

as the ultimate improvement of Buck's theorem. He consi-

dered a matrix A which summed every subsequence of a diver-

gent sequence x and showed that A must be Schur. Since the

class of Schur matrices is disjoint from the class of

regular matrices, Buck's theorem follows as a corollary.

The second and third chapters of this paper contain theorems

which follow the pattern established by Maddox. In the

second chapter an analog is proved in which "subsequence"

is replaced with "rearrangement." The third chapter deals

with absolute summability, and a theorem is obtained which

has Fridy's characterization of k as a corollary. This

theorem shows that if x is in c0 but not in k and the matrix A

transforms every rearrangement of x into Y, then A is not

sum-preserving X-. In addition, the following question

proposed by J. A. Fridy is answered in the affirmative.

Is a null sequence x necessarily in I in case there is a sum-

preserving k- matrix A such that Ay is in I9for every subse -

quence y of x?

.. ........



In 1958 F. K. Keogh and G. M. Petersen were able to

extend Buck's result by showing that x is convergent if

some regular matrix A sums a set of subsequences of x which

is of the second category. The fourth chapter of this

paper contains analogs to this theorem in which the re-

quirement of regularity is weakened somewhat. In addition,
the sequence space Z, as well as c, is investigated, and

rearrangements as well as subsequences are considered.

Typical of the results in Chapter IV are theorems which

show that a sequence x is convergent if there exists a

non-Schur matrix A with convergent columns that sums a set

of subsequences (rearrangements) which is of the second

category.
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CHAPTER I

INTRODUCTION

In 1943 R. C. Buck showed that a sequence x is conver-

gent if some regular matrix sums every subsequence of x.

Thus, for example, if every subsequence of x is Cesaro sum-

mable, then x is actually convergent. Buck's result was

quite surprising, since research in summability theory up

to that time gave no hint of such a remarkable theorem.

The appearance of Buck's result in the Bulletin of the

American Mathematical Society (3) created immediate interest

and has prompted considerable research which has taken the

following directions: (i) to study regular matrix transfor-

mations in order to shed light on Buck's theorem, (ii) to

extend Buck's theorem, (iii) to obtain analogs of Buck's

theorem for sequence spaces other than the space of conver-

gent sequences, and (iv) to obtain analogs of Buck's theorem

involving processes other than subsequencing, such as

stretching. The purpose of the present paper is to con-

tribute to all facets of the problem, particularly to (i),

(iii), and (iv).

One of the major contributions in the study of sequence

spaces through matrix maps is the Silverman-Toeplitz (2, 14,

16) characterization of regular matrices which was obtained
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in 1911 (Theorem 1.2). In 1921 H. Steinhaus (15) made use

of this characterization in showing that no regular matrix

transforms m (the space of all bounded complex sequences)

into c (the space of all convergent complex sequences).

This result of Steinhaus was the major tool used by Buck

in obtaining his characterization of c. In 1944 R. P. Agnew

(1) obtained a result closely related to Buck's theorem.

Given a bounded sequence x and a regular matrix A, Agnew was

able to demonstrate the existence of a subsequence y of x

such that each limit point of x is a limit point of Ay

(Theorem 1.4). Thus, in the case of bounded sequences,

Agnew's theorem includes Buck's.

Results similar to those of Buck and Agnew have been

obtained in which stretchings or rearrangements, rather than

subsequences, have been considered. In 1973 D. F. Dawson

(5, p. 456) showed that there exists no analog to Buck's

theorem in which c is replaced by BV (the space of all

sequences of bounded variation)., But he was able to obtain

characterizations of c, BV, and other spaces by proving

analogs to Buck's theorem replacing "subsequence" with

"stretching" (5, p. 457). Recently, J. A. Fridy (8) has

obtained a theorem similar to Buck's in which "subsequence"

is replaced with "rearrangement." In addition, he has

characterized k (the space of all complex sequences x such

00

that Z qx I1<oo) by showing that x.Ek if there is a sum
q=l
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preserving Z-Z matrix (Definition 1.4) that transforms every

rearrangement of x into k.

In 1970 1. J. Maddox (11) obtained what might be con-

sidered as the ultimate improvement of Buck's theorem. He

considered a matrix A which summed every subsequence of a

diVergent sequence x and showed that A must be Schur (Defi-

nition 1.3, Theorem 1.6). Since the class of Schur matrices

is disjoint from the class of regular matrices, Buck's

theorem follows as a corollary. Recently, Dawson (6) has

obtained an analog to this result of Maddox involving

stretchings.. The second and third chapters of this paper

contain theorems which follow the pattern established by

Maddox and Dawson. In the second chapter an analog is proved

in which "subsequence" is replaced with "rearrangement"

(Theorem 2.3). The third chapter deals with absolute sum-

mability, and a theorem is obtained which has Fridy's char-

acterization of X as a corollary. This theorem shows that

if x is in c0 (the space of all null complex sequences)

but not in k and the matrix A transforms every rearrangement

of x into Z, then A is not sum-preserving t-Z (Theorem 3.2).

In addition, the following question proposed by J. A.

Fridy (8, p. 9) is answered in the affirmative. Is a.null

sequence x necessarily in t in case there is a sum-preserving

Z-k matrix A such that Ay is in k for every subsequence y

of x? (Theorem 3.1).
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In the study of sequence spaces in analysis, topolo-

gical structures are often supplied. Hence equipping the

space of all subsequences (rearrangements) of a sequence x

with a topology is natural. Thus in 1958 F. K. Keogh and

G. M. Petersen (9) were able to extend Buck's result by

showing that x is convergent if some regular matrix A sums

a set of subsequences of x which is of the second category.

The fourth chapter of this paper contains analogs to this

theorem in which the requirement of regularity is weakened

somewhat. In addition, the sequence space k, as well as c,

is investigated, and rearrangements as well as subsequences

are considered. Typical of the results in Chapter IV are

theorems which show that a sequence x is convergent if

there exists a non-Schur matrix A with convergent columns

that sums a set .of subsequences (rearrangements) which is

of the second. category (Theorem 4.1, Theorem 4.3).

The following notation conventions will hold throughout

this paper:

1. s represents the set of all complex sequences,

2. m represents the set of all bounded complex sequen-

ces,

3. c represents the set of all convergent complex

sequences,

4. co represents the set of all null complex sequences,

5. cs represents the set of all complex sequences x

00

such that Z x converges,
q=1 q
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6. k represents the set of all complex sequences x such

that Ix fx <OD
q=l q

7. if x Es and y is a subsequence of x, then x \y repre-

sents the subsequence of x such that xq is a term of

x \y if and only if xq is not a term of y.

The following definitions and theorems will be utilized

in subsequent chapters:

Definition 1.1. Let A be a matrix with entries

a pq(p=1,2,3,...; q=1,2,3,...); then

1. A is row finite if for each row p there exists

Np >0 such that qp = 0 for every q >Np
2. A is the identity matrix if a = 1, p = 1,2,3,...

pp
a = 0 otherwise;
pq 00

3. 'Ax is the sequence (Z a xq)
q=l p q p=l

4. A sums the sequence x if Ax Ec.

Theorem 1.1. If A is a matrix, then Ax Ec0 for every

x Em if and only if (Z fa I)" Ec.
q=1 p=

Definition 1.2. The matrix A is regular if Ax = y Ec

for every x Ec and lim x = lim y.
q q iqyq.

Theorem 1.2. The matrix A is regular if and only if

1. limpa = 0 for q = 1,2,3,...;

2. lim aE = 1; andpq=lapq
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3. There exists M >0 such that Zlap 1<M,
q=1

p = 1,2,3 . (2, 14, 16).

Theorem 1.3. The sequence x is convergent if there

exists a regular matrix A that sums every subsequence of

x (3, 4).

Theorem 1.4. If x is bounded and A is regular, then

there exists a subsequence y of x such that every limit

point of x is a limit point of Ay.(j).

Definition 1.3. The matrix A is Schur if A sums every

element of m.

Theorem 1.5. The matrix A is Schur if and only if

1. Lim a = a for q = 1,2,3,...; and
p pq q

00 00

2. Lim pZ Iaj| = J Ia q|-(13).
P q=1 P q=l

Theorem 1.6. If x is divergent and A is a matrix such

that A sums every subsequence of x, then A is Schur (11).

Theorem 1.7. The sequence x is convergent if there

exists a matrix A satisfying the first two properties of

regularity (Theorem 1.2) which sums .every stretching of x

(6, p. 457).

Theorem 1.8. If x is a sequence having a finite limit

point and A is a matrix satisfying the first two properties

of regularity, then there exists an increasing sequence of

positive integers (p1 ,p2Vp 3 ,...) and a subsequence y of x
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such that every finite limit point of x is a limit point of

00

(7E a y )00 (5, p. 458).
q=l q i=1

Theorem 1.9. If x is divergent and A is a matrix which

sums every stretching of x, then there exists N such that

1. Limpap = aq, q> N,

2. E a converges, and
q=N+l q

00

3. Lim E (a -a ) = 0. (6).
P q=N+1 pq q

Definition 1.4. The matrix A is called an k-k matrix

provided Ax is in k whenever x is in Z. If, in addition,

00 00 CO

11 Z a x = x, whenever x is in k, then A is a sum-
p=l q=l pq q q=l

preserving Z-2 matrix (8, p. 6).

Theorem 1.10. The matrix A is k-k if and only if there

exists M> 0 such that E ja f < M for q = 1,2,3,...

(7, 10, 12).

Theorem 1.11. The matrix A is a sum-preserving 9-9,

matrix if and only if A is an Z-k matrix and Z a =

p=l pq

for q = 1,2,3,... . (8).

Theorem 1.12. The null sequence x is in k if and only

if there exists a sum-preserving k-9 matrix A such that

Ay E Z for every rearrangement y of x (8, p. 7).
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Definition 1.5. A topological space is called a Baire

space if the intersection of every sequence of dense open

sets is dense, (17, p. 178).

Theorem 1.13. Every complete semimetric space is a

Baire space (17, p. 178).

Definition 1.6. Let X be a topological space and K be

a subset of X; then

1. K is nowhere dense in X if the interior of.K is

empty;
00

2. K is of the first category in X if K = f K ,
n=l n

where each Kn is nowhere dense in X;

3. K is of the second category in X if K is not of

the first category in X (17, p. 179).

Theorem 1.14. A topological space X is a Baire space

if and only if each nonempty open set is of the second

category in X (17, p. 179).

Theorem 1.15. A Baire space is of the second category

in itself (17, p. 180).

Theorem 1.16. A G6 in a complete semimetric space

must be a Baire space (17, p. 183).

----------

I
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CHAPTER II

SUMMABILITY OF REARRANGEMENTS

The sequence y is called a rearrangement of the sequence

x provided that there is a one-to-one function f from the

positive integers onto themselves such that for each k,

y iik). (9, p. 1). This chapter contains analogs to

Theorems 1.3 and 1.4 in which rearrangements rather than

subsequences are considered. These results are then general-

ized by proving a theorem similar to Theorem 1.6 in which

"subsequence" is replaced with "rearrangement." Many of the

results in this chapter are also paralleled by findings of

D. F. Dawson (7, 8) involving stretchings. In addition,

Theorem 2.1 and Corollary 2.2 closely resemble results of

J. A. Fridy (9), differing in that they do not presume the

third property of regularity (Theorem 1.2).

Lemma 2.1. Let x be a sequence, y be a subsequence of

x, and A be a matrix such that both lim a =-0 for
p pq

q = 1,2,3,... and lim a = 0 for p = 1,2,3,... . If Ay
q pq

exists, then there is a rearrangement r of x and an increasing

sequence of positive integers (p1 ,p2 'p3 ,...) such that each

limit point of Ay (finite or infinite) is a limit point of

00

(Za3a rq) c .
p=l i q i=l

11
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Proof. Suppose first that Ay has a finite limit point.

Using the separability of the complex plane, let (u1 ,u2 ,u3,..')

be a sequence of numbers such that each u. is a finite limit

point of Ay and each finite limit point of Ay is either one

of the u. or a limit point of the u. . Rewrite the sequence

(u1 ;u1 ,u2 ; u3 ,u2 ,u3 ,..) as (v1 ,v2 'v3 ,...). Suppose that

Ay also has a subsequence that diverges to infinity. Let

x\y = (z1 ,z3, z5,...) and p,1 >0 such that

Fa y -V -.
"0

q=1plqq 1 2

Let N> 0 such that ja y I <-Iand 1< T .
t 1i 1 n Y 1  4 a d8 z 2N1

Let r i = yi for i 1,2,..., N 1-I1; r Nl =z1; and z 2= Y

Let p2 >P1 be chosen such that 11 N pN I<p

and
00

|ra y 1>101.
q=l P2q q

Let N 2 >N 1 be chosen such that
2 1

a P2 N 2YN 2 <

ja z 1
1PN N2 1<16
IaP2Nz2 I'

<1
PNYNI <16

and

11<z 1

apN22 32

Let r. = y. for i N1+1,... ,N2 -1; rN2 = z2;and z =yN2
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This process may be continued so that J 1Da )qrq > (100)

when i is even and I Z a rq- vj <2-- when i is odd,

q=1 a 2

i = 2j-1. Therefore each limit point of Ay is a limit point

of ( Z a r )00 This argument may be modified depending
q=1 ip q i=1

on the types of limit points (finite or infinite) in question.

Theorem 2.1. If x is a sequence having a finite limit

point and A is a matrix satisfying the first two properties

of regularity, then there exist a rearrangement y of x and an

increasing sequence of positive integers (p1 ,p2 p 3 ,...) such

that each finite limit point of x is a limit point of

00

(E a y)00
q=l Pi q i=l

Proof. By Theorem 1.8 there exist a subsequence y of x

and an increasing sequence of positive integers (P1 ,p2 'p3 ''.')

such that each finite limit point of x is a limit point of

00

( fa y )00 But by Lemma 2.1 there exist a rearrangement
q=1 Pi qi=l

r of x and a subsequence (p ,p,, ... )of
1 2 3 ~~00 P)p3-

such that each finite limit point of ( 7 a y )0 is a
q=l Pi q i=l

limit point of (ZTa r)0 0

q=1 p q qi=1

Corollary 2.1. A sequence x diverges to o if and only

if there exists a matrix A satisfying the first two properties
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of regularity such that Ay diverges for every rearrangement

y of x.

Proof. The identity matrix suffices for necessity.

For sufficiency suppose that x has a bounded subsequence y

with finite limit point L. By Theorem 2.1 there exist an

increasing sequence of positive integers (p1 ,p2 'p3 ,...) and

a rearrangement r of y such that L is a limit point of

CO

( Z a r ) . Let z = x \r and w = (r19z1,r2,z2'''
q=1 qi

By Lemma 2.1 there exists an increasing sequence of positive

integers (p ,p',p',...) and a rearrangement t of w (hence

t is also a rearrangement of x) such that L is a limit point

00

of (Z a , t )C , a contradiction.
q=1 i=l

Theorem 2.2. If A is a row finite matrix satisfying

the first two properties of regularity and x is a sequence,

then there exists a rearrangement y of x such that every

limit point of x (finite or infinite) is a limit point of Ay.

Proof. If x is bounded, then the theorem follows from

Theorem 2.1. Suppose x is unbounded and y is a subsequence

of x that diverges to infinity. Let z = x \y. By Theorem

2.1 there exists a rearrangement w of z such that each

finite limit point of z (and thus of x) is a limit point

of Aw. For p = 1,2,3,... let apk be the last nonzero

p
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element of the p-th row. Making use of the separability

of the complex plane, let (u1 ,u2 ,u3 ,...) be a sequence such

that each ui is a finite limit point of x and each finite

limit point of x is either one of the ui or a limit point

of the u. Let (u1 ;u1 ,u2 ; u1 ,u2 ,u3 ',...) l' 2'3''')

00

and p 1 >0 such that IZ a w - vl <- Making use of the1q=l plq q kigueo2h

first property of regularity, choose t1 > p1 such that

kt >k . Letrq =w for q = 1,2,...k -1 and choose
t 1 9 q q k jty

r from x\y such that a-tr I > 2. Again making use ofkti q=l 1qq

the first property of regularity, choose p2 > t1 such that

kt
1 0 0q1 

2 u h t a| Z a r + a w -v 2 1 <. Let t>p such that
q=l P2  q q=k t+1 P2q q

kt >k2. Letrq = wq for q = kt+ 1,...,kt1 and choose

r k from x\(rk y 1 ' 2,y3 , ....) such that jL at2qrq| >4.kt2  t 1  q::l 2

This process may be continued defining a rearrangement r of

a subsequence of x such that each limit point of x (finite

or infinite) is a limit point of Ar. Therefore by Lemma 2.1

there exists a rearrangement r' of x such that every limit

point of x is a limit point of Ar'.

Corollary 2.2. A sequence x converges if and only if

there exists a matrix A with the first two properties of

reglarity such that A sums every rearrangement of x.

- . V
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Proof. The identity matrix suffices for necessity.

For sufficiency note that x cannot be unbounded, for

if that were the case A would have to be row finite, and by

Theorem 2.2 there would exist a rearrangement r of x such

that Ar would have a infinite limit point, a contradiction.

But if x is bounded, then by Theorem 2.1 there exist a

rearrangement r of x and an increasing sequence of positive

integers (p1,p2,p3,...) such that each limit point of x

00

is a limit point of ( Z"a r ) . Thus x must have but
q=1 piS qqi=1

one limit point and therefore must be convergent.

Corollary 2.3. A sequence x is bounded if and only if

there exists a matrix A satisfying the first two properties

of regularity such that A.y is bounded for every rearrangement

y of x.

Proof. The identity matrix suffices for necessity.

For sufficiency suppose x is not bounded. Then A must

be row finite or else it is easy to construct a rearrangement

y of x such that Ay fails to exist. Thus by Theorem 2.2

there exists a rearrangement y of x such that Ay has an

infinite limit point, a contradiction. Hence the proof is

complete.

Professor A. Wilansky of Lehigh University has pointed

out in a private communication that Theorem 2.3 may also be

approached by utilizing results obtained by G. Bennett and
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N. J. Kalton. (32) In addition, it should be noted that

Corollary 2.2 follows directly from Theorem 2.3.

Lemma 2.2. If x is divergent and a is a sequence such

that L a y exists whenever y is a rearrangement of x,
q=l q q

then a E Z.

Proof. If x is unbounded, then clearly a is eventually

zero and hence in t. Suppose x consists of only two elements

ti 1 t2  0, and that a 0. Then a must be a null sequence

since otherwise there exists a rearrangement y of x such

that limqlaqyql 0. If a cs, then there exists e >0 such
m

that if N > 0, then there exist m > n z N such that a I> E.
q=n

Thus a rearrangement y could be chosen such that if N > 0,

then there would exist m >n 2N such that
m
Ea qyqI > It 21 P > 0,

q=n

a contradiction. Hence aEcs. Let N > 0 such that if m > n - N

then
m
PFaqI <2It 2 l
q=n

But a>4.Z, therefore given M -N there exist m>n M and

(a(l )m such that
q q=n

m
ma"I > It -t2

q=n q 12

where either a (1)= 0 or a ()= a for q = n,n+l,...,m.
q q q
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Define (a(2))m such. that a(2)= 0 if a(= a and a(2)- aq q=n q q q q q

otherwise. Then
m m m
E a = q a + Za q
q=n q=n q=n

and
m m

Sz aq t + aq(2) 2
q=n q=n 2

m

aq t 1 2
q=n

m

- it2| | naq1>.
q=n

Hence a rearrangement y of x may be constructed such that

0o

7 a y does not converge, a contradiction. Since a is null
q=l q q

the Lemma follows in the more general case.

Theorem 2.3. If x is a divergent sequence and A is a

matrix that sums every rearrangement of x, then A is Schur.

Proof. Suppose x is not bounded. A must be row finite

or else it is easy to construct a rearrangement y of x such

that Ay' fails to exist. Also it is clear that all but a

finite number of columns of A are zero columns since otherwise

a rearrangement y of x can be constructed so that Ay is un-

bounded. Let q* be fixed and q' q* be a zero column of A.

Let yq* = Yq, be two terms of x and y be a rearrangement of

x with yq* and yq, so defined. Let zq yq if q q*,q ;

zq* = y; and z , = yq*. Then Ay and Az are convergent;
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therefore so is A(y-z) = (a (y *-yq,)) . Hence (a )
pq q q p=*p.q P=

converges and A is Schur.

Suppose x is bounded. Let L / 0 and L2 be two distinct

limit points of x and note that by Lemma 2.2 each row of A

is in t. If any one single column of A converges, then by

an argument similar to that used in the unbounded case above

every column of A converges. Suppose that the q* column of

A fails to converge. Then there exists 6 > 0 such that if

N >0, then there exist m >n N such that |a .q-a .q| >6.

Let (pV~PlP2,P2,...) be an increasing sequence of positive

integers such that a pq*-ap.q*| >E for each i. Let B be the

matrix such that b = (a -a s) for r = 1,2,3,...;
rs P r S rS

s = 1,2,3,... . Then B has the property that By is null

whenever y is a rearrangement of x. Also, |b j > c for each

p, and limP (b .*-bp ) = 0 for each q by an argument similar

to that used in the unbounded case above. In addition, since

each row of A is in k so is each row of B. Suppose that

(y1 , .--,yk) has been determined, where each yi is a term of

x. Choose m so large that (yk+l'*''''m) may be chosen from

m 41L11

x\(yl,--yk) such that IZbpqyq > L-L2 + 2 for some
q=l p 1- 2

001

p > k. Let N>m such that F bpql <Su.nfxnlI Let y =n+ x
q=N pn Ipnn

where i = min{j:x Ex\(y . m Suppose that
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M N
-q y + L b 2.

1 pqq lq=m+1 9

Then
Mn N

2 1 Z b y - |L1f |E bj
q=1 q=m+1

and M
7 b1pq I p 2

q=m+1 1L L1-L 2

Therefore
m N

X = 2 qIZ b y + L2  E bpqI
2~ pq q2 q=m+1 l

N

fL -Lf | q| E bq II L1 -L2 1 q =m + l p q l

m N
- |q7 b y + L E  bpI > 2.

q= 1 p q 1q=m+l pq

Hence one of 1 or X2 is greater than 2, and (ym+i'''N)

may be chosen from x\(y1 ,...,y)m'N+l) so that irregardless

of the manner in which (yN+2'YN+3,...) is selected from

x\(y1 , ---,YN+1)' Zb pqyqJI >1. This contradicts the fact

that By, must be null. Therefore each column of A is con-

vergent.

Suppose that there exists a subsequence y of x such that

A does not sum y. Then By is not null and must have a non-

zero limit point. Since B has null rows and columns, then

by Lemma 2.1, there exists a rearrangement r of x such that
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each limit point of By is a limit point of Br. But Br is

null, a contradiction. Hence A sums each subsequence y of

x and by Theorem 1.6, A is Schur.

Corollaryj2.4. If x is divergent and A is a matrix

such that Ay is null for every rearrangement y of x, then

A transforms all bounded sequences into null sequences.

Proof. Suppose x is unbounded. By an argument similar

to that used in Theorem 2.3 each column of A must converge,

and all but a finite number of columns of A are zero col-

umns. But Ay is null for each rearrangement y of x, there-

fore every column of A is null, and by Theorem 1.1, A

transforms all bounded sequences into c .

Suppose x is bounded. By Theorem 2.3 A is Schur;

therefore all columns of A converge. But by an argument

similar to that used in Theorem 2.3 all columns of A must

have a common limit to which they converge. Since A is

Schur this limit must be zero, and by Theorem 1.1, A

transforms all bounded sequences into c0 .
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CHAPTER III

ABSOLUTE SUMMABILITY

In this chapter results are proved which follow the

pattern established by Theorems 1.6, 1.9, and 2.3 but which

are concerned with the characterization of 2 rather than c.

J. A. Fridy (2, p. 585) has given an example of a non-zero

constant sequence x and a sum-preserving Z-2 matrix A such

that AyE k for every subsequence (rearrangement) y of x.

Therefore, in this chapter interest is restricted to null

sequences. Corollary 2.1 was first proposed in a slightly

different form by Fridy (2, p. 585) in 1970 and was later

stated by him as a formal proposition in 1974 (3, p. 9).

Corollary 2.2 is a result previously obtained by Fridy

(3, p. 7).

Lemma 3.1. Suppose x and a are sequences such that

00

Z a y converges for every subsequence y of x. If E>0,
q=l

then there exist M> 0 and a strictly increasing function

00
+ +I

6:I + such that if m M, then z 23 a y kJ for every
q=m q q

subsequence (y ) of (x ) .o
q q=m q q=6(m)

Proof. Suppose the conclusion is false. Let 61 (i) = i

for i = 1,2,3,...; M1 = 1; and (y(I)) be a subsequence of
.q q=m

23

I ., " .0 m , 0 o
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00

(x ) , M 1, such that [ P aqyq 1> e. Let M{> m
q q=6fm) q=m q q

such that 1 a y > for every k Ml- 1. Let
q=m qq

= 6(i) if i<m and 62 (i) = q where yl) x other-

2(') 61 () 1 x

wise. Let M2  M and (y)(2)KW be a subsequence of
2 1q q=M2

(x.such that E ay(2) >v. Let x if
1i= QM2) q=M2 q

q<m and y = y() if m:sq<M2 . Proceeding as above, let
q q 2

k (2)1>
M, >M2 such that , aqyq > 6 for every k >Ml- 1. Let

q=M 2

63 (i) = 62(i) if i< and 63(i) =q where y(2) = xq other-

3(' = 2(' if'< 2 ( ) 1

wise. Let M3'M and (y(3 )' be a subsequence of
3 2q q=M3

(x.) 00 such that I00 (3) (2) if
IP aqq y 1>6c. Define Y = Yq

i=3(M3 ) q=M3

M2 <q<M 3 . This process may be continued, defining a sub-

sequence y of x for which E aqyq fails to converge, a
q=1

contradiction.

Lemma 3.2. If x is a null sequence not in k and a is

a nonnull convergent sequence, then there exists a subsequence

t n
y of x such that limt1 p yql =ooand (P,1aqy ) is not

q=1 q=1 n=

bounded.
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Proof. The lemma is clear if both a and x are real

sequences. Let aq = a(1 + ia(2) and xq = x) + ix 2)or
q q q q q q

q = 1,2,3,... . Suppose x. 4 and there exists a subsequence

y (of x ( such that y () >0 for each qe and F y = --
q q=1 q

Let y be the subsequence of x determined by y(l) . Clearly

himt! Pyq C. Also for each q
q=l

a y = (a l) y(l) - a(2) y(2 )
q q q q q q

+ i(a(1 )y(2) + a (2)y(1)
qYq q q

Consider the following special cases:

i.) Suppose lim a ( = a > 0, lim a 2) a (2) > 0qq q q >0

S (1) (1) - (2) (2) o0
and q= (aq Yq a

q-, q yqq q n1l
is bounded. Since

lim n y ) +0, it follows that limn y(2 )
lq Yq n q

Therefore lim n (a qy() + a(2) (1)) +oand ( a y )0
h e n q q q q q = n=

is not bounded.

ii.) Suppose that lim a (1) a ( > 0, im a(2) 2a()<q q qq <0

n (1) (1) - (2) (2) 0
and q= (aq q Yq aq Jq y n=)

q-1n=
is bounded. Since

iYm a q = +00 it follows that lim y( 2 ) -
n aq q n q

n (~ 1 y 2 ~+(2) (1)0n
Therefore lim q(a y (2) + a (y)) = - and (Z a y)_n q q q q=lqn=1

is not bounded.

.. ...............
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iii.) Suppose lim a (1) = a (1)> 0, lim a (2) a(2)= 0,q q q q

n (1 ) - a(2) (2)() E m, andE 
=7(q Yq qa Yqj~)0  Cm n

q=1 n=1

n((1) (2) + a (2) (1)) E m. Therefore both
2 q q q q q n=1

1 X2 and X1 -X2 are bounded, and it follows that both

X = [(a1) (2) (1) (+ 1)-(2) (2)(2 E m
3 q l1 q q q q q q n=1

and

= n (a -a(2) () - (a (1) +a(2) y(2)1) Em.
4 qi [(a aq q q q q n=1

But lim (a ()+a (2) = a (1) > 0, therefore
q q q

( T) +(2) (1)=_lim n 7(aq aq ) yq
q=l q q

Also, lim(a 1 ) -a (2)) a () thereforeq cq q>0

limn qy q
n l

But this contradicts the fact that X4 Em. Hence one of X

n
or X2 is not bounded, thus ( 7 a y )O is not bounded.

q=l q q n=l

Clearly each remaining case can be reduced to one of

the above three cases, and the lemma is proved.

Theorem 3.1. Let x be a null sequence not in Z, and

suppose A is a matrix such that Ay E R for every subsequence

y of x. Then
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i.) 1 Ia1 j <0o for q =.1,2,3,...; and
p=l0

ii.) if im E a
q p=j pq

= L, then L = 0.

Proof. To show i.), let k be fixed and j >i>k such

that x. f x.. Let y be the subsequence of x such that
1 31

yq = xq for q = 1,2,...,k-1; y = xi; and yk+t= j+t

for t = 1,2,3,... . Let z be the subsequence of x such

that zk = x1 and zq = yq otherwise. Then

00 00 00 00

> lE a y - a zq x= -x.-x.1 )2|a k.
p=1 q=l pq q q=1 pql lxj=j pk

Therefore F lapk'<0
p=:L

00
Suppose lurn 9 a

q lpq
= L and L / 0. Let (y1 , ... ,yM-1)

be a subsequence of x with yM- X~= r. Since x,3Z there

00

exists a subsequence (w )
q q=M

00

of (x )
q q=r+1

such that

t
lim 1 Ew 1 = .00 By Lemma 3.2 there exists a subsequence

q=M q
00

of (w )
q q=M

t
such that limt I z = 0 and

q=Mq

t 00
lim sup I Ez fla j = 0. Choose k> M such that

qt M qp=1 pq

k coM-1 00

z Z a 1> M+ + rly I Z la I+3.
q=M p=1 qq= q p=1pq

Let K> 0 such that

w1

1 K+a < z 1 for q = m,...,k. By Lemma 3.1,
p=K'l pq k(lIZql+1)

00

(z )
q=qM
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*1letting c =, there exist N' and 6' for 1 , <p sK, such thatK) p p

if N = max{Ni,...,Nk k+2} and 6(i) = max{6'(i): p =
1 KA p

k o
then E1 |E a v | < 1 for every subsequence (v )" of

p=1 q=N pq q q q=N

(x )0 . Let y = z for Msq;,sk, and choose
q q=6(N) q q

(yk+ N-) a subsequence of (x ). such that
q=6(N)

N-1C
F, yq1 Z ja j <1. Note that the first N-1 terms of a
q=k+1 P= 1  pq

fixed sequence y have now been determined. If y* is any sub-

sequence of x that agrees with y for these first N-1 terms,

then
K ck K M-1 K
SI Z aqy* J |Ey* Papq - E jy*j |apql
p=iq=1. q q=M q p= pq q=i q p=i Pq

N-1 k K 0
E Jy*jL aj| -a j E E a y*j
q=k+iqp=1P p=1 q=N P qq

k 00 k

>j|3 y* 13 a j- E1 y*f IJ1 a I
q=M qp=1 pq q=M p=K+i pq

M-1 K

Ejy*j S fa I - 2
q=1 q p=i pq

>M.

This process for defining terms of y may be continued so that

if T >0, then there exists M !:T and K> 0 such that

K 00

a y j>M.
p=i q=1 pq q
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Thus a subsequence y of x can be constructed such that

Ay 4 Z, a contradiction.

Corollary 3.1. A null sequence x is in X if and only

if there exists a sum-preserving 9-i matrix A such that

AyEZ for every subsequence y of x.

Proof. The identity matrix suffices for necessity.

By Definition 1.4 if A is a sum-preserving Z-z matrix,

then lim q a = 1. Hence by Theorem 3.2, x must be in k.q.p1lpq

Theorem 3.2. If x is a null sequence not in z and A

is a matrix such that Ay E k for every rearrangement y of

x, then lim E Ia 1 = 0.
q p=1pq

Proof. Let xn xm be nonzero elements of x. Suppose

the first column of A is not in 9. Let q> 1 and y be a

rearrangement of x withy1 = xn and yq = xm. Let z be the

rearrangement of x such that z = xm, zq = xn, and zq = yq

00 00 CO 0C0

otherwise. Then ixnx E Zj a -a I=E |F a y -F a z
n- Mp= pl pq pq qq pq q

< o. Therefore p Ia pl -apq <oo for q = 2,3,4,... . Since

E ap I = o, it now follows that FI a J = 00 for q>2.
p=l p=1 pq

Suppose a permutation (rI,...,rM) of M terms of x has been

M
chosen such that Z r q 0. Suppose N >0. If

q=l q
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CO M

T 
= EP I a r |f<oo, then

p=l q=l pq q

M CO
00>X + qFIrq| 1 |a p -(q-1y apql

q=2 9P=1 E~3 P

M o
| r |E a |

q=l P=

a contradiction. Therefore X = o and there exists K > N such

K M
that P |, Z apqrq >2. Let i = min{q:xq E x\(r1 ,...,T)}.

p=N q=i-

J. A. Fridy (3, p. 6) has shown that each row of A is null.

K
Therefore there exists T >M such that Ix.l F,1a TI <2-.(M+1)

Let r T x i and (rM+1,. .. ,r T-1) be a subsequence of

K T-1
x\(rr . . , such that P |at |r| <2- (

p=l q=M+lP9 q

Then
K T K M

P IP arpqrql |F P 1 apqrql
p=N q=1 p=N q=l

K T-1 K

- P P Ia r |I- rT| pIapTI
p=N q=M+1 pq q p=N

> 2 - 2 -(M+1)- 2 -(M+2)> 1.

But this process may be continued. Therefore there exists a

rearrangement r of x such that if L> 0, then there exist
K o0

K>N L such that P I P a r J > 1, a contradiction.
p=N q=l pq q

Hence each column of A is in Z.
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Now suppose there exists E> 0 such that if N> 0,

00

then there exists q>N such that E la f > E. Let z.E R
p=l pq

be a subsequence of x that includes all zero terms of x.

00

Let j = min{q:x Ex\z }. Let N > 0 such that jDlapNI >
p=1 1

Let rN = , rN1+1 = z1 , and (r1 ,...,rN -1) be a sub-

N 1 - 1 00< 1 L e M > 0sequence of z such that Z jr q IE a | <j. t >0
q=l P= pq L 1

M00

such that IaN 1 > -and Nra . Let
p=1  1 p=M 1+1 ,N

j2= min{q:xqEx\(r1 ,zz 2 ,...)} and i2 = min{q:zqE z\(z,r1 ,...,

rN -l)}. Since each row of A is null, there exists N2 > N1 +1

M
such that |a I > -and Ix. I Da I< . Let

p=M1 +1 pN2 2 2 j2 p=1 pN 2 8

r =x2 rN2+1 = z 2, and (r N+2'...,rN2 N ) be a subse-N2  i 2 5 2 21"2.

quence of z\(zi,r1 ,.. .,rN -l'rN2+1) such that

1- 20

T Ir q Ii a |I<k1 .
q=N+1 =1 pq 16

M
2 O

Let M2 >,M such that Z IaNI > and N pNr <
p=M1 +1 2 N2 p412+1N2 32

This selection process may be continued so that if k is fixed,

i Nil I - I I R, . ". 11 I,, 1" 
7 1



then

Mk co
ZE |IEa r
p=I q=1 pq q

>(E aaNrI -zN jI|Z apqrql
p=1 1 1N p=INq=1

M1 N2-1

- a E r1q -
p=l q=N +1

M
2

+( I P +11apN rN -
=M 1 p2N2

S |a NrN I...)
p=1 P 2 2

M2
E |Ia rP=M- +1 pN, N,

m2 N1 M2 N21
- E a a rII a r
p=M1+1 q=1 pq q p=M1+1 q=N1 +1 pq q

Mk mk N1-1
+ (- aIr | E a rql-...)

p=Mk-l+I pNk k p=Mk-1+1 q=1 q

My Mkm m k
E|pN N +...+T, Ia N rNfp=I 1 1 p=Mk-1+1 P k k

N- Mk
- ( P IrI |P1IapqI

q=1 q p=1 pq

N2-1 Mk
+ r | | ,lap l

q=N1+1 qp1

k

1rN.
i=1 i

Mk

+ pN| r N
P=M 1+ 1~yN

Mk

+ E+ a pN 22 ..
p=M2+ p2 N2

1.*

But r has been selected so that limk

fore Ar A[ 9, a contradiction. Hence

k

.El rN.iP=
= oo. There-

00

im 7 a | = 0.
q p=l pq

32
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Corollary 3.2. The null sequence x is in k if and only

if there exists a sum-preserving Z-k matrix A such that

AyE Pfor every rearrangement y of x.

Proof. The identity matrix suffices for necessity.

By Definition 1.4 if A is a sum-preserving k-Z matrix,

00

then lim a = 1. Hence by Theorem 3.2, x must be in z.
qP =1 p

Example 3.1. By Theorem 3.2 a matrix A that maps all

rearrangements of a sequence x Ec \i into k must be an k-k

matrix. But Theorem 3.1 gives little insight into the ques-

tion of whether A must be k-Z if it maps all subsequences

of x into k. The following example shows that A need not be
11

Z-k in this case. Let xn = for n = 1,2,3,...; aq=q3

for q = 1,8,27,64,...; and a = 0 otherwise. If y is a

2
subsequence of x and Ay = z, then |zq< q 3 for q=l1,8,27,...

and zq = 0 otherwise. Thus zY EZ, but clearly x Ec0\.k and

A is not S-Z.

The pattern established by Theorem 1.6, Theorem 2.3,

and Corollary 2.4 might cause one to suspect that if A

maps all subsequences (rearrangements) of a sequence xEc \z

into P,. then AyE k for every y Ecs. The following example

shows that this is not true in the case of subsequences, and

a slight alteration of this example shows it also fails for

rearrangements. Let xn = for n = 1,2,3,...; a =
n npq q2P



for pl1, q 1. Then AyE Z for every subsequence y of x

sinc a 1 1 -2pq y (-)q . Letz = - and zq = (-1)q(2 ) for

29 q sn1 , where n is the least positive integer such that

n1 
>1

q= + q+l Let z +1 = 1 q) and z =
n 1 2q

for n q n2, where n is the least positive integer such1 1 ,$1
n

2 1+1n 2+13that z,+ ) > 2. Let z +1= 2 ( )and
q=n1 +2 q q2

Zq = (-1)q(l) for n2 +2- q ;n3 , where n is the least positiveq 2' : 33

integer such
n3  1 I

that Z ( + )> 4. Continue this process
q=n2+2 q q+ O

defining the sequence z such that $z = 0.
q=b p

by parts,

n
limn a zqn~

Using summation

= limn[(a1-a12)z

+ (a 1 2 -a 1 3 ) (z 1 +z 2 ) +

n
+ aln E z ]

q=1

=L [()(1+)+...+|1 + n+i
1 1

1 + n1 + +.. + 1
n 1 +1 +n $2+(4)*+,...2n =2x>

E (1i) + 2(2) + 1 (4) + co00

n
since limnaln 7 z-, = 0.

q=lq
Therefore Az J .

34
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CHAPTER IV

SUMMABILITY OF CERTAIN CATEGORY TWO CLASSES

The set of all subsequences (rearrangements) of a se-

quence can be thought of as a metric space which is of the

second category in itself (1, 2, 4). It then becomes

natural to ask questions concerning subsets of these spaces

and to describe these subsets in terms of sets which are of

the first or second category. In this chapter analogs to

Theorem 1.3 and Corollaries 2.2, 3.1, and 3.2 are considered

in which the requirement that "every" subsequence (rearrange-

ment) of a given sequence satisfy certain conditions is

replaced with the requirement that "a set of subsequences

(rearrangements) of the second category" fulfill the same

conditions. A result similar to Theorem 3.1 has been ob-

tained by F. R. Keogh and G. M. Petersen (4). (Rather than

require A to be non-Schur with convergent columns, they

demanded that A be regular.)

Let x be an arbitrary sequence. A map of the set of all

subsequences of x on the interval 0 < t I can be obtained as

follows. Let t = .a1a2 a3 ... be the infinite dyadic expan-

sion of a point t of the interval. Corresponding to this

point select the subsequence y of x as follows: retain xn

if a = 1 and drop it otherwise (2). The meanings of termsn

36
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such as "a dense set of subsequences of x" and "a set of

subsequences of x of the second (first) category" are now

evident.

Theorem 4.1. Suppose A is a non-Schur matrix with

convergent columns. If A sums a set of subsequences of x

of the second category, then x is convergent.

Proof. Following Keogh and Petersen (4), it will be

shown that if x is divergent, then A sums a set of subse-

quences of x of the first category. Suppose x is bounded.

Also suppose that there exists row p such that (a pq)C.q cs.

Then there exists E > 0 such that if N> 0, then there exists

m
m >n E N such that | Z a | > . Let L be a nonzero limit

q=n pq

point of x. For N = 1,2,3,..., let EN ={y:y is a subse-

quence of x and there exist m > n N such that

m iL I E
1 -,apqyq 2> Then for each N, EN is both open and
q=nP .

dense. Also, if y is a subsequence of x such that Ay Ec,

then there exists N >0 such that yAqEn for n> N. Therefore

the set of all subsequences of x which A sums is of the first

category.

00Suppose now that (a ) E cs for each p and that there

exists a row p such that (a ) o 9q. Let L y 0 and L
pq q=l
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be two distinct limit points of x. For N = 1,2,3,..., let

EN ={y:y is a subsequence of x and there exist m>n >N

M
such that 7 a y qI>1}. Clearly each EN is open. Suppose

q=n p

a finite subsequence (Y,..,yk-1) of x is given. Choose

n >N + k such that if m >n, then

m 1

q=napqK(|L2 |+l)

(1) )m s ch t at f2a 1

Choose a subsequence (a )m such that| a >
pqq=n q=npq L-2

and either a. (1)= a or a(1) = 0 for ns q !m. Let (a(2 ))m
pq pq pq pq q=n

be defined such that a(2) = 0 if a 1  = a and a (2)-apq pq pq pq pq

otherwise. Then

m m 1 ) m
EDa = a + E a 2)
q=n pq q=n pq q=n pq

and

M (1 m (2), M (1) M
S La + L2apq Ly-L2 1 E apq - 12  .j apq > 1.
q=n I q=n q=n q=n

Hence each EN is dense. But each A-summable sequence of x

00

is in U -E. Therefore the set of subsequences of x which
N1l

A sums is of the first category.

Suppose now that (a ) . E 9k for each p. Since x E m,
q=i

by a familiar argument (3) A may be assumed to be row finite.



39

Let w = (Ll,L2 ,L1 ,L2 ,...). By Theorem 1.6 there exists a

subsequence z of w such that A7, c. Therefore there exists

S> 0 such that if N> 0, then there exist m>n N such that

00 00

I7anqzq - Eazmqz| >e. For N = 1,2,3,..., let
q~l q=l

EN = {y:y is a subsequence of x such that there exist
00 00

m>n -.-N such that anqq - 2 amqYqI > }. Since A is
q=1 n q q-l

row finite, each EN is open. Suppose that a finite subse-

quence (yI,...,yk-1) of x is given. Let N> 0. Since the

columns of A converge, there exist m> n 2N such that

00 
00 '

qZ anqz - (ka z | >1-. But A is row finite and each Zq

is either L or L2 . Therefore (yk'.''yt ) can be chosen

such that (y,...,yt ) is a subsequence of x and

t t
a anqYqa - ay| >f, where t = max{q: iang + ja |1> 0}.

q1 Iq=1

Let (yt+l't+2, ... ) be chosen such that y is a subsequence

of x. Then yEEN, and EN is dense. But each A-summable

subsequence of x is in U ~-EN, therefore the set of subse-
N=1

quences of x which A sums is of the first category.

Suppose now that x is unbounded and A is row finite.

For N = 1,2,3,..., let SN ={y:y is a subsequence of x and

00

there exists rn -,N such that IZ a y qf >NJ. Each S N is open
q=l1q
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since A is row finite. Let (y,. ..,yk) be a subsequence

of x. Since A is not Schur there exist m a N and n >k

such that a / 0 and a = 0 if q> n. Choose

(yk+i''''. n,...) such that y is a subsequence of x and

n
I '3a y | = __ja y I >N. Thus yE SN and SN is dense.q=1 mqq q~mq

But each A-summable sequence of x is in U ~ SN, therefore

N=1
the set of subsequences of x which A sums is of the first

category.

Suppose x is unbounded and row p of A has an infinite

number of nonzero entries. For N = 1,2,3,..., let

S N ={y:y is a subsequence of x and there exists n >N such

that fa yn >1}. Each SN is both open and dense, and each

A-summable subsequence y of x is in U ~-SN. Therefore
N=1

the set of subsequences of x which A sums is of the first

category.

Example4.1. The following example illustrates the

necessity of the requirement in Theorem 4.1 that all

columns of A be convergent. A similar argument shows the

necessity of the same requirement in Theorem 4.3. Let

ap1 = (-1)P for p 1 and apq = 0 otherwise. Then A is

non-Schur. Let x = (0,1,0,1,...) and T = {y:y is a subse-

quence of x and y= x1 1. Then T is open, therefore by

Theorem 1.14, T is of the second category. But clearly x is

divergent.
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Theorem 4.2. Suppose A is a matrix with the following

three properties:

00

i.) 23 Ja | <o' for q = 1,2,3,...;

CO

ii.) lim 23a = L / 0; and

q p . pq
CO

iii.) 23 ja | <co for p = 1,2,3,...
q=l pq

The null sequence x is in k if A maps a set of subsequences

of x of the second category into Z.

Proof. Let x be a null sequence not in Z. Since x is

bounded and each row of A is in Z, by a familiar argument

(3) A may as well be assumed to be row finite. Let

K = {y:y is a subsequence of x and AyEI }. Let (y,...,yn

be a finite subsequence of x with y = Let B be the
n m

submatrix of A consisting of columns n+l,n+2,... of A.
CO

Let z = (x ) +. Since B satisfies i.) and ii.), by
qq=m-'l

Theorem 3.1 there exists a subsequence w of z such that

Bwq Z. Let y = (y,.. . ,yn,w,w2,...). Since

n 2r fyI 23 Ia. I <C0, then Ay4 Z and K is dense in the set of
q=l q p=1 pq

all subsequences of x. For N = 1,2,3,..., let SN =' y:y is

a subsequence of x and there exists m>N such that

m Co

il E 2 a y | > }. Each SN contains K and therefore is dense,
p=N q=l

but A is row finite, therefore eachSN is also open. If z

1- ___________________
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C0

is a subsequence of x such that Az E k, then z E U ~-SN'
N=1

therefore the set of all such subsequences is of the first

category. This completes the proof of Theorem 4.2.

Let E denote the space in which a point t is a permu-

tation (ti,t2,t3 ,...) of the positive integers, and the

distance between two points t = (t1 , t2 , ....) and s= (5 ,Ss2''***)
is given by the Frechet formula

00| tn- s
(t,s) = T il- [ tnn

n=1 2n 1+|tn-sn

Let E* be the space in which apoint is a sequence of positive

integers not necessarily a permutation of all positive inte-

gers, and the distance between two points is given by the

above Fr6chet formula. A 1-1 map pairing E with the space

of all rearrangements of a fixed sequence x is therefore

evident. R. P. Agnew (1) has shown that E is a G6 in the

complete space E*. Therefore by Theorems 1.16 and 1.15,

E is of the second category in itself. It is now natural

to speak of a set of rearrangements of a sequence x being

"dense" or "of the second (first) category" in the space

of all rearrangements of x.

Theorem 4.3. Suppose A is a non-Schur matrix with

convergent columns. If A sums a set of rearrangements of x

of the second category, then x is convergent.

Proof. Following Keogh and Petersen (4), let x be

divergent. Suppose there exist a row p and a rearrangement
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y of x such that (aypqyq) 0 0 cs. Then there exists 6 >0
q=1

such that if N >0, then there exist m >n; N such that

m
1 > . For N = 1,2,3,..., let BN = {z:z is a re-

q=n

arrangement of x and there exists m >n N such that

m
I E na z I >}. Clearly each BN is open. Let (z1 ,. . . , zk)q=n p
be a permutation of a finite number of elements of x. Let

i = max{j:y = zt for some 1 s tisk} and choose (zk+l,...,z.)

from (y1,...,yi)\(z1 ,... ,zk) in any order. Let zq = yq

for q >i. Then there exist m >n (i+N) such that

m m
I FDa z J fIEa y qI>6. Therefore each B is dense
q=NP 9 q=npq N

00

and since each A-summable rearrangement of x is in U-BN'
N=1

the set of all such rearrangements is of the first category.

Suppose that for each row p and for each rearrangement
00

y of x that (a y ) E cs. Then by Lemma 2.2 each row of

A is in k, Since x is bounded, by a familiar argument (3)

A may as well be assumed to be row finite. By Theorem 2.3

there exist a rearrangement y of x and 6> 0 such that if

N > 0, then there exist m > n >N such that

00 00

I Ea. y - Fa y q>I .
q= 1 nqq q= 1 fqq

-n -s-
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For N = 1,2,3,... let DN = {z:z is a rearrangement of x and

00 00

there exist m >n -N such that |K, a z - Pa zi> -}

q=l nq q q=l mq q 21.

Since A is row finite, each DN is open. Let (z1,. . .,zk)

be a permutation of a finite number of elements of x. Let

i = max{j:yj = zt for some 1Ps t sk} and choose (zk+l,...,z

from (yl,...yi)\(zl,...zk) in any order. Let z = tq for

q >i. Then since each column of A is convergent, there

exist m >n N such that

00 00

F Pa z - Ea z |
q= 1 nqq q 1 mqq

00 00

>1| a y - Ea y -
q= 1 nqq q=mqq 2 2

Thus each DN is dense. Since the set of A-summable rear-

rangements of x is contained in U DN, it is of the first
N=I

category.

In the case where x is unbounded, the proof follows as

in Theorem 4.1 with only slight alterations.

Lemma 4.1. Suppose each of x and a is a sequence such

that (aqyq)C E cs for every rearrangement y of x. If E.>0,
q= 1

then there exists N >0 such that if n 2 N and (yq)0 is a
q=n

000

rearrangement of (x ) , then I P a y 1:1:.
Sq=n q=n

Proof. Suppose the Lemma is false and (z,... ,zk) is

a permutation of k terms of x. Let t = max{i:z = x. for
q
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some 1ls q sk} and choose (zk+1,...,zt) from (x ,...,xt)

(z ,...,Zk) in any order. Let n% t such that there exists
00

a rearrangement (yq )C of (x )00 with Za a yl > I . Let
q=n q=n q=n

m
m> n such that |Z a y j > . Let zq= xq if t< q< n and

qq q

Zq yq if nasg m. This process may be continued, defining

a rearrangement z of x such that (aqzq)00 q cs, a contra-
S q=1

diction.

Theorem 4.4. Let x be a null sequence and A be a matrix

such that each column of A is in k and lim q ja p / 0.

q p=l pq

If there exists a set of rearrangements of x of the second

category which A maps into X, then x is in k.

Proof. Let x be a null sequence not in k. If there

exists a row p and a rearrangement y of x such that

(a yq) 0q cs, then by an argument similar to that used inpqqq=l

Theorem 4.3, the set of rearrangements of x which A maps into

z is of the first category.

Suppose whenever y is a rearrangement of x that

(a y ) E cs for each p. For N = 1,2,3,..., let EN =

{z:z is a rearrangement of x such that there exists n> N

n
00

such that Z p a z qI> 1}. By Lemma 4.1 each EN is open.
p=N q=1 pq q

Suppose (y1,...,yk) is a permutation of k terms of x. Then

x\(Y1, -. ,yk) is not in X. Let B be the submatrix of A
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consisting of the columns k+l,k+2,k+3,... of A. By Theorem

00

3.2, since lim 7 l b I 0, there exists a rearrangement
q p~i pq

00 00

(y+1)k2' ' \1 '' *) such that T , a y f =Co*
p=1 q=k+l pq q

n k o
Let n >N such that E a y I >1 + E ly I j Ia 1.

p=N q=K+l Pq q q=1 q p=l pq

Thus y. EEN, and EN is dense. But any rearrangement y of x

with the property that A E P is in cU EN, therefore the
y N=1

class of all rearrangements with A maps into k is of the

first category.

Example 4.3. The following example illustrates the

necessity of the requirement "each column of A is in P"

in Theorem 4.4. For an arbitrary n> 0 let A = 1 for each
pn

p and a = 0 otherwise. Let x = (0,1, Then
pq 21-

=1K = {y:y is a rearrangement of x, y =-1 if q< n, and
Sqq

y = 0} is open, and therefore by Theorem 1.14 is of thenI

second category. But Ay E P whenever y E k. Thus A maps

a set of rearrangements of the second category into k,

yet clearly x is not in t.
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