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In 1943 R. C. Buck showed that a sequence X is con-
vergent if some regular matrix sums every subsequence of x.
Thus, for example, if every_subsequence of x is Cesiro sum-
mable, then x is actually convergent. Buck's result was
quite surprising, since research in summability theory up
to that time gave no hint of such a remarkable theorem.

The appearance of Buck's result in the Bulletin of the

American Mathematical Society created immediate interest

and has promptgd considerable research which has taken the
following directions: (i) to study regular matrix transfor-
mations in order to shed light on Buck's theorem, (ii) to
extend Buck's theorem, (iii) to obtain analogs of Buck's
theorem for sequence spaces other than the space of conver-
gent sequences, and (iv) to obtain analogs of Buck's theorem
involving processes other than subsequencing, such as
stretching. The purpose of the present paper is to con-
tribute to all facets of the problem, particularly to (i),
(iii), and (iv).

In 1944 R. P. Agnew obtained a result closely related

to Buck's theorem. Given a bounded sequence X and a regular




matrix A, Agnew was able to demonstrate the existence of a
subsequence y of x such that each limit point of x is a
limit point of Ay. Recently, J. A. Fridy has obtained gz
theorem similar to Buck's in which "subsequence" is replaced
with "rearrangement." 1In addition, he has characterized &
by showing that x €2 if there is a sum preserving £-2
matrix that transforms every rearrangement of x into 2.

In 1970 I. J. Maddox obtained what might be considered
as the ultimate improvement of Buck's theorem. He consi-
dered a matrix A which summed every subsequence of a diver-
gent sequence x and showed that A must be Schur. Since the
class of Schur matrices is disjoint from the class of
regular matrices, Buck's theorem follows as a corollary.

The second and third chapters of this paper contain theorems
which follow the pattern established by Maddox. 1In the
second chapter an analog is proved in which "subsequence"
is replaced with "rearrangement.,'" The third chapter deals
with absolute summahility, and a theorem is obtained which
has Fridy's characterization of g as.a corollary. This
theorem shows that if x is inc0 but not in % and the matrix A
transforms every rearrangement of x into 2, then A is not
sum-preserving 2—&. In addition, the following question
proposed by J. A. Fridy is answered in the affirmative.

Is a null sequence x necessarily in £ in case there is a sum-
preserving &-Amatrix A such that Ay is in % for every subse-

quence y of x?




In 1958 F. X. Keogh and G. M, Petersen were abile to.
extend Buck's result by showing that x is convergent if
some regular matrix A sums a set of subsequences of x which
is of the second category. The fourth chapter of this
paper contains analogs to this theorem in which the re-
quirement of regularity is weakened somewhat. In addition,
the sequence space &, as well as ¢, is investigated, and
Tearrangements as well as subsequences ére considered.
Typical of the results in Chapter IV are theorems which
show that a sequence x is convergent if there exists a
non-Schur matrix A with convergent columns that sums a set
of subsequences (rearrangements) which is of the second

category.
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CHAPTER I
INTRODUCTION

In 1943 R. C. Buck showed that a sequence x is conver-
gent if some regular matrix sums every subsequence of x.
Thus, for example, if every subsequence of x is Cesiro sum-
mable, then x is actually convergent. Buck's result was
quite surprising, since research in summability theory up
to that time gave no hint of such a remarkable theorem.

The appearance of Buck's result in the Bulletin of the

American Mathematical Society (3) created immediate interest

and has prompted considerable research which has taken the
following directions: (i) to study regular matrix transfor-
mations in order to shed light on Buck's theorem, (ii) to
extend Buck's theorem, (iii) to obtain analogs of Buck's
theorem for sequence spaces other than the space of conver-
gent sequences, and (iv) to obtain analogs of Buck's theorem
involving processes other than subsequencing, such as
stretching. The purpose of the Present paper is to con-
tribute to all facets of the problem, particularly to (i),
(iii), and (iv).

One of the major contributions in the study of sequence
spaces through matrix maps is the Silverman-Toeplitz (2, 14,

16) characterization of regular matrices which was obtained




in 1911 (Theorem 1.2). 1In 1921 H. Steinhaus (15) made use
of this characterization in showing that no regular matrix
transforms m (the space of all bounded complex sequences)
into ¢ (the space of all convergent complex sequences).
This result of Steinhaus was the major tool used by Buck
in obtaining his characterization of C. In 1544 R. P. Agnew
(1) obtained a result closely related to Buck's theorem.
Given a bounded sequence X and a regular matrix A, Agnew was
able to demonstrate the existence of a subsequence y of x
such that each limit point of x is a limit point of Ay
(Theorem 1.4). Thus, in the case of bounded sequences,
Agnew's theorem includes Buck's, |

Results similar to those of Buck and Agnew have been
obtained in which stretchings or rearrangements, rather than
subsequences, have been considered. 1In 1973 D. F. Dawson
(5, p. 456) showed that there exists no analog to Buck's
theorem in which ¢ is replaced by BV (the space of all
sequences of bounded variation ). But he was able to obtain
characterizations of c, BV, and other spaces by proving
analogs to Buck's theorem replacing "subsequence'" with
“stretching" (5, p. 457). Recently, J. A. Fridy- (8) has
obtained a theorem similar to Buck's in which "subsequence"
is replaced with "rearrangement.'" In addition, he has

characterized % (the space of all complex sequences x such

that Z3]xq]<<%) by showing that x €% if there is a sum
q=1




preserving £-% matrix (Definition 1.4) that transforms every
rearrangement of x into 2.

In 1970 I. J. Maddox (11) obtained what might be con-
sidered as the ultimate improvement of Buck's theorem. He
considered a matrix A which summed every subsequénce of a
divergent sequence x and showed that A must be Schur (Defi-
nition 1.3, Theorem 1.6). Since the class of Schur matrices
is disjoint from the class of regular matrices, Buck's
theorem follows as a corollary. Recently, Dawson (6) has
obtained an analog to this result of Maddox ' involving
stretchings. The second and third chapters of this paper
contain theorems which follow the pattern established by
Maddox and Dawson. 1In the second chapter an analog is proved
in which "subsequence'" is replaced with "rearrangement"
(Theorem 2.3), The third chapter deals with absolute sum-
mability, and a theorem is obtained which has Fridy's char-
acterization of & as a corollary. This theorem shows that
if x is in Co {(the space of all null complex sequences)
but not in 2 and the matrix A transforms every rearrangement
of x into &, then A is not sum-preserving 2-2 (Theorem 3.2).
In addition, the following qﬁestion. proposed by J, A,

Fridy (8, p. 9) is answered in the affirmative. Is a null
sequence X necessarily in £ in case there is a sum-preserving
2-2 matrix A such that Ay is in & for every subsequence y

of x? (Theorem 3.1).




In the study of sequence spaces in analysis, topolo-
gical structures are often supplied. Hence equipping the
space of all subsequeﬁces (rearrangements) of a sequence x
with a topology is natural. Thus in 1958 F. K. Keogh and
G. M. Petersen (9) were able to extend Buck's result by
showing that x is convergent if some regular matrix A sums
a set of subsequences of x which is of the second category.
The fourth chapter of this paper contains analogs to this
theorem in which the requirement of regularity is weakened
somewhat. In addition, the sequence space %, as well as C,
is investigated, and rearrangements as well as subsequences
are considered. Typical of the results in Chapter IV are
theorems which show that a sequence x is convergent if
there exists a non-Schur matrix A with convergent columns
that sums a set of subsequences (rearrangements) which is
of the second category (Theorem 4.1, Theorem 4.3).

The following notation conventions will hold throughout
this paperﬁ

1. s represents the set of all complex sequences,

2. m represents the set of all bounded complex sequen-

ces,

3. ¢ represents the set of all convergent complex

sequences,

4, <, represents the set of all null complex sequences,

5. ¢s represents the set of all complex sequences X

such that 2 x_ converges,
q=1 4




6. & represents the set of all complex sequences x such

that 20 [qu S o
q=1

7. if x €s and y is a subsequence of x, then x \y repre-
sents the subsequence of x such that xq is a term of
x \y if and only if xq.is not a term of vy,
The following definitions and theorems will be utilized
in subsequent chapters:

Definition 1.1. Let A be a matrix with entries

aq@=1,&3g.q q=1,2,3,...); then
1. A is row finite if for each row p there exists
N_>0 such that = 0 for ever >N_;
D 2t Apq CYETy 47 Ry
2. A is the identity matrix if 4,y = 1, p=1,2,3,...;
a = 0 otherwise;

P4 ®

3. 'Ax is the sequence (2, a ) :
q=1 pq q p=1

0.

4. A sums the sequence x if Ax €c.

Theorem 1.1. If A is a matrix; then Ax €c, for every

o

x €m if and only if (Z][ 1) €c.

Definition 1.2. The matrix A is regular if Ax = y €c

= 1i
for every x €c and lzquq 1mqYq

Theorem 1.2. The matrix A is regular if and only if

1. iimpapq = 0 for q = 1,2,3,...;

2. 1lim_ 2 a__ = 1; and
=1




3. There exists M >0 such that Z)la | <M,
q=1 pq

p=1,2,3,... . (2, 14, .16).

Theorem 1.3. The sequence x is convergent if there

exists a regular matrix A that sums every subsequence of

x. (3, 4).

Theorem 1.4. If x is bounded and A is regular, then

there exists a subsequence y of x such that every limit

point of x is a limit point of Ay.(1).-

Definition 1.3. The matrix A is Schur if A sums every

element of m.

Theorem 1.5. The matrix A is Schur if and only if

1. Limpapq = aq for q = 1,2,3,...; and
2. i Py = 2 . (13).
bamy = 12pql gop 2l ()

Theorem 1.6. If x is divergent and A is a matrix such

that A sums every subsequence of x, then A is Schur (11).

Theorem 1.7. The sequence x is convergent if there

exists a matrix A satisfying the first two properties of
regularity (Theorem 1.2) which sums every stretching of x

(6, p. 457).

Theorem 1.8. 1If x is a sequence having a finite limit

point and A is a matrix satisfying the first two properties
of regularity, then there exists an increasing sequence of

positive integers (Pl’pZ’pS"") and a subsequence y of x




such that every finite limit point of x is a limit point of

8

(D a, y)°

. 5 . 458).

Theorem 1.9. If x is divergent and A is a matrix which

sums every stretching of x, then there exists N such that

1. L:'mea_pq = aq, q>N,
2. 25 a_ converges, and
g=N+1 4 |
3. Lim_ 2 (a_-a ) = 0. (6).
P q=N+1 P9 q

Definition 1.4. The matrix A is called an -9 matrix

provided Ax is in ¢ whenever x is in 2. If, in addition,

[==]

Mg

2 a X = 2 X_, whenever x is in %, then A is a sum-
p:l q"'_'l pq q q:l q

preserving £-4 matrix (8, p. 6).

Theorem 1.10. The matrix A is 2-% if and only if there

00
exists M> 0 such that 2 |a | <M for q = 1,2,3,...
(7, 10, 12),

Theorem 1.11. The matrix A is a sum-preserving -4

matrix if and only if A is an %-% matrix and Z)apq = 1
p=1

for q = 1,2,3,... . (8).

Theorem 1.12. The null sequence x is in % if and only

if there exists a sum-preserving £-~% matrix A such that

Ay . € ¢ for every rearrangement y ‘of x (8, p. 7).




Definition 1.5. A topological space is called a Baire

space if the intersection of every sequence of dense open

sets is dense. (17, p. 178).

Theorem 1.13. Every complete semimetric space 1is a
Baire space (17, p. 178).

Definition 1.6. Let X be a topological space and K be

a subset of X; then

1. K is nowhere dense in X if the interior of K is
empty;

(s3]

2. K is of the first category in X if K = T
n=1

Kn’
where each Kn is nowhere dense in X;

3. K is of the second category in X if K is not of
the first category in X (17, p. 179).

Theorem 1.14. A topological space X is a Baire space

if and only if each nonempty open set is of the second
category in X (17, p. 1791

Theorem 1.15. A Baire space is of the second category

in itself (17, p. 180),

Theorem 1.16. A G6 in a complete semimetric space

must be a Baire space (17, p. 183).
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CHAPTER II
SUMMABILITY OF REARRANGEMENTS

The sequence y is called a rearrangement of the sequence
x provided that there is a one-to-one function y from the
positive integers onto themselves such that for each k,
Yi © Xn(k)' (9, p. 1), This chapter contains analogs to
Theorems 1.3 and 1.4 in which rearrangements rather than
subsequences are considered. These results are then general-
ized by proving a theorem similar to Theorem 1.6 in which
"subsequence" is replaced with "rearrangement.'" Many of the
results in this chapter are also paralleled by findings of
D. F. Dawson (7, 8) involving stretchings. In addition,
Theorem 2.1 and Corollary 2.2 closely resemble results of
J. A. Fridy (9), differing in that they do not presume the
third property of regularity (Theorem 1.2).

Lemma 2.1. Let x be a sequence, y be a subsequence of
X, and A be a matrix such that both 1impapq = 0 for
q=1,2,3,... and limqapq =0 for p = 1,2,3,... . If Ay
exists, then there is a rearrangement r of x and an increasing
sequence of positive integers (pl,pz,ps,...) such that each
limit point of Ay (finite or infinite) is a limit point of

]

(2 a, ) .
p=1 P19 9" 3=3

11
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Proof. Suppose first that Ay has a finite limit point.
Using the separability of the complex plane, let (ul,uz,u3,"J
be a sequence of numbers such that each Uy is a finite limit
point of Ay and each finite limit point of Ay is either one
of the u; or a limit point of the Uj - Rewrite the sequence
(ul;ul,uz; ul,uz,us,...) as (vl,vz,v3,...). Suppose that
Ay also has a subsequence that diverges to infinity. Let

x \y = (zl,z3,zs,...) and Py >0 such that

- 1
| Za_ vy - v.|<5.
q=1 P14°d 1tz
1 : 1
Let N, >0 such that |a y. | <3 and ja_ _ | <
1 PRy My 4 Pyl 8 Zq|*
Lét r; =y; for i =1,2,..., Nj-1; er = 21; and z, = le.
Let p, >p, be chosen such that |a <% |a ]<:£
27 P p,N 7> 1% NN, ST
271 271 71
and
a2 | > 101.

a y
Let N2 >N1 be chosen such that
1
IaPZNzyNZ | < g-,
1
[ap2N222| <1g>

1
IaplNZyNZ I < T8>

and
1
laplNZZZI‘:gf
Let r; =y for i = Nj+1,...,N,-1; rNZ = Zy; and z, = YN2~
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This process may be continued so that | Za_ 1 | >%{100)

T —'vj[< -£§T when 1 is odd,

when i is even and | ziapiq q i

i = 2j-1. Therefore each 1limit point of Ay is a limit point

of ( Z}a t )® . This argument may be modified depending
qlpqqll
on the types of 1limit points (finite or infinite) in question.

Theorem 2.1, If x is a sequence having a finite limit

point and A is a matrix satisfying the first two properties
of regularity, then there exist a rearrangement y of x and an
increasing sequence of positive integers (pl,pz,ps,...) such
that each finite limit point of x is a limit point of

)co

( Z)a
pqqll

gq=1
Proof. By Theorem 1.8 there exist a subsequence y of x
and an increasing sequence of positive integers (Pl,pz,ps,..J

such that each finite limit point of x is a limit point of

{ Ziap q q) 1. But by Lemma 2.1 there exist a rearrangement
q= i=

r of x and a subsequence (Pi,Pé,pé,...) of (pl,pz,ps,...)

such that each finite limit point of ( Z"a y )¥  is a
qlpqqll

limit point of a .
poi (qupqq) =1

Corollary 2.1. A sequence x diverges to = if and only

if there exists a matrix A satisfying the first two properties
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of regularity such that Ay diverges for every rearrangement
y of x.

Proof. The identity matrix suffices for necessity.
For sufficiency suppose that x has a bounded subsequence y
with finite 1imit point L. By Theorem 2.1 there exist an
increasing sequence of positive integers-(pl,pz,ps,...) and
a rearrangement r of y such that L is a limit point of

( Z“f

2 ) . Let z = x\r and w = (rl,zl,rz,zz,...).

’pjata’;

By Lemma 2.1 there exists an increasing sequence of positive
integers (pi,pé,pé,...) and a rearrangement t of w (hence

t 1s also a rearrangement of x) such that L is a limit point

of (23 a_,.t)” | a contradiction.
qlpqqll :

Theorem 2.2. If A is a row finite matrix satisfying

the first two properties of regularity and x is a sequence,
then there exists a rearrangement y of x such that every
limit point of x (finite or infinite) is a limit point of Ay.

Proof. If x is bounded, then the theorem follows from

Theorem 2.1. Suppose x is unbounded and y is a subsequence
of x that diverges to infinity. Let z = x \y. By Theoren
2.1 there exists a rearrangement w of z such that each
finite limit point of z (and thus of x) is a limit point

of Aw. For p = 1,2,3,... let apk be the last nonzero
p
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element of the p-th row. Making use of the separability
of the complex plane, let Cul,uz,us,...] be a sequence such
that each ui'is a finite limit point of x and each finite
limit point of x is either one of the u, or a limit point

of the u, . Let (ul;ul,uz; ul’UZ’uE"") = (Vl,vz,vs,...)

<1

-V 5 Making use of the

and p; > 0 such that | 2]

q=1 11

a
pya‘q

first property of regularity, choose ty > Py such that

kt :>kp . Let rq = wq for q = 1’2""’kt -1 and choose
1 1 k 1
t]
T from x\y such that | Za; r |>2. Again making use of
ktl ' q=1 19 4 ‘

the first property of regularity, choose pz:’tl such that
k

t
1 w
1
+ 2 a w_ - <z, Let t,> such that
'qziapzq U q=k, +1 P2%d Vol <7. Let t;>p, such tha
1

k >—kp . Let rq = wq for g = kt + 1"“’kt,— 1 and choose
2 2 1 Z

_ kt
r,  from x\(rkt »¥1:Y5:Y¥3s-++) such that IZJ a

t, 1

£, Tl >4

This process may be continued defining a rearrangement r of
a subsequence of x such that each 1imit point of x (finite
or infinite) is a limit point of Ar. Therefore by Lemma 2.1
there exists a rearrangement r' of x éuch that every limit

point of x is a limit point of Ar'.

Corollary 2.2. A sequence x converges if and only if
there exists a matrix A with the first two properties of

reglarity such that A sums every rearrangement of x.
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| Proof. The identity matrix suffices for necessity.
For sufficiency note that x cannot be unbounded, for
if that were the case A would have to be row finite, and by
Theorem 2.2 there would exist a rearrangement r of x such
that Ar would have a infinite limit point, a contradiction.
But if x is bounded, then by Theorem 2.1 there exist a
rearrangement r of x and an increasing sequence of positive

integers [pl’PZ’pS"") such that each 1limit point of x

o _

is a limit point of ( 2 a r )° . Thus x must have but
q=1 Pi1 1" i=1

one limit point and therefore must be convergent.

Corollary 2.3. A sequence x is bounded if and only if

there exists a matrix A satisfying the first two properties
of regularity such that Ay is bounded for every rearrangement
y of x.

Proof. The identity matrix suffices for necessity.

For sufficiency suppose x is not bounded. Then A must
be row finite or else it is easy to construct a rearrangement
y of x such that Ay fails to exist. Thus by Theqrem 2.2
there exists a rearrangement y of x such that Ay has an
infinite limit point, a contradiction. Hence the proof is
complete.

Professor A, Wilansky of Lehigh University has pointed
out in a private communication that Theorem 2.3 may also be.

approached by utilizing results obtained by G, Bennett and
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N. J. Kalton. (32) In addition, it should be noted that
Corollary 2.2 follows directly from Theorem 2.3.

" Lemma 2.2. If x is divergent and a is a sequence such

[ee]
that Z}aqy exists whenever y is a rearrangement of x,
q=1

then a €2&.

Proof. 1If x is unbounded, then clearly a is eventually
zero and hence in %. Suppose x consists of only two elements
ty f t, # 0, and that a €%. Then a musf be a null sequence
since otherwise there exists a rearrangement y of x such
that 1imq|aqu| # 0. If a §cs, then there exists e;»O such

that if N> 0, then there exist m>n =N such that | X a
q=n

q|> €.

Thus a rearrangement y could be chosen such that if N> 0,
then there would exist m>n =N such that
m
| Zay |>|t,le>0
g=n 4 @ 2 ’
a contradiction. Hence a €cs. Let N>0 such that if m>n =N
then
m
.t 1. ‘1
| 20 a | <5|t,] .
q=n q 2172
But a.-§2, therefore given M 2N there exist m:>n,2M‘and

(a(l))m such that

m
1 -1
|72 al > ety
g=n
where either a(1)= 0 or a(1)= a for q = n,n+l,...,m.

q q q
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Define [aq q=n q q q q q

otherwise. Then

and
m m
(e + 5alPle |
- q 1 —q 2
q=n q=n
n
1}

> | ZatM) | -t

q=n 4 1 72

Hence a rearrangement y of x may be constructed such that

[ee]
Z}aqu does not converge, a contradiction. Since a is null
q=1

the Lemma follows in the more general case.

Theorem 2.3. If x is a divergent sequence and A is a

matrix that sums every rearrangement of x, then A is Schur.
Proof. Suppose x is not bounded. A must be row finite
or else it is easy to construct a Tearrangement y of x such
that Ay' fails to exist. Also it is clear that all but a
finite number of columns of A are zero columns since otherwise
a rearrangement y of x can be constructed so that Ay is un-
bounded. Let g* be fixed and q' # q* be a zero column of A.
Let Ygqr = Yq be two terms of x and y be a rearrangement of

X with Yq# and y_. so defined. Let z_ =y if q # q%,q';

q q

= 13 d = .
Zq* YQ an qu Yq*

q
Then Ay and Az are convergent;
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oG

therefore so is A(y-z) = (a *(y . y W )) ® . Hence (a_ &)
p=1 PA™ p=1

converges and A is Schur.

Suppose x is bounded. Let Ly # 0 and Ly he two distinct
limit points of x and note that by Lemma 2.2 each row of A
is in %, If any one single column of A converges, then by
an argument similar to that used in the unbounded case above
every column of A converges. Suppose thaf the q* column of
A fails to converge. Then there exists ¢ >0 such that if
N >0, then there exist m>n =N such that Ianq*_amq*l > e
Let (pl,pi,pé,pé,...) be an increasing sequence of positive

integers such that |a | >e for each i. Let B be the

p;a* “pla*

matrix such that brs = (aprs—ap S) for r = 1,2,3,...;

s =1,2,3,... . Then B has the property that By is null
whenever y is a rearrangement of x. Also, 'bpq*l >¢ for each
p, and limp(bpq*—bpq) = 0 for each g by an argument similar
to that used in the unbounded case above. In addition, since
each row of A is in % so is each row of B. Suppose that
(yl,...,yk) has been determined, where each ¥ is a term of

x. Choose m so large that (yk+1,...,ym) may be chosen from

m 4L | :
1
x\(yl,...,yk) such that [q ] pq [>]T§?T;T + 2 for some

1
p>k. Let N>m such that 7‘ b < . Let = X.
; q-NI I sup, (X | Tn+1 i’

where i = miﬁ{j:xj.éx\(yl,...,ym)}. Suppose that
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m N
A = | by + L, 2 b |'=2.
Then
2=z b - L
and
l ¥ bpql.?? —_ >
Therefore
N
b + L b
- | Z‘ pa’q 2 q§;+1 Pq
N
= |L.-L 2 b
L7l 12 by
N
- 2 L, 2 b__|»>2.

q= 1 pa’q T 1 g=m+1 P9

Hence one of Ay OT Ay is greater than 2, and (ym+1,...,yN)
may be chosen from X\(Yl,...,ym,yN+1) so that irregardless

of the manner in which (YN+2’YN+3"") is selected from

X\(yl""’yN+l)’ ]q?;bpqu] >1. This contradicts the fact

that By must be null. Therefore each column of A is con-
vergent.

Suppose that there exists a subsequence y of x such that
A does not sum y. Then By is not null and must have a non-
zero limit point. Since B has null.rows and columns, then

by Lemma 2.1, there exists a rearrangement r of x such that
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each limit point of By is a limit point of Br. But Br is
null, a contradiction. Hence A sums each subsequence y of
x and by Theorem 1.6, A is Schur.

Corollary 2.4, If x is divergent and A is a matrix

such that Ay is null for every rearrangement y of x, then
A transforms all bounded sequences into null sequences.

Proof. Suppose x is unbounded. By an argument similar
to that used in Theorem 2.3 each column of A must converge,
and all but a finite number of columns of A are zero col-
umns. But Ay is null for each rearrangement y of x, there-
fore every column of A is null, and by Theorem 1.1, A
transforms all bounded sequences into Cor

Suppose x is bounded. By Theorem 2.3 A is Schur;
therefore all columns of A converge. But by an argument
similar to that used in Theorem 2.3 all columns of A must
have a common limit to which they converge. Since A is
Schur this limit must be zero, and by Theorem 1.1, A

transforms all bounded sequences into Cye
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CHAPTER III
ABSOLUTE SUMMABILITY

In this chapter results are proved which follow the
pattern established by Theorems 1.6, 1.9, and 2.3 but which
are concerned with the characterization of £ rather than c.
J. A. Fridy (2, p. 585) has given an example of a non-zero
constant sequence x and a sum-preserving 2-% matrix A such
that Ay € & for every subsequence (rearrangement) y of x.
Therefore, in this chapter interest is restricted to null
sequences. Corollary 2.1 was first proposed in a slightly
different form by Fridy (2, p. 585) in 1970 and was later
stated by him as a formal proposition in 1974 (3, p. 9).
Corolléry 2.2 is a result previously obtained by Fridy
(3, p. 7).

Lemma 3.1. Suppose x and a are sequences such that

0
w“

L,aqu converges for every subsequence y of x. If >0,
q=1

then there exist M>0 and a strictly increasing function

§:1°+1" such that if mz=M, then | Z a y |.se for every

o

subsequence (yq)m of (xq)q=§(m)'

q=m

- Proof. Suppose the conclusion is false. Let Gl(i) = i

for i = 1,2,3,...; M1 = 1; and (y(gl))oo be a subsequence of
q=m

23
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e

( )| >e. Let M'>m

{x_) , mz1, such that | Z}a i

U g=sfm) gem &

such that | 2 a ( )l >¢ for every kzM;-1. Let
q“mqq

§p(1) = §l(i) if i <m and 62(1) = g where y£1) = xq other-

wise. Let MzzaM' and (yéz))m be a subsequence of

1
(xi]OU such that | D] aqyéz)| >e. Let yq = Xg if
i=M;) a=M, - |
g <m and Yq = y(l) ifxmsc1<M2. Proceeding as above, let
M) >M, such that | Z‘ aqy( )| >e for every k=M, - 1. Let
q_Mz
55(1) = 8,(i) if 1< M, and §,(i) = q where y(?) = x, other-
wise. Let M3 aMé and (y(s)) be a subsequence of
q=Mg
(Xi)% such that | 7‘ aq é )I >¢e. Define Yq = yéz) if
i= 84 (My) - q—M3
M ;SQgiM . This process may be continued, defining a sub-

sequence y of x for which 3 a_y
q=1

’q fails to converge, a

contradiction,
Lemma 3.2. If x is a null sequence not in § and a is
a nonnull convergent sequence, then there exists a subsequence
t n
y of x such that limt| Sy | =«and ( Z}a y ) is not

bounded.
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Proof. The lemma is clear if both a'and X are real

sequences. Let aq = a£1)+ iaéz) and Xq = xél) + ixéz) for
q=1,2,3, . Suppose x ¢ ¢ and there exists a subsequence

(l}of x(l) such that yé ) >0 for each q- and ]E yél) = +o,
q=1

Let y be the subsequence of x determined by y(l). Clearly

t
lim,| 3 y | = «. Also for each q
t q:l q
= (o, Q) o (2),(2)
anq (a Y 2q Yq )
Lrg (D), (2) , (2) (1)
rilagT gt ag g )
Consider the following special cases:

; oo (1) o (1) (2) _ ,(2)
i.) Suppose llmqaq a >0, 11mqaq a >0,

and ( 7‘(3(1) (1) . (2))?(2)))co is bounded. Since

¥
q=1 q q q q n=1
n
lim Z‘a(l) (1) = +w, it follows that lim Z}y(z) = +oo,
qlq q nq=1q

. (1) (2) (2) (1) -
Th f W
erefore lim q?&(a Yq +ag ) = +w and (q?zaqu) .

is not bounded.

ii.) Suppose that 1imqaél) = a5, 1imqaézl= a(2) <o,
and ( 7‘(a(1) (1) 4(2),(2)yy=

is bounded. Since

n
1im 7‘3(1) (1) = 4o it follows that lim Z)y(z) = -

n n
. (1) (2) (2),(1)y . > a
Thefefore lim ;gl(aq Yq @t ag Yq ) = -« and %=1 d;=1

is not bounded.
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iii.) Suppose 1lim a( ) a(l) >0, 1lim a(z) = a(z)= 0,

4 q q 4g

P
|

= (1J (1) . (@), 2k
1 (q?‘[ q aq Yq )]n=i€ m, and

b
H

7 = (q;}(a(l) éZ) + aéZ) él))):=1€ m. Therefore both

and A{~h, are bounded, and it follows that both

n p oo
= ea (1), (2)4, (1) (1)_,(2)4,(2)
A (qZ}[(aq ag )Yq * (aq aq )Yq ])n=1€ m

B
|

(1) (z) (1) _ (1), (2),(2) =
e (é:lt(a )Yq (ag "+ag " Ivq ])nzle m.

But 1imq(aé1)+aé2))'2 a(1)> 0, therefore

n

Also, lim (a(l)-aéz)) = a(1) >0, therefore

q-q
lim Z}y(z) = -
q=1
But this contradicts the fact that l4 €m. - Hence one of Al
or X, is not bounded, thus ( 7’& y )¥ is not bounded.
2 g=1 99 p=1

Clearly each remaining case can be reduced to one of
the above three cases, and the lemma is proved.

 Theorem 3.1. Let x be a null sequence not in £, and

suppose A is a matrix such that Ay €4 for every subsequence

y of x. Then
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i.) Z‘la ] <w for q = 1,2,3,...; and
p=1

ii. if 1i a = L, then L = 0.
ii.) i 1mq ;El pq , n

Proof. To show i.), let k be fixed and j > i » k such
that Xy # x Let y be the subsequence of x such that
y, =X for q=1,2,...,k-1; Y T Xy and Yier = X

q q
for t = 1,2,3,... . Let z be the subsequence of x such

jrt

that 2y = xj and zq = yq otherwise. Then

[+3) 0

o > §“| Z‘a Ya_z | = |x.~x.|Z la]-
p=1 q=1 pa’q q=1 "pa’q i Ip 1 pk/

Therefore Z}la wl <
p=1

Suppose lim, pﬁaapq =Land L # 0. Let (¥yy,---»¥p.q)

be a subsequence of x withyM_1 = X Since x.¢% there

"
exists a subsequence (w )oo of (x )00 such that
4" q=m Vg=r+1

lim | Z}wq] @, By Lemma 3.2 there exists a subsequence
q=M

(z )~ of (w.)  such that lim, | Z)z | = « and

for ¢ * m,...,k. By Lemma 3.1,
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letting ¢ = %, there exist Nﬁ and 65 for li=sp: <K, such that
if N = maX{N',...,Nk k+2} and §(i) = maX{aé(i): p=1,...,K},
L
k @
then )| 7 a | <1 for every subsequence (v_.)* of
p=1 q=N Pa’q 4 g=N
(xq)00 . Let yq = z_ for Mi=q«=k, and choose
q=6(N) 4
(yk+1,...,yN 1) a subsequence of (xq)q 5 O4) such that

N-1

b2 Iy ] Z)]a ] <1. Note that the first N-1 terms of a
q=k+1 p 1

fixed sequence y have now been determined. If y* is any sub-

sequence of x that agrees with y for these first N-1 terms,

then
3 Fyr Ba g5 2
TiZa_ y*| = | T y* a - |y*i la gl
> 5 z:
- ly4l Z Ja_ | - l yE|
k k
“IZY*Za |- Zly* |2 a_ |
q=M p 1 P4 q=M 4 p=K+1 Pq
M-1
- X va IZJ lapgl = 2
q=1
> M.

This process for defining terms of y may be continued so that
if T>0, then there exists M=T and K> 0 such that

K oo
NI
p= 1 q=1

a_y | >M.
Pq q
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Thus a subsequence y of x can be constructed such that
Ay § 4, a contradiction.

Corollary 3.1. A null sequence x is in & if and only

1f there exists a sum-preserving 4-% matrix A such that
Ay€r for every subsequence y of x.
Proof. The identity matrix suffices for necessity.

By Definition 1.4 if A is a sum-preserving £-% matrix,

o _
then lim_ 20 a = 1. Hence by Theorem 3.2, x must be in §.

p-_-:l pq

Theorem 3.2. If x is a null sequence not in ¢ and A

is a matrix such that Ay €3 for every rearrangement y of

e

a 2 1%l =0
p=1

X, then 1lim

Proof. Let X # X, be nonzero elements of x. Suppose
the first column of A is not in 2. Let g>1 and y be a

rearrangement of x with y. = x_ and y = x_ . Let z be the
1 n q m

rearrangement of x such that Zy = X zq = X and zq =y

o« o3

| = Dl T a .y -2 a

q

8

otherwise. Then an—xmlpzﬂ a

o
< =. Therefore ¥ |a

2 pl_apqlf:m for g = 2,3,4,... . Since
P

Z la;| = =, it now follows that ¥ Ja_ | = w for q=2.
p=1 pl | p=1 P4q

Suppose a permutation (rl,...,rM) of M terms of x has been

M
chosen such that Z)rq # 0. Suppose N>0. If
q=1 *

pl ?pq <1 Z%97q” Z%pq%q
p=1 g=1 q=1
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M oo
o<} + a o
> ;ggqulggli p(q-1) qu
M o

a contradiction. Therefore A = « and there exists K >N such

K M
that 3 | £ a

p=N g=1
J. A. Fridy (3, p. 6) has shown that each row of A is null.

pqrql >2., Let i = min{q:xqé x\(rl,...,rm)}.

K - (M+1)
Therefore there exists T >M such that IinZﬁ [apT]< 2 .
p=1 '

Let r, = X, and (r

T M+1""’rT—1) be a subsequence of

K T-1

x\(rl,...,rM,r ) such that > >

la__| fr | <27 M*2)
p=1 gq=M+1 “pa’ Fa

Then

K T K
Iyl Z 8pqTq! 2 = Nliil pa’q
K T-1 K
JREN $§M+1Iapqrql IrTI;QN[apTI
> - g7 ML) - (MF2),
But this process may be continued. Therefore there exists a
rearrangement r of x such that if L > 0, then there exist
K> N.zL such that ZI)( | E a | >1, a contradiction.
p=N g=1 P4 Tq

Hence each column of A is in 2.
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Now suppose there exists € >0 such that if N> 0,

then there exists q >N such that Z)]apql>=e. Let z. € §
p=1

be a subsequence of x that includes all zero terms of x.

>0 such that 3 |a
p=1

| > e,

Let j, = min{g:x_.€x\z}. Let N
1 q 1 1

pN

Let r,, = X. , T =z,, and (r,,...,T, .) be a sub-
A PR R s 170N -1
N, -1 Y
sequence of z such that X |r_ | Z |a

1
| <5. Let M, >0
= Q' -1 Pq' 2
g=1 p=1

1

M
1 o0
1
such that ¥ |a N.| > % and |z, | O la_., | <+. Let
pml P 1 2 Nl p=M1+1_ le 4
i, = min{q:quex\(rl,zl,zz,...)} and i2==miﬂ{q:zq6 2\(Z 555 ens
Ty _1)}. Since each row of A is null, there exists Ny > Ny+1
1 N Ml
1
such that 3 le o |>% and |x. | = |a | <3. Let
p=M +1 PNy 2 J2'p=1 PN 8
T =X, , T = z. , and (r »+++3Ty ) be a subse-
N, P N2+1 i, N1+2 ’ N,-1

gquence of z\(zl’rl"'”er-l’rN2+1) such that

N.-

S 0] Tla | <l
b T >ta S
q=N1+1 q p:l Pq 16
lelellwlll
Let M, > M. such that 32 a >% and |r b a < =,
27" pol 1 PN 2 N2 prgn' BNy 32

This selection process may be continued so that if k is fixed,
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then
Mo M, M, N1
Lol 2ia v | =(D la vl -2 |Z a_ r |
p:l q_l q p:l p 1 1 p:l q:l Pq q
Ml IN2 1 l Ml l
-z a 2 la_y Ty | )
E | | E
+ (% a., T 7 la n T |
p=M +1 PNp Nyt oy 1 PN Ny
M2 INl-l‘ [ M2 NZ 1 I
- 2 @ - Z =e..)
p=M_+1 g=1 P9 4 p=M,+1 q=N;+1 pPqq
Mk I I Mk [Nl-l I
+ (D a T I 2 a_71_|-.
p= kd?l ka Nk p=Mk‘1+1 q=1 pa q
L NTIRTO
= | 3 fa P + + 3 a T [)
p=1 PNy Ny p=M, ,+1° PNk Nk
N.1 ll IMk [ Mk
- (2 2 |a % a_n Ty |
2z | IMk |2 E | I
+ > |a Z an Ty |*-00)
q=N,+1 A p=1 PAL oy apl PN, N,
. k
= 2oy | -1
24=1 N; "
But r has been selected so that 1im, Z}[rN | = ». There-
T 1=l i
fore Ar ¢ 2, a contradiction. Hence lim_ T |a | = 0.
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Corollary 3.2. The null sequence x is in ¢ if and only

if there exists a sum-preserving &-§ matrix A such that
Ay€ 4 for every rearrangement y of x.
Proof, The identity matrix suffices for necessity.

By Definition 1.4 if A is a sum-preserving -4 matrix,

then lim 2, a = 1. Hence by Theorem 3.2, x must be in g.
q p=1 Pa

Example 3.1. By Theorem 3.2 a matrix A that maps all

rearrangements of a sequence x:Eco\g into ¢ must be an g%-%

matrix. But Theorem 3.1 gives little insight into the ques -

tion of whether A must be £-g if it maps all subsequences

of x into . The following example shows that A need n?t be
. - 1

2-% in this case. Let x, =5 forn = 1,2,3,...; aqq==q3

for q = 1,8,27,64,...; and apq = 0 otherwise. If y is a
2

subsequence of x and Ay = z, then 1zq] <qq3‘for q=1,8,27,...
and zq = 0 otherwise. Thus z.€ g, but.clearly X‘ECA\Q' and
A 1is not 2-%.

The pattern established by Theorem 1.6, Theoren 2.3,
and Corollary 2.4 might cause one to suspect that if A
maps all subsequences (rearrangements].of a sequence x,Ecg\z
into £, then AY€ ¢ for every y €cs. The following example

shows that this is not true in the case of subsequences, and

a slight alteration of this example shows it also fails for

' -114
rearrangements. Let x = 1~for n=1,2,3,...; a = (-1)7
n n P4 qu
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for p21, g=1. Then Ay€ & for every subsequence y of x

since lapqu} (é%)qmz. Let z; = -1 and Zq = (-1)9(2) for

'ZgSq,Snl, where ny is the least positive integer such that

nl 1 n,+1

ZE a—+ a;jj >1. Let zIll+1 = (-1) 1 (%) and zq = (—l)q
q:

for n1+2 =q=n,, where n, is the least positive integer such
n

2 1 ,*1
that ;Z; +2(aul-q+1) . Let Zn2+l = (- 1) ( ) and
1

2q = ('1)q(%) for n,*2=<q <n,, where n; is the least positive

n

integer such that Z (m-+ qil) >4, Continue this process

q=n, +2 4

defining the sequence z such that Z)zq = 0. Using summation
q=1
by parts,

1im Z} = 11mn[(a11—a12)zl

+ (312-313)(zl+22) + ...

+ a ]

24
in q=1

- %E(1j{(1+7)+...+|§; +

%q

1
nl+1[}

e 1 1 1
+'2"{' +1 + l‘*’..."’l““n‘—'

| + """'-""""‘I }+--»]
n1+2 n2+1

> %£1(1) + 3(2) + %(4) o] = e

n _
since llmnaln ;? z = 0. Therefore Az § &.
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