Generalized C-sets

PDF Version Also Available for Download.

Description

The problem undertaken in this paper is to determine what the algebraic structure of the class of C-sets is, when the notion of sum is to be the "set sum. " While the preliminary work done by Appling took place in the space of additive and bounded real valued functions, the results here are found in the more general setting of a complete lattice ordered group. As a conseque n c e , G . Birkhof f' s book, Lattice Theory, is used as the standard reference for most of the terminology used in the paper. The direction taken is ... continued below

Physical Description

iii, 42 leaves

Creation Information

Keisler, D. Michael August 1974.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Keisler, D. Michael

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The problem undertaken in this paper is to determine what the algebraic structure of the class of C-sets is, when the notion of sum is to be the "set sum. " While the preliminary work done by Appling took place in the space of additive and bounded real valued functions, the results here are found in the more general setting of a complete lattice ordered group. As a conseque n c e , G . Birkhof f' s book, Lattice Theory, is used as the standard reference for most of the terminology used in the paper. The direction taken is prompted by a paper by W. D. L. Appling, "A Generalization of Absolute Continuity and of an Analogue of the Lebesgue Decomposition Theorem. " Since some of the results obtained provide another approach to a problem originally studied by Nakano, and improved upon by Bernau, reference is made to their work to provide other terminology and examples of alternative approaches to the problem of lateral completion. Thus Chapter I contains a brief history of the notion of C-sets and their relationship to lattice ordered groups, along with a summary of the properties of lattice ordered groups needed for later developments. In addition, several results in the general theory of lattice ordered groups are cited to provide insight into the comparability of the assumptions that will ultimately be made about the groups. Chapter II begins with the axiomatization of the collection of nearest point functions" for the closed A-ideals of the cone of a complete lattice ordered group. The basic results in the chapter establish that the functions defined do indeed characterize the complete A-ideals, and that the maps have a 'nearest point property." The maps are then extended to the entire group and shown to correspond to the "nearest point maps" for a C-set in PAB' Chapter III is devoted to exploring the algebraic structures found in the collection of all closed A-ideal maps, denoted J. J is shown to be a lattice ordered monoid, abelian and complete, containing a maximal group cone P*. It is further shown that the original group cone P is isomorphic to a subset of P*. Chapter IV looks into a rather interesting characterization of P*, one that, in the terminology of Bernau, implies that P* is the cone of the group that is the lateral completion of the original group. A final result is a demonstration that the members of j each have a representation as the sum of an element of P* and an additive element of j.

Physical Description

iii, 42 leaves

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1974

Added to The UNT Digital Library

  • March 9, 2015, 8:15 a.m.

Description Last Updated

  • Feb. 20, 2017, 10:32 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Keisler, D. Michael. Generalized C-sets, dissertation, August 1974; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc501024/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .