CRITERIA AND ASSESSMENT MEASURES FOR DIAGNOSING LEARNING DISABLED CHILDREN

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Melynda Karol Moyer, B.A.
Denton, Texas
May, 1986

A total of 60 school psychologists and educational diagnosticians across Texas completed a survey to identify the instruments used to screen and diagnose learning disabled (LD) students, and to identify the criteria on which the final diagnosis and placement of LD or non-LD is made. The results of this survey indicate that consistent methods and criteria are not being used for identifying children as LD within the state. Many of the instruments currently used may not be technically adequate for use with a LD population. Implications of the use of inconsistent criteria, inadequate screening and assessment measures are discussed.
TABLE OF CONTENTS

LIST OF TABLES iv

CRITERIA AND ASSESSMENT MEASURES FOR DIAGNOSING LEARNING DISABLED CHILDREN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>Definition of Learning Disabilities is Vague</td>
<td></td>
</tr>
<tr>
<td>Criteria for Identifying Learning Disabled Children</td>
<td></td>
</tr>
<tr>
<td>Adherence to Criteria</td>
<td></td>
</tr>
<tr>
<td>Screening for Learning Disabilities</td>
<td></td>
</tr>
<tr>
<td>Instruments Used and Their Validity in Identifying LD Children</td>
<td></td>
</tr>
<tr>
<td>Purpose and Rationale</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>22</td>
</tr>
<tr>
<td>Subjects</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>24</td>
</tr>
<tr>
<td>The Referral Process</td>
<td></td>
</tr>
<tr>
<td>The Evaluation Process</td>
<td></td>
</tr>
<tr>
<td>Diagnosis of a Learning Disability</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>38</td>
</tr>
<tr>
<td>Appendix</td>
<td>47</td>
</tr>
<tr>
<td>References</td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Individuals Who Refer Students For Evaluation</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>Criteria For Which Students Are Referred For Evaluation</td>
<td>26</td>
</tr>
<tr>
<td>3.</td>
<td>Number of Criteria Used to Refer Students For Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>4.</td>
<td>Formal Measures Used to Screen Students For Learning Disabilities</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Informal Measures Used to Screen Students For Learning Disabilities</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Intellectual Measures Used to Assess Students for Learning Disabilities</td>
<td>31</td>
</tr>
<tr>
<td>7.</td>
<td>Achievement Measures Used to Assess Students for Learning Disabilities</td>
<td>33</td>
</tr>
<tr>
<td>8.</td>
<td>Perceptual-Motor Measures Used to Assess Students for Learning Disabilities</td>
<td>34</td>
</tr>
<tr>
<td>9.</td>
<td>Criteria Cited to Diagnose Students as Learning Disabled Free Response</td>
<td>36</td>
</tr>
<tr>
<td>10.</td>
<td>Rankings of Criteria Used to Diagnose Students as Learning Disabled Forced Choice</td>
<td>38</td>
</tr>
</tbody>
</table>
CRITERIA AND ASSESSMENT MEASURES FOR DIAGNOSING LEARNING DISABLED STUDENTS

There is considerable confusion surrounding the identification of students as learning disabled. The federal definition provided by the United States Office of Education is vague, thus requiring local school districts to develop their own specific criteria to identify learning disabled (LD) students. Thus, there are many different criteria being employed across the United States for the identification of LD students (Thurlow, Ysseldyke, & Casey, 1984).

The criteria of school district specify the procedures to be used in the evaluation of a child for a learning disability, including specific symptoms which must be present and what type of assessment instruments must be used. This evaluation process is very important as it will often determine the educational fate of a child. Therefore, the criteria should be followed and the instruments used should be valid. The following literature review will examine several different criteria which are being used for the identification of LD students and the technical adequacy of the most commonly used
instruments by school psychologists and educational diagnosticians in the field of learning disabilities.

Definition

The United States Office of Education has established certain criteria to be used by a team of professionals in identifying students with specific learning disabilities. To identify a child as learning disabled, the team members must demonstrate that the child (a) does not achieve academically commensurate with his or her age and ability levels in one or more of seven different areas when provided with learning experiences appropriate for the child's age and ability levels, and (b) has a severe discrepancy between achievement and intellectual ability in one or more of seven areas relating to communication skills and mathematical abilities (oral expression, listening comprehension, written expression, basic reading skill, reading comprehension, mathematics calculation, and mathematical reasoning). Students whose under achievement is caused by environmental or cultural deprivation or from sensory, mental or emotional deficiencies are excluded from the learning disabled category (United States Office of Education, 1977).

Using the federal definition as a guideline, each state has developed its own definition of learning disabilities. The definition of learning disabled students in Texas is in
substance the same as the federal definition with one exception. The Texas definition further requires that a child's learning disability exist to such a degree that the child cannot be adequately served in the regular classes of the public schools (Texas Education Agency, 1980).

Definition of Learning Disabilities is Vague

Although these definitions appear explicit in describing the type of child which should be identified as LD, it is very difficult for local school districts to make the definition workable. One of the many problems encountered by professionals in their identification of LD students is the vagueness of the definition of learning disabilities (Algozzine, Ysseldyke, & Shinn, 1982). It is extremely difficult, if not impossible, for practitioners to identify or classify a child as LD when there is no consistent operational definition for the practitioner to use as a guide.

The lack of an appropriate definition of learning disabilities has also contributed to methodological problems and weak research in the field of learning disabilities. Researchers have defined the construct in many different ways. Some researchers have defined learning disabilities as significant underachievement in reading, while others define it as something more similar to hyperactivity (Werner, 1980). The groups of students
studied are, therefore, very different and the research results are confounding and confusing. In research studies where clinical populations are used, the researchers are relying on the validity of the original classification. If a pupil in the sample was misclassified as LD, the results of the study will be invalid (Shepard, Smith, & Vojir, 1983). It is, thus, very important that an agreed upon definition of learning disabilities be reached in order for researchers and practitioners to better serve those children with learning disabilities.

Criteria for Identifying Learning Disabled Children

Although there are established federal and state definitions of learning disabilities, each local school district must employ specific criteria to be used in the identification of LD children. Thurlow et al. (1984) reported a study conducted by Epps, Ysseldyke, and Algozzine (1982) in which professionals in the field of learning disabilities suggested over 40 different criteria for identifying LD students.

A survey of 127 teachers from 36 states, the District of Columbia, and Canada by Thurlow et al. (1984) noted four basic categories of criteria:

(a) a discrepancy between ability and achievement
(b) a deficit in achievement
(c) test scatter
(d) processing disorders.
Other criteria often employed when identifying learning disabilities are

(e) exclusionary criterion (U.S.O.E., 1977)
(f) severity of the disability (T.E.A., 1980)
(g) age of the child identified.

Discrepancy between ability and achievement. A discrepancy between ability and achievement is included in the federal definition and the Texas state definition, however, both these definitions fail to specify the necessary magnitude of a discrepancy before such discrepancy is considered severe (Epps, McGue & Ysseldyke, 1982; Thurlow et al., 1984). Therefore, school personnel must develop their own local standards for determining severe discrepancies. The ability-achievement discrepancy criterion also requires the local district to determine whether more than one assessment instrument must be used to confirm the discrepancy (Shepard et al., 1983).

There is some question, however, as to whether the ability-achievement discrepancy is a valid criterion. On the basis of an ability-achievement discrepancy, it is often very difficult for professionals in the area of learning disabilities to differentiate LD students from students who perform poorly in school but are not LD (Ysseldyke, Algozzine, Shinn, & McGue, 1982). Ysseldyke et al. (1982) tested 50 fourth students from the same district
who were previously identified by the school district as "low achievers" but not LD. No psychometric differences were observed between the two groups on 49 different measures.

In another study, Epps et al. (1982) provided psychologists and special education teachers with test profiles of LD students and non-LD low achievers. The experts were able to differentiate between the two groups only 50 percent of the time, while naive judges were accurate 75 percent of the time.

Deficit in achievement. A deficit in achievement refers to a situation in which a child is performing significantly below his or her academic grade level. When an achievement deficit is the chosen criterion for identifying LD students, the local school district must determine how many years below a grade level a child must be at each age to be considered LD (Shepard et al., 1983; Thurlow et al., 1984).

Test scatter. Test scatter refers to the pattern formed by scores on subtests of psychometric measures. If the criterion of the school district requires a child to show test scatter to be identified as LD, the amount which is considered significant must be established, as well as which particular instruments must contain the scatter.

Processing disorders. Processing disorders refer to a deficit in one of a variety of psychological processes
which are thought to be important areas of learning such as, attention, perception, memory, and language (Reid & Hresko, 1981). When processing disorders are included in a district's criteria, the school personnel must consider the validity of the instrument used to make the identification, and it must be determined if more than one professional must confirm the disorder (Shepard et al., 1983).

Processing disorders are an area of much disagreement among professionals in the field of learning disabilities. Professionals often disagree over types of processing disorders, and a few cases have been reported where one professional identifies a particular psychological process as an area of relative strength while another professional feels that is the child's area of weakness (Larson, Rogers, & Sowell, 1976).

Exclusionary criterion. Exclusionary criterion refers back to the federal definition where children whose learning problems are caused from environmental or cultural deprivation, sensory, mental, or emotional deficiencies are excluded from the LD category (United States Office of Education, 1977). The children with learning problems who are excluded from the LD classification have other problems which are considered primary. Primary handicaps include sensory impairment, motor handicaps, and moderate to severe mental retardation. However, there is some disagreement
among learning disability professionals as to when the exclusionary criterion should apply (Reid & Hresko, 1981). When considering children who are emotionally disturbed, mildly retarded, or culturally disadvantaged, Reid and Hresko report that many professionals believe it is very difficult to determine which is primary, as learning problems and emotional problems often occur together.

Severity of the disability. The criterion which requires that the learning disability must be so severe that the child cannot adequately function in the regular classroom is fairly straightforward. If a child is not having learning difficulties in school, there would be no reason for the teacher to refer the child for special placement, and no reason for that child to be provided special services. Public Law 94-142 states that handicapped children should be placed in the "least restrictive environment" possible for the child, and the least restrictive environment is the normal educational setting (Reid & Hresko, 1981).

The age of the child identified. The age at which learning disability experts believe learning disabilities can first be identified is an area of much disagreement. Some experts believe a LD child can be identified as early as infancy while others believe the disorder cannot be identified until the child is nine years old (Tucker,
Stevens, & Ysseldyke, 1983). If a child is exhibiting learning problems but considered too young by the established age in the school district to be learning disabled, the child will not receive special services.

The identification of a particular student as LD depends greatly on what specific criteria has been employed in a school district. Ysseldyke and Algozzine (1983) applied several commonly used criteria of learning disabilities to students in school identified LD programs and students in regular education classrooms. They found that over 75 percent of the regular education students could be classified as LD by at least one criterion and about 25 percent of the school identified LD students did not qualify as LD using any of the criteria.

Due to the vague definition of learning disabilities, professionals in the field are left to interpret the concept using their own "clinical judgement." Not surprisingly, there is often a lack of consensus among professionals causing many educators to question whether children identified as LD are in fact LD (Thurlow et al., 1984; Tucker et al., 1983). In the current state of affairs, several children with very different ability and achievement levels could all be considered LD by one set of criteria and group of professionals and non-LD by another group, most within federal and state guidelines.
Adherence to Criteria

Once a school district has established criteria to be used in classifying students as LD, educational diagnosticians and school psychologists should have little difficulty identifying the appropriate students. However, there is some evidence that the agreed upon criteria for identifying LD students in a school district is not always followed. Many times professionals use their "clinical judgement" to place a child in special services when they feel there is a need. Even in districts where very specific definitions are used, students who do not meet the criteria in the definition are identified as LD by decision making teams (Coles, 1978; Tucker et al., 1983; Ysseldyke et al., 1982). According to Shepard et al. (1983) in their review of 800 Colorado school identified LD children, 40 percent of the LD pupils were missing either an IQ test, an achievement test, or were administered achievement tests without normative data. In these cases, the federal, state, and local guidelines were clearly ignored. This lack of adherence to a specific criteria further muddles the groups of students which are considered learning disabled.

Screening for Learning Disabilities

It is generally a teacher's responsibility to initiate the evaluation process. There are typically no routine
screening measures for children entering school, therefore, if a child is having difficulties learning, it becomes the teacher's responsibility to refer the child for evaluation (Hogan & Ryan, 1976). The initial decision by a teacher is the most important element of the entire assessment process. Algozzine, Christenson, and Ysseldyke (1981) as cited by Ysseldyke and Algozzine (1983) reported the results of a nationwide survey of Directors of Special Education and found that approximately three to five percent of the school population are referred for special education. Of those referred, 92 percent are evaluated and 73 percent are placed in special education classes.

Screening measures are an important part of the assessment process. The screening procedure should identify children who fall below a specified level in certain areas of achievement (Lewis, 1980). The procedure should be valid, reliable, and function satisfactorily without extra materials, personnel or resources (Silver, Hagin, DeVito, Kreeger, & Scully, 1976). After the initial screening, a formal evaluation should be conducted before making a diagnosis. From there, an educational program should be planned to aid the child (Keogh, 1977).

Screening techniques can take the form of teacher checklists or formal tests. According to Keogh (1977), a review of several screening instruments for children with
learning problems suggest there is often little solid evidence to support the use of these techniques.

With so many children being identified as LD and the prevalence of the disorder increasing quickly (Brenton & Gilmore, 1976), there appears to be a real need for valid and reliable systematic screening techniques.

Instruments Used and Their Validity in Identifying LD Students

There are several formal assessment measures available for the identification of LD students. The United States Office of Education requires that more than one instrument be used in the evaluation of a student to determine if a significant discrepancy exists between intellectual functioning and academic achievement (Brock, 1982; Epps et al., 1982). Therefore, the types of tests which are most commonly used are intelligence tests and achievement tests. Intelligence tests are used to assess the cognitive ability of a child. A child identified as LD is, by definition, of average or near average intelligence. The IQ test confirms that the child's learning problems are not due to below average intelligence (Coles, 1978). Achievement tests and IQ tests are used in conjunction with one another to determine the ability-achievement discrepancy required by many definitions of learning disabilities (Sattler, 1982).
Perceptual-motor tests are many times included in the learning disabilities battery. Presumably these tests measure neurological processes which help professionals understand how a child processes information (Sattler, 1982). There is some evidence which suggests that learning disabled students perform less well on these tests than normal children (Coles, 1978). Neurological evaluations may also be included in the assessment to determine if a child's learning problems are due to a minimal neurological dysfunction.

Other assessment measures often included are self-concept scales. Some researchers have found lower reported self-concepts in LD children, due to an awareness that he or she is not learning as well as classmates or up to the expectancy level of teachers and parents (Alley & Deshler, 1979).

Although there are a great many instruments available for the assessment of LD children, researchers are discovering that many tests are technically inadequate in terms of norms, reliability and validity (Berk, 1982; Berk, 1983; Dean, 1977; King & King, 1982; Vance, Singer, Kitson, & Brenner, 1983; Ysseldyke & Algozzine, 1982; Ysseldyke, Algozzine, Regan, & Potter, 1980). Even the most commonly used tests have inadequacies which practitioners must be aware of when testing LD children.
Intelligence Measures. The Wechsler Intelligence Scale for Children - Revised (WISC-R) (Wechsler, 1974) is the most widely used intelligence test today (Berk, 1982; Coles, 1978; Henry & Wittman, 1981; Taylor & Ivimey, 1980; Wright & Michael, 1977). The WISC-R is designed for use with children from ages 6 1/2 to 16 1/2 years. It is designed to assess the "overall capacity of an individual to understand and cope with the world around him" (Wescsler, 1974 p. 5). In the WISC-R test manual Wechsler suggests that the test can be a useful clinical and diagnostic tool in the area of learning disabilities and educational assessment.

There have been several suggestions as to how to use the WISC-R with LD children. The most obvious is determining the child's overall IQ score and comparing it with scores obtained on achievement tests. Profile analysis has also been used to identify learning disabilities. When analyzing the WISC-R profile, any discrepancy between the Verbal and Performance scale would be examined (Berk, 1982), then subtest profiles would be examined to determine if a pattern of intellectual abilities existed that could distinguish LD children from non-LD children (Berk, 1983).

Various studies have been conducted considering the validity and reliability of the WISC-R. The test has been
found to be technically adequate in measuring general cognitive ability (Ivemy & Taylor, 1980; Ysseldyke et al., 1980). However, researchers have been unable to support the reliability and validity of identifying LD children by using profile analysis, the Verbal - Performance score discrepancy and use of shortened forms of the WISC-R (Berk, 1982; Berk, 1983; Dean, 1977; King & King, 1982; Vance et al., 1983). The WISC-R is a useful instrument for the assessment of LD children when used appropriately. The WISC-R should be used to measure the overall general cognitive ability of a child, then the score should be compared with scores on technically adequate achievement measures.

The Slosson Intelligence Test (Slossen, 1982) was developed in 1960 and revised in 1972 and 1981. The Slosson was designed to be used as a brief test of intelligence by relatively untrained examiners as well as skilled professionals (Covin, 1977). The Slosson was thought to be most useful as a screening device because of poorly constructed norms (Stewart & Jones, 1976). The reliability and validity of the most recently revised Slosson has recently been tested (Jeffrey, Jeffrey, & Yetter, 1984), and suggests the Slossen is now a valid measure of intelligence in children. However, other researchers caution the test is not technically adequate
(Ysseldyke & Algozzine, 1982; Ysseldkye et al., 1980). The current research is questionable concerning the Slosson which suggests the instrument should continue to be used as a brief screening measure, but not as the sole measure of intelligence.

The McCarthy Scales of Children's Abilities (MSCA) (McCarthy, 1972) has been judged to be a technically adequate intelligence test in terms of norms, reliability and validity (Ysseldyke & Algozzine, 1982; Ysseldyke et al., 1980). It has been suggested that the MSCA may be a more sensitive measure of identifying LD students than other intelligence tests. According to Goh and Simons (1980) a depressed overall performance (i.e. lower General Cognitive Index) has been consistently reported for LD children on the MSCA. However, researchers have failed to find any particular patterns of intra-test scatter which might differentiate LD from other children (Taylor & Ivimey, 1980).

The Peabody Picture Vocabulary Test - Revised (PPVT-R) (Dunn & Dunn, 1981) is designed to measure an individual's receptive vocabulary, however, it is often used as a measure of overall intelligence. According to Ysseldyke et al. (1980) the PPVT is a technically adequate instrument in regard to reliability and validity. Since the revision of the PPVT the standardization sample is now considered
adequate (Naglieri, 1981). While the PPVT-R is a reliable and valid measure of verbal comprehension, it should not be used in place of more complete measures of intelligence (Sattler, 1982; Sattler, Bohanon, & Moore, 1980).

Although the Stanford-Binet Intelligence Scale, (Pinneau, Thorndike, Terman, & Merrill, 1973) is a commonly used instrument (LaGrow & Prochnow-LaGrow, 1982), studies have not been done with learning disabled children. In addition, there is some concern with the test's technical adequacy (Ysseldyke et al., 1980). According to Ysseeldyke and Algozzine (1982) there are no data concerning norms, reliability or validity in the Stanford-Binet test manual.

It is very important in the assessment of LD children that practitioners use tests which are reliable and valid for that particular population (Ysseldyke & Algozzine, 1982). The tests discussed above are the most frequently used tests for assessing intelligence in children. It is evident from the review of the literature that for testing the intellectual abilities of LD children practitioners should use the WISC-R or the MSCA to be assured a valid and reliable score.

Achievement Measures. The assessment of academic achievement plays an important part in the psychoeducational evaluation. There are many types of
achievement tests available, the focus here will be commonly used, individually administered tests.

The Wide Range Achievement Test (WRAT) (Jastak & Jastak, 1978) is a brief screening test measuring reading, spelling, and arithmetic skills (Jastak & Jastak, 1978; Sattler, 1982). The WRAT has excellent reliability, however, the norms and validity are questionable (Ysseldyke et al., 1980). Overall, the WRAT provides limited information about a child's reading, spelling, and mathematical skills. It appears to be a useful screening measure but should not be the sole measure used to determine an ability-achievement discrepancy (Grossman, 1981).

The Peabody Individual Achievement Test (PIAT) (Dunn & Markwardt, 1970) is a screening measure of achievement. The test covers spelling, reading recognition, reading comprehension, mathematics, and general information (Sattler, 1982). The instrument is reported as being technically adequate in terms of norms, reliability, and validity (Ysseldyke et al., 1980). The PIAT is a good measure for identifying a child's general level of achievement, but a more comprehensive test should be used to identify specific areas of need.

The Woodcock-Johnson Psychoeducational Battery (Woodcock & Johnson, 1978) is a comprehensive set of tests
measuring aptitude, achievement, and interest (Sattler, 1982). The norms, reliability, and validity of the instrument appear to be technically adequate, however, there is a great deal of content overlap among the subtests (Hall, Reeve, & Zakreski, 1984). This is a critical problem with LD students as it becomes impossible to determine in what areas a child's discrepancies lie (Ysseldyke, Algozzine, & Shinn, 1981).

These frequently used tests are all valuable for identifying children with general deficits in achievement, however, they should not be used for identifying a child as having a "specific learning disability". There are a great many achievement tests available such as group administered achievement tests and tests which are designed to measure specific abilities (Sattler, 1982). The tests which are designed to measure particular abilities should be used when identifying a specific learning disability.

Perceptual-Motor Measures. Perceptual-motor tests are designed to measure how a child processes information (Sattler, 1982). The results of these tests are thought to be useful in developing remediation programs for learning disabled children.

The Bender Visual-Motor Gestalt Test (Bender, 1938) is a useful part of an assessment battery as a guide in developing hypotheses about a child's perceptual-motor
ability (Sattler, 1982). Studies performed to date have revealed conflicting results as to the usefulness of the Bender-Gestalt as a tool for differentiating LD children from non-LD children (Coles, 1978; Larsen et al., 1976; Schnieder & Spivack, 1979). When the technical adequacy of the Bender-Gestalt was judged, Ysseldyke et al. (1980) determined it to be inadequate in terms of norms, reliability, and validity.

Other perceptual-motor tests have problems similar to those of the Bender-Gestalt, including the Minnesota Percepto-Diagnositc Test (Fuller & Laird, 1969) and the Developmental Test of Visual-Motor Integration (Beery & Buktenica, 1967). Although these and other perceptual-motor tests can be useful in the assessment process, they should not be used to make a definite diagnosis (Sattler, 1982).

Many of the instruments available for the assessment of LD children do not have adequate norms, reliability, or validity. Practitioners must become aware of which instruments are technically adequate, and which need to be used in conjunction with other instruments. Many children are currently being identified as LD and some of them are misclassified because of the instruments used, however, more importantly, many children who are LD may not be receiving the help they need (Algozine & Ysseldyke, 1981).
Purpose and Rationale

The purpose of this study was to gain insight into the assessment methods used by educational diagnosticians and school psychologists in the State of Texas to discriminate learning disabled children from non-learning disabled children. The researcher was interested in the types of screening method used in public schools in Texas, the actual instruments which are used to test the students, and on what criteria the final diagnosis and placement were based.

The expected findings were that consistent methods were not being used for identifying children as LD within the state. It was also expected that many professionals were using instruments for identification which failed to demonstrate technical adequacy.

These findings were expected because of the lack of an operational definition of learning disabilities. Due to the vague definition, there are many different interpretations and opinions by professionals in the field. The results of this study could lead to a more specific and workable definition of learning disabilities in the State of Texas. For example, only measures which have supportive evidence of validity, reliability, and adequate norms should be used, and a statewide criterion for significant discrepancy and below grade level achievement should be adopted.
Method

Subjects

Participants were selected from 19 of 20 Educational Service Center (ESC) Regions in Texas. Ten districts/cooperatives were selected from each ESC Region by randomly drawing numbers. In ESC Regions with fewer than 10 districts/cooperatives all were included resulting in a total of 181 selected districts/cooperatives.

Surveys were mailed to the special education director of each district/cooperative who was asked to forward it to a school psychologist or educational diagnostician in their district/cooperative working with learning disabled students. Sixty surveys were returned resulting in a 33 percent response rate. Subjects represented a cross section of districts/cooperatives in terms of enrollment size across the state. Eleven subjects serve school districts with less than 1,000 students enrolled. Eight subjects serve schools with an enrollment between 1,000 and 2,000 students, 18 subjects serve school districts with an enrollment between 2,000 and 3,000 students, nine subjects serve schools with an enrollment of 3,000 to 10,000 students, eight subjects serve schools with an enrollment between 10,000 and 20,000 students, and six subjects serve schools with an enrollment greater than 20,000 students. The largest district represented has an enrollment of more than 65,000 students.
Materials

The survey (see Appendix B) asked school psychologists and educational diagnosticians to comment on a variety of questions pertaining to the identification of learning disabled students. The subjects were asked to indicate what screening methods are currently used in their districts/cooperatives for initiating the evaluation of a student for a possible learning disability, and the criteria used in their district/cooperative to refer a student for an evaluation. The respondents were asked to provide the names of the instruments they use for assessing children for learning disabilities, and to explain in detail the criteria and basis on which they make their final diagnosis of LD or non-LD. Subjects were asked if they could be contacted at a future date if clarification was necessary.

Procedure

A letter of explanation, an informed consent form, surveys, and self-addressed envelopes (for returning surveys to the researcher) were mailed to the Director of Special Education in each selected district/cooperative. The Director of Special Education was asked to distribute the survey to a school psychologist or educational diagnostician for completion.
Results

The results of this survey provided the researcher with a large amount of descriptive information regarding the referral, evaluation, and diagnostic processes used to diagnose students as LD or non-LD in Texas. Information on the referral process included who refers students for evaluation, the reasons for referral, what formal screening instruments, and informal screening techniques are used in school districts across Texas. Information on the evaluation process included what intellectual instruments, achievement instruments, perceptual-motor instruments, and other instruments are used by school psychologists and educational diagnosticians in the evaluation of a student. Information obtained concerning the diagnostic process included the criteria used by school psychologists and educational diagnosticians in Texas to make the final diagnosis of a student as LD or non-LD. This information is presented in the form of percentage rankings and mean rankings.

The Referral Process

Referring Agent. Table 1 presents the individuals who refer a student for an evaluation. It is generally the classroom teacher's responsibility to initiate the evaluation process with a referral. Almost all the respondents to this survey stated the student's teacher
usually refers a student for an evaluation. Ninety-seven percent of the respondents stated that parents sometimes refer their child, while approximately 25 percent indicated that physicians and other community agencies sometimes initiate the evaluation process. One-sixth of the respondents stated the school counselor will sometimes refer a student for an evaluation. Other referral sources cited were private schools, other school personnel such as the principal, school nurse, or speech therapist, students themselves, the regional service center, or a day care center.

Table 1

<table>
<thead>
<tr>
<th>Referral</th>
<th>Usually</th>
<th>Sometimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>98.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Parent</td>
<td></td>
<td>96.6%</td>
</tr>
<tr>
<td>Physician</td>
<td></td>
<td>28.3%</td>
</tr>
<tr>
<td>Community Agencies</td>
<td></td>
<td>23.3%</td>
</tr>
<tr>
<td>School Counselor</td>
<td>1.6%</td>
<td>16.6%</td>
</tr>
</tbody>
</table>

Reason for Referral. The reasons for which students are referred for evaluation are listed in Table 2. The
main reason cited for a referral was poor academic performance (72 percent). One-third of the sample cited behavioral problems as a reason for referral. Continued failure after remedial efforts have been tried and a general concern on the part of the teacher, parent or principal were cited as criteria to refer a student for an evaluation by one-sixth of the sample. Group achievement

Table 2
Criteria For Which Students Are Referred For Evaluation

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor Academic Performances</td>
<td>71.7</td>
</tr>
<tr>
<td>Behavior Problems</td>
<td>33.3</td>
</tr>
<tr>
<td>Failing After Remedial Efforts Have Been Tried</td>
<td>16.6</td>
</tr>
<tr>
<td>Concern By Teacher/Parent/Principal</td>
<td>16.6</td>
</tr>
<tr>
<td>Medical Information</td>
<td>10.0</td>
</tr>
<tr>
<td>Group Achievement Scores</td>
<td>10.0</td>
</tr>
</tbody>
</table>

scores and medical reports were noted by 10 percent of the sample as criteria used to refer a student for an evaluation.

Other criteria cited by the sample to refer students
for an evaluation included inconsistent classroom work, lack of motivation, and poor attitude (see Appendix C).

Table 3 presents the number of criteria used to refer students for evaluations. Nearly one-quarter of the sample reported that only one criterion is used in their district/cooperative to refer a student for an evaluation. Of the respondents using one criterion to refer a student, only 16 percent are referred because of poor academic performance. One-quarter of the sample reported that two criteria are used to refer students and one-quarter reported that three criteria are used in their district/cooperative. One-tenth of the sample report that four or more criteria are being used in their district/cooperative to refer a student for an evaluation.

Table 3
Number of Criteria Used to Refer Students For Evaluation

<table>
<thead>
<tr>
<th>Number of Criteria</th>
<th>Percent Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>26.7</td>
</tr>
<tr>
<td>2</td>
<td>28.3</td>
</tr>
<tr>
<td>1</td>
<td>28.3</td>
</tr>
<tr>
<td>No Response</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Formal Screening Measures. The subjects reported that formal screening measures are seldom used in Texas school districts. Table 4 presents the formal screening measures cited most often by the respondents. Over one-fifth of the sample cited hearing tests and vision tests as screening techniques, as well as the Wide Range Achievement Test (WRAT). The Peabody Picture Vocabulary Test (PPVT), Texas Assessment of Basic Skills (TABS), California Achievement Test, Slosson Intelligence Test (SIT), and Cognitive Abilities Test were cited by at least 10 percent of the

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision Test</td>
<td>21.7</td>
</tr>
<tr>
<td>Hearing Test</td>
<td>21.7</td>
</tr>
<tr>
<td>Wide Range Achievement Test</td>
<td>18.3</td>
</tr>
<tr>
<td>Peabody Picture Vocabulary Test</td>
<td>15.0</td>
</tr>
<tr>
<td>Texas Assessment of Basic Skills</td>
<td>15.0</td>
</tr>
<tr>
<td>California Achievement Test</td>
<td>13.3</td>
</tr>
<tr>
<td>Slosson Intelligence Test</td>
<td>11.7</td>
</tr>
<tr>
<td>Cognitive Abilities Test</td>
<td>10.0</td>
</tr>
</tbody>
</table>
sample. Forty-four other tests were cited by the psychologists and diagnosticians surveyed including adaptive measures, developmental scales, achievement tests, reading and language tests, intellectual tests, and perceptual-motor tests (see Appendix D).

Informal Screening Measures. There seems to be some consensus regarding informal screening methods. Table 5 presents the informal screening methods cited most often by the respondents. Over 60 percent of the sample cited

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation of Student</td>
<td>63.3</td>
</tr>
<tr>
<td>Review of School Records and Classroom Grades</td>
<td>26.6</td>
</tr>
<tr>
<td>Behavior Checklist</td>
<td>20.0</td>
</tr>
<tr>
<td>Student Work Samples</td>
<td>18.3</td>
</tr>
<tr>
<td>Medical Information</td>
<td>15.0</td>
</tr>
<tr>
<td>Parent Questionnaire/Conference</td>
<td>11.7</td>
</tr>
<tr>
<td>Teacher Conference</td>
<td>10.0</td>
</tr>
</tbody>
</table>

student observation as a screening measure. One-quarter of
the sample indicated the use of school records and classroom grades and approximately one-fifth of the respondents reported using behavior checklists and student work samples. Between 10 and 15 percent of the sample cited review of medical records, parent contact and teacher conferences as informal methods of screening students. Other informal screening methods reported by the sample are student interviews, adaptive scales, and "professional judgement" (see Appendix E).

The Evaluation Process

Intelligence Measures. Responses to the question concerning which intelligence instruments are used to assess students for learning disabilities, are presented in Table 6. Nearly 100 percent of the sample surveyed stated they use the Wechsler Intelligence Scale for Children-Revised (WISC-R) in the assessment of learning disabled students. More than one-half of the respondents reported using the Wechsler Adult Intelligence Scale-Revised (WAIS-R), the Kaufman Assessment Battery for Children (KABC), the Stanford-Binet Intelligence Scale and the Test of Non-verbal Intelligence (TONI). The Slosson Intelligence Test is reported by 45 percent of the sample, while approximately one-fourth of the sample cited the Wechsler Preschool and Primary Scale of Intelligence (WPPSI), the Leiter International Performance Scale,
Table 6

Intellectual Measures Used to Assess Students for Learning Disabilities

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechsler Intelligence Scale for Children - Revised</td>
<td>98.3</td>
</tr>
<tr>
<td>Weschsler Adult Intelligence Scale - Revised</td>
<td>80.0</td>
</tr>
<tr>
<td>Kaufman Assessment Battery for Children</td>
<td>63.3</td>
</tr>
<tr>
<td>Stanford-Binet Intelligence Scale</td>
<td>55.0</td>
</tr>
<tr>
<td>Test of Non-verbal Intelligence</td>
<td>50.0</td>
</tr>
<tr>
<td>Slosson Intelligence Test</td>
<td>45.0</td>
</tr>
<tr>
<td>Wechsler Preschool and Primary Scale of Intelligence</td>
<td>36.7</td>
</tr>
<tr>
<td>Leiter International Performance Scale</td>
<td>23.3</td>
</tr>
<tr>
<td>McCarthy Scales of Children's Abilities</td>
<td>21.7</td>
</tr>
<tr>
<td>Columbia Mental Maturity Scale</td>
<td>18.3</td>
</tr>
<tr>
<td>Raven Progressive Matrices</td>
<td>10.0</td>
</tr>
</tbody>
</table>

McCarthy Scales of Children's Abilities (MSCA), and the Columbia Mental Maturity Scale. Ten percent of the sample reported using Raven Progressive Matrices. Less than 10 percent of the sample reported using developmental
profiles, adaptive measures, the Woodcock-Johnson Psychoeducational Battery, Cattell Intelligence Tests and specific achievement measures (see Appendix F).

Achievement Measures. Responses to the question concerning which achievement instruments are used to assess students for learning disabilities are presented in Table 7. Close to 100 percent of the sample reported using the Woodcock-Johnson Psychoeducational Battery Part II. More than one-half of the sample reported using the Wide Range Achievement Test-Revised (WRAT-R) and the Peabody Individual Achievement Test (PIAT). Approximately one-third of the respondents cited the Woodcock Reading Mastery Tests, Key Math Diagnostic Arithmetic Test, Test of Written Language (TOWL), and the Kaufman Assessment Battery for Children - Tests of Achievement. One-quarter of the respondents cited the Test of Language Development (TOLD). Between 10 and 17 percent reported using the Diagnostic Achievement Test, Test of Early Reading Ability (TERA), Test of Adolescent Language (TOAL), the Woodcock Language Proficiency Test, Test of Early Mathematics Ability (TEMA), the Peabody Picture Vocabulary Test (PPVT), Brigance Diagnostic Inventory of Basic Skills, and the Test of Written Spelling (TOWS). Nineteen other tests of achievement were cited by fewer than 10 percent of the respondents, including specific reading, math, and language
Table 7
Achievement Measures Used to Assess Students For Learning Disabilities

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodcock-Johnson Psychoeducational Battery Part II</td>
<td>96.7</td>
</tr>
<tr>
<td>Wide Range Achievement Test</td>
<td>66.7</td>
</tr>
<tr>
<td>Peabody Individual Achievement Test</td>
<td>56.7</td>
</tr>
<tr>
<td>Woodcock Reading Mastery Tests</td>
<td>36.7</td>
</tr>
<tr>
<td>Key Math Diagnostic Arithmetic Test</td>
<td>35.0</td>
</tr>
<tr>
<td>Test of Written Language</td>
<td>31.7</td>
</tr>
<tr>
<td>Kaufman Assessment Battery for Children-Tests of Achievement</td>
<td>31.7</td>
</tr>
<tr>
<td>Test of Language Development</td>
<td>23.3</td>
</tr>
<tr>
<td>Diagnostic Achievement Test</td>
<td>16.7</td>
</tr>
<tr>
<td>Test of Early Reading Ability</td>
<td>16.7</td>
</tr>
<tr>
<td>Test of Adolescent Language</td>
<td>16.7</td>
</tr>
<tr>
<td>Woodcock Language Proficiency Test</td>
<td>13.3</td>
</tr>
<tr>
<td>Test of Early Mathematics Ability</td>
<td>13.3</td>
</tr>
<tr>
<td>Peabody Picture Vocabulary Test</td>
<td>11.7</td>
</tr>
<tr>
<td>Brigance Diagnostic Inventory of Basic Skills</td>
<td>11.7</td>
</tr>
<tr>
<td>Test of Written Spelling</td>
<td>10.0</td>
</tr>
</tbody>
</table>
tests, general achievement tests, and developmental scales (see Appendix G).

Perceptual-Motor Measures. Ninety-two percent of the sample reported using some type of perceptual-motor test in the evaluation of students for learning disabilities. Table 8 presents the perceptual-motor instruments cited most often by the respondents to this survey. Three-quarters of the respondents reported using the

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bender-Gestalt Test</td>
<td>98.3</td>
</tr>
<tr>
<td>Beery-Buktenica Test of Visual-Motor Integration</td>
<td>56.7</td>
</tr>
<tr>
<td>Frostig Developmental Test of Visual Perception</td>
<td>15.0</td>
</tr>
<tr>
<td>Slosson Drawing Card Test</td>
<td>13.3</td>
</tr>
<tr>
<td>Detroit Tests of Learning Aptitude</td>
<td>10.0</td>
</tr>
<tr>
<td>Motor Free Test of Visual Perception</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Bender-Gestalt Test, while one-half reported using the Beery-Buktenica Test of Visual-Motor Integration. Eighty-five percent of the sample reported using either the Bender
or the Beery. One-sixth of the sample cited the Frostig Test of Visual Perception and the Slosson Drawing Card Test. Ten percent cited Detroit Tests of Learning Aptitudes (DTLA) and the Motor Free test of Visual Perception. Twenty-one other instruments were cited by at least one subject to assess perceptual-motor abilities, including preschool learning tests, tests of motor skills, and subtests of larger batteries (see Appendix H).

Other Measures. Other instruments cited by this sample but not included under any of the previous categories included the Assessment of Basic Competencies, Bloomer Learning Tests, Bracken Basic Concepts, Goldman-Fristoe Test of Articulation, McCarron Dial System, Motor Screening Inventory, One Word Expressive, One Word Receptive, Preschool Language Scale, and the Visual-Aural Digit Span Test.

Diagnosis of a Learning Disability

Free Response. The criterion most often cited by the sample when asked to describe the criteria they use to diagnose a student as learning disabled, was a significant discrepancy between ability and achievement (98.3 percent). Below grade level achievement and the inability to be adequately served in the regular classroom were each cited by 8.3 percent of the sample. Close to one-third of the subjects cited information from parents, health
professionals, and other school personnel as a criterion used to identify students as learning disabled (see Table 9). Criteria reported by more than 10 percent of the subjects included having an IQ above 70, "clinical judgement" on the part of team members, teacher input, and classroom observation (see Table 9). Other criteria cited

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant Discrepancy Between Ability and Achievement</td>
<td>98.3</td>
</tr>
<tr>
<td>Information From Parents, Health Professionals and Other School Personnel</td>
<td>30.0</td>
</tr>
<tr>
<td>IQ Greater Than 70</td>
<td>16.6</td>
</tr>
<tr>
<td>Clinical Judgement of Team Members</td>
<td>15.0</td>
</tr>
<tr>
<td>Teacher Input</td>
<td>11.6</td>
</tr>
<tr>
<td>Classroom Observation</td>
<td>10.0</td>
</tr>
</tbody>
</table>

by fewer than 10 percent of the subjects included below grade level achievement, inability to be served in the regular classroom, test scatter, and perceptual problems (see Appendix I).

Forced Choice. When the subjects were given a forced
choice of criteria to identify students as LD and were asked to rank order the criteria, the three most important criteria were: (1) a significant discrepancy between ability and achievement, (2) below grade level achievement, and (3) the inability to be adequately served in the regular classroom (see Table 10). These three criteria are the guidelines identified by the State of Texas for the identification of LD students. Forty-five percent of the subjects ranked all the state guidelines in the top three, 36.7 percent ranked two of the guidelines in the top three and 16.7 percent ranked only one of the state guidelines in the top three criteria (1.6 percent did not respond to the question). The mean number of state guidelines the subjects ranked in the top three was 2.25 with a standard deviation of .79. When separating school psychologists and educational diagnosticians, psychologists had a mean of 2.36, SD .63, while diagnosticians had a mean of 2.18, SD .84. A one-tailed t test did not reveal any significant differences between school psychologists and educational diagnosticians in terms of use of the state guidelines for diagnosing learning disabled students, t(58) = .19, p > .05.

Discussion

The results of this survey support the original hypothesis that consistent methods and criteria for identifying students as LD are not currently in use across
Table 10

Rankings of Criteria Used to Diagnose Students as Learning Disabled - Forced Choice

<table>
<thead>
<tr>
<th>X Ranking</th>
<th>SD</th>
<th>Subjects Responding</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.19</td>
<td>.57</td>
<td>59</td>
<td>Significant Discrepancy by Ability and Achievement</td>
</tr>
<tr>
<td>3.3</td>
<td>1.84</td>
<td>54</td>
<td>Below Grade Level Achievement</td>
</tr>
<tr>
<td>3.5</td>
<td>1.95</td>
<td>52</td>
<td>Inability to be Adequately Served in Regular Class</td>
</tr>
<tr>
<td>4.7</td>
<td>1.4</td>
<td>56</td>
<td>Auditory Processing Deficits</td>
</tr>
<tr>
<td>4.75</td>
<td>1.96</td>
<td>46</td>
<td>Test Scatter</td>
</tr>
<tr>
<td>4.93</td>
<td>2.62</td>
<td>7</td>
<td>Other</td>
</tr>
<tr>
<td>4.99</td>
<td>1.25</td>
<td>47</td>
<td>Visual Processing Deficits</td>
</tr>
<tr>
<td>5.36</td>
<td>1.58</td>
<td>46</td>
<td>Sensory Integration Problems</td>
</tr>
<tr>
<td>6.2</td>
<td>1.84</td>
<td>33</td>
<td>Neurological Soft Signs</td>
</tr>
</tbody>
</table>

According to the Texas Education Agency, a student is to be identified as LD if the following criteria are met:

(1) a significant discrepancy between ability and
achievement, (2) below grade level achievement, and (3) the inability to be served in the regular classroom (T.E.A., 1980).

When the respondents to this survey were given a forced choice and asked to rank order several criteria which they believed were most important in identifying LD children, the three state guidelines were ranked as most important. This suggests that psychologists and diagnosticians are using the state guidelines to identify students as LD. However, when the respondents were asked a similar question in the form of a free response the state guidelines were not cited as often. A significant discrepancy between ability and achievement was listed by 98 percent of the sample, however, the other two state guidelines were cited by only eight percent of the sample. Information from parents, other school personnel and health professionals, an IQ greater than 70, "clinical judgement," teacher input, and classroom observation were all cited more often than below grade level achievement and the inability to be served in the regular classroom. These results indicate that there is confusion concerning how students are identified as LD. With 12 different criteria for identifying LD students in use by this sample it is evident that consistent methods and criteria for identifying students are not in use across the State of Texas. The use of inconsistent methods may
result in the misclassification of students which causes a
variety of students with different problems to be placed in
LD classes. These placements make it difficult for special
education teachers to adequately serve any of the children
in the LD classes. The use of inconsistent methods and
criteria is also likely to cause miscommunication between
professionals, prevent the mobility of students classified
as LD between school districts and prevent districts from
trusting a classification of another district.

The results of the present study are consistent with
findings of other investigators. "Clinical judgement" is
noted as important in this study as in previous research
(Coles, 1978; Tucker et al., 1983; Ysseldyke et al.,
1982). However, previous research indicates there is often
a lack of consensus among professionals in the field of
learning disabilities concerning what constitutes a
learning disability (Thurlow et al., 1984). The present
study establishes that the professionals who are evaluating
the students also have many different ideas about LD
children. This would indicate they are using different
theoretical definitions of learning disabilities and their
use of "clinical judgement" would identify a variety of
students.

This study indicates, as does previous research, that
the classroom teacher is most likely to initiate the
evaluation process (Hogan & Ryan, 1976). Past research also indicates the initial referral is the most important element of the assessment process (Ysseldyke & Alogzzine, 1983). The identification of specific criteria which LD students must meet would be especially helpful to the classroom teacher. The classroom teacher would then be responsible for screening students he/she feels are likely to be LD. The development and use of technically adequate screening techniques would increase the likelihood that a specific population of students would be referred and ultimately identified as learning disabled.

Currently in Texas there are a wide variety of reasons for referring a child for an evaluation. The most pervasive reason for referring a student is poor academic performance. Behavior problems and continued failure on the part of the student after remedial efforts have been tried are often cited as the reasons students are referred. Other referral reasons include hyperactivity, inconsistent school work and behavior, and displaying a poor attitude.

The results of this survey show that 52 formal screening measures, 26 intellectual measures, 35 achievement measures, 27 perceptual-motor, and 10 other measures are used by the sample. This indicates that 150 different instruments are being used to identify one
specific group of students. Formal screening measures vary from short forms of commonly used intellectual measures to adaptive scales, achievement measures, and a number of others.

The WISC-R is the most commonly used intellectual measure cited by the respondents. This supports the results of other studies which concluded that the WISC-R is the most commonly used intellectual measure in the United States (Berk, 1982; Coles, 1978; Henry & Wittman, 1981; Taylor & Ivimey, 1980; Wright & Michael, 1977). The WISC-R and other Wechsler Scales (WAIS-R, WPPSI) are technically adequate instruments for use with LD students when used appropriately (Ivimey & Taylor, 1980; Ysseldyke et al., 1980).

Another intellectual measure which is used by this sample and has proven to be technically adequate in terms of norms, reliability and validity is the McCarthy Scales of Children's Abilities (Ysseldyke & Algozzine, 1982; Ysseldyke et al., 1980). However, this instrument is used by only 22 percent of the sample. Other intellectual measures which have failed to demonstrate technical adequacy or the technical adequacy has not been tested with a learning disabled population, are being used quite often by respondents.

The achievement measures cited most often by this sample are considered to be technically adequate measures
(Grossman, 1981; Sattler, 1982; Ysseldyke et al., 1980). These instruments should be used to assess general overall achievement, however, and not for diagnosing specific learning disabilities. This survey revealed that school psychologists and educational diagnosticians in Texas are using both, achievement tests suited to test general, overall achievement and instruments which assess specific abilities.

Ninety-one percent of the subjects sampled use some type of perceptual-motor test in their evaluation. The use of perceptual-motor instruments is controversial since there are conflicting results on the usefulness of these tests with LD students (Coles, 1978; Larsen et al., 1976; Schneider & Spivack, 1979).

The results of this study have helped to clarify the problems involved in the identification of LD students in Texas. The study shows that too many different instruments are being used in the assessment of students for possible learning disabilities. Additionally, the study shows there is a great deal of confusion surrounding the use of the state guidelines for identification of LD students.

The survey provides evidence that some changes should be made in the process of identifying LD students. The definition of learning disabilities should be operationalized. The state should adopt a reasonable
number of screening, intellectual, and achievement measures to be used in the assessment of LD students. The instruments should be those which have demonstrated technical adequacy with the LD population. The criteria which the state has identified as important for identifying LD students should be more clearly defined. Finally, the school psychologists and educational diagnosticians working with this population should be formally educated about the state criteria.

The LD population is currently a melting pot of children who are having difficulties learning. The researcher feels it is important to identify a group of students with specific identified learning problems who can be served in LD classrooms. Although there remains a considerable amount of disagreement about what a learning disability actually is, certain guidelines must be established and followed. Currently, in LD classrooms in Texas, there are students placed for a multitude of different reasons and the likelihood of any of these students being adequately served is small.

Future research should study the screening issue more closely. Adequate screening procedures could be valuable as the referral rate of possible LD students climbs. In Texas, screening seems to be an area which is very inconsistent if addressed at all. An important question
which should be addressed concerning all evaluation instruments is how often they are used and why a school psychologist or educational diagnostician would choose one instrument over another.

A final issue which should be addressed and clarified concerns the criteria which is actually used to identify students as LD. This study suggests that it is confusing to know what criteria is actually being used to place students in LD classes. This question should be addressed specifically in a future study, as the inconsistencies found here are likely to be the result of confusion surrounding the two survey questions address this issue.

This study provided a great deal of information about the assessment and diagnostic procedure currently in use in Texas. However, a limitation of this study is the use of a survey instrument which has unknown reliability. Future research should study the reliability of this survey instrument before definitive conclusions can be made.

Although a great deal of confusion remains surrounding the identification of students as learning disabled this survey has served to clarify certain issues and determine what is taking place during the evaluation process in Texas. Information was obtained which allows the researcher to conclude that consistent methods and criteria for identifying students as learning disabled are
not currently in use across the State of Texas. Additionally, it may be concluded that school psychologists and educational diagnosticians are using instruments in the identification process which have failed to demonstrate technical adequacy. This information provides the opportunity for future research to address more specific issues concerning the identification of LD students in Texas.
Appendix A

Informed Consent

PVEASE RETURN THIS FORM WITH THE QUESTIONNAIRE

I agree to participate in this research project which is designed to learn about the procedures used by psychologists and educators to screen, assess, and identify learning disabled children. I understand that the information I include on this questionnaire will be held in strict confidence. My name will not be used in any release of the data and I am free to withdraw at any time without penalty.

I understand that my risks are minimal as information I give is confidential. I may receive direct benefit from this project by becoming more aware of strategies used by other practitioners to assess learning disabilities. An offer has been made to me to answer all questions about the project. In addition, if I desire, a description of the results will be sent to me.

___ ____________________________
Signature Date

District

() Phone number where we may reach you if needed to clarify survey information

OPTIONAL
A. The following questions pertain to the initial screening and referral of students to be evaluated for learning disabilities.

1. Who refers students for evaluation?
 1 = usually
 2 = sometimes
 3 = never

 a. Classroom teacher
 b. Parents
 c. Other; Specify: ____________________________

2. List all formal measures which are used to screen students.

 __

 __

 __

 __

3. Describe any informal measures used to screen students. Please describe fully.

4. What criteria are used to refer a student for an evaluation?
Appendix B--Continued

B. The following questions pertain to the evaluation of students for learning disabilities.

1. Which instruments are used to assess students for learning disabilities?
 a. Intellectual Tests (Please List)
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 b. Achievement Tests (Please List)
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 c. Perceptual-Motor Tests (Please List)
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 ___________________________ ___________________________
 d. Other (Please List and Describe)

2. Please describe what criteria are used to diagnose a student as having a learning disability. State test score cut-offs, teacher input, etc.
Appendix B--Continued

C. Criteria for Identification of Learning Disabilities

Please rank order the following characteristics from 1=most important to least important in your decision to classify a child as learning disabled. If you do not use a particular characteristic as part of your criteria put N/A.

___ Below grade-level achievement
___ Auditory processing deficits
___ Inability to be adequately served in a regular class (i.e., needs some type of special services)
___ Test scatter (i.e., unusual pattern of strengths and weaknesses)
___ Visual processing deficits
___ Sensory integration problems
___ Significant discrepancy between ability and achievement
___ Neurological "soft signs" (please specify: ______)

___ Other (please specify: ________________________)

Job Title:
___ Psychologist
___ Educational Diagnostician
___ Other ________________________

Thank you for your cooperation.
Appendix C

Criteria for Which Students are Referred for Evaluation

Agency Referral

Hyperactivity

Inconsistent Work and Behavior

Lack of Motivation / Poor Attitude

Likely to Meet Eligibility Criteria

Reversals / Inversions / Memory problems

School Records

Sociological Information
Appendix D

Formal Measures Used to Screen Students for Learning Disabilities

Achenback Child Behavior Scale
Arizona Test of Articulation
Basal Reading Test
Basic Achievement Skills Individual Screener
Beery-Buktenica Test of Visual Motor Integration
Bender-Gestalt Test
Brigance Diagnostic Inventory of Basic Skills
Chicago Early Childhood Screening
Cognitive Skills Index
Comprehensive Test of Basic Skills
Cuyahoga Behavior Rating Scale
Dallas Preschool Screening Test
Denver Developmental Screening Test
Developmental Activities Screening Inventory II
Devereaux Elementary School Behavior Rating Scale
Educational Achievement Test
Expressive One Word Picture Vocabulary Test
Gates-McGinitie Reading Tests
Iowa Tests of Basic Skills
Kaufman Developmental Scale
Key Math Diagnostic Arithmetic Test
Language Assessment Scales
Appendix D--Continued

Language Test
Learning Ability Profile
Metropolitan Achievement Test
Metropolitan Readiness Tests
Myklebust Pupil Rating Scale
OTIS-Lennon School Ability Test
Peabody Individual Achievement Test
San Diego Reading Test
Stanford Achievement Test
Stanford-Binet Intelligence Test
SRA Achievement Series
System of Multicultural Pluralistic Assessment
Test Anxiety Profile
Test of Auditory Comprehension of Language
Test of Basic Experiences
Test of Nonverbal Intelligence
Test of Written Language
Texas Educational Assessment of Minimum Skills
Vineland Social Maturity Scale
Wechsler Intelligence Scale for Children-Revised Short Form
Woodcock-Johnson Psychoeducational Battery
Woodcock Reading Mastery Tests
Appendix E

Informal Measures Used to Screen Students for Learning Disabilities

Adaptive inventory
Developmental scales
Early childhood screening scales
Group achievement data
Professional judgement
San Diego Reading Test
Sociological information
Speech samples
Student interview
Appendix F

Intellectual Measures Used to Assess Students for Learning Disabilities

Alpern-Boll Developmental Profile
Ammons Quick Test
Bayley Scales of Infant Development
Cattell Intelligence Tests
Developmental Activities Screening Inventory
Goodenough-Harris Drawing Test
Hiskey-Nebraska Test of Learning Aptitude
Peabody Picture Vocabulary Test
Test of Written Language
Vineland Social Maturity Scale
Wechsler Intelligence Scale for Children
Woodcock-Johnson Psychoeducational Battery
Woodcock Reading Mastery Tests
Appendix G

Achievement Measures Used to Assess Students for Learning Disabilities

Basic Achievement Skills Individual Screener
Basic School Skills Inventory
Boehm Test of Basic Concepts
Boehm Test of Cognitive Skills
California Achievement Test
Clymer Barrett Prereading Battery
Developmental Activities Screening Inventory
Developmental Indicators for the Assessment of Learning
Gates-McGinitie Reading Tests
Picture Story Language Test
Preschool Language Scale
Spache Binocular Reading Test
Stanford Reading Test
Structured-Objective Rorschach Test
Test of Early Language
Test of Early Language Development
Test of Mathematics Ability
Test of Reading Comprehension
Written Expression Test
Appendix H

Perceptual-Motor Measures Used to Assess Students for Learning Disabilities

Benton Visual Retention Test

Brigance Diagnostic Inventory of Basic Skills—Fine and Gross Motor

Chicago Early Childhood Screening

Dallas Preschool Screening Test

Draw-A-Person

Goldman-Fristoe Test of Auditory Discrimination

Halstead-Reitan Neuropsychological Test Battery

Haptic Intelligence Scale for Adult Blind

Hess School Readiness Scale

Hooper Visual Organization Test

House-Tree-Person Test

Illinois Test of Psycholinguistic Abilities

Jordan Left-Right Reversal Test

McCarthy Scales of Children's Abilities

Memory For Designs

Peabody Motor Skills

Purdue Perceptual-Motor Survey

SSSQ

SOMPA Physical Dexterity Tasks

Wechsler Intelligence Scale for Children-Revised Performance Subtests

Woodcock-Johnson Psychoeducational Battery Part I
Appendix I

Criteria Cited to Diagnose Students as Learning Disabled

Free Response

Auditory Processing Deficits

Below Grade Level Achievement

Inability to be Adequately Served in Regular Classroom

Neurological Indicators

Sensory Integration Problems

Test Scatter

Visual Processing Deficit
References

