A New LC Column for the Separation and the Quantitation of Nucleotides

PDF Version Also Available for Download.

Description

A new column, Dionex AS4A, (polystyrenedivinylbenzene matrix) used for the separation of ribonucleotides and deoxyribonucleotides for the first time, and previously used for ion analysis was found superior to conventional silica columns because it separates ribonucleotides and deoxyribonucleotides. Resolution of dGTP was not possible with the Dionex column and CTP and GDP often co-eluted. Using conventional silica columns, monophosphates separated from diphosphates and diphosphates from triphosphates. Using the new Dionex column resolves all three simultaneously. The Dionex column resolved nucleotides with sharper peaks than silica columns, and the longer its retention time the better was the resolution. This Dionex column ... continued below

Physical Description

vi, 64 leaves: ill.

Creation Information

Brock, Patricia C. (Patricia Charlene) December 1987.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 61 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Brock, Patricia C. (Patricia Charlene)

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

A new column, Dionex AS4A, (polystyrenedivinylbenzene matrix) used for the separation of ribonucleotides and deoxyribonucleotides for the first time, and previously used for ion analysis was found superior to conventional silica columns because it separates ribonucleotides and deoxyribonucleotides. Resolution of dGTP was not possible with the Dionex column and CTP and GDP often co-eluted. Using conventional silica columns, monophosphates separated from diphosphates and diphosphates from triphosphates. Using the new Dionex column resolves all three simultaneously. The Dionex column resolved nucleotides with sharper peaks than silica columns, and the longer its retention time the better was the resolution. This Dionex column is stable, with 80 runs possible without cleaning while resolving ribonucleotides and deoxyribonucleotides to the picomole level.

Physical Description

vi, 64 leaves: ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 1987

Added to The UNT Digital Library

  • March 9, 2015, 8:15 a.m.

Description Last Updated

  • Nov. 1, 2016, 11:37 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 61

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Brock, Patricia C. (Patricia Charlene). A New LC Column for the Separation and the Quantitation of Nucleotides, thesis, December 1987; Denton, Texas. (https://digital.library.unt.edu/ark:/67531/metadc500813/: accessed June 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; .