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This investigation is a theoretical study of the influ-

ence of defects of finite volume on the electrical conductivity

in the quantum size effect regime. Correction terms to exist-

ing equations are derived, and a physical explanation of the

results is given.

Many macroscopic properties of films exhibit an oscilla-

tory dependence on thickness when the thickness is comparable

to the de Broglie wavelength of an electron at the Fermi sur-

face. This behavior is called the quantum size effect. In

very thin films, scattering from surfaces, phonons, and crys-

tal defects plays an increasingly important role. In this

investigation the influence of scattering centers (defects)

in semimetal films on the electrical conductivity is explored

by extending existing work to include scattering centers of

finite range. The purpose of this study is to determine the

overall change in the conductivity and the alteration of the

amplitude of the oscillations.

The Boltzmann transport equation is the starting point

for the calculation. An equation for the vector mean free

path is derived, and a solution is obtained by the iterative

process. The relaxation approximation need not be made since

the vector mean free path is determined.



The sample is a thin slab that is infinite in two dimen-

sions. The assumption is made that the electron wave function

is zero at the walls of the sample. It is further assumed

that there is a known number of randomly located defects within

the slab. The noninteracting electrons are considered free

except in the vicinity of the scattering centers. The defects

are characterized by a potential that is constant within a

small cube and zero outside of it. This approach allows the

potential matrix elements to be evaluated by expanding in a

power series.

The electrical conductivity is calculated for three de-

fect sizes, and a comparison is made to 3-function (infinitely

small) scattering centers. An overall decrease in the con-

ductivity is found in each case, and the absolute magnitude

of the oscillations is decreased. The percentage of oscilla-

tion, however, is increased. The general conductivity decrease

is attributed to the increase in the scattering range. The

change in the amplitude of the oscillations is explained by

analyzing the transition probabilities to available energy

states at critical film thicknesses. The oscillations are

found to be a result of transitions from states with large

energies in the plane of the film to states with small energies

in the plane of the film. The number of electrons occupying

the various states is determined at critical film thicknesses,

and a comparison with the conductivity equation shows excellent

agreement.
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CHAPTER I

INTRODUCTION

In very thin solid films,macroscopic properties, such

as conductivity, Hall coefficient, and optical parameters,

exhibit an oscillatory dependence on the film thickness. The

oscillations occur when the film thickness is comparable to

the de Broglie wavelength of an electron at the Fermi surface.

This behavior is called the quantum size effect (QSE) and is

based on the quantization of the carrier momentum that is

normal to the film plane.

The possibility of size oscillations in some thermody-

namic characteristics was predicted by Lifshitz and Kaganov.1 ,2

Oscillations in the resistivity resulting from quantization

due to magnetic fields led them to conjecture that if the

sample is thin enough, the size of the film can quantize the

momentum and cause oscillations. Tavger and Demikhovskii

consider the problem in depth and evaluate the conditions

under which QSE can be observed.3  Sandomirskii comments in

more detail on the sample thickness in metals and semiconduc-

tors necessary for the detection of QSE. These evaluations

lead to the increased importance of having detailed knowledge

of the semimetal and semiconductor band structures and Fermi

surfaces. Kao provides useful information in his investiga-

tion of the Fermi surface of bismuth.5 Esaki and Stiles

1



2

further study this semimetal by investigating its electronic

band structure.6

Ogrin, Lutskii, and Elinson were the first to experimen-

tally observe the oscillations.7 Their data on bismuth films

includes work with magnetic fields as well as variations in

sample thickness. The initial experimental QSE observation

was followed by many accounts of oscillatory dependence. To

date these effects have been reported in antimony,8 aluminum,9

indium antimonide,10 and copper sulfide.1 ' Thin inversion

layers in silicon12 ,13 and alloyed mercury-cadmium-tellurium

compounds'4 have been studied. Ugaz and Soonpaa discuss the

conductivity in thin crystals of a bismuth-tellurium-sulfur

compound.15 The bulk of experimental work, however, has been

concerned with bismuth, specifically the trigonal surface.

The oscillatory effects have been investigated under a

variety of conditions. Duggal, Rup, and Tripathi16 observe

oscillations in thin bismuth films similar to those previously

observed by Ogrin, Lutskii, and Elinson. Oscillations in

longitudinal magnetoresistance in single crystalline bismuth

films are reported by Garcia, Kao, and Strongin,'7 by Bogod and

Eremenko,18 and by Lal and Duggal.19 Vatamanyuk, Kulyupin,

and Sarbei employ high electric fields to explore QSE.20

Lutskii and Kulik find oscillations in the optical absorption

of bismuth films.2 1 Fesenko uses differential magnetoresis-

tance to investigate bismuth films, and observes QSE oscilla-

tions.22 He also discusses high-frequency oscillations which
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he attributes to the hole part of the Fermi surface.23 An

x-ray investigation of the bismuth surface is made by Konczak,

Kochowski, and Ziolowski on samples in which oscillations

have been observed.24 Komnik and Bukhshtab note QSE in poly-

crystalline bismuth films.25 They find that the conductivity

increases as the film thickness decreases, a distinct feature

not normally observed. Asahi, Humoto, and Kawazu compare

experimental results with the high-temperature anisotropic

theory and generally find agreement.26 The temperature de-

pendence of the resistivity is also considered by Ogrin et al.

by comparing theoretical and experimental results for thin

bismuth films.27 Using an anisotropic model, Gol'dfarb and

Tavger explain the experimentally observed features of the Hall

constant on thickness.28 Size effects have been studied in

contact potential2 9 as well as in tunneling experiments.30

All of these experimental results give acceptable values for

the effective mass and Fermi energy in bismuth.

Sandomirskii provides solid mathematical groundwork for

the oscillatory effects at low temperature.31 Kulik calculates

the conductivity as a function of sample thickness, using quan-

tum field theory methods,32 and arrives at substantially the

same results as Sandomirskii. The theory for QSE at high

temperature for an anisotropic sample is given by Nedorezov,33

while Erukhimov and Tavger work out the theory for longitudi-

nal galvanomagnetic phenomena in thin films.34  Krishnan and

Meyer derive an expression for the conductivity in the case
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of a magnetic field perpendicular to the plane of the film.35

Shik calculates the conductivity when electrons are scattered

by a screened coulomb potential.36  Bezak derives the formula

for the Fermi energy for thin films3 ? and generalizes Fuchs'

theory by deriving a quantum mechanical expression for the

electrical current. 3 8

Quantum size effects are reviewed briefly by Tavger,39

then more extensively by Tavger and Demikhovskii.40 A review

of experimental investigations into the oscillatory effects

is given by Lutskii.41 Possible practical applications of

QSE are discussed by Elinson et al,42

Most of the experimental work is concerned with semi-

metals and heavily doped semiconductors, since the effect can

be observed with reasonably thick (i 10-5 cm) films. The ef-

fect is most prominent at very low temperature and is damped

out as the temperature is increased. There have been, how-

ever, several experimental observations of oscillatory effects

in the conductivity at room temperature. 4 -4 5

At very low temperature the resistivity increases rapidly

as the thickness decreases. Simple theory indicates that at

a sample thickness of one-half the Fermi wavelength, the resis-

tivity goes to infinity in the ideal case. The increase is

due to band overlap removal. The semimetal undergoes a tran-

sition to a semiconductor. Many experimental observations

indicate that the transition has probably been observed2 1 ,4 4-4 7

however, some data show a broad maximum in the resistivity
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even for very thin films where the transition to a semicon-

ductor should have occurred.48 Garcia, Kao, and Strongin

point out that the requirement for band overlap removal can

be lifted if the assumption is made that the surface of the

film can be penetrated by conduction electrons, thus allow-

ing a lower subband of energy levels to exist.l?

Many of the relevant features of QSE are shown in Fig. 1.
0The low-frequency oscillations (period a 400 A) are a result

of variations in electron state densitywhile the high-fre-
0quency oscillations (period ' 50 A) are probably due to the

hole part of the Fermi surface. Bulk samples of bismuth show

a metallic resistivity temperature dependence, but bismuth

films show a resistivity increase with a decrease in temper-

ature. A plot of the resistivity in bismuth exhibits a

minimum which decreases with temperature and with structural

perfection of the film.

Very thin films present both experimental and theoreti-

cal problems. Scattering from lattice vibrations, surfaces,

and defects may play an increasingly important role as the

film becomes thinner.49-51 Compared to the results obtained

by using a 6-function scattering potential,31 scattering

from defects of finite size should produce two changes in the

electrical conductivity at low temperature. There should be

a general decrease in the conductivity, and the amplitude of

the oscillations should be altered. The purpose of this
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Fig. 1. Idealized resistance trace showing the quantumsize effects. The upper curve is for a temperature denotedby T1 , and the lower curve is for a temperature T2 with T2jTi.
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investigation is to demonstrate that these effects occur for

a potential of finite range. The relaxation approximation

will not be made. The vector mean free path will be calcu-

lated, and correction terms to existing theories will be

generated.



CHAPTER II

DERIVATION OF THE CONDUCTIVITY EQUATION

In this investigation the electrical conductivity of a

solid slab is calculated. It is assumed that there are no

magnetic fields or temperature gradients within the solid.

Scattering from lattice vibrations (phonons) is neglected,

but scattering from defects of finite volume is taken into

account. The electron distribution function fg, which gives

the number of electrons in the state kZ, under steady state

conditions is given by

_ -(1)

The changes in fg resulting from the electric field E must

therefore be offset by the changes caused by scattering from

defects. This condition can be written as

+__ - 1 -o. (2)

SC 3t field

The change with time of the distribution function as a result

of the electric field is

The rate of change of fg as a result of impurity scattering

8
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is the average net number of electrons entering the state i

from all other states k'. Then the term afg/(at)1 sc can be

expressed as

K W1= )w)1(4)
where Q(iq,i') is the transition probability per unit time of

scattering from the state k to the state k. Using the fact

Q(IF k) = Q(k',f) simplifies Eq. (4) to

The assumption is made that the steady state distribu-

tion does not depart far from the equilibrium, i.e.

f-r -A (6 )

where fo" is the Fermi-Dirac distribution function. For

elastic scattering, Schiff's equation52 for the function

Q(kk') can be written

Q OR)= v I KQ (E - E z) (7)

where Ek is the energy of the state having momentum fit. The

term )<i lvZ'> 2 is the square of the potential matrix elements.

Inserting Eqs. (6) and (7) into Eq. (5) results in

(8)
K'
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After the application of Eqs. (3) and (5), Eq. (2) becomes

Equation (9) further simplifies to

K ) e4E- /lf (10)

The right side of Eq. (10) is altered by inserting Eq. (6).

Under these conditions Eq. (10) can be written

_ Q~ -( -f ' (1 1 )

where the term involving the product of f and E has been

neglected so that only terms linear in E remain. At low tem-

perature the right side of Eq. (11) is different from zero

only if Ej is E- (the Fermi energy). A function f is de-

fined as

DEN (12)

where is independent of E. Using Eq. (12) in Eq. (11)

results in

K'

Solving Eq. (13) for gives

- 0AK(14)
where UA has been written for Q(k, k').
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The total current density J can be expressed as

A- - (15)

The conductivity 04 can be determined from

J o * E(16)

At low temperature the equation for the conductivity becomes

~ S K _; EX). (17)

Edwards derived a similar relation using the Greenwood-Peierls

equation.53 In doing so, he employed the Green's function of

the Schrodinger equation which was evaluated by summing dia-

grams. The importance of that approach lies in the limited

nature of the assumptions that must be made. In addition,

diagrams are unique in accounting for all the interactions of

a particular type. An excellent treatment of Edwards' work

is given by Taylor. 5 4



CHAPTER III

CHARACTERIZATION OF THE SAMPLE

The sample under investigation is a film having infinite

dimensions in the x and y directions and a thickness L in the

z direction (0 6 z 4 L). Figure 2 shows a section of the

sample. The potential walls bounding the sample are assumed

to be infinite in height, and the effective mass m is as-

sumed to be the same for all directions.

The single particle wave function is

kn~~S1L A(n f .7Z/L ) d (18 )

where ikie = ikxx + ikyy, Lx and Ly are the normalization

lengths, kL is the continuous component of the momentum, and

n is the quantum number associated with the component of the

momentum that is perpendicular to the plane of the film.

The energy spectrum is given by

EkJ( /2;mkIlav) + 0(,n,(19)

where n = 1,2,3, . . . and ck2 is W2K 2/(2m*L 2 ). Equation (19)

shows that the energy spectrum is composed of bands, desig-

nated by n, within which there are continuous levels. The

discrete part of the energy (c 2n2) is associated with motion

perpendicular to the plane of the film.

12
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z

(%0,0,L)

L

y

Fig. 2. A section of the thin slab for which the elec-trical conductivity is calculated. The direction of theelectric field is shown by E.
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The total number of electrons Ne in the finite sample is

Ne=( . (20)

It is assumed that at low temperature all the momentum states

are filled up to the Fermi energy but empty above it. Then

the distribution function can be written as

() (Ey -E) (21)
where Ef is the Fermi energy. Equation (20) becomes

Ne '1E>(E -AE-) (22)

There are two continuous components of k; therefore, is

replaced by LxLy/(2T)2 JZld. The number of electrons in

the film is

N __1I dk &(EFE )eLl

L(a I r o ,

2 rrtLN4r(L)YE, - &2b$JXII-A))7
>(23)

with [Nf] given as the largest integer less than or equal to

(Ef/12)i andfl representing the volume of the film.



CHAPTER IV

SCATTERING POTENTIAL

The matrix elements for the scattering potential can

now be calculated. The assumption is made that there are N

randomly located scattering centers within the film. The

scattering centers are characterized by a potential that is

constant within a cube of volume 8a3 . The potential (Fig. 3)

is described by a step function for each coordinate, i.e.

t= I

with r~bi =i(xi,yizi) as the scattering coordinate.

The matrix elements for the potential are given by

V---' = aX j-A <---J<--a O

)Ti~' K'~I(25)r -4
h=k d'

z(a (26)

where qx k' x- kx and q 'Y- k.

15
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After Eq. (26) is integrated, the matrix elements become

9-\f ey 1 9-e4ri x+ify 5 Lo)s n7,4

fx le>

Sinf[ E(ft-t2')a/LJ coscn7(1-')z/L]

(frlI')(7//L)

Si<197( R l')LC 05[77(Ztfi')2 7/A
-fl ne )(771L 3 (27)

The square of the potential matrix elements can be expressed

as

xPMM-Y -. =, Jy)- y

x

[15i 4r4(TT/L) J4,
L(1241Z)(77/L) i I

C 0 5(70(-n)2, /Z]CoSI[7(-n 7/LJ

C o3(To7(4/'zi] CL oC[r64MYZ7/]

L7 7 fl-12 ) o/ inaE7744)a/L7Jc 5L[77(2 -72 ') z/L7J

X CO Sfrnan)

where

si (qya)\L L )

(28)

90 --

I
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The average over the scattering coordinates is given by

K(V -2> ruj(29)

The terms in the integrand can be grouped according to their

dependence on N. There are N terms where i = j, and (N2 - N)

terms where i j. Inserting Eq. (28) into Eq. (29) results

in

Iva 14s >= -- Fiid131A [7----I I Q C1 I o COSj77'(-1~Z9.1L-Ili C', ( -l'/L]

Sn 71(il-n')1Z] S i fl[1(n4n'))GLI CO3L0 -r')Z/?- I,) os[7,(4fl])~C/LJ

Lr(n n')/L][ C 7 jr/&' /)L~

+ Sif C77(4n ')a7/10C 05 "[7( 14],/

[77 (-4 4 ft)Ly

+ LN N V F,- J- ue ) P 2, (X C ,,)-4 -f,(y, --Xm)]

J-I ,

? 14[1 'a/4W C 5[ (4[-77 ')Z/ 7] COS 7(4 - . /LJ

S Sn[ ( - /7 1)//- 3 a r(714It ] r OS /.

--- ~ 77 a- /L 1] [7 7 n' )aL 0IlZC L05 [(?4 ')Z IZ]0

+ 77( / 4 7 1 I/L(0

- 2 Si11(4 (30)

where the subscripts L and M refer to any of the scattering

coordinates. The (N2 - N) terms add to zero, thus reducing Eq.

(30) to

/.\...\=6N V I %'L (aL-2)

X[(q'a2/3)(1 + S,,, /2) -lT(1f''+ )/(3 L?)

with q2 2 + q y2

(31)



19

The assumption is made that the defect size a is small

compared to the sample thickness L and to the wavelength 1/kg.

The trigonometric functions in Eq. (30) are expanded to keep

terms to the order of a4/L4 and a4kL . Equation (32) shows

a typical expansion:

Ok Q/L' afCj - d0 (a/L)563. (32)

For a bismuth sample these assumptions are justified,

0since the film thickness, in general, is greater than 200 A,

and the wavelength of an electron at the Fermi surface is
0

about 600 A. These numbers set the upper limit of a. For a

metal the wavelength is about an angstrom, and the above

assumption is marginal.55



CHAPTER V

VECTOR MEAN FREE PATH

Equation (14) gives , the vector mean free path.

This quantity must be calculated before the conductivity can

be determined. Inserting Eq. (7) into Eq. (14) gives

where

(kJ)(34)

The symbol (> indicates the average over the scattering co-

ordinates. Combining Eqs. (31) and (33) results in

~~~ < i & + 2TUP(K y$hZ [(1 5,a.i)Q( -g )- L) (lin'ajj
K'

XA ( )(35)
with

GA V7C1a'(L- 2a). (36)

Then the vector mean free path becomes

-1SdoJ(d?

XAk kCDs(kk1) 77JE(-.(37'

X K g 8 E E )(37>

20
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where the conversion

dKf =;LK9KL (38)

has been used. Then Eq. (37) can be written

A1 -- j - 1217
kAn) - <,Vg + A d<1-Q $ ?

43 k I3LA 2J

4 LK_ 170 -114-

+0
X [K L+ .- L07 i C hf

d (.. ? f cSk k)- -L(39 )

The function Fk',n is defined by

a 0(KiG- Q) . (40)

Multiplying Eq. (39) by de- and integrating over -&results in

F 2 P
3 S

U -2I- IV3 '3-1 (41)

The v-& Ug) term in Eq. (39) can be expressed as

~~ 0(42)0 6 i;
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The quantity (Ut"i has no &-dependence as can be seen from

Eq. (A5) of the Appendix. Then Eq. (42) can be evaluated as

I /7TT -1.77

Je K , K: )- *KLd cos - (-- C). (43)
o ii"M

In a similar fashion the cos(kk, ) term integrates to zero.

Equation (41) can be written

Thus Eq. (39) becomes

A < AU~m~

2 2

2 -I.- j -M *A 12 4;C2

-1

Inserting the first order approximation for fi from Eq. (33)
into Eq. (40 ) results in

27C.

<W A 2k J& J 5 kj
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Equation (39) then simplifies to

C 0 5-01 C 0 5 );Uk

k j77 A 73 m4

Further evaluation results in

A~~~~~--/ -1+ Y Lc~F (~J')c5

1 1 A- 9 L C 6 -0 0( 4 8 )

Even though the equation for /(ka ,G,n) was evaluated for

some of the components of Rk, the same result given in Eq.

(48) can be achieved by simply making the first order approx-

imation in Eq. (39). The scattering potential used in these

calculations allows the additional terms to go to zero. For

a 6-function potential such as used by Sandomirskii,31Eq

(48) reduces exactly to

(49)
after the first order approximation is made in Eq. (39).



CHAPTER VI

QUANTUM SIZE EFFECTS

The conductivity is calculated in Appendix B from Eq.

(17). The results of the calculation are

e%' 3CL-2Qn' +6'rryz)ia _____

I6f ;l -k)L+ )NV6Za'fC 3 9z2

- 6A $(/-4[A47

S7 h9 (36 W, +317--f-)
X[O +3f (50)~3P 3 0 2- 5-

The conductivity and the carrier concentration for an infinite

sample are calculated in order to compare those quantities to

those for a finite sample. From Appendixes C and D the con-

ductivity for an infinite sample is

23-35

and the electron concentration for an infinite sample is

l )(377). (52)

The normalized carrier concentration n/na, is given by combin-

ing Eqs. (23) and (52):

w L iq wt o 53 )

where LO is a length equal to one-half the wavelength of a

24
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particle at the Fermi surface. This characteristic length

is determined by setting LNf] to its lowest nonzero value (1)

and calling the film thickness LO. Note that ne = 0 if the

film thickness is less than LO. Under these conditions the

discrete part of the energy alone is greater than the Fermi

energy. Energies greater than the Fermi energy are excluded

by the low temperature approximation. Equation (53) has been

reduced to graphic form in Fig. 4. The oscillatory dependence

of the carrier density on the sample thickness is clearly

shown. The concentration is a continuous function of L; how-

ever, the derivation of ne with respect to L does suffer

discontinuities at L = mLO where m = 1,2,3, . . .

Equation (54) gives cr/<ro as

2o(/420 ) ; 2

J~/gj/If-M~/)k !.... nk?_a2 3k"Th2kJ/ i )i

The abrupt changes in the plot of f~/r3 (see Fig. 5) are a

demonstration of the QSE. There has been a general decrease

in the conductivity, and the amplitude of the oscillations

has decreased. A percentage decrease in the conductivity

can be determined for each oscillation by comparing the

conductivity maximum to the conductivity minimum. It is

reasonable to assume that, though the amplitude of the os-

cillation has decreased as a result of an increase in
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Fig. 5. Oscillatory dependence of electrical conduc-
tivity on thickness. . results when a is 0. -----
results when a is Lo/(2T7). __ , resuJfs when a is LO/-7.
The points at which the oscillations occur have been expanded
so that the different curves may be seen.
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scattering, the percentage of decrease will remain the same

for each curve shown in Fig. 5. This is not the case, how-

ever, and an explanation is given in Chapter VII.

Sandomirskii's calculation3 1 corresponds to the top curve

in Fig. 5, i.e. a = 0. The sharp peaks in the oscillations

are a result of the low temperature approximation. An expan-

sion of the conductivity to finite temperature shows that the

oscillation peaks round off very rapidly.33  Sandomirskii's

calculation was made using a S-function potential and using

the relaxation approximation in the Boltzmann equation. His

results are included in Eq. (54) and can be recovered by

allowing a to go to zero and 8a3V0 to become constant. In

this case the conductivity reduces to

(l /V(55)

The conductivity curve for a = 0 in Fig. 5 shows the plot of

Eq. (55).

A plot of Ogrin's experimental results for bismuth? is

shown in Fig. 6. The period of the oscillations LO is 300-

400 A. Then the Fermi wavelength is 2LO. The effective mass

is determined from the equation

n: --0 ' O .(56)
2E;L

For bismuth the generally accepted value for Ef of .025 ev

was used. Equation (56) gives an acceptable value for the

effective mass. 5-7 The experimental results that have been
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and Elinson?)



30

reported verify that the observed effects were those predicted

by QSE theory.

The oscillatory effects in the carrier density and in

the conductivity are a result of the constraints imposed on

the density of electron states as a result of the finite

sample. From Appendix E the density of states per unit vol-

ume is given as

2T7L~, 2 7~7 LA).(57)

This equation is shown in graphic form in Fig. 7. The den-

sity of states for L KL0 is zero as expected. At Lm= LO the

density of states function is a maximum but decreases as L

is further increased past LO. The minimum in the state den-

sity curve increases as L increases, and eventually becomes

independent of sample thickness. The state density, while

providing useful information as well as insight into the

problem, does not explain the decrease in the conductivity

at each oscillation.
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CHAPTER VII

DISCUSSION OF RESULTS

The overall decrease in conductivity due to increased

scattering (see Fig. 5) reduces the absolute amplitude of

the QSE oscillations. The percentage of change in the am-

plitude of the oscillations does not remain constant, as might

be expected, but increases as the range of the interaction

increases. The increase can be attributed to the scattering

of electrons from conductive to nonconductive energy states.

The electron energy spectrum, Eq. (19), is composed of

a discrete part and a continuous part. Figure 8 shows the

variation of the discrete component of the energy with film

thickness and shows the Fermi energy as constant. It is

assumed that only electrons at the Fermi surface will contri-

bute to the conductivity. The states for which the discrete

part of the energy is approximately equal to the Fermi energy

(i.e. k, 2 0) will contribute little to the current. Increas-

ing L causes k: to increase. Both discrete and continuous

energy levels will have some occupancy; hence the conductiv-

ity will be reduced but will remain finite each time a new

energy band arrives at the Fermi surface. The low point in

the conductivity oscillation is related to the transition

probability from a state (kjn) with a large k component to

32
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a state having a small k component. As the film thickness

is further increased, all available states have a nonzero k_

component,and the conductivity increases accordingly.

Further insight into the influence of defects of finite

volume on the amplitude of oscillations can be gained by com-

puting the ratio R of the transition probability at L = 2LO

from the conductive state E1(k 1 , n = 1) to the conductive

state E1(k12 , n = 1) to the transition probability from the

conductive state E1(kj 1 , n = 1) to the nonconductive state

E2 (O, n = 2). Assuming the terms a/L and akL to be small

allows R to be calculated as shown in Eq. (58):

R =ai - 4+7a-CO 5 (58)
2 L (0L6f 2L4 )|

where cos(e1,2 ) is the cosine of the angle between k 1 and

ki2. An average over the scattering coordinate reduces the

cosine term to zero.

The term R can be interpreted as the ratio of the number

of electrons in a conductive state (k ' 0) to the number of

electrons in a nonconductive state (k1 = 0). Equation (58)

can now be used to predict the change in the amplitude of the

conductivity. A comparison of Eqs. (54) and (58) is shown

in Table I for three values of a for L = 2LO, and exceptional

agreement is obtained.
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TABLE I. Comparison of Eqs. (54) and (58) for the percentage
of change in the amplitude of oscillations o/~ at a film
thickness of 2LO for three defect sizes.

Equation a 0 a = LO/(277) a =L017

(54) 40 41 46

(58) 40 41 44



CHAPTER VIII

CONCLUSIONS

In this theoretical investigation the effect of scatter-

ing from defects of finite size on the electrical conductivity

of a thin semimetal slab is determined. Compared to 3 -function

scattering two changes in the conductivity occur. There is a

general decrease in the conductivity, which is attributed to

increased scattering. In addition, the amplitudes of the QSE

oscillations are altered. This alteration is explained on the

basis of scattering into available energy levels.

Several applications of the QSE have been suggested. A

wedge-shaped semimetal film should exhibit a threshold char-

acteristic in the current-voltage trace. A wedge-shaped

semiconductor film, across which an electric field is applied,

can be used as a light transformer.4 2 Different conductiv-

ities in energy subbands that are associated with inversion

layers in semiconductors can be utilized to form far infrared

detectors.5 6

Further research should be directed toward understanding

the temperature dependence of thin semimetals. The physical

properties of a wide range of thin films should also be ex-

amined so that even more realistic results can be obtained.

36



APPENDIX A

CALCULATION OF <Uk>

From Eq. (14) the term (Uk> is expressed as

(7E E .(Al)

Changing the summation to meet the requirements of this

specific problem results in

Z : dl Ad KIdKj

(A2)

Then Eq. (Al) becomes

- /42f~r (3TU >E - ) ( A3 )

where

Y'=8ANV 10"(2'L(L

and ' =k. - 1,. Further manipulation of Eq. (A3) gives

X {L' 4S n '/fI3Ll (-f-k -(A4)

2 6

L A 3 ) L2 kj(A5)
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where [Nk] is the greatest integer function less than or

equal to (Ek/O 2 ). This term arises from the 8-function

When k!L 2 is evaluated, (f2/2m*)k 2 +0(2n2 4 2n,2 is set

equal to (1i2/2m*)k'j2. For the maximum integer n'M, k,1 2

goes to zero. Then the maximum integer n'M is less than or

equal to (Ek/ 2)i,



APPENDIX B

EVALUATION OF THE CONDUCTIVITY

Combining Eqs. (17) and (48) results in

+ <>2I iKUj kUZ'KQ(Y)) E
Ki

(BI)

Inserting the results of Eq. (A5) into the first term of Eq.

(Bi) gives

d. KCos0- &(E -Es)
-f-(3!2T7) + 2 [Wd])(Lz-242k! r ~aar~Yjt7M"/

'3 30L

(B2)

with

4(L-20)

and

X~I ~K/rnk PiK;ECo9& k/'

After integration, Eq. (B2) becomes

e 4(L-.2CJ ef
(nr I+2[dp)wv "I IC) -

Lnfl (4 J

\ 4 [N)(I [A 3~ E,_ -o e 6#LA/7)(I42Ai)(3fw4 2-3TJ -1N

360/77 .
The second term in Eq. (BI) is

'9
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The sum over k' in Eq.

2111 i K1 (E E ) /t(j KU )

3-v G C S (B5)

eY17'3L /viJ33L? 14.2LAf1I)

2GL)K.COSG
377

' 

-
a02ft 

[m]()

Ct LC5- L3 X2'(1 / 
)+77

2'L C o5&_N {I iV] _ (/*])(I2f.1) J. (B?)
3TW 2(N)14 ).(

In Eq. (B7) the denominator is expanded for a2/L2 <1. At

this point (~~ 2 can be calculated. After integrating and

summing the terms are grouped to give

eiI.a'&] (L- d)l 
___M

T<04%302[1 4 M TNf 9 I
. 7(-1 fl rl A ) (1m 4 77;(3f 2,

L1' 5Lg 1* (B8)

Inserting Eqs. (B3) and (B8) into Eq. (B2) and grouping gives

the following results:

(B4) is evaluated as



eq(L-ia) qe 
4

TrA 2 (14 ^ EAI ) __ g ;la(C

9 Lp 6 M-4E,

+[/74 T)

7L, T AM(!4Wj)([s)/

Y- E _ aY('3 f'I-I3[N>) IT>
-3.L -

41

(B9)

y Em)a E



APPENDIX C

CONDUCTIVITY FOR AN INFINITE SAMPLE

For an infinite sample the potential matrix elements are

(Cl), 2 -sv, I ci's tt(qSa) sin qya)sinr)
FX IZY- =-

2 2 2 2.where q + q + q z qm. Equation (Cl) is averaged over

the scattering coordinates to give

KI4,1> 64 (--Nk C14-

:)
i~a

(C2)

where "* = 64NV2 I CI )a 6. Insert ing Eq. (02) into Eq. (14)

results in

KLg =E7 (- Z3> (ER -E.)

-li (J7. if
/.41K

(03)

The relation between the angle (kk' ) and other angles can be

determined from Fig. 9:

K KM - KSirlCoS&sin4COSS

K =K K' Sin$ 5i 0- 5itSifte in

Kzk'Z KWKC50C05 I.

42

(C4)

Xs c--E )de'd idik'1
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k

kg

Fig* 9. Relation between k and k' in momentum space
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The inner product between k and k' becomes

KK'COS(oI' )c- NKI,'+ KY 'y+)Kk', (05)

Combining Eqs. (C4) and (C5) results in

C0SC9 ) - S'O'Sin05(9 -0)4 COS4CoSo'. (C6)

Equation (06) is used in the integration of Eq. (03) to give

the following:

- -K(C?)

The conductivity can be written as

4 (08)

with

KU 
(09)

eik

~ ,A(4 77muNv;IIC'I 4 fLaGO-.26Ia/3) (010)

Equation (D3) gives the low temperature electron concentra-

tion as

3 7 7 - ( 11)

Then the first term in the conductivity is given by

0 -1 -4e 4 3NV qc o -. ( 0 1 2 )

The second term in the conductivity is



o--Zi nu K/14)(U 1 U Q(#) S(E;~E,)

Y )77M

Equation (014) then becomes

-- 2 7kp aa'
05 q G4 W \/ 'I C'l "C 6f .(I... - /)

Combining Eqs. (08), (010), and (C15) results in the followo-

ing expression for the conductivity

e? - -A 3 77..41  .
"~~ mmalv/lcoa'f(1-ap/3)1 K

2 C (C16)
q(-- a__ (1/3)6)
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APPENDIX D

ELECTRON CONCENTRATION FOR AN INFINITE SAMPLE

The total number of electrons in an infinite sample is

given by

Nc=o 9 E2[6(Eg -E ) (D1)

KK

- k a(D2)

Then the electron concentration N./CL is given by

3(D3)
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APPENDIX E

ELECTRON STATE DENSITY

The number of electron states per unit energy range at

low temperature is given by

zi. 8 g -Eg) (El)
a(Eg~j)(El)

~Z~c~k~L(E2)

C- (E3)

A I1 (E4)
L-(77E)

217 LA
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