Evidence for the Interaction of GTP with Rat Liver Glyoxalase II

PDF Version Also Available for Download.

Description

Glyoxalase 11, the second enzyme of the glyoxalase system, hydrolyzes S-D-lactoylglutathione (SLG) to regenerate glutathione (GSH) and liberate free D-lactate. It was found that GTP binds with Gil from rat liver and inhibits Gil activity. Preincubation experiments showed that the binding is relatively tight, since more than 15 minutes are required to release GTP from the complex following dilution. Inhibition kinetics studies indicate that GTP is a "partially competitive inhibitor"; Thus, it would appear that the binding sites for substrate (SLG) and inhibitor (GTP) are different, but spatially close. Glyoxalase 11 binds to a GTP affinity medium, and with polyacrylamide ... continued below

Physical Description

40 leaves : ill.

Creation Information

Yuan, Win-Jae December 1991.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Author

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Yuan, Win-Jae

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Glyoxalase 11, the second enzyme of the glyoxalase system, hydrolyzes S-D-lactoylglutathione (SLG) to regenerate glutathione (GSH) and liberate free D-lactate. It was found that GTP binds with Gil from rat liver and inhibits Gil activity. Preincubation experiments showed that the binding is relatively tight, since more than 15 minutes are required to release GTP from the complex following dilution. Inhibition kinetics studies indicate that GTP is a "partially competitive inhibitor"; Thus, it would appear that the binding sites for substrate (SLG) and inhibitor (GTP) are different, but spatially close. Glyoxalase 11 binds to a GTP affinity medium, and with polyacrylamide gel electrophoresis, Gil has a higher relative mobility when GTP is present (ATP has no effect). The functional consequences of GTP binding with a specific site on Gil are still unclear. It is speculated that Gil may interact with tubulin by serving as a dissociable GTP carrier, delivering GTP to the tubulinGTP binding site, and thus facilitating tubulin polymerization.

Physical Description

40 leaves : ill.

Subjects

Keywords

Library of Congress Subject Headings

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 1991

Added to The UNT Digital Library

  • March 9, 2015, 8:15 a.m.

Description Last Updated

  • Sept. 15, 2017, 3:38 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yuan, Win-Jae. Evidence for the Interaction of GTP with Rat Liver Glyoxalase II, thesis, December 1991; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc500329/: accessed October 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .