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The development of the semi-empirical atomistic potential called the embedded 

atom method (EAM) has allowed for the efficient modeling of solid-state environments, 

at a lower computational cost than afforded by density functional theory (DFT). This 

offers the capability of EAM to model the energetics of solid-state phases of varying 

coordination, including defects, such as vacancies and self-interstitials. This dissertation 

highlights the development and application of two EAMs: a Ti potential constructed with 

the multi-state modified embedded atom method (MS-MEAM), and a Ni potential 

constructed with the fragment Hamiltonian (FH) method. Both potentials exhibit flexibility 

in the description of different solid-states phases and applications. 

This dissertation also outlines two applications of DFT. First, a study of structure 

and stability for solid-state forms of NixCy (in which x and y are integers) is investigated 

using plane-wave DFT. A ground state phase for Ni2C is elucidated and compared to 

known and hypothesized forms of NixCy. Also, a set of correlation consistent basis sets, 

previously constructed using the B3LYP and BLYP density functionals, are studied. 

They are compared to the well-known to the correlation consistent basis sets that were 

constructed with higher-level ab initio methodologies through computations of 

enthalpies of formation and combustion enthalpies. The computational accuracy with 

regard to experiment is reported.
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CHAPTER 1 

INTRODUCTION 

 The formulation of Erwin Schrödinger’s differential wave equation in the mid-

1920’s, along with Werner Heisenberg’s approach to describing quantum mechanics, 

utilizing Heisenberg and Born’s matrix mechanics, was the beginning of the means to 

describe the quantum state of a molecular system, be it at the atomic and molecular 

scale or higher. Such a quantum state incorporated the motions of the nuclei and 

electrons. However, it could be said that quantum chemistry itself was born in the 1930s 

with the application of the Born-Oppenheimer approximation in describing a molecular 

system. Keeping constant the nuclear motions, relative to those of the electrons, being 

much faster, the nuclear wavefunction could be multiplicatively separated from the 

electronic wavefunction. The nuclear-electronic interactions could thus be approximated 

as a constant. This made solving for the energy eigenvalue of the wavefunction more 

feasible for a many-body system. This approach to solving for the electronic 

wavefunction and the total electronic energy eigenvalue of a molecular system would, 

over the following seventy years, lead to the birth of numerous methodological 

approaches to understand the electronic phenomenology of molecular systems.  

 This dissertation is divided into nine chapters, this chapter, being the first, stands 

as an introduction. From here, the principles concerning the Schrödinger equation, 

including the Born-Oppenheimer approximation, the Pauli-Exclusion principle, spatial 

and spin orbitals, and Slater determinants is explored in chapter 2. In addition, 

numerous quantum mechanical ab initio methodologies are briefly introduced, including 

Hartree-Fock (HF) theory, many-body perturbation theory (MBPT), configuration 
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interaction (CI), coupled cluster (CC) theory, complete active space self-consistent field 

(CASSCF) theory, and density functional theory (DFT). Then, chapter 3 introduces 

topics in solid-state physics, including periodic boundary conditions within crystal 

structures, the corresponding reciprocal lattice, and various topics of electronic structure 

theory in crystal structures.   

The focus of chapters 4 and 5 is geared towards direct application of quantum 

mechanical ab initio methodologies. Chapter 4 highlights a DFT investigation of the 

ground state for solid-state phases of Ni2C; further, formation energies of Ni2C, the 

experimentally established Ni3C, and other possible forms of NixCy are computed and 

compared. Chapter 5 concerns the development of correlation consistent basis sets 

optimized with DFT functionals. These sets and the regular correlation consistent basis 

sets are used to compute total energies, enthalpies of formation, and combustion 

enthalpies, all of which are compared to known experimental values to assess 

performance and accuracy. 

Chapters 6 and 7 introduce semi-empirical approaches that afford the 

computation of total energies for physical systems containing upwards of 10,000 atoms. 

Such large systems cannot be computationally managed by the previously listed ab 

initio methodologies because of the computational costs in terms of CPU and memory. 

Therefore, semi-empiricism itself allows for construction of very useful methods, when 

parameterized with regard to molecular systems or crystals of importance. The content 

of chapters 6 and 7 has theoretical foundation in the semi-empirical atomistic potential 

called the embedded atom method (EAM). This method has allowed for the efficient 

modeling of solid-state environments, at much lower computational cost than that 
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afforded by DFT. This enables modeling the energetics of solid-state phases of high 

coordination, and defects, including vacancies and self-interstitials. Modifications to the 

EAM, which successively yielded the modified embedded atom method (MEAM) 

allowed for more accurate modeling of bulk defects by better describing environments of 

low coordination. Consequently, more accurate modeling of bulk defects, as well as 

surfaces, alloys, and liquid phase transitions was feasible. Chapter 6 illustrates the 

development of an atomistic potential, called the fragment Hamiltonian (FH) method in 

collaboration with Dr. Steve Valone from Los Alamos National Laboratory, is discussed 

in this dissertation. The FH method is shown to be formulated using a wavefunction-

based perspective, unlike EAM, which is based upon the second moment approximation 

to tight-binding theory. Finally, the development and application of a Ti potential 

constructed with the multi-state modified embedded atom method (MS-MEAM) is 

investigated in chapter 7. For this atomistic potential, DFT potential energy curves of 

various Ti solid-state phases are implemented as functions in MS-MEAM; in contrast, 

MEAM fits to potential energy curves through variation of parameters. 
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CHAPTER 2 

AN OVERVIEW OF QUANTUM MECHANICAL AB INTIO METHODOLOGIES 

2.1 The Schrödinger Equation 

The main purpose of quantum mechanics is to describe a molecular system 

through computation of the energy eigenvalue of an eigenstate, known at the 

wavefunction. This is accomplished by solving the non-relativistic time-independent 

Schrödinger Equation:1  

 ℋ� |Ψ⟩ = 𝐸|Ψ⟩ [2.1] 

 From the left of Equation [2.1], the Hamiltonian operator, ℋ� , operates on the 

wavefunction, Ψ, of the molecular system, which is shown to equal the product of a total 

energy constant, 𝐸, and the wavefunction. The Hamiltonian contains information of the 

component nuclei and electrons: 

 
ℋ� = −�

1
2

𝑁

𝑖=1

∇𝑖2 −�
1
2

𝑁

𝐴=1

∇𝐴2 −��
𝑍𝐴
𝑟𝑖𝐴

𝑁

𝐴=1

𝑁

𝑖=1

+ ��
1
𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

+ ��
𝑍𝐴𝑍𝐵
𝑟𝐴𝐵

𝑁

𝐵>𝐴

𝑁

𝐴=1

 [2.2] 

 In [2.2], the terms on the right-hand side account for the kinetic energies of N 

electrons (i), the kinetic energies of N nuclei (A), the nuclear-electron interactions, 

nuclear-nuclear interactions, and electron-electron interactions. The ∇𝑖2 and ∇𝐴2 involve 

the sum of second derivatives for the spatial coordinates of electrons and nuclei, Z is 

the nuclear charge, and r is the distance between a nucleus and electron (𝑟𝑖𝐴), two 

electrons (𝑟𝑖𝑗), and two nuclei (𝑟𝐴𝐵). 

Foundational to quantum chemistry is the Born-Oppenheimer approximation,2 

which states that since the nuclei are much heavier than the electrons in a molecular 

system, and the electrons have much faster motions than the nuclei. Consequently, this 
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permits abandonment of the nuclear kinetic energies and nuclear-nuclear interactions in 

[2.2]: 

 
 ℋ�𝑒𝑙𝑒𝑐 = −�

1
2

𝑁

𝑖=1

∇𝑖2 −��
𝑍𝐴
𝑟𝑖𝐴

𝑁

𝐴=1

𝑁

𝑖=1

+ ��
1
𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

 [2.3] 

The resulting electronic Hamiltonian only accounts for variable electronic motions 

while keeping constant the nuclear positions. As a result of this approximation, the total 

energy computation of a molecule is reduced comparative to that of a geometric 

optimization (in which the nuclear coordinates change). The Born-Oppenheimer 

approximation also has a stunning effect on the Schrödinger Equation. The Hamiltonian 

operator, ℋ�𝑡𝑜𝑡𝑎𝑙, can be additively separated into a sum of electronic and nuclear 

Hamiltonians, ℋ�𝑒𝑙𝑒𝑐 and ℋ�𝑛𝑢𝑐, respectively. For consistency, the nuclear and electronic 

wavefunctions, Ψ𝑒𝑙𝑒𝑐 and Ψ𝑛𝑢𝑐, respectively, and can be multiplicatively separated 

between the total wavefunction, Ψ𝑡𝑜𝑡𝑎𝑙, as well, because they are independent of each 

other. Therefore, the Schrödinger equation can be written as: 

 ℋ�𝑡𝑜𝑡𝑎𝑙Ψ𝑡𝑜𝑡𝑎𝑙 = �ℋ�𝑒𝑙𝑒𝑐 + ℋ�𝑛𝑢𝑐�Ψ𝑒𝑙𝑒𝑐Ψ𝑛𝑢𝑐 = (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝑛𝑢𝑐)Ψ𝑒𝑙𝑒𝑐Ψ𝑛𝑢𝑐

= 𝐸𝑡𝑜𝑡𝑎𝑙Ψ𝑡𝑜𝑡𝑎𝑙 
[2.4] 

The electronic energy and the nuclear energy are denoted as 𝐸𝑒𝑙𝑒𝑐 and 𝐸𝑛𝑢𝑐. It is 

noted that the nuclear Hamiltonian accounts for the nuclear-nuclear interactions, which 

are constant for a fixed molecular geometry. The electronic and nuclear Schrödinger 

equations are thus written as: 

 ℋ�𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐 = 𝐸𝑒𝑙𝑒𝑐Ψ𝑒𝑙𝑒𝑐 [2.5] 

 ℋ�𝑛𝑢𝑐Ψ𝑛𝑢𝑐 = 𝐸𝑛𝑢𝑐Ψ𝑛𝑢𝑐 [2.6] 
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Even though the electronic and nuclear wavefunctions are both dependent on 

electronic and nuclear coordinates, consistency between the two types of Hamiltonians 

and wavefunctions must be exercised to produce either the nuclear or electronic total 

energy, whichever is desired.  

The electronic Hamiltonian has been identified, but now the electronic 

wavefunction must be described. As it is not only a function of the nuclear coordinates, 

but it is also dependent on the electron coordinates and the electron spin. Electrons 

have half-integral spins and follow the Pauli exclusion principle.3 This principle dictates 

that no two electrons of same spin can occupy the same quantum state. Therefore, only 

two electrons, each of which having a ½ and -½ integral spins can be near each other. 

This antisymmetrical behavior has the effect in an electronic wavefunction. An example 

of this is given in the following four-electron wavefunction, 𝜓, in which ri is the 

coordinate position, 𝑟𝑖 = 𝑟(𝑥𝑖,𝑦𝑖 , 𝑧𝑖), for electron i: 

 𝜓(𝑟1, 𝑟2, 𝑟3, 𝑟4) = −𝜓(𝑟2, 𝑟1, 𝑟3, 𝑟4) [2.7] 

Given the coordinate exchange for electrons 1 and 2, the wavefunction changes sign. 

Any electronic wavefunction for a molecular system exhibits this phenomenon.  

 Equation [2.7] contains spatial information of the electrons because it is implicitly 

a function of spatial orbitals. Spatial orbitals, denoted as 𝜑(𝑟), are one-electron 

wavefunctions, such that that probability, P, of finding an electron within the range dr is: 

 𝑃 = �|𝜑(𝑟)|2𝑑𝑟 [2.8] 

It is noted that spatial orbitals are orthonormal, such that: 

 �𝜑𝑖(𝑟)𝜑𝑗(𝑟)𝑑𝑟 = 𝛿𝑖𝑗 [2.9] 
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For the same orbitals in Equation [2.9], i = j, 𝛿𝑖𝑗= 1; otherwise, Equation [2.9] yields 𝛿𝑖𝑗=0. 

For a molecular system to be described exactly by a set of spatial orbitals, a complete 

set of a linear combination of atomic orbitals (LCAO) is required: 

 
𝜓𝑎𝐿𝐶𝐴𝑂(𝑟) = �𝑐𝑖𝑎𝜑𝑖(𝑟)

𝑁

𝑖=1

 such that 𝑎 = 1,2,3 …𝑁 [2.10] 

In [2.10], cai are fitted constants specific for the molecule. For orthonormality, the sum of 

| cai | 2 = 1. In reality, the set of i spatial orbitals would span to infinity for a complete set; 

therefore, the set of i is truncated to a constant number of orbitals for computational 

efficiency.  

 The remainder of the chapter uses an alternative notation for integration called 

“bra-ket” notation. This is illustrated using [2.11]: 

 �𝜑𝑖(𝑟)�𝜑𝑗(𝑟)� = 𝛿𝑖𝑗 [2.11] 

 The electron spin within a spatial orbital requires a spin function, designated here 

as 𝛼(𝜁) and 𝛽(𝜁) for up-spin and down-spin, respectively, dependent on a “spin 

coordinate”, 𝜁. These spin functions also behave orthonormally, in [2.9]. Combining a 

spin function multiplicatively with a spatial orbital produces a “spin orbital”: 

 𝜙𝑖(𝑥) = �
𝜑𝑖(𝑟) 𝛼(𝜁) 
𝜑𝑖(𝑟) 𝛽(𝜁)   [2.12] 

The coordinate, x, denotes the spatial and spin coordinates, r and ζ, in [2.12]. On the 

left-hand side, the subscript specifies the electron number (assumed to exist within a set 

of electrons) and, if necessary, a superscript specifes the electron spin for either case 

on the right-hand side. 

 From here, an example of a many-electron wavefunction is briefly studied. Take 

a system with two electrons composed of two spin orbitals having unspecified spins. 
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Like with [2.5] and [2.6], the possible wavefunctions would be composed of a product of 

two spin orbitals: 

 𝜓𝑖𝑗 = 𝜙𝑖(𝑥1)𝜙𝑗(𝑥2) [2.13] 

However, this wavefunction does not account for antisymmetry because permutation of 

the coordinate positions give the negative of the wavefunction, and therefore does not 

fully describe the system. Equation [2.13] needs to be expanded to account for 

antisymmetry. This can be illustrated as: 

 𝜓𝑖𝑗 =
1
√2

�𝜙𝑖(𝑥1)𝜙𝑗(𝑥2) − 𝜙𝑖(𝑥2)𝜙𝑗(𝑥1)� = −𝜓𝑗𝑖 [2.14] 

With permutations of the spatial coordinates in [2.14], the wavefunction maintains the 

given form on the right-hand side. Also, this wavefunction is orthonormal in that applying 

[2.14] within [2.11] yields unity. Equation [2.14] is called a Slater determinant,4 and can 

be illustrated as a determinant: 

 
𝜓𝑖𝑗 =

1
√2

�
𝜙𝑖(𝑥1) 𝜙𝑗(𝑥1)
𝜙𝑖(𝑥2) 𝜙𝑗(𝑥2)� [2.15] 

This example describes a system with two electrons, yielding the determinant of a 2x2 

matrix, with the normalization constant of 1/√2. In fact, a Slater determinant for a system 

with N electrons involves, as expected, an NxN matrix: 

 

𝜓𝑁 =
1
√𝑁!

�

𝜙1(𝑥1)
𝜙1(𝑥2)

⋮
𝜙1(𝑥𝑁)

  

𝜙2(𝑥1)
𝜙2(𝑥2)

⋮
𝜙2(𝑥𝑁)

  

⋯
⋯
⋱
⋯

  

𝜙𝑁(𝑥1)
𝜙𝑁(𝑥2)

⋮
𝜙𝑁(𝑥𝑁)

� [2.16] 

The Slater determinant has two fundamental properties. First, permutation of the 

coordinate positions of two electrons between two rows maintains antisymmetry within 

the wavefunction, therefore keeping constant the overall form. For the spin orbitals, this 

accounts for exchange correlation, which is the behavior of electrons with same spin. 
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However, this does not account for correlation between electrons of different spins. 

Second, specifying two electrons as occupying the same space by having two identical 

columns causes the Slater determinant to collapse to zero.  

 The last thing to be introduced in this section is the variational principle,5 which 

states that the computed total energy from a trial wavefunction will always be an upper 

bound to the true total energy. Essentially, given a set of computed total energies, the 

lowest total energy will be closest to the “true energy,” Eo. The general equation for 

solving for the total energy is: 

 �𝜓�ℋ� �𝜓�
⟨𝜓|𝜓⟩

=
⟨𝜓|𝐸|𝜓⟩
⟨𝜓|𝜓⟩

≥ 𝐸𝑜 [2.17] 

In the numerator, operation of the Hamiltonian on the wavefunction within the first part 

of Equation [2.17] yields a constant total energy. Undistributing the total energy outside 

the integral yields the probability function, which divides by itself in the denominator, 

thus isolating the total energy. If the wavefunction has been orthonormalized, then the 

denominator equals unity.  

 

2.2 Hartree-Fock Approximation 

 The main goal of quantum chemistry has been finding ways to use the 

Schrödinger equation for a many-electron system to describe its chemical and physical 

phenomenology. The well-known starting point for this endeavor is the Hartree-Fock 

(HF) approximation.6-8 To obtain the orbital set that behaves like a Slater determinant, 

the coefficients of a basis set containing molecular orbitals (similar to [2.10]) are 

optimized iteratively with regard to each electron. Thus, as the optimization process 
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iterates between each electron, the method implicitly demands that current electron 

view all other electrons as an overall average, or a “field,” of neighboring electrons.  

 The HF total energy is given as a sum of the electron and nuclear total energies: 

 𝐸𝐻𝐹 = 𝐸𝑛𝑢𝑐𝐻𝐹 + 𝐸𝑒𝑙𝑒𝑐𝐻𝐹  [2.18] 

The nuclear total energy by computing the nuclear-nuclear interactions: 

 
𝐸𝑛𝑢𝑐𝐻𝐹 = ��

𝑍𝐴𝑍𝐵
𝑟𝐴𝐵

𝑁

𝐵>𝐴

𝑁

𝐴=1

 [2.19] 

The HF Hamiltonian, which is a sum of one-electron Fock operators that operate on the 

number of electrons, N, in the molecular system, is introduced: 

 
ℋ�𝑒𝑙𝑒𝑐𝐻𝐹 = �𝑓(𝑟𝑖)

𝑁

𝑖=1

 [2.20] 

The Fock operator, 𝑓(𝑟𝑖), is a function of the one-electron kinetic energy operator, the 

one-electron potential energy operator, as well as the two-electron coulomb operator 

and two-electron exchange operator: 

 
𝑓(𝑟𝑖) = �−

1
2
∇𝑖2 + �

𝑍𝐴
𝑟𝑖𝐴

𝑁

𝑖=𝐴

� + ��2𝐽𝑖𝑗(𝑟𝑖) − 𝐾�𝑖𝑗(𝑟𝑖)�
𝑁

𝑗=1

 [2.21] 

Both operators are a function of the rij
-1 operator, which accounts for two-electron 

interactions. The two-electron coulomb operator accounts for the repulsive interactions 

between electrons and has the form: 

 𝐽𝑖𝑗(𝑟𝑖) = �𝜑𝑗�𝑟𝑗��𝑟𝑖𝑗−1�𝜑𝑗�𝑟𝑗�� [2.22] 

The antisymmetric nature of electrons (Equations [2.14]-[2.16]) and the corresponding 

effect on the total energy is accounted within HF approximation through the two-electron 

exchange operator: 
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 𝐾�𝑖𝑗(𝑟𝑖) = �𝜑𝑗�𝑟𝑗��𝑟𝑖𝑗−1�𝜑𝑖�𝑟𝑗�� [2.23] 

 With the given operators, the electronic total energy is obtained through means 

of the Self-Consistent Field (SCF) procedure. To further explore the SCF procedure and 

two-electron operators, Equation [2.17] is applied. Assuming the molecular basis set 

has unoptimized coefficients, and using spatial orbitals, 𝜑: 

 
𝑓(𝑟1)�𝑐𝑖𝑎

𝑁

𝑖=1

|𝜙𝑖(𝑟1)⟩ = �𝑐𝑖𝑎 �ℎ�(𝑟1) + � 2𝐽𝑖𝑗(𝑟1) + 𝐾�𝑖𝑗(𝑟1)
𝑁

𝑗=1

�
𝑁

𝑖=1

|𝜙𝑖(𝑟1)⟩ [2.24] 

The one-electron operator, ℎ�(𝑟1), is given in the bracketed terms in Equation [2.21]. If 

the both sides are multiplied by ⟨𝜑𝑖(𝑟1)|, then, using Equation [2.22], the two electron 

Coulombic integral is: 

 𝐽𝑖𝑗(𝑟1) = 2�𝜑𝑖(𝑟1)𝜑𝑗(𝑟2)�𝑟𝑖𝑗−1�𝜑𝑗(𝑟2)𝜑𝑖(𝑟1)� [2.25] 

and, using Equation [2.23], the two-electron exchange integral is: 

 𝐾𝑖𝑗(𝑟1) = �𝜑𝑖(𝑟1)𝜑𝑗(𝑟2)�𝑟𝑖𝑗−1�𝜑𝑖(𝑟2)𝜑𝑗(𝑟1)� [2.26] 

Comparison of the coulomb and exchange integrals illustrates a permutation of 

coordinates between spatial orbitals 𝜑𝑖 and 𝜑𝑗 in the latter half of the integral, thus 

illustrating electron exchange. However, this exchange only concerns same-spin 

electrons, and therefore HF cannot account for the exchange correlation between two 

electrons that differ in spin. Also, in [2.17], the negative sign precedes the exchange 

operator. This is necessary because exchange between two same-spin electrons has 

the stabilizing effect, thus decreasing the orbital energy. 

 Continuing with [2.24], the operation of the Fock operator on the right-hand side 

is executed on |𝜑𝑖(𝑟1)⟩, to produce the orbital energy, and then �𝜑𝑗(𝑟1)| is multiplied on 
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the left of both sides of the equality. With the left-hand side rewritten as the molecular 

basis set, the following is given: 

 
�𝑐𝑖𝑎�𝜑𝑗(𝑟1)�𝑓(𝑟1)�𝜑𝑖(𝑟1)�
𝑁

𝑖=1

= 𝜀𝑎�𝑐𝑖𝑎�𝜑𝑗(𝑟1)|𝜑𝑖(𝑟1)⟩
𝑁

𝑖=1

 [2.27] 

The above equality can be written in matrix form, known as the Roothan-Hall 

equations:9,10 

 FC = SC𝛆 [2.28] 

In Equation [2.28], F is the M by M Fock matrix of M orbitals containing elements 

F𝑗𝑖 = �𝜑𝑗(𝑟1)�𝑓(𝑟𝑖)�𝜑𝑖(𝑟1)�; S is an M by M overlap matrix containing overlapping orbitals 

of elements S𝑗𝑖 =  �𝜙𝑗(𝑟1)|𝜙𝑖(𝑟1)⟩; C is an M by M matrix containing the molecular orbital 

expansion coefficients, 𝑐𝑖𝑎; and 𝛆 is an M by M matrix containing the orbital energies 

along the diagonal.  

 Finally, the SCF procedure requires solving the secular equation: 

 
�𝑐𝑖𝑎�𝐹𝑗𝑖 − 𝜀𝑎𝑆𝑗𝑖�
𝑁

𝑖=1

= 0 [2.29] 

Assuming that one iteration of the SCF procedure has been executed between [2.20] 

and [2.29], a new iteration is executed with the expansion coefficients computed from 

the first iteration to build a new Fock matrix in [2.24]. Then the difference between the 

electronic total energies from the first and second iterations is taken and compared to 

an energy difference threshold (for example, ∆𝐸𝑡ℎ = 1𝑥10−8 Hartree). Assuming that 

difference threshold is not met, then the newly computed expansion coefficients are 

used to compute another new Fock matrix, and another electronic energy difference 

between the current and previous iteration is compared to energy difference threshold. 
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After some number of iterations, the electronic total energy is computed that satisfies 

the energy difference threshold. This will be very much dependent on repeated 

computations of the expansion coefficients, which are functionally representative of 

charge density and bonding involved within a molecular geometry. To illustrate this, with 

[2.10], probability of finding an electron, also known as the total charge density, is 

inserted into [2.8], the molecular orbital basis set: 

 
𝑃 = ���𝑐𝑖𝑎𝜑𝑖(𝑟)

𝑁

𝑖=1

�

2

𝑎

 [2.30] 

The integral from [2.8] has been removed in place of the more approximate summation 

over all a molecular orbitals. Reorganization of the right-hand side, and noting the 

absolute square behaves as |𝜓|2 = 𝜓∗𝜓, gives: 

 
𝑃 = ���𝑐𝑗𝑎∗ 𝑐𝑖𝑎

𝑎

𝜑𝑗∗(𝑟)𝜑𝑖(𝑟)
𝑁

𝑗>𝑖

𝑁

𝑖=1

 [2.31] 

The electron density matrix for a molecular orbital basis set: 

 𝐷𝑖𝑗 = �𝑐𝑖𝑎∗ 𝑐𝑗𝑎
𝑎

 [2.32] 

The coefficients in the density matrix are the very same involved in the SCF procedure.  

It can therefore be said that minimization of the HF electronic energy optimizes the 

electron density. 

 As previously noted, HF is an approximation towards solving the total energy in 

the Schrödinger equation. However, improvements are necessary because HF fails to 

describe electron correlation between electrons of different spin. It treats electron 

interactions in an average field of electrons. As a result, HF recovers approximately 

99% of the true energy, Eo. Therefore, this chapter briefly overviews some ab initio 
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methodologies that use the HF solution, and attempt to recover the 1% that describes 

electron correlation.  

 

2.3 Many-Body Perturbation Theory 

 An ab initio methodology that is able to account for more electron correlation 

energy is many-body perturbation theory (MBPT).11 Like HF, MBPT is size-consistent in 

that the total energy scales linearly with the number of electrons in a molecular system. 

However, MPBT is not variational. In this method, a perturbation operator, 𝒱� , is added 

to the zero-order Hamiltonian, ℋ�𝑜. Therefore, the perturbed Hamiltonian has the form: 

 ℋ� = ℋ�𝑜 + 𝜆𝒱�  [2.33] 

The perturbed Hamiltonian is applied to the zero-order wavefunction, which is an 

eigenfunction of the zero-order Hamiltonian, to produce a 𝜆-order perturbation energy 

correction (in which 𝜆 is an integer) to the zero-order total energy. 

 As an example, the first- and second-order energies are solved. The 

wavefunctions and energies are expanded, respectively, as a function of an order 

parameter, 𝜆: 

 ℰ𝑖 = 𝐸𝑖
(0) + 𝜆𝐸𝑖

(1) + 𝜆2𝐸𝑖
(2) + ⋯ [2.34] 

 |Φ𝑖⟩ = �Ψ𝑖
(0)� + 𝜆 �Ψ𝑖

(1)� + 𝜆2 �Ψ𝑖
(2)� + ⋯ [2.35] 

In [2.34] and [2.35], the superscripts define the order of perturbation, and the subscript, i, 

relates the expansions to the wavefunction, |Φ𝑖⟩. The perturbed Hamiltonian [2.33] is 

applied to [2.35] and equal to the product of [2.34] and [2.35]: 
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 �ℋ�𝑜 + 𝜆𝒱�� ��Ψ𝑖
(0)� + 𝜆 �Ψ𝑖

(1)� + 𝜆2 �Ψ𝑖
(2)� + ⋯�

= �𝐸𝑖0 + 𝜆𝐸𝑖
(1) + 𝜆2𝐸𝑖

(2) + ⋯���Ψ𝑖
(0)� + 𝜆 �Ψ𝑖

(1)� + 𝜆2 �Ψ𝑖
(2)� + ⋯� 

[2.36] 

Given that the 𝜆-order eigenfunctions in [2.35] are orthonormal to each other, the zero-

order wavefunction is multiplied across [2.33] on the left and terms are isolated by the 

order of 𝜆: 

 𝐸𝑖
(0) = �Ψ𝑖

(0)�ℋ�𝑜�Ψ𝑖
(0)� [2.37] 

 𝐸𝑖
(1) = �Ψ𝑖

(0)�𝒱��Ψ𝑖
(0)� [2.38] 

 𝐸𝑖
(2) = �Ψ𝑖

(0)�𝒱��Ψ𝑖
(1)� [2.39] 

These are the zero-, first-, and second-order energies. The second-order energy in 

[2.39] is a function of the first-order wavefunction, but it can be rewritten as a function of 

the zero-order energies and wavefunctions. This first requires expansion of the first-

order wavefunction in terms of eigenfunctions of the zero-order Hamiltonian: 

 �Ψ𝑖
(1)� = ��Ψ(𝑛)� �Ψ(𝑛)�Ψ𝑖

(1)�
𝑛

 [2.40] 

Next, equitable terms relating to the first-order parameter using [2.36] are extracted to 

create the relation: 

 �𝐸𝑖
(0) −ℋ�𝑜� �Ψ𝑖

(1)� = �𝒱� − 𝐸𝑖
(1)� �Ψ𝑖

(0)� [2.41] 

Multiplying across from the left by �Ψ(𝑛)� and keeping in mind that the zero-order 

eigenfunctions are orthogonal �i. e. �Ψ(𝑛)�Ψ𝑖
(0)� = 0�, the following is obtained: 

 �𝐸𝑖
(0) − 𝐸𝑛

(0)��Ψ(𝑛)�Ψ𝑖
(1)� = �Ψ(𝑛)�𝒱��Ψ𝑖

(0)� [2.42] 
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Applying [2.40] within [2.39] gives: 

 𝐸𝑖
(2) = ��Ψ𝑖

(0)�𝒱��Ψ(𝑛)��Ψ(𝑛)�Ψ𝑖
(1)�

𝑛

 [2.43] 

Finally, rearranging [2.42] and substituting the result into [2.43] yields: 

 

𝐸𝑖
(2) = �

��Ψ(𝑛)�𝒱��Ψ𝑖
(0)��

2

�𝐸𝑖
(0) − 𝐸𝑛

(0)�𝑛

 

[2.44] 

This is the second-order energy. Over all, the second-order total energy is given as: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑖
(0) + 𝐸𝑖

(1) + 𝐸𝑖
(2) [2.45] 

It is noted that the if the HF Hamiltonian is used as the zero-order Hamiltonian, then the 

sum of the zero- and first-order total energies account give the HF total energy. The 

zero-order energy accounts for the one-electron orbital energies. The first-order energy, 

determined by 𝒱� , accounts for the two-electron interactions, 𝐽𝑖𝑗(𝑟𝑖) and 𝐾�𝑖𝑗(𝑟𝑖). 

Assuming that �Ψ𝑖
(0)� is the HF ground state Slater determinant, then, according to 

Brillouin’s theorem, the projection of �Ψ𝑖
(0)� onto the first excited state determinant yields 

no interaction. So, for n = 1, �Ψ(𝑛)�𝒱�Ψ𝑖
(0)� = 0, so no correlation energy is obtained from 

the first order correction. However, Equation [2.44] can be rewritten to account for 

second-order (or double) excitations; 

 

𝐸𝑖𝑗
(2) = �

��Ψ(𝑎𝑏)�𝑟12−1�Ψ𝑥𝑦
(0)� − �Ψ(𝑎𝑏)�𝑟12−1�Ψ𝑦𝑥

(0)��
2

�𝜀𝑥 + 𝜀𝑦 − 𝜀𝑎 − 𝜀𝑏�𝑎𝑏

 

[2.46] 

Now, the total energy as a function of double excitations of electrons from the x and y 

orbitals into excited a and b orbitals are computed. This is the second-order Møller-

Plesset (MP2)12 correction. Substituting [2.46] into [2.45], having used the HF 
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Hamiltonian, yields the MP2 total energy. Higher order 𝜆 corrections can be computed 

as well, in which n < 2. However, MP2 is the most popular of the perturbative 

corrections because of the higher computational requirements, the non-variational 

behavior, and possible divergent behavior of the higher-level corrections.  

 

2.4 Configuration Interaction 

 This ab initio method, called configuration interaction (CI),13 is conceptually 

straightforward method in that all possible electron configurations of a Slater 

determinant are considered, and the corresponding wavefunction forms the basis of the 

N-electron wavefunction. Thus, the CI wavefunction has the form: 

 |Φ𝐶𝐼⟩ = 𝐶|Ψ𝑜⟩ + 𝐶𝑖𝑎|Ψ𝑖𝑎⟩ + 𝐶𝑖𝑗𝑎𝑏�Ψ𝑖𝑗𝑎𝑏� + 𝐶𝑖𝑗𝑘𝑎𝑏𝑐�Ψ𝑖𝑗𝑘𝑎𝑏𝑐� + 𝐶𝑖𝑗𝑘𝑙𝑎𝑏𝑐𝑑�Ψ𝑖𝑗𝑘𝑙𝑎𝑏𝑐𝑑� + ⋯ [2.47] 

The wavefunction accounts for the ground state and excited state wavefunctions, and 

the associated expansion coefficients. For example, the first excitation involves 

promotion of an electron from orbitals i to a; the second excitation involves promotion of 

two electrons, one from orbitals i to a, and another from orbitals j to b; the third involves 

three electron excitations, and so forth. Thus, |Ψ𝑜⟩ is the ground state wavefunction, 

|Ψ𝑖𝑎⟩ is the first exited state, �Ψ𝑖𝑗𝑎𝑏� is the second excited state, �Ψ𝑖𝑗𝑘𝑎𝑏𝑐� is the third excited 

state, and so forth. Computing the “Full CI” wavefunction14 requires solving the exact 

energy of a molecular system using an N-electron Hamiltonian, ℋ, formed in the basis 

of a complete CI wavefunction. This process is very computationally expensive and 

feasible mainly for small molecules and atoms, including H2 and He. 

 In the formation of the CI matrix, a few observations are noted. First, Brillouin’s 

theorem applies with CI, in that the singly excited wavefunction does not mix with the 
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ground state wavefunction, thus ⟨Ψ𝑜|ℋ|Ψ𝑖𝑎⟩ = 0. Also, no mixing occurs between the 

ground state and third, or higher, excited- state wavefunctions; this occurs because the 

Hamiltonian accounts for only, at most, two-electron interactions between two coupled 

one-electron wavefunctions. Therefore, if the coupled CI matrix element differs by an 

order of more than two, then it equals zero. For example, �Ψ𝑜�ℋ��Ψ𝑖𝑗𝑎𝑏� ≠ 0, but 

�Ψ𝑜�ℋ��Ψ𝑖𝑗𝑘𝑎𝑏𝑐� = 0. 

 Given these facts, and the computational expense of a full CI computation, the CI 

wavefunction can be truncated to consider a limited scope of excitations. Applying 

Brillouin’s theorem, the CI wavefunction is truncated to the second-order excitation, and 

first-order excitations are removed by setting 𝐶𝑖𝑎 = 0. This is called configuration 

interaction with doubles excitations (CID). Another form of CI, called configuration 

interaction with singles and doubles excitations (CISD) includes singles and doubles 

excitations. Despite Brillouin’s theorem, the first-order and second-order excited 

wavefunctions do mix, such that �Ψ𝑖𝑎�ℋ�Ψ𝑖𝑗𝑎𝑏� ≠ 0. This incorporation of singles is 

important for an accurate computation of one-electron properties, including the dipole 

moment, and charge and spin densities, but not so for the total energy. Indeed, 

contributions of excitations toward the total energy result from the ability of the excited 

wavefunction to mix with the ground-state wavefunction. Therefore, decreasing the 

magnitude of truncation on the CI wavefunction, starting with second-order excited 

wavefunction, and adding the third- (CISDT), fourth- (CISDTQ), and higher, causes CI 

to recover progressively more and more of the electron correlation energy, towards a 

Full CI wavefunction, that HF fails to account. But, this progression demands more 

computational effort. Truncation of the CI wavefunction does increase the computational 
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efficiency, but the drawback is that it removes size-consistency in the computation of a 

molecule. A known solution for this is Davidson correction,15 which estimates higher 

order interaction energies from a truncated CI expansion. The correction, ∆𝐸𝑄, is 

computed from the CISD total energy, and the coefficient of the ground-state 

wavefunction, C: 

 ∆𝐸𝑄 = (1 − 𝐶2)𝐸𝐶𝐼𝑆𝐷 [2.48] 

Overall, the foundation of the CI wavefunction is very straightforward, but it is very 

limited in its computation feasibility. 

 

2.5 Coupled Cluster Theory 

 Another ab initio method is briefly introduced, which also can recover electron 

correlation energy, is the coupled cluster method.16-19 The form of the coupled cluster 

wavefunction is given in the following:  

 |Φ𝐶𝐼⟩ = 𝑒𝑇� |Ψ𝑜⟩ [2.49] 

In [2.49], the wavefunction, |Ψ𝑜⟩, is the ground state HF wavefunction, which is a Slater 

determinant, and the exponential contains the cluster operator, 𝑇� , that accounts for 

single, double, triple, quadruple, and more excited states through the promotion of 

clusters of one, two, three, four, and more clusters of electrons, respectively. This is 

illustrated though a Taylor series expansion of the exponential: 

 
𝑒𝑇� = 1 + 𝑇� +

𝑇�2

2!
+
𝑇�3

3!
+
𝑇�4

4!
+ ⋯+

𝑇�𝑁

𝑁!
 [2.50] 

In [2.50], the cluster operator is defined as: 

 𝑇� = 𝑇�1 + 𝑇�2 + 𝑇�3 + 𝑇�4 + ⋯+ 𝑇�𝑁 [2.51] 
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As examples of the cluster operator, the single and double excited states are produced 

using the first- and second-order cluster operators, respectively: 

 𝑇�1|Ψ𝑜⟩ = �𝑡𝑎|Ψ𝑎⟩
𝑎

 [2.52] 

 𝑇�2|Ψ𝑜⟩ = �𝑡𝑎𝑏|Ψ𝑎𝑏⟩
𝑎𝑏

 [2.53] 

In the above, |Ψ𝑎⟩ and |Ψ𝑎𝑏⟩ are the first- and second-order excited states, and 𝑡𝑎 and 

𝑡𝑎𝑏 are cluster coefficients, the values of which are determined through variation of the 

wavefunction to solve for the total energy, as displayed in [2.17]. One interesting point 

to note is that, with the form of [2.50], given 𝑇�𝑛, it is possible to have groups of excited 

clusters operate on the ground state wavefunction. For example, using 𝑇�2in [2.51], the 

applicable cluster operators include 𝑇�12, 𝑇�22, 𝑇�32, 𝑇�42, and the cross terms. These 

multiplicative cluster operators are uncoupled excitations; for example, 𝑇�12 accounts for 

two uncoupled excitations of two single electrons. In contrast, 𝑇�2 accounts for the 

coupled excitation of two electrons. Operation of 𝑇�12 on the ground-state wavefunction 

yields two cluster coefficients for each excited electron: 

 𝑇�12|Ψ𝑜⟩ = 𝑇�1𝑇�1|Ψ𝑜⟩ = 𝑇�1�𝑡𝑎|Ψ𝑎⟩
𝑎

= �𝑡𝑎𝑇�1|Ψ𝑎1�
𝑎

= �𝑡𝑎𝑡𝑏|Ψ𝑎𝑏⟩
𝑎𝑏

 [2.54] 

These excitations are analogous to those performed in full CI. However, coupled cluster 

also performs uncoupled excitations to contribute to the total energy. 

 Like with full CI, the cluster operator can be truncated such that only double 

excitations apply; with that, the cluster operator becomes 𝑇� = 𝑇�2. This form of coupled 

cluster is called coupled cluster doubles (CCD). If the cluster operator becomes 

𝑇� = 𝑇�1 + 𝑇�2, then the corresponding form of coupled cluster is coupled cluster singles 
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and doubles (CCSD). Also, for 𝑇� = 𝑇�1 + 𝑇�2 + 𝑇�3, this is called coupled cluster singles, 

doubles, and triples (CCSDT). This last method is quite accurate in recovering the 

electron correlation energy (~99%), but it is expeditious only for small molecules. 

Therefore, a more feasible approach, for increasing number of atoms in a molecule, is 

to use CCSD and add triples excitations as a perturbation. This form of coupled cluster 

is called CCSD(T), in which the parentheses denote the triples excitations as a 

perturbation. In all truncations of the cluster operator, a size-consistent wavefunction is 

maintained, due to the exponentiation of the cluster operator, which permits uncoupled 

excitations unlike with a truncated CI wavefunction. 

 

2.6 Complete Active Space Self-Consistent Field Theory 

 At this point in the chapter, only methods that require a single-reference 

wavefunction have been examined. However, transition metals are known for low-lying 

degenerate excited states, so a single-reference method is not adequate in describing 

the corresponding electronic structure associated with this static correlation. For 

clarification, static correlation takes account of the possible combinations of electron 

occupation in orbitals. Therefore, a method that can describe the molecule or reaction 

using a multi-reference wavefunction-based approach is required. A well-known multi-

reference approach is the complete active space self-consistent field (CASSCF) 

method.20 The CASSCF wavefunction has the form: 

 |Φ𝐶𝐴𝑆𝑆𝐶𝐹⟩ = �𝐶𝑙|Χ𝑙⟩
𝑙

 [2.55] 
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In which: 

 |Χ𝑙⟩ = 𝐺�|Ψ𝑘⟩
𝑘∈𝑙

 [2.56] 

And: 

 |Ψ𝑘⟩ = �𝑃𝜈𝑘|Ω𝜈⟩
𝜈

 [2.57] 

Essentially, the CASSCF wavefunction can be expanded as a sum of 𝑙 configuration 

state functions (CSFs), |Χ𝑙⟩, which is a symmetry-adapted linear combination of Slater 

determinants, |Ψ𝑘⟩, and configuration coefficients, 𝐶𝑙. Also, 𝐺 is a normalization constant.  

These CSFs are symmetry-adapted because all contributing Slater determinants are all 

eigenfunctions of the angular momentum and spin operators, 𝐿2 and 𝑆2, and the 

corresponding projections along the z-axis, 𝐿𝑧2 and 𝑆𝑧2, for linear molecules. The Slater 

determinants are further composed of molecular orbitals,|Ω𝜈⟩, and the corresponding 

coefficients, 𝑃𝜈𝑘.  

Solving for the CASSCF wavefunction of a molecule is completely dependent on 

the electronic active-space that is composed of all possible electron configurations that 

populate the set of molecular orbitals. The orbitals are divided into the inactive and 

active orbitals. The inactive orbitals are doubly occupied and do not contribute to any 

electron correlation, but all other electrons are in active orbitals, which are correlated 

amongst each other and therefore contribute to the determination of all 𝐶𝑙 and 𝑃𝜈𝑘. The 

number of electrons and molecular orbitals must be chosen for a molecular computation. 

Typically, the valence electrons and the resident orbitals are selected. The magnitude of 

a computation grows with the number of electrons and orbitals because they determine 
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the how many CSFs compose the CASSCF wavefunction. The number of CSFs can be 

determined by the Weyl-Robinson Formula:21 

 𝑛𝐶𝑆𝐹𝑠 =
2𝑆 + 1
𝑚 + 1

� 𝑚 + 1
𝑚 − 0.5𝑁 − 𝑆� �

𝑚 + 1
0.5𝑁 − 𝑆� 

[2.58] 

In [2.57], m is the number of active orbitals, N is the total number of active electrons, 

and S is the total spin. The difficulty of a CASSCF wavefunction can be illustrated with 

the large possible number of CSFs, using [2.57], as illustrated in Table 1.1. The number 

of CSFs can increase, as shown by Table 1.1, with the factorial number of the electrons, 

thereby heavily increasing the computational expense for solving the CASSCF 

wavefunction. With quantization of all possible CSFs, CASSCF is able to describe the 

static correlation of electrons, by typifying all possible states, including near-degenerate 

ones. Although, CASSCF fails in describing the dynamic correlation of electrons; that is, 

the instantaneous interactions of electrons with other proximal electrons. The scenario 

is similar to single-reference SCF, in which each electron sees all other electrons in an 

“averaged field,” and the molecular orbital coefficients are optimized accordingly, among 

all possible configurations. There are multi-reference methods that recover dynamic 

correlation, using the CASSCF wavefunction and total energy as an initial guess. They 

include such methods as complete active space perturbation theory of order 2 or 3 

(CASPT2,22 CASPT323), multi-reference configuration interaction (MRCI),24-26 and multi-

reference coupled-cluster (MRCC).27 However, these methods are beyond the scope of 

this dissertation, and consequently is not reviewed here. 

 

2.7 Density Functional Theory 
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 The complexity of solving the electronic wavefunction for a molecular system of 

N electrons with 3N spatial and N spin components is the fact that the electronic 

Hamiltonian can handle only one- and two- electron interactions. This accounts for, at 

most, six spatial components. Therefore, a method that could account for electron 

interactions term of fewer variables could provide much more computational efficiency 

and mathematical elegance would be very attractive. This is the theme of density 

functional theory (DFT),28 in that the complexity of the multi-component electronic 

wavefunction is reduced to an electron density.  

 The Hohenberg-Kohn theorems28 lays the foundation for DFT; the first theorem 

states that a single-reference (thus, nondegenerate) electron density uniquely 

determines the ground state total energy, the molecular wavefunction, and any 

electronic properties for a molecular system. The electron density is computed by taking 

the absolute-square of the normalized electron density and integrating it over all space 

and spin: 

 
𝜌 = � � � �…�|𝜓(𝑟, 𝑟2 ⋯ 𝑟𝑛)|2𝑑𝑟2 ⋯𝑑𝑟𝑛

𝑎𝑙𝑙 𝑚𝑠

�
𝑁

0
𝑑𝑟 [2.59] 

In [2.59], ms specifies the spin of all N electrons. In light of this theorem, the total energy 

can be written as a functional of the electron density: 

 𝐸 = 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑁𝑒[𝜌] + 𝑉𝑒𝑒[𝜌]

= �𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)�−�
1
2

𝑁

𝑖=1

∇𝑖2 −��
𝑍𝐴
𝑟𝑖𝐴

𝑁

𝐴=1

𝑁

𝑖=1

+ ��
1
𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

�𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)� 
[2.60] 

The above expression relates the total energy as a sum, on the right-hand side, of the 

kinetic energy functional: 
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𝑇[𝜌] = �𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)� = −�

1
2

𝑁

𝑖=1

∇𝑖2�𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)� [2.61] 

Along with the nuclear-attraction potential energy functional: 

 
𝑉𝑁𝑒[𝜌] = �𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)���

𝑍𝐴
𝑟𝑖𝐴

𝑁

𝐴=1

𝑁

𝑖=1

�𝜓(𝑟, 𝑟2 ⋯ 𝑟𝑛)� = �𝜐(𝑟)𝜌(𝑟)𝑑𝑟 [2.62] 

And the two-electron interaction energy functional: 

 
𝑉𝑒𝑒[𝜌] = �𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)���

1
𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

�𝜓(𝑟, 𝑟2 ⋯𝑟𝑛)� [2.63] 

The second Hohenberg-Kohn Theorem states that the ground state electron density 

minimizes the total energy functional. Hence, it links DFT to the Variational principle 

associated with [2.17] for the electron density. 

 A practical means of determining the electron density and then the total energy 

was formulated by Kohn and Sham, now known as the Kohn-Sham method.29 They 

applied a “fictitious reference system of N noninteracting electrons that each experience 

the same external potential energy function, 𝜐(𝑟).”30 Therefore, the Hamiltonian of this 

reference system is: 

 
𝐻 = �ℎ𝑖𝐾𝑆

𝑁

𝑖=1

=�
1
2
∇𝑖2 + 𝜐(𝑟𝑖)

𝑁

𝑖=1

 [2.64] 

Also, the Kohn-Sham one-electron wavefunction is a Slater determinant of spin orbitals 

that are eigenfunctions of [2.64]. 

 In addition, Kohn and Sham rewrote the total energy functional. First, the kinetic 

energy functional can be rewritten as a difference of kinetic energy functionals of the 

real molecular system and the fictitious system: 
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 ∆𝑇[𝜌] = 𝑇[𝜌] − 𝑇𝑠[𝜌] [2.65] 

In [2.65], the subscript s denotes the fictitious system. Also, a difference equation for the 

electron-electron interactions is given: 

 
∆𝑉𝑒𝑒[𝜌] = 𝑉𝑒𝑒[𝜌] −

1
2
�

𝜌(𝑟1)𝜌(𝑟2)
𝑟12

𝑑𝑟1𝑑𝑟2 [2.66] 

The second term on the right-hand side accounts for electronic charge interaction by 

smearing the electron densities over all space; the ½ coefficient accounts for double-

counting after integration of the two-electron interactions. Next, substituting [2.65] and 

[2.66] into [2.60] yields: 

 
𝐸[𝜌] = 𝑇𝑠[𝜌] + �𝜐(𝑟)𝜌(𝑟)𝑑𝑟 +

1
2
�

𝜌(𝑟1)𝜌(𝑟2)
𝑟12

𝑑𝑟1𝑑𝑟2 + ∆𝑇[𝜌] + ∆𝑉𝑒𝑒[𝜌] [2.67] 

At this point, the energy functional of a real molecular system is composed of a sum of a 

kinetic energy, potential energy, and electron-electron interaction functionals that 

describe a fictitious reference system, and two difference functionals that bridge the gap 

in the descriptions of the real and fictitious systems. The sum of these last two 

functionals are known to describe electron exchange and correlation. This is the 

exchange-correlation (XC) functional: 

 𝐸𝑋𝐶[𝜌] = ∆𝑇[𝜌] + ∆𝑉𝑒𝑒[𝜌] [2.68] 

So, now the total energy functional, in its final form, is given as: 

 
𝐸[𝜌] = 𝑇𝑠[𝜌] + �𝜐(𝑟)𝜌(𝑟)𝑑𝑟 +

1
2
�

𝜌(𝑟1)𝜌(𝑟2)
𝑟12

𝑑𝑟1𝑑𝑟2 + 𝐸𝑋𝐶[𝜌] [2.69] 

The XC functional is an energy term that can be expanded as a sum of the exchange 

and correlation energies: 

 𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌] [2.70] 
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The exchange energy accounts for the energy associated with the antisymmetry 

requirement of electrons; also, the correlation energy accounts for the energy 

associated with the Coulombic repulsions, which cause electrons to avoid each other.  

The exact form of the XC functional is unknown, and many forms of which have 

been produced to improve DFT applications for molecular and solid-state computations.  

For this overview of DFT, three classes of XC functionals are briefly mentioned. To 

begin, the local density approximation (LDA)31,32 describes an electron density with a 

slowly varying gradient. Hohenberg and Kohn illustrated that this XC functional can be 

written as: 

 𝐸𝑋𝐶𝐿𝐷𝐴[𝜌] = �𝜌(𝑟)𝜀𝑋𝐶(𝜌)𝑑𝑟 [2.71] 

The LDA XC functional describes a “jellium,” in which interacting electrons and positive 

charges, associated with nuclei, are both uniformly distributed throughout space. This 

model is known to work very well for models requiring the conduction of electrons 

though a solid-state network. Also, to account for spin, the local spin density 

approximation (LSDA) constructs a jellium for electron densities of different spin, both 

up (𝛼) and down (𝛽): 

 𝐸𝑋𝐶𝐿𝑆𝐷𝐴�𝜌𝛼,𝜌𝛽� = �𝜌(𝑟)𝜀𝑋𝐶�𝜌𝛼, 𝜌𝛽�𝑑𝑟 [2.72] 

 To account for electron densities with larger gradients, a generalized gradient 

approximation (GGA) is constructed, which has the general functional form: 

 𝐸𝑋𝐶𝐺𝐺𝐴�𝜌𝛼,𝜌𝛽� = �𝑓�𝜌𝛼 ,𝜌𝛽 ,∇𝜌𝛼,∇𝜌𝛽�𝑑𝑟 [2.73] 
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Some examples of GGA functionals include the Perdew-Wang 91 (PW91) XC 

functional33,34 and the Perdew-Burke-Ernzerhof (PBE) XC functional,35,36 both of which 

are vastly applied to solid-state computations.  

 The last class of XC functional to be mentioned in this section is the hybrid 

functional. These contain a parameterized mixture of HF exchange energy (see [2.26]) 

and gradient-corrected exchange and correlation energy terms from other functionals. A 

well-known example is the B3LYP XC functional,37 in which the “3” signifies the three 

parameter contribution: 

 𝐸𝑋𝐶𝐵3𝐿𝑌𝑃 = (1 − 𝑎𝑜 − 𝑎𝑥)𝐸𝑋𝐿𝑆𝐷𝐴 + 𝑎𝑜𝐸𝑋𝐻𝐹 + 𝑎𝑥𝐸𝑋𝐵88 + (1 − 𝑎𝑥)𝐸𝐶𝑉𝑊𝑁 + 𝑎𝐶𝐸𝐶𝐿𝑌𝑃 [2.74] 

Specifically, the LSDA, HF, and Becke88 (B88)38 exchange functionals, and the Vosko-

Wilk-Nusair (VWN)39 and Lee-Yang-Parr (LYP)40 correlation functionals all contribute to 

the B3LYP XC functional. The B3LYP parameters, 𝑎𝑜= 0.20, 𝑎𝑥= 0.72, and 𝑎𝑐= 0.81, 

were fitted to a set of atomization energies. It is noted that the B3LYP XC functional is 

among the most popular functional for computations of molecular properties, including 

atomization and reaction enthalpies, ionization potentials, and geometry optimizations. 

 

2.8 Basis Functions 

 This last section elaborates on the right-hand side of atomic orbital basis set, 

[2.10], called the basis functions. There are two common types of basis functions: 

Slater-type orbitals (STOs)41 and Gaussian-type orbitals (GTOs).42 An STO that is 

centered on an atom a is written as: 

 𝜑𝑎𝑆𝑇𝑂(𝑟) = 𝑁𝑟𝑎𝑛−1𝑒−𝜁𝑟𝑎𝑌𝑙𝑚(𝜃𝑎,𝜙𝑎) [2.75] 

In [2.75], N is the normalization constant, 𝑟𝑎𝑛−1𝑒−𝜁𝑟𝑎 is the radial component that 

depends on the principal quantum number, n, and 𝑌𝑙𝑚(𝜃𝑎,𝜙𝑎) is the spherical harmonic 
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component that depends on the azimuthal and magnetic quantum numbers, l and m, 

respectively. The radial component was derived by Slater to describe the hydrogenic-

like one-electron orbital. However, for polyatomic molecules, much difficulty occurs for 

the two-electron integral, Equations [2.25] and [2.26], when integral accounts for three 

or four atomic centers. In a nutshell, for a basis set containing b basis functions, 

𝜑1𝑆𝑇𝑂(𝑟),𝜑2𝑆𝑇𝑂(𝑟), … ,𝜑𝑏𝑆𝑇𝑂(𝑟), there are b possible permutations of �𝜑𝑖𝜑𝑗�𝜑𝑘𝜑𝑙� four-

centered integrals (in which i, j, k, and l are atomic centers) and thusly b4/8 electron 

interaction integrals to compute.30  

 To reduce the number of electron interaction integrals, and thereby increase the 

computational efficiency, GTOs are used in place of STOs: 

 𝜑𝑖𝑗𝑘𝐺𝑇𝑂(𝑟) = 𝑁𝑥𝑎𝑖 𝑦𝑎
𝑗𝑧𝑎𝑘𝑒−𝜁𝑟𝑎

2𝑌𝑙𝑚(𝜃𝑎,𝜙𝑎) [2.76] 

The two differences between [2.75] and [2.76] include the replacement of interior 

functions in the exponential from r to r2 and of the exterior function rn-1 to xiykzj. The 

increase in the efficiency of GTOs stems from the fact that a product of two one-

centered GTOs produces a two-centered GTO. The resulting two-electron integrals 

allow for faster computations. Also, the xiykzj component are functions along the x, y, 

and z axes (assuming, of course that 𝑟 = 𝑟(𝑥, 𝑦, 𝑧)). When i + j + k = 0 (in which i, j, and 

k are all zero), an s-type GTO is produced; when i + j + k = 1 (in which i, j, or k=1), an p-

type GTO is produced. A d-type GTO is formed when i + j + k = 2 (in which i = j = 1 and 

k = 0, or i = k = 1 and j = 0, or j = k = 1 and i = 0). Basically, the combinations of i, j, and 

k can produce any l-type GTO, where l = s, p, d, f, g, h, and beyond. 

 In the application of GTOs for a molecular basis set, it is standard practice to use 

a normalized linear combination, called contractions, of GTOs, called primitives: 
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𝜒𝑎(𝑟) = �𝑐𝑎𝑖𝜑𝑖(𝑟)

𝑁

𝑖=1

  [2.77] 

In the above, 𝜒𝑎(𝑟) is a contraction composed of N primitives, 𝜑𝑖(𝑟), and N normalized 

contraction coefficients, 𝑐𝑎𝑖. The simplest type of basis set is a minimal basis set, which 

is composed of a contraction of three GTOs to simulate an STO (STO-3G) for every l-

type orbital. Taking the C atom as an example, the corresponding minimal basis set 

contains five basis functions, made from two s-type functions (for the 1s and 2s atomic 

orbitals) and three p-type functions (for the 2px, 2py, and 2pz atomic orbitals). A total 

energy computation that employs a minimal basis set involves the simplest means of 

recovering correlation energy, with regard to basis set selection. However, a minimal 

basis set does not allow for variation of orbitals with changes in the molecular 

environment, such as changes in the number of electrons, protonation of 

electronegative atom, or expansion and contraction of atomic distances. One 

modification to the basis set to allow for better simulation of the molecular environment 

is to use a split-valence basis set. Since the valence orbitals are primarily responsible 

for bonding for molecules, then the description of the valence orbitals can be improved 

by splitting the valence orbitals between the inner and outer parts using two sets of 

GTO contractions. The inner GTO contraction maintains a selected 𝜁 within each 

primitive, which is different from the 𝜁 employed by the outer GTO contraction. Since 

two different 𝜁 values are employed, then this split-valence basis set is a double- 𝜁 basis 

set; that is, there are twice as many basis functions present compared to the 

corresponding minimal basis set, and the second set of functions have a different value 

for 𝜁 (see the exponential in [2.76]). Polarization functions are also used to improve a 
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basis set. These include functions of higher l-type description beyond the core and 

valence l-type functions. The purpose of polarization functions is to improve the bonding 

description by allowing for a more  spherically asymmetric description of electronic 

behavior within the valence orbitals. For example, polarization functions allow for 

computed molecular shape of ammonia (NH3) to be trigonal pyramidal; without 

polarization functions, NH3 would be predicted to have a trigonal planar shape. Finally, 

diffuse functions are another correction for basis sets. These are GTOs that have very 

small 𝜁 values, compared to those employed within core and valence orbitals and 

polarization functions. Diffuse functions are employed in molecular computations to 

better describe anionic behavior. 

At this point, the correlation consistent basis sets43 are introduced. They are split-

valence basis sets of varying 𝜁 qualities  as well as polarization functions to account for 

correlation energy. The cc-basis sets are denoted as cc-pVnZ, in which n= D (double), T 

(triple), Q (quadruple), and beyond. The “Z” denotes 𝜁, and “n” denotes the 𝜁 quality. 

The “V” in cc-pVDZ specifies the valence set of basis functions; specifically, since, “VDZ” 

is specified, then the DZ rule applies only for the valence basis functions. Finally, the 

“cc-p” specifies correlation consistent polarization functions that recover the correlation 

energy. For example, the cc-pVDZ basis set for Carbon (the acronym “cc-pVDZ” is 

explained shortly) requires a set of nine s-type GTO primitives, four p-type GTO 

primitives, and one d-type GTO primitive, all of which recover an approximately 

consistent amount of correlation energy. The nine s-type GTO primitives are organized 

in three s-type GTO contractions, the four p-type GTO primitives are organized in two p-

type GTO contractions, and the one d-type GTO primitive stands alone as one d-type 
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GTO contraction. This primitive/contraction combination is denoted by 

(9s4p1d)/[3s2p1d]. Similarly, triple-zeta (TZ) basis sets contain three times as many 

basis functions present compared to the corresponding minimal basis set, and all three 

sets of functions have different values for 𝜁. To show some examples, the 1d primitive is 

the correlation/polarization for the cc-pVDZ set, the 2d1f is the correlation/polarization 

for the cc-pVTZ set, and the 3d2f1g is the correlation/polarization for the cc-pVQZ set. 

The cc-basis sets can be augmented to better describe long-range effects and 

polarizabilities of charges species by diffuse functions. In the cc-basis sets, this 

augmentation44 is noted with the prefix “aug-”; as an example, the aug-cc-pVDZ set 

increases each set of l-type contraction in the cc-pVDZ set by one diffuse GTO primitive. 

Therefore, the cc-pVDZ set with (9s4p1d)/[3s2p1d] becomes the aug-cc-pVDZ basis set 

with (10s5p2d)/[3s2p1d]. 

 
Table 2.1: CSFs for a set of n electrons in n orbitals, denoted by CASSCF[n,n] 

CASSCF[n,n] CSFs 
[2,2] 3 
[4,4] 20 
[6,6] 175 
[8,8] 1764 

[10,10] 19404 
[12,12] 226512 
[14,14] 2760615 
[16,16] 34763300 
[18,18] 449141836 
[20,20] 5924217936 
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CHAPTER 3 

AN OVERVIEW OF SOLID-STATE PHYSICS 

 Solid-state physics is concerned with the atomic structure, properties, and 

applications of atoms that exist in the solid phase. Elements across the Periodic Table 

form macroscopic structures in the solid phase at room temperature (298.15 K) and 

pressure (1.0 atm), called crystals that contain repeated atomic arrangements. Such 

monoatomic and polyatomic crystals are essentially a three dimensional network of 

atoms in which electrons may conduct, depending on the atoms that form the crystal, 

bonding types (ionic, covalent, and metallic), temperature, and pressure to which the 

crystal is exposed. For example, the electronic structures of semiconductors, such as Si 

and Ge, have energy gaps, which are significant breaks of 1.1 eV and 0.7 eV at 300 K45 

between electronically occupied states and electronically unoccupied states. Energy 

gaps of these magnitudes allow for the moderated conduction of electrons with varying 

temperatures, pressures, and external magnetic fields and, therefore, are the foundation 

of electronic devices, such as radios, computers, diodes, solar cells, and transistors. 

Crystals made solely from alkali, alkaline earth, and transition metals lack energy gaps 

and thus have higher conductivities that generally do not benefit such electronic 

applications. Instead, solid solutions of elements, or alloys, have other applications. For 

example, stainless steel (Fe3C) has a high resistance to corrosion and oxidation and is 

necessary in the production of cookware, buildings, surgical equipment, and firearms.46 

Also, Alnico, which is primarily composed of aluminum, nickel, and cobalt, acts as a 

permanent magnet; in fact, it has a Curie point of 860 oC, above which the aligned 

magnetic moments are disordered, thus transforming Alnico© from a paramagnet into a 
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ferromagnet.47 Alnico is used in the manufacture of devices, such as electric motors, 

loudspeakers, and magnetrons.48 

 In this chapter, fundamental topics of solid–state physics are introduced. An 

overview of basic crystal structures, formed by the sum of repeated atoms and the 

lattice spacing in which they exist, which have been experimentally determined, are 

presented. Next, the reciprocal lattice is discussed; this is a lattice that can be formed 

from a corresponding crystal structure and is the space in which the electron density of 

a crystal structure is analyzed. The solution to the wavefunctions of a crystal structure, 

assembled through Bloch’s theorem, is investigated. Following that, resources for 

evaluating the electronic structure, mainly through band structure theory and density of 

states (DOS), is also to be discussed. Chemical bonding within crystal structures from 

various sections of the periodic table is surveyed. Finally, brief synopses of k-point 

sampling, a resource that is implemented in calculating accurate electronic energies, 

and pseudopotentials and pseudowavefunctions are presented. 

 

3.1  Crystal Structures 

The combination of a set volume of space and the arrangement of the constituent 

atoms may be defined as a crystal structure. The space of the crystal structure can be 

defined as a ‘lattice’ and the set of atoms can be defined as a basis. The lattice is 

described by three primitive translational vectors, a1, a2, and a3 that are translationally 

symmetric throughout the crystal, and are thus primitive. They may be written as 

function of x, y, and z coordinates, all of which may have corresponding i, j, and k 

vectors, respectively: 
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 𝒂𝟏 = 𝑥1𝒊 + 𝑦1𝒋 + 𝑧1𝒌 [3.1] 

 𝒂𝟐 = 𝑥2𝒊 + 𝑦2𝒋 + 𝑧2𝒌 [3.2] 

 𝒂𝟑 = 𝑥3𝒊 + 𝑦3𝒋 + 𝑧3𝒌 [3.3] 

The angles between a1 and a2, a2 and a3, and a3 and a1, all of which may be 

labeled as α, β, and γ, respectively, may vary from 90o, as illustrated in Figure 3.1. The 

position of each atom may be noted with a vector, defined as a ‘basis vector,’ All of 

these basis vectors exist within the volume of the crystal lattice, Vxl: 

 𝑉𝑥𝑙 = |𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑| [3.4] 

The crystal structure is produced by combining the lattice translational vectors 

and the set of basis vectors. 

 

3.2 The Reciprocal Lattice 

Unlike crystal structures, which are not just mathematical constructions but rather 

have been experimentally observed, a ‘reciprocal lattice’ is solely a mathematical 

construction, derived from a corresponding crystal structure, in which the electron 

density throughout the crystal structure may be analyzed. To find the reciprocal lattice, 

the translational invariance of the electron density must be taken into account. 

 𝑻 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 [3.5] 

Equation [3.5] is a translation vector, T, in which a1, a2, and a3 are the primitive 

translational vectors of the crystal lattice and u1, u2, and u3 are integers. An arbitrary 

point located at r = w1a1 + w2a2 + w3a3 within one crystal structure may be translated to 

proximal crystal structures using [3.5]. 

 𝒓 + 𝑻 = (𝑢1 + 𝑤1)𝒂𝟏 + (𝑢2 + 𝑤2)𝒂𝟐 + (𝑢3 + 𝑤3)𝒂𝟑 = 𝑢1𝒂𝟏 + 𝑢2𝒂𝟐 + 𝑢3𝒂𝟑 [3.6] 
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The initial and final points within both crystal structures have identical environments. 

Therefore, movement between the crystal structures by T results in translational 

invariance. With the electron density defined as n(r), this translational invariance is 

shown by the following: 

 𝑛(𝒓) = 𝑛(𝒓 + 𝑻) [3.7] 

The electron density is defined as the absolute square of the wavefunction for the 

crystal structure. 

 𝑛(𝒓) = |Ψ(𝒓)|2 [3.8] 

Unlike the electron density, the wavefunction is not translationally invariant; in fact, 

translation of the wavefunction produces a phase factor, μ, such that the absolute 

square of this phase factor is unity: 

 Ψ(𝒓) = Ψ(𝒓 + 𝑻) = 𝜇Ψ(𝒓) [3.9] 

 |𝜇Ψ(𝒓)|2 = 𝜇Ψ(𝒓) ∙ 𝜇Ψ(𝒓) = (𝜇 ∙ 𝜇)�Ψ(𝒓) ∙ Ψ(𝒓)� = (1)|Ψ(𝒓)|2 = 𝑛(𝒓) [3.10] 

The phase factor is a plane wave: 

 𝜇 = 𝑒𝑥𝑝(𝑖𝑮 ∙ 𝒓) [3.11] 

Thus, μ is a complex exponential function, which is a function of the position vector, r, 

and a reciprocal lattice vector, G, which has the form: 

 𝑮 = 𝑣1𝒃𝟏 + 𝑣2𝒃𝟐 + 𝑣3𝒃𝟑 [3.12] 

The reciprocal lattice vector is a function of primitive reciprocal vectors, b1, b2, and b3, 

all of which have units of inverse length, and v1, v2 and v3 are integers. The primitive 

reciprocal vectors can be constructed using the primitive translational vectors of the 

crystal structures: 
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 𝒃𝟏 = 2𝜋
𝒂𝟐 × 𝒂𝟑

|𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑| 
[3.13] 

 𝒃𝟐 = 2𝜋
𝒂𝟑 × 𝒂𝟏

|𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑| 
[3.14] 

 𝒃𝟑 = 2𝜋
𝒂𝟏 × 𝒂𝟐

|𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑| 
[3.15] 

Each primitive translational vector is orthogonal to its corresponding primitive reciprocal: 

 𝒃𝒏 ∙ 𝒂𝒏 = 2𝜋𝛿𝑛𝑚 [3.16] 

where δnm is the Kronocker delta function. 

 Like crystal structures, reciprocal lattices have the property of translational 

invariance. Therefore, only one reciprocal lattice needs to be constructed that contains 

all information necessary for the analysis of electronic structure. This reciprocal lattice is 

calculated using [3.13] through [3.15] to calculate the reciprocal lattice vectors. A square 

lattice, as a simple two-dimensional example, can be constructed using reciprocal lattice 

vectors that may be obtained using [3.13] through [3.15]. Figure 3.2 illustrates a 

segment of points that have been produced from the repetition of reciprocal lattice 

vectors, b1 and b2. All lattice points are conceptually joined to each other by vertical, 

horizontal, and diagonal lines. This results in lines that bisect other lines (or planes if in 

three dimensional space) halfway between lattice points. The lowest area encapsulation 

of each lattice point results in construction of Wigner-Seitz cells; these cells are also 

called Brillouin zones. On the right part of Figure 3.2, the lowest area (shaded) is 

produced using horizontal and vertical (non-diagonal) lines, thus illustrating the first 

Brillouin zone. Only this zone is needed because, similarly to the other Brillouin zones, it 

contains all the necessary electronic structure information. A translation through the 

Brillouin zone is actually a change in the wavevector, k, having units of reciprocal length, 
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of an electron that is described as a plane wave, exp(ik⋅r). This translation is particularly 

important in the analysis of band structures and are explored later. 

 𝐻� = 𝐾� + 𝑉�  [3.17] 

Given f(r), an arbitrary wavefunction, EK is the kinetic energy eigenvalue and V(r) is the 

potential energy eigenvalue, both of which correspond to f(r), and so: 

 �𝑇�𝑇 ,𝐻��𝑓(𝒓) = �𝑇�𝑇 ,𝐾��𝑓(𝒓) + �𝑇�𝑇 ,𝑉��𝑓(𝒓) [3.18] 

 �𝑇�𝑇 ,𝐾��𝑓(𝒓) = 𝑇�𝑇𝐾�𝑓(𝒓) + 𝐾�𝑇�𝑇𝑓(𝒓) = 𝐸𝐾𝑇�𝑇𝑓(𝒓) − 𝐾�𝑓(𝒓 + 𝑻)

= 𝐸𝐾𝑓(𝒓 + 𝑻) − 𝐸𝐾𝑓(𝒓 + 𝑻) = 0 

[3.19] 

 �𝑇�𝑇 ,𝑉��𝑓(𝒓) = �𝑇�𝑇 ,𝑉(𝒓)�𝑓(𝒓) = 𝑇�𝑇𝑉(𝒓)𝑓(𝒓) + 𝑉(𝒓)𝑇�𝑇𝑓(𝒓)

= 𝑇�𝑇𝑉(𝒓)𝑓(𝒓) − 𝑉(𝒓)𝑓(𝒓 + 𝑻) = 𝑉(𝒓 + 𝑻)𝑓(𝒓 + 𝑻) − 𝑉(𝒓)𝑓(𝒓 + 𝑻) = 0 

[3.20] 

in which: 

 𝑉(𝒓 + 𝑻) − 𝑉(𝒓) = 0 [3.21] 

Equation [3.21] is applicable since the crystal structure is repeated with respect to the 

translation vector, T. Therefore, [3.18] through [3.20] all equal zero, and all crystal 

structures throughout the crystalline material have a common set of wavefunctions and 

eigenvalues. As a result, all computations for a crystalline material are executed by 

using only the translational vectors and atomic basis vectors of a repeated crystal 

structure. 

The Translation operator may be used on [3.9], which is expanded below as a 

plane wave basis set: 
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 𝑇�𝑇|Ψ⟩ = 𝑇�𝑇 �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌+ 𝑮) ∙ 𝒓)
𝒌+𝑮

= �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝑻)
𝒌+𝑮

= 𝑒𝑥𝑝(𝑖(𝒌) ∙ 𝑻) �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)𝑒𝑥𝑝(𝑖(𝑮) ∙ 𝑻)
𝒌+𝑮

= 𝑡𝑇 � 𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)𝑒𝑥𝑝(𝑖(𝑮) ∙ 𝑻)
𝒌+𝑮

= 𝑡𝑇�𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)𝑒𝑥𝑝(𝑖2𝜋𝑛)
𝑮

 

= 𝑡𝑇�𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)
𝑮

 

[3.22] 

In [3.22], Ck+G are the plane wave coefficients and tT is the eigenvalue of the 

Translation operator with respect to the plane wave set. It is noted that [3.22] requires 

the use of [3.5], [3.12], and [3.16]. The plane wave basis set is taken with respect to all 

possible k+G wavevectors, all of which are equivalent to all possible k; thus, k=k+G. 

Therefore, tT=exp(ik⋅T) is degenerate for all k+G. With this boundary condition, the 

associated wavefunction as a plane wave basis set can be written: 

 |Ψ𝑘⟩ = �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖(𝒌 + 𝑮) ∙ 𝒓)
𝒌+𝑮

= 𝑒𝑥𝑝(𝑖(𝒌) ∙ 𝒓)�𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖𝑮 ∙ 𝒓)
𝒌+𝑮

= 𝑢𝑘(𝒓)𝑒𝑥𝑝(𝑖(𝒌) ∙ 𝒓) 

[3.23] 

It is a product of a plane wave with a wavevector, k, and the periodic potential 

that is composed of the atomic potentials within the reciprocal lattice. The periodic 

potential, uk(r), may be written as a Fourier sum and has the property of translational 

invariance. This is illustrated using the translation vector from [3.4]: 
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 𝑢𝑘(𝒓 + 𝑻) = �𝐶𝒌+𝑮𝑒𝑥𝑝�𝑖(𝑮) ∙ (𝒓 + 𝑻)�
𝒌+𝑮

= �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖𝑮 ∙ 𝒓)
𝒌+𝑮

𝑒𝑥𝑝(𝑖𝑮 ∙ 𝑻)

= �𝐶𝒌+𝑮𝑒𝑥𝑝(𝑖𝑮 ∙ 𝒓)
𝒌+𝑮

= 𝑢𝑘(𝒓) 
[3.24] 

Equation [3.24] is a one-electron form of a Bloch function. The Bloch function for 

all electrons within a crystal structure can be written as a complete set of plane waves 

with all possible wavevectors: 

 |Ψ⟩ = �|Ψ𝑘⟩
𝑘

= �𝑢𝑘(𝒓)𝑒𝑥𝑝(𝑖𝒌 ∙ 𝒓)
𝒌

 [3.25] 

As the form of [3.25] might suggest, the complete set of one-electron Bloch 

functions represents all electrons that propagate throughout the crystal structure. The 

freedom with which all these electrons may propagate depends not only on the identity 

of the nuclei, but also the proximity of the electrons to the nuclei. 

 

3.3 Electronic Structure Theory 

 It was noted that analysis of the electronic structure of a crystal structure may be 

executed within the first Brillouin zone. This is because the first Brillouin zone exists 

within reciprocal space, which, like plane waves that describe electron wave behavior, is 

a function of the wavevector, k. Therefore, atomic orbital interactions can be observed 

within the first Brillouin zone. 

For a plane wave, the norm of the wavevector, k, is related to the wavelength, λ, 

by the following: 

 𝜆 =
2𝜋
‖𝒌‖

 [3.26] 
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Within a crystal structure, atomic orbitals interact according to the electronic 

wavefunction (Equation [3.25]). To better understand this, it is helpful to introduce such 

interactions using a one-dimensional linear chain of six atoms, all of which are 

separated by a lattice constant, a, equipped with s orbitals, and a wavefunction 

dependent upon a non-integer variable wavenumber, k, also referred to as a k-point (it 

should be noted that since this chain of atoms is one-dimensional, then the wavevector 

is actually a wavenumber). If k = 0, then, by [3.26], the wavefunction has an infinitely 

long wavelength and thus contains no nodes between the s orbitals. Therefore, 

complete in-phase bonding between these s orbitals is achieved. As the wavevector 

increases, the wavelength decreases, thus causing nodal behavior in the wavefunction. 

The wavenumber is also defined another way, which can provide a better illustration: 

 𝑘 = ±
2𝜋𝑝
𝑁𝑎

∈ −
𝜋
𝑎

< 𝑘 <
𝜋
𝑎

 [3.27] 

In [3.27], a is the lattice constant (in this example, for the linear chain of six atoms), N is 

the number of atoms in the system (in this example, N=6), and p has integer values that 

result in the given range. For the linear chain of six atoms, k has the values: 

 𝑘6−𝑐ℎ𝑎𝑖𝑛 = 0, ±
𝜋

3𝑎
, ±

2𝜋
3

, ±
𝜋
𝑎

 [3.28] 

The boundaries of the one-dimensional first Brillouin zone are between -π/a and π/a, 

beyond which translational invariance causes an environmental repetition of the first 

Brillouin zone. Energy values are associated with all six wavenumbers. Therefore, if 

these energies are plotted with respect to the varying wavenumbers in [3.28], then a 

band of energies is produced. Orbital energies within a crystal structure are commonly 

illustrated as a band that depends on the electron wavevector through the reciprocal 

lattice. 
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 The n-dimensional wavevector that has components that are all zero is called the 

gamma (Γ) point. Depending on the shape of the orbital (s, px, py, pz, etc), the energy at 

the gamma point may or may not be the lowest energy of the band. The Figure 3.3 

illustrates this condition in two dimensions. Two 3 x 3 atomic grids, all of which contain 

px and py orbitals, are illustrated in Figure 3.3; the electronic interactions throughout the 

px orbitals and py orbitals as a function of a two-dimensional wavevector can be 

examined. This example allows the use of Equation [3.28] to plot a px and py band, also 

illustrated in Figure 3.3. Each band starts at the Γ point (k = 0i + 0j). As illustrated in 

Figure 3.3, the px and py both have σ antibonding and π bonding interactions. Because 

of the antibonding interactions, the energy at the Γ point for both orbital sets is not the 

lowest energy in the band structure of Figure 3.3. The band between the Γ point and the 

X point (k = π/ai + 0j) is constructed using positive values of [3.28]. Obviously, the fine 

curvature of the band illustrated in Figure 3.3 contains more than three points and can 

thus be constructed through spectroscopy or computation through k-point sampling, a 

process that are examined in a later section. At the X point, the px orbitals have σ and π 

bonding interactions and the py orbitals have σ and π antibonding interactions; as a 

result, the px and py energies at the X point are highly split, in which the latter energy is 

much higher than the former energy. The band between the X point and the M point (k 

=π/ai + π/aj) may also be constructed using positive values of [3.28]. At the M point, the 

px and py orbitals have σ bonding and π antibonding interactions; as a result, the px and 

py energies at the X point are degenerate, which results low energies along both bands. 

Finally, the band between the M point and the Γ point causes a rise in band energies, 

back to the initial condition. 
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 Another useful resource for understanding three-dimensional electronic structures 

is called the density of states (DOS). An example of this is the right portion of Figure 3.4, 

which is the DOS of ReO3 (it is conventional to show the DOS alongside the band 

structure to show the relationship between both figures). The DOS is useful in plotting 

the total number of states, which is the sum of degenerate energy points (which may be 

a function of different wavevectors) from the band structure. Further, the Fermi energy 

(EF) through the Band Structure and DOS, Figure 3.4, illustrates the energy separation 

of the occupied states (shaded DOS) and unoccupied states (unshaded DOS). Because 

a band gap does not exist at EF, electrons may be promoted to excited states with little 

change in energy. States below EF are called the valence states and states above EF 

are called conduction states (similarly, bands below EF are called the valence bands 

and above the Fermi energy are called conduction bands). In Figure 3.4, the band 

structure of ReO3 has an EF that crosses the lower portion of the Re 5d bands. With 

little change in energy (by photo or thermal excitation), electrons may be promoted to 

the conduction bands, allowing electrons to conduct throughout the material. Materials 

that exhibit this facile excitation are called metals; this is illustrated in Figure 3.7c. If the 

DOS and band structure for a given material have a band gap through which the Fermi 

energy crosses, then the material is a semiconductor or an insulator. The difference 

between the types of materials depends on the energy width of the band gap, which 

directly affects the required energy to excite electrons into the conduction bands. The 

formal definition for band gap width varies throughout solid-state texts, all of which 

classify semiconductors as having maximum band gap widths no more than 2.00 to 

3.00 eV. Materials having band gaps widths beyond this range are called insulators, as 
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shown in Figure 3.7a. Finally, a material lacking a band gap, but having one or more of 

the highest energy valence bands being higher in energy than the one or more of the 

lowest conduction bands in various regions of reciprocal space is called a semimetal; 

this is illustrated in Figure 3.7b. Conduction may be initiated with a change in the 

wavevector or a lattice vibration; as a result, conduction of electrons can theoretically 

occur at 0 K. Semimetals have conduction properties between those of a metal and 

semiconductor. Typical semimetals include crystalline metalloids, such as Sn, As, Sb, 

and Bi, and HgTe. 

 

3.4 Chemical Bonding  

The electronic structure of various crystal structures may be formed through 

three main types of chemical bonding: ionic, covalent, and metallic. All three bonding 

mechanisms are briefly explored in this section. Ionic bonding involving atoms from the 

far left and far right of the periodic table within a solid produce a DOS that is composed 

of valence states from the anions and conduction states from the cations (Figure 3.8 

illustrates the bonding mechanism of NaCl as an example), thus the latter are higher in 

energy than the former. This is different in comparison to the gas phase illustration, 

which shows that the anions are higher in energy than the cations. A Madelung potential 

in the solid phase causes this difference, which is the electrostatic charge that ions 

experience as a result of being surrounded by other ions of opposite charge. Such an 

arrangement results in a periodicity, ... CACACACA ..., of cations (C) and anions (A), in 

three dimensions. The Madelung potential is a function of the Madelung constant, which 

takes into account not only the Coulombic charge from nearest-neighbor cations and 

anions, but also form long-range cationic and anionic Coulombic charge. This effect 
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produces a wide band gap compared to that between the same ions in the gas phase. 

In addition, polarization energy takes into account the movement of an electron through 

the solid and causes the wide band gap to decrease somewhat. Finally, the overlap of 

orbitals from nearest-neighboring ions results in a broadening of valence states into a 

band of anionic states (observed in a DOS) and a broadening of conduction states into 

a band of cationic states. This results in a large decrease in the band gap, but most 

ionic solids are insulators and thus may easily have band gaps larger than 3.00 eV. The 

bandwidths, which are the range of energies that conduction or valence states span, 

depend on the orbital character of the cations and anions, respectively.  

Conduction electrons in cations, from the first, second, or third column of the 

periodic table, experience a much lower effective nuclear charge than valence electrons 

in anions from the far right of the periodic table. As a result, orbitals of cations are more 

diffuse than those of anion and participate more in orbital overlap. Thus, it is expected 

that conduction bandwidths are much larger than valence bandwidths. The mechanism 

of chemical bonding between atoms in Groups 4, 5, and 6 of the periodic table is quite 

different than the bonding of ionic solids because these atoms have similar energies. 

Thus, covalent bonding is the primary bonding mechanism. These atoms have electrons 

that experience effective nuclear charges midway between those experienced by 

electrons in atoms from the far left or right of the periodic table. 

The orbital character of Groups 4, 5, and 6 are proportionally midway as well. 

The differences in the bonding character of covalent solids may be observed by 

comparing elements down the periodic table: p orbital diffusivity decreases, due 1) to 

the presence of nodes, as the principle quantum number increases, and 2) due to 
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relativistic effects experienced by the valence electrons for atoms beginning in the third 

row of the periodic table. Consequently, orbital overlap in covalent solids decreases 

going down the periodic table, causing a proportional decrease in the width of the band 

gap. Figure 3.9 shows this behavior for Group 4 tetrahedral solids. This trend has been 

observed in homogeneous covalent solids, such as C (diamond), Si, Ge, and Sn, and in 

heterogeneous covalent solids, such as BN, AlP, GaAs, and InSb. These structures are 

four coordinate structures due to the covalent bonding. 

Simple metals are formed with atoms from Groups 1 - 3 of the periodic table. 

Such atoms are electron deficient, compared to atoms in Group 4 - 8, and unable to 

attain stable bonding. Close packed structures are, therefore, formed in simple metals, 

in which high coordination numbers, around six, yield structural stability. Also, Groups 1 

- 3 atoms contain diffuse orbitals, which allow for large orbital overlap, yielding the 

formation of a large band, which is a continuum of states that could be seen in a DOS 

plot and lacking a band gap. Further, the large diffusivity results in a band in which the 

valence electrons are only marginally affected by nuclear charge, allowing for facile 

conduction of electrons near the valence states with minimal excitation: this model is 

called the “nearly free-electron model.” This model cannot apply to transition metals 

because the d orbitals are more contracted, due to relativistic effects and higher 

effective nuclear charges. Consequently, the bandwidth associated with d orbital 

overlap is much smaller than the bandwidth associated with s orbital overlap. 
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3.5 K-point Sampling 

A large number of atoms in three dimensions are required for the formation of a 

macroscopic material. For approximately one mole of a monoatomic crystal, the number 

of atoms, N, along each dimension, x, y, and z, is equivalent to the following: 

 𝑁𝑥𝑁𝑦𝑁𝑧 = 1𝑥1023atoms [3.29] 

To obtain band energies, including the Fermi energy and the free energy of a crystal 

lattice, using a plane wave basis set, a set of k-points within the first Brillouin zone must 

be chosen. The first Brillouin zone contains an extremely large number of k-points. This 

may be illustrated by rewriting [3.27] for each coordinate axis: 

 𝑘𝑖 = ±
2𝜋𝑝𝑖
𝑁𝑖𝑎

∈ −
𝜋
𝑎

< 𝑘𝑖 <
𝜋
𝑎

 for 𝑖 = 𝑥, 𝑦, 𝑧 [3.30] 

Since N along each coordinate axis is large, then the number of integers, p, required for 

all k-points is likely to be large as well. Therefore, it is more computationally convenient 

to sample the first Brillouin zone by inputting a number of points along each component 

axis. For example, if an 8 x 8 x 8 k-point grid is used, then the number of k-points in the 

first Brillouin zone, which would be used to calculate all necessary energies is 8 x 8 x 8 

= 83 = 512 k-points. Depending on the trial structure, the trial basis vectors (the number 

and types of atoms) and the trial lattice constants, choosing a k-point grid that produces 

the desired computational accuracy within acceptable computational cost requires trial-

and-error. 

 Since the energy of the crystal lattice is a function of the electron density within the 

first Brillouin zone, then the electron density over the filled bands must be integrated as 

a function of the k-points:49 
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𝐸 =

1
Ω𝐹𝐵𝑍

�� 𝜀𝑛𝒌Θ(𝜀𝑛𝒌 − 𝐸𝐹)
Ω𝐹𝐵𝑍

𝑑𝒌
𝑛

 [3.31] 

In [3.31], n specifies the electrons, εnk specifies the band energies, ΩFBZ is the reciprocal 

volume of the first Brillouin zone, EF is the Fermi energy, and Θ is the Dirac step 

function, which yields Θ=1 when εnk < EF and Θ=0 when εnk > EF. Since a limited 

number of k-points is used, then the integral in [3.31] becomes a discrete sum: 

 𝐸 =
1

Ω𝐹𝐵𝑍
��𝜀𝑛𝒌Θ(𝜀𝑛𝒌 − 𝐸𝐹)

𝒌𝑛

 [3.32] 

Convergence of the electronic energy may become slow since Θ transforms from 1 to 0 

as the Fermi energy is crossed. Therefore, smoother functions should substitute Θ for 

computational efficiency and produce partial electron occupancies near the Fermi 

energy, thus causing electron smearing. 

 The Fermi-Dirac function can be used to provide smooth electron smearing: 

 
𝑆(𝐸) = �exp �

𝐸 − 𝐸𝐹
𝑘𝑏𝑇

� + 1�
−1

 [3.33] 

In [1.35], kb is Boltzmann’s constant, T is the temperature in K, and S(E) can be used to 

describe electron occupation as a function of energy. An undefined electron occupancy, 

however, results when computations are performed at 0 K; therefore, a value of T near 

0 K must be specified. Methfessel and Paxton50 observed a limitation to electron 

smearing via the Fermi-Dirac function. Figure 3.10 illustrates the available DOS, g(ε), of 

a chemical system and the electron smearing of the DOS by the Fermi-Dirac function, 

g(ε)S0(ε-EF), which accounts for DOS that are occupied by electrons. 

The lined area to the left of EF are unoccupied DOS and the lined area to the right of EF 

are DOS that are occupied by electrons. Given these electrons were energetically 
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promoted from the left lined area to the right lined area, both lined areas should be 

equal. However, it is apparent in Figure 3.8 that both lined areas are not equal. 

Therefore, the Fermi-Dirac function does not accurately model electron occupation 

around the Fermi energy for metals, which unlike insulators and semiconductors, lack 

band gaps; semiconductors and insulators have zero charge density. Thus, Methfessel 

and Paxton formulated another electron smearing model:50 

 
𝑆(𝐸) =

1
2
�1 − 𝑒𝑟𝑓(𝑥)� + �

(−1)𝑛

𝑛! 4𝑛√𝜋
𝐻2𝑛−1(𝑥)𝑒𝑥𝑝(−𝑥2)

𝑁

𝑛=1

 [3.34] 

In Equation [3.34], erf(x) is the error function and H2n-1(x) is a Hermite polynomial of 

degree 2n-1. 

 

3.6 Pseudopotentials 

For an atom within a crystal lattice, the region may be divided into two parts: the 

core region, which contains the core electrons and atomic charge, and the valence 

region, which contains the valence electrons that may conduct through the material 

upon excitation. In the core region, use of a plane wave basis set to model the all-

electron wavefunction, which describes the charge density in the core states, would be 

computationally expensive. This is because the core wave character exhibits strong 

oscillations requiring numerous plane waves to be equivalent to an atomic wavefunction. 

On the other hand, the valence states contain a much lower charge density, thus 

resulting in smoother wave character. However, since valence and conduction electrons 

dominate the electronic structure of crystals and the core electrons remain essentially 

unperturbed, then approximating the core potential and wavefunction may reduce 

computational expense: 
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 𝑉𝑃𝑆 = 𝑉𝑡𝑟𝑢𝑒 −�(𝐸𝑡𝑟𝑢𝑒 − 𝐸𝑐)|𝑐⟩
𝑐

⟨𝑐| [3.35] 

Equation [3.35] is a pseudopotential formed by the difference between the true potential 

and the valence energy projected on the core states. The pseudopotential is smooth 

and may converge toward the nucleus. The corresponding pseudowavefunction, also 

referred as an auxiliary wavefunction, approximates the behavior of all-electron 

wavefunctions, but the former lack strong oscillatory wave character of the latter. 
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Figure 3.1: Seven crystal lattices types (horizontal) of fourteen different crystal 
structures (simple, body centered, face centered, and end centered). Figure is taken 
from Ref [51]. 
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Figure 3.2:  Top-left: Square lattice in real space with lattice vectors a1 and a2. Bottom-
right: Construction of the first Brillouin zone (shaded) with Bragg planes. Figure is taken 
from Ref. [52] 
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Figure 3.3: Band structure corresponding to px and py orbital interactions. Figure is 
taken from Ref. [45] 
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Figure 3.4: Band structure (left) and DOS (right) of ReO5. Figure is taken from Ref. [45].  
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Figure 3.5: The first Brillouin zone and corresponding wavevectors of a simple cubic 
lattice. Figure is taken from Ref. [53].  
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Figure 3.6: The first Brillouin zone and corresponding wavevectors of a simple 
orthorhombic lattice. Figure is taken from Ref. [53].  
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Figure 3.7: Band structures of (a) an insulator or semiconductor, (b) a semimetal, and 
(c) a metal. Illustration (a) is has electron occupancy (shading) that is below the band 
gap and Fermi energy at the lowest edge of the band gap. Illustrations (b) and (c) show 
a semimetal and metal, respectively, with regard to electron occupancy (shading). 
Although (c) has a band gap, the Fermi energy lies higher in energy than the band gap. 
Figure is taken from Ref. [54]. 
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Figure 3.8: Construction of the valence and conduction band energies of NaCl; (a) the 
free ions, (b) Madelung Potential, (c) electrostatic polarization from electron transfer 
through the solid, and (d) orbital overlap of nearest-neighboring ions. Figure is taken 
from Ref. [45].  
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Figure 3.9: Energy bands as a function of the bonding interaction in Group 4 tetrahedral 
solids. Figure is taken from Ref. [45]. 
 
 
 

 

 

 

Figure 3.10: The DOS, g(ε), and that multiplied by Fermi-Dirac function, g(ε)S0(ε-EF), 
that represents DOS that are occupied by electrons. DOS to the left and right of EF are 
occupied and unoccupied by electrons, respectively. Further, the lined area to the left of 
EF are unoccupied DOS and the lined are to the right are occupied DOS. Figure is taken 
from Ref. [50].  
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CHAPTER 4 

FIRST PRINCPLE STUDY OF STRUCTURE AND STABILITY OF NICKEL CARBIDES 

4.1 Introduction 

 The interaction between nickel and carbon has received increased attention in 

recent years due to applications in carbon nanotube growth. In part, this interest has 

been driven by the desire to understand the growth mechanisms of carbon nanotubes 

(CNTs) and carbon nanofibers (CNFs) on Ni nanocatalysts.55-60 The chemical and 

physical properties of carbides of late 3d metals have also garnered considerable 

attention. For example, iron–carbon compounds have been well studied due to their role 

in steel formation.61,62 A number of studies of hemicarbides of iron (Fe2C) and cobalt 

(Co2C) have been reported.61,63-66 

 Among many possible stoichiometries, NiC, Ni2C and Ni3C are the three most 

prominent nickel carbides. Ni3C has received much attention due to controversy about 

its structural characterization, which was deduced to be hexagonal.64,67-71 However, 

structural analysis of this carbide was clouded for quite some time due to the similarity 

of its lattice constants and diffraction patterns to hexagonal close-packed (hcp) Ni. 

However, formation of hexagonal Ni3C was confirmed later.72 To the authors’ knowledge, 

there is no experimental crystal structure for NiC published in the literature. Paduani73 

has published a study of crystalline NiC (rocksalt, B1 structure) along with FeC and CoC 

using full-potential linearized augmented-plane wave (FP-LAPW) methods in 

conjunction with the generalized gradient approximation (GGA) density functional theory 

(DFT). A lattice constant of NiC (a = 3.89 Å) and bulk modulus (B) of 367 GPA were 

computed. Note that an earlier linear muffin-tin orbital (LMTO) study by Haglund et al. 
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estimated a lattice constant of 3.98 Å for NiC.74,75 Cheng-Bin et al., using Gaussian-

based periodic DFT methods, calculated a lattice constant of 3.99 Å and B = 311 GPa 

using the Vinet equation of state for NiC (rocksalt).76 A similar lattice constant to that of 

Cheng- Bin et al. was reported by Zhang et al. using Gaussian-based periodic DFT 

computations.77 

 To the authors’ knowledge, there were no experimental studies reported in the 

literature for Ni2C. In a recent experimental study by Banerjee and co-workers,78 the 

mixing of Ni and CNTs to make functionally graded materials was interpreted via high 

resolution tunneling electron microscopy (HRTEM) to lead to the formation of a 

hexagonal crystalline material with lattice constants, a ~ 2.6 Å and c ~ 4.3 Å. Analysis of 

the elemental composition via 3D atom probe experiments suggested a Ni-carbide with 

a stoichiometry between that of Ni2C and Ni3C. However, no definitive conclusions could 

be drawn from this experiment. Few computational studies have been performed on this 

material. For example, an earlier study by Guillermet and Grimvall79 estimated an 

enthalpy of formation of +13 ± 5 kJ mol−1 for Ni2C. 

Nickel is the primary component of most aerospace superalloys and, therefore, is 

an attractive target for fabrication of ultra-strength materials with CNTs and other alloys 

and composites. Therefore, a systematic theoretical investigation of the nickel carbides  

warrants attention. A first principles study of Ni-carbides was reported with an emphasis 

on Ni2C structures. Plausible structures were explored and the properties compared to 

previous research on other Ni-carbide stoichiometries (NiC and Ni3C). Implications for 

the bonding in late 3d metal carbides were also discussed. 
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4.2 Computational methods 

 All computations were performed using density functional theory (DFT). They were 

performed with the Vienna Ab initio simulation package (VASP, version 4.6),80-83 

implementing the projector augmented wave (PAW) method.84 Exchange-correlation 

was treated using the generalized gradient approximation (GGA), as parameterized by 

the Perdew–Burke–Ernzerhof (PBE) functional.35,36 The PAW potentials correspond to 

3d8 4s2 and 2s2 2p2 valence electron configurations of nickel and carbon, respectively. 

We use a k-points mesh of 8 × 8 × 8 for the most stable crystal structures. The energy 

cutoff was set to 650 eV. Optimizations were done by simultaneous relaxation of the 

ions within the unit cell and the lattice constants. Magnetic effects were assessed by 

performing spin polarized computations. Non spin-polarized methods were used 

throughout this manuscript for the carbides as no difference is found between spin 

polarized and spin non-polarized geometry optimizations. Besides different nickel 

carbides, computations were also performed on fcc-Ni and C (diamond) to calculate the 

formation energies of the carbides. 

 We focused on the diamond allotrope of carbon for energy.85 For the cubic unit cell 

(Fd3�m) of diamond calculation (15 × 15 × 15, ENCUT = 650 eV) yields an optimized a = 

3.57 Å, identical to the value reported by Wyckoff.86 

 Crystallographic analyses of fcc-Ni (a = 3.52 Å) have been reported as far back as 

1917.87 An a = 3.52 Å (15×15×15 mesh, ENCUT = 650 eV) is obtained, identical to 

experiment. Similar optimized lattice constants (a < 0.01 Å, E < 0.01 eV) were obtained 

with spin polarized and non spin-polarized simulations. We have also calculated the 

structure of metastable hcp-Ni using the same computational scheme as for fcc-Ni. The 
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calculated lattice parameters of a = 2.49 Å  and c = 4.09 Å, using spin-polarized 

methods, are commensurate with experiment.88-90 The computations indicate hcp-Ni > 

fcc-Ni by 0.02 eV atom−1. 

The heat of formation of each carbide phase, with formula NixCy , is calculated 

using: 

 Δ𝐻𝑓 ≈ Δ𝐸𝑓 = 𝐸𝑡𝑜𝑡�𝑁𝑖𝑥𝐶𝑦� − 𝑥𝐸𝑡𝑜𝑡(𝑓𝑐𝑐 − Ni) − 𝑦𝐸𝑡𝑜𝑡(𝑑𝑖𝑎𝑚𝑜𝑛𝑑) − 0.025 𝑒𝑉 [4.1] 

For this study, H is approximated as E because  the pV term is extremely small 

for relaxed solid structures at ambient pressure. The calorimetrically determined 

enthalpy difference, 0.025 eV, between diamond and graphite is added in the above 

equation. Note that in [4.1], the total energy corresponding to a ferromagnetic solution of 

fcc- nickel is used. Diamond is used as the reference structure because conventional 

local or semi-local functionals are found to give unreasonable results for van der Waals 

type interactions in the graphite structure. Thermal and entropic corrections were not 

incorporated in these computations. It is also noted that the absence of phonon 

computations might include a few structures that are not minima. Preliminary 

computations of elastic constants suggest that the lowest energy orthorhombic Ni2C 

satisfies the conditions of mechanical stability. 

 

4.3 Results and discussion 

4.3.1 Structures 

4.3.1.1 NiC 

A rocksalt (B1) structure is assumed for NiC as in previous studies. A lattice 

constant of 4.077 Å is calculated. This value is comparable to previously reported 
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simulations: 4.193 Å (Zhang et al.; Gaussian-based periodic DFT77), 3.894 Å (Paduani, 

FP-LAPW/GGA73), and 4.08 A ̊ (Xiao et al., GGA-DFT60). 

 

4.3.1.2 Ni2C 

A comprehensive structural search is performed using twenty eight (28) distinct 

structures. Table 4.1 summarizes the optimized lattice parameters and relative energies 

of all calculated Ni2C structures. Six distinct structures within the orthorhombic family 

were analyzed. Space group #58 (Pnnm) has been established by crystallography91,92 for 

the related hemicarbides, Fe2C and Co2C. Hence, it is reasonable that this is a stable 

geometry for the Ni congener. Several other transition metal hemicarbides crystallize in 

space group #60 (Pbcn), namely V2C, Mo2C and W2C. The Pnnm and Pbcn structures, 

Figure 4.1, are essentially degenerate with each other at the level of theory employed 

here, as well as Pa3� (trigonal, space group #162, β-V2N prototype) and P42/mnm 

(tetragonal, space group #136, rutile prototype) Ni2C structures. Inspection of the unit 

cell lattice constants, Table 4.1, shows structural similarity between the P42/mnm and Pbcn 

polymorphs of Ni2C, the latter being slightly less symmetric, as expected from the lower 

crystal symmetry. Not surprisingly, Ni-C and Ni-Ni distances within the unit cell are 

similar for these two structures. Optimized lattice constants for Pnnm Ni2C are a = 4.72 Å, 

b = 4.17 Å, c = 2.92 Å ; α = β = γ = 90o. Optimized lattice constants for Pbcn Ni2C are a = 

4.19 Å, b = 5.51 Å, c = 4.94 Å; α = β = γ = 90o.The Pnnm and Pbcn structures are 

essentially degenerate, utilizing the computational methods employed in this research. 
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4.3.1.3 Ni3C 

This stoichiometry has been well studied within the Ni-C system.63,71,72,93-97 To 

the authors’ knowledge, two polymorphs have been proposed for Ni3C: orthorhombic 

(cementite) and hexagonal/rhombohedral (bainite) structures. Our survey of A3B 

structures predicts the cementite and hexagonal structures as the most stable 

structures for Ni3C. For the cementite structure, the optimized lattice parameters are 

found to be a = 4.95 Å, b = 6.79 Å, and c = 4.47 Å, which are nearly identical to those 

calculated by Shein et al.: a = 4.97 Å, b = 6.81 Å, and c = 4.47 Å.98 Optimized lattice 

constants are a = √3ah = 4.59 Å, c = 3ch = 13.02 Å for the hexagonal super-lattice. 

These correspond to ah = 2.65 Å, ch = 4.34 Å for the unit cell, and are thus in very good 

agreement with Electron Diffraction and X-ray Diffraction results.69-71 The present 

computations predict that the cementite structure is 0.14 eV/formula-unit. higher in 

energy than the bainite structure. 

 

4.3.1.4 Ni2C Defects 

 The Pnnm Ni2C stoichiometry is subject to defect computations in which each Ni 

and C atom in the unit cell, see Figure 4.1a, is individually removed and the resulting 

crystal structure is relaxed to a ground state. Removal of each Ni atom from Pnnm 

Ni2C—yielding Ni3C2 stoichiometry— followed by geometry optimization results in an 

orthorhombic lattice (Figure 4.2a) and an electronic energy per formula unit of −16.11 

eV. Removal of each C from Pnnm Ni2C— yielding Ni4C stoichiometry—followed by 

geometry optimization also results in an orthorhombic lattice (Figure 4.2b) and an 

electronic energy per formula unit of −15.43 eV. No magnetic ordering is observed in 
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the defect carbide structures. 

The geometry optimization of the Ni3C2 stoichiometry in Figure 4.2b results in a 

sawhorse configuration of Ni atoms surrounding a central C. The nearest Ni–Ni and Ni– 

C distances are 2.60 Å and 1.84 Å , respectively, which are a slight increase in Ni–Ni 

and a decrease in Ni–C distances compared to Pnnm Ni2C. The Ni7C4 stoichiometry 

results in cell that contains an octahedral configuration along with a ‘rectangular’ 

pyramidal configuration of atoms, both of which have a central C atom that is 

surrounded by Ni atoms. The octahedral configuration is slightly distorted, thus resulting 

in nearest Ni-Ni distances within the range of 2.49–2.91  and Ni–C distances of 1.91–

1.94 Å. Also, the rectangular pyramidal configuration results in Ni–Ni distances within 

the range of 2.41–2.91 Å and Ni–C distances within the range of 1.89–1.93 Å. The 

optimization of the Ni4C stoichiometry in Figure 4.2b results in an octahedral 

configuration of Ni atoms surrounding a lattice vacancy, in which a C would exist for 

Ni2C. The nearest Ni–Ni and Ni–C distances are 2.53–2.55 Å and 1.83–1.85 Å, 

respectively. This marks a subtle change in Ni-Ni distances and a decrease in Ni-C 

distances compared to the Ni2C. 

 

4.3.2 Thermodynamics 

 The formation energies are determined for three Ni-carbide stoichiometries using 

the most stable structures identified for each—NiC (Fm3�m), Ni2C (Pnnm) and Ni3C 

(P6322). Given the difficulties in modeling graphite with DFT methods, the diamond form 

of C is used as the standard and then corrected for the experimental energy difference 

between diamond and graphite (see section 4.2).62 Note that phonon computations are 

66 



 
 

not performed to incorporate enthalpic and entropic corrections. The calculated 

energetic data are graphically presented in Figure 4.3. To gain more insight into the 

stability of these Ni-carbides, the formation energies of defect Ni- carbides, specifically 

Ni3C2, Ni4C, and Ni7C4, were calculated and included in Figure 4.3. As illustrated, the 

formation energy of Ni4C is between those of Ni2C and Ni3C, each of which has 66% 

(atom %) or more Ni. Alternatively, NiC, Ni3C2, and Ni7C4 have much higher formation 

energies than Ni3C2, Ni4C,  and Ni7C4, possibly due to the increased concentration of C. 

 Several points are found to be interesting in Figure 4.3. First, NiC is by far less 

stable than Ni3C and Ni2C, with a formation energy of +48.6 kcal mol−1. Second, the 

calculated formation energies for Ni3C are in reasonable agreement with experimental 

estimates.79,98 Third and most interestingly, the Ni2C stoichiometry is only 1.5 kcal mol−1 

(0.1 eV) less stable than the Ni3C carbide. Hence, while most previous computational 

and experimental studies of Ni-carbides have focused on NiC and Ni3C stoichiometries, 

the present computations suggest a metastable hemicarbide stoichiometry is also 

plausible. This would bring Ni more in line with its Fe and Co neighbors both of which 

form M2C and M3C stoichiometries. Finally, it is speculated that such metastable, more 

C rich species such as Ni2C may explain the enhanced supersaturation of C in Ni seen 

in splat quenching99 and related experiments.67,68 These results indicate that 

stoichiometric nickel carbides Ni3C as well as Ni2C may exist in solid state environments 

such as composites. 

Table 4.2 lists the calculated formation energies of Co2C, Fe2C, and Ni2C at 

identical levels of theory. It should be noted that the formation energy of Ni2C is within 

±4.0 kcal mol−1 of those for Co2C and Fe2C. Ni2C is calculated to be more stable than 
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Fe2C, but marginally (by 3.4 kcal mol−1) less stable than Co2C. Given that the latter two 

species have been experimentally characterized,91,92 it may be possible to observe Pnnm 

Ni2C as well using the calculated lattice parameters in Table 4.1 as a guide. 

 

4.3.3 Electronic Properties 

 To elucidate the electronic structure of NiC, Ni2C and Ni3C, the band structures of 

these materials are calculated at their most stable geometry. As can be seen in Figure 

4.4, NiC and Ni2C show a semimetallic behavior and Ni3C shows metallic behavior. As 

shown in the Ni2C band structure, Figure 4.4, the highest valence band (dotted line) 

rises above the Fermi level (dark horizontal line, Figure 4.4) between the Y and Γ points 

and between the Z and Γ points. As shown by the two dashed lines, the lowest 

conduction bands fall below the Fermi energy at the Z point. Visual inspection of the 

band structures shows a greater similarity for NiC → diamond and Ni2C → Ni3C, and a 

greater disparity between the former and latter pair. 

The band structures of Ni3C2, Ni7C4, and Ni4C (Figures 4.5a through 4.5c) were 

calculated and can be compared to that of Ni2C (Figure 4.4b). All defect structures 

maintain the semimetallic behavior around the Fermi level (0.00 eV), as illustrated by 

the dashed bands. However, this semimetallic behavior is less prevalent in Ni3C2, 

increases with Ni7C4, and is even more in Ni4C. In fact, in the Ni3C2 band structure, a 

gap appears to form around the Fermi energy between the dashed bands, except where 

they converge (between the T and Y points, at the Γ point, and between the X and U 

points). This is consistent with an increased covalent character in Ni3C2 with respect to 

Ni2C. Conversely, the band structure of Ni4C illustrates the most metallic character of 
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the defect carbides because the apparent gap between the dashed bands is the 

smallest and the highest dashed band copiously overlaps the Fermi level, as compared 

to the band structures of Ni2C and Ni2C3, Figure 4.5. Therefore, analysis of the band 

structures for the various Ni-carbide stoichiometries shows a systematic progression 

from metallic to semimetallic to covalent behavior as the carbon concentration increases. 

 

4.4 Conclusions 

 A first principles study of Ni-carbides is presented here. Several significant 

conclusions have resulted from the simulations, the most important of which are 

summarized here. Given a disparity of computational and experimental results in the 

literature, as well as the different methods used in previous theoretical studies, the 

present research illustrates for the first time a consistent set of simulations for an entire 

range of NiC compositions at a single level of theory: C (diamond), NiC (rocksalt), Ni2C 

and Ni3C and Ni (fcc and hcp). Our computations indicate that orthorhombic (cementite-

like) and hexagonal (bainite-like) structures are the two most stable forms of Ni3C. The 

hexagonal structure is calculated to be more stable than the orthorhombic structure 

using the methods employed in this research. 

 The stoichiometry Ni2C is calculated to be much more stable and marginally less 

stable, respectively, than the well-studied NiC and Ni3C. Moreover, its calculated 

formation energy is commensurate with known hemicarbides, Fe2C and Co2C. 

Improvements to the computational scheme are needed for more accurate 

thermodynamics of Ni2C phases. For example, calculation of the phonon modes would 

be of interest to calculate thermodynamics at finite temperatures. Although none of the 
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low energy Ni2C phases have lattice constants similar to those measured by HRTEM by 

Banerjee and co- workers,78 our thermodynamic data clearly indicates that 

stoichiometric nickel carbides such as Ni3C and Ni2C have a high possibility of formation 

as a metastable phase in favorable solid state environments such as composites. 

 Although we have considered the Ni-carbide structures based on prototypes from 

well-known databases, it is possible that other structures exist outside those considered 

here. A de novo structural search may help locate such structures. Due to the 

importance of these materials, we believe that future work on metal carbides utilizing 

genetic algorithm or random structural search methods would be an important 

undertaking. 

The combination of structural and energetic data, combined with band structure 

analyses, paint an interesting picture of Ni-carbides as one traverses toward more 

carbon rich stoichiometries. Calculated properties show a marked divergence upon 

going from Ni2C to NiC and a similarity from Ni to Ni3C  to Ni2C. For example, the 

calculated band structures of the stable forms of Ni2C and Ni3C display semimetallic 

behavior, and a discrete separation between C 2s and C 2p states, unlike the band 

structure for NiC. Also, a systematic progression from metallic to semimetallic to 

covalent behavior is observed for the defect carbides Ni4C to Ni7C4, to Ni3C2. 

Additionally, the Ni-Ni distances in the low energy metastable Ni2C and Ni3C phases are 

not far from Ni-Ni distances in metallic Ni. In conjunction with this, Ni-C nearest 

distances correspond to single bond lengths. On the other hand, upon going from Ni2C 

to NiC, one sees a marked increase in both Ni-Ni and Ni-C distances beyond typical 

covalent norms. Hence, metallic Ni-Ni bonding within the lattice is maintained for both 
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Ni2C and Ni3C (albeit reduced versus the metal), with concomitant stabilization from Ni-

C bonding, keeping the formation energies of these stoichiometries only slightly positive. 

The closeness in energy of  the various forms of Ni3C and Ni2C, combined with the 

diversity of structures they can energetically access, is consistent with the rapid 

diffusion of C through Ni that has been evidenced by several researchers100 and which 

has been proposed to be significant to the formation of carbon nanotubes and carbon 

nanofibers. 
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Table 4.1: Computed Ni2C structures; lattice constants are in Å; volumes per formula 
unit, V(f.u.), are in Å3; energy per f.u., E(f.u.), are in eV, Z is the number of f.u. in the 
unit cell. The structures with the lowest energy are italicized.  
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Table 4.2: Formation energies of late 3d binary transition metal carbide M2C (M = Fe, 
Co, and Ni). The above uses diamond as the C reference state and are thus corrected 
for the experimental free energy difference between diamond and graphite. 

 

 

 

Figure 4.1: Illustrations of computed structures (single unit cell shown) for (a) Pnnm and 
(b) Pbcn orthorhombic forms of Ni2C. Ni = blue; C = gray. 

 

 

Figure 4.2: Illustrations of computed structures (single unit cells) for defect carbides: (a) 
Ni4C, (b) Ni3C2, and (c) Ni7C4 
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Figure 4.3: Formation energies of Ni-carbides (kcal mol−1); computed with respect to 
diamond as the C reference state and corrected for the experimental free energy 
difference between diamond and graphite. 
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Figure 4.4: Band structure of (a) NiC (rocksalt, B1), (b) Ni2C (orthorhombic, Pnnm), and 
(c) Ni3C (hexagonal). 
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Figure 4.5: Band structures of (a) Ni3C2, (b) Ni7C4, and (c) Ni4C. All are in orthorhombic 
symmetry. 
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CHAPTER 5 

BENCHMARKS OF CORRELATION CONSISTENT BASIS SETS OPTIMIZED  

FOR DENSITY FUNCTIONAL THEORY 

5.1 Introduction 

Density functional theory (DFT)101-103 is a widely used computational method 

known for providing molecular property prediction without the computational cost 

common to post-Hartree-Fock methods.102 A major problem with DFT is that the exact 

energy functional is not known, and, because of this, many approximate exchange, 

correlation, and kinetic energy functionals have been developed. A resulting challenge, 

therefore, is the selection of an appropriate density functional for computing properties 

of interest. While numerous studies have enabled a much greater understanding of 

functional performance for specific properties and classes of molecules -- this 

knowledge has helped to enable a hierarchy of functionals to emerge -- the hierarchy is 

not yet as established as that which has evolved for ab initio correlated methods. This is 

unsurprising, as the explosion of the use of density functional theory in chemistry is 

much younger than for ab initio correlated methods, functional development is 

progressing at a rapid rate, and, as of yet, an a priori method as to how well a density 

functional might perform for a given chemical property is not firmly established. 

Additionally, unlike ab initio methods, it is not always clear how to systematically 

improve a density functional, though, indeed, significant developments continue to be 

made. 

Kohn-Sham (KS) DFT104,105 circumvents the lack of an exact kinetic energy 

functional by assuming an independent particle model, similar to that of Hartree-Fock 
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theory, computing the kinetic energy using orbitals instead of exclusively using the 

electron density. It is because of the introduction of orbitals that the need for a one-

particle basis set arises in KS-DFT. Basis sets can offer a way of gauging the intrinsic 

accuracy of a given method. For example, the unique architecture of the correlation 

consistent polarized valence basis sets, denoted ‘cc-pVnZ’ (n is the ζ-level of the set, 

e.g. n = D is double-ζ, n = T is triple-ζ, etc.), results in monotonic convergence of 

energetic properties (e.g. enthalpies of formation, binding energies) with respect to the 

increase in the ζ-level for a given ab initio method.106-110 The convergent behavior 

enables the complete basis set (CBS) limit – the limit at which no further improvements 

in the basis set affect the energy -- to be ascertained. Knowledge of the CBS limit 

provides a gauge for how well an ab initio method performs (i.e. relative to experiment) 

independent of the basis set, as the error arising from basis set incompleteness is 

effectively eliminated, and only the intrinsic error in the method remains. This approach 

has helped to develop a hierarchy of performance for ab initio methods. However, the 

question arises as to whether or not the use of a systematic series of basis sets is 

portable to KS-DFT, and if it is, it would provide a means of  assessing the intrinsic 

accuracy of a given density functional. 

Wang and Wilson111-115 and Prascher et al.116-118 have examined the behavior of 

KS energies computed with the cc-pVnZ basis sets using several density functionals. It 

was demonstrated that monotonic behavior in the energy is not always observed with 

respect to increasing basis set size, and should not necessarily be expected, as the 

basis sets were not optimized for KS-DFT, but rather for ab initio methods. Further, 

when the contractions of the cc-pVnZ basis sets were revisited by Prascher and 
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Wilson,117 it was shown that recontraction did not remedy the non-monotonic behavior 

in molecular energetics, specifically for the atomization energies. Therefore, in this 

paper the next logical step is considered: explicit reoptimization of the primitive basis 

functions in the cc-pVnZ basis sets with respect to specific density functionals. 

Optimization of basis sets for specific density functionals is not a common 

practice; the recontraction scheme just discussed is one form of basis set optimization. 

Jensen has introduced a family of polarization consistent (pc-n, where n is the ζ-level – 

e.g. n = 1 is double-ζ, n = 2 is triple-ζ, etc.) basis sets that were explicitly optimized 

using Becke exchange and Lee-Yang-Parr correlation (BLYP).119-123 Recently, Jensen 

also produced an energy-optimized Gaussian basis set for diamond-like C and Si for 

DFT using the BLYP functional.124 Also recently, Lehtola et al. produced electron 

momentum density-optimized one electron basis sets for atoms in rows 1-5, excluding 

the 3d atoms, using second order Møller-Plesset Perturbation Theory.125  In this work, 

B3LYP and BLYP functionals were chosen because of the variety of properties that 

have been measured, including excitation energies,126-128 radical energies,129-131 

enthalpies of formations,132-134 and hydrogen-bonded systems,135-137 with both 

functionals. The cc-pVnZ basis sets have been shown by Wang and Wilson to perform 

as well as the pc-n basis sets in computing optimized geometries and enthalpies of 

formation, but at a lower computational cost owing to fewer basis functions beyond the 

double-ζ level (see Table 5.1).111,114 This fact, led Prascher et al. to investigate the 

necessity of high angular momentum functions in the basis set in KS-DFT calculations, 

in which they demonstrated that only s, p, d, and f functions need be retained in the cc-

pVnZ basis sets to obtain optimized geometries within 0.01 Å and atomic and molecular 
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energetics (e.g. ionization potentials, electron affinities, and atomization energies) within 

1.0 kcal/mol of the full (non-truncated) cc-pVnZ basis sets.118 They examined the 

energetics of first-row atoms, diatomics, CH4, NH3, H2O, SiH4, PH3, and H2S. Further, 

systematic removal of the angular functions l > 3 resulted in dramatic reductions in the 

computational cost, on the order of 70%-90%. In this chapter, the truncation of g and h 

angular momentum functions were coupled with explicit reoptimization of the cc-pVnZ 

primitives to develop new, compact cc-pVnZ basis sets for KS-DFT calculations. These 

reoptimized basis sets were first introduced by Prascher.116 The enthalpies of formation 

for 86 molecules, combustion enthalpies of 20 molecules, and atomization energies of 

six fullerenes are computed with these reoptimized basis sets and compared to those 

obtained with truncated forms of the previously introduced recontracted basis sets and 

the Dunning cc-pVnZ basis sets. It is noted that Michael Zhou, a former Texas Academy 

of Mathematics and Science (TAMS) student,138 and the author of this chapter were 

responsible for all enthalpy and atomization energy computations. 

 

5.2 Methodology 

The BLYP density functional is employed here and compared with calculations 

utilizing the B3LYP.37,38,118,139 The third parameterization of the Vosko-Wilk-Nusair local 

correlation functional (VWN-3) has been utilized in all B3LYP calculations.140 We have 

chosen these two density functionals due to their well-established use in the literature 

and to provide two comparative examples. Although we have chosen to examine only 

two density functionals in this investigation, our proposed basis set methodology is 

portable to other density functionals. 
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The details for systematic truncation and recontraction of the cc-pVnZ basis sets 

for BLYP and B3LYP have been described previously.117,118 In summary, any g and h 

functions are removed from the quadruple- and quintuple-ζ basis sets and the s and p 

contractions are optimized for BLYP or B3LYP specifically. These modifications give 

rise to a smaller, more compact family of basis sets denoted cc-pVnZ[rc](tr), where n = 

D, T, Q, and 5, rc stands for recontracted, and tr indicates which functions have been 

truncated. For example, the double- and triple-ζ basis sets are not truncated in any way, 

so they are denoted ‘cc-pVDZ[rc]’ and ‘cc-pVTZ[rc]’, respectively, but the quadruple- 

and quintuple-ζ basis sets are both recontracted and truncated, so they are denoted ‘cc-

pVQZ[rc](-1g)’ and ‘cc-pV5Z[rc](-2g1h)’, respectively. 

The s, p, d, and f primitives of the cc-pVnZ basis sets have been reoptimized in 

logarithmic space with respect to minimization of the BLYP and B3LYP atomic energies 

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.141 The tolerance for 

energy minimization was 10-9 Eh. We have removed all g and h functions from the cc-

pVnZ sets, following the conclusions of Prascher et al.118 Each basis set was optimized 

using the ground state electronic configuration of the respective atoms, except for 

hydrogen, which was optimized using H2 as a model. This optimization model is entirely 

analogous to the model used to develop the original cc-pVnZ basis sets.104 The new 

sets of optimized primitives were contracted using the same general contraction 

scheme utilized by the cc-pVnZ basis sets (cf. Table 5.1). These reoptimized basis sets 

are denoted ‘cc-pVnZ-BLYP’ for the BLYP-optimized primitives and ‘cc-pVnZ-B3LYP’ 

for the B3LYP-optimized primitives. 
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To approximate the KS limit (analogous to the CBS limit for ab initio 

methodology), three extrapolation schemes commonly used in assessing CBS limits 

were employed: the Peterson extrapolation scheme (P),106,109  

 𝐸𝑛 = 𝐸𝐾𝑆 + 𝐴𝑒−(𝑛+1) + 𝐵𝑒−(𝑛+1)2 [5.1] 

the inverse cubic formula of Schwartz (S3),142  

 𝐸𝑛 = 𝐸𝐾𝑆 +
𝐴

𝑙𝑚𝑎𝑥3  [5.2] 

and the inverse quartic formula for Schwartz (S4),142  

 𝐸𝑛 = 𝐸𝐾𝑆 +
𝐴

𝑙𝑚𝑎𝑥4  [5.3] 

 

In each extrapolation scheme, En denotes the nth ζ-level energy (or property), EKS 

denotes the KS limit of that energy (or property), and A and B are variable parameters 

fit to three or four energy points, using a least squares approach. We have avoided 

computing the KS limits of energy differences such as atomization energies, formation 

enthalpies, and reaction enthalpies. For example, the atomization energy equation, AE 

= E(products) – E(reactants), involves an energy difference in which E(products) does 

not necessarily converge at a similar rate as E(reactants). (It is assumed that 

E(products) and E(reactants) converge monotonically with respect to a given sequence 

of cc-pVnZ basis sets.) As a result of the different convergence rates of energies, 

energy differences often do not necessarily display smooth, monotonic behavior, 

despite having used a series of cc-pVnZ basis sets to obtain them. Attempting to 

extrapolate energy differences, therefore, occasionally leads to the erroneous 

conclusion that any observed non-monotonic behavior points to a problem with the 
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choice of basis sets. However, first extrapolating the individual energy components to 

their respective KS limits, then taking the difference of those KS limits yields an 

estimate of the asymptotic behavior of the energetic property.107,111-115,117,118 In later 

sections of this paper, where thermodynamic values are computed, this approach has 

been followed. Energy calculations reported herein were computed using the Molpro 

2006.1143 software suite. Geometry optimizations were converged to 0.001 mEh in 

energy gradients, while zero-point energies and thermal corrections were computed 

from the harmonic frequencies of energy-minimized structures (unless otherwise noted). 

 

5.3 Results and Discussion 

In the following subsections, the performance of optimized basis sets are 

compared with that of the cc-pVnZ and cc-pVnZ[rc](tr) basis sets. The impact of basis 

set choice upon total atomic energy for the atoms H, B, C, N, O, and F,  as well as for 

the enthalpy of formation for 86 molecules comprised of these atoms, varying from two 

to 14 atoms was examined. An analysis of percentage of CPU savings that can be 

achieved with the modified basis sets is also reported. Also, the atomization energies 

and percentage of CPU savings for a set of fullerenes computed with the modified basis 

sets are reported. 

 

5.3.1 Atomic Energetics 

Atomic energies computed with the reoptimized correlation consistent basis sets 

were compared with the atomic energies of the cc-pVnZ and cc-pVnZ[rc](tr) basis sets 

utilizing each density functional. These energies are listed in Table 5.2 and 5.3. Explicit 
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reoptimization of the Gaussian primitives in the cc-pVnZ basis sets has a larger impact 

than recontraction on not only the double-ζ energies, but also the triple- and quadruple-ζ 

energies. For example, compared with the cc-pVnZ basis sets, the nitrogen, oxygen, 

and fluorine recontracted B3LYP atomic energies are lowered by 2.7, 3.1, and 3.6 mEh, 

respectively, at the double-ζ level, and are lowered all by 0.7 mEh, respectively, at the 

triple-ζ level. In contrast to this, the nitrogen, oxygen, and fluorine reoptimized B3LYP 

atomic energies are lowered by 3.5, 4.3, and 5.3 mEh, respectively, at the double-ζ level, 

and are lowered by 1.0, 1.3, and 1.6 mEh, respectively, at the triple-ζ level. The impact 

of recontraction is more pronounced for the BLYP atomic energies, impacting both the 

double- and triple-ζ energies. Reoptimization, again, makes a larger impact on total 

atomic energies than recontraction alone. Examining fluorine, it is observed that the 

total energy is lowered by 8.8, 2.8, 1.7, and 0.3 mEh at the double-, triple-, quadruple-, 

and quintuple-ζ levels, respectively, relative to the original cc-pVnZ basis sets. However, 

despite the larger impact by reoptimization in BLYP atomic energies, the calculated KS 

limits are somewhat resilient. For all six atoms, each of the three extrapolation schemes 

yields a KS limit that is no larger than 1.4 mEh lower than that computed from the cc-

pVnZ energies. The energy lowering for all six atoms, for both methods using the 

modified quintuple sets, is no larger than 0.4 mEh. Therefore, the quintuple total 

energies, in combination with the extrapolation schemes, defines the point at which 

saturation of the electron density occurs for these modified basis sets. 
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5.3.2 Molecular Energetics 

To assess the impact of recontraction and reoptimization of the correlation 

consistent basis sets upon reaction enthalpies, 20 combustion reactions were 

considered. The calculated combustion enthalpies of reaction for both B3LYP and BLYP 

are listed in Tables 5.4 through 5.7. Examining the MADs for computed B3LYP and 

BLYP enthalpies in Table 5.4 and the extrapolated enthalpies in Table 5.5, it is again 

observed that the double-ζ level values are most affected by recontraction of the basis 

sets, compared with the standard cc-pVnZ basis sets. For example, in Table 5.4, 

methane, ethane, propane, and butane have combustion enthalpies that are affected by 

2.8, 8.2, 12.0, and 15.8 kcal/mol, respectively, when the cc-pVDZ[rc](tr) basis set is 

employed versus the cc-pVDZ basis set. When the reoptimized sets are employed, the 

B3LYP-calculated combustion enthalpies of methane, ethane, propane, and butane 

results in changes of 4.2, 14.3, 20.4, and 26.6 kcal/mol, respectively, at the double-ζ 

level, compared with the cc-pVDZ values. Despite the large changes in combustion 

enthalpies at the double-ζ level arising from recontraction, there are no significant 

changes (i.e. > 1.0 kcal/mol) in the B3LYP enthalpies at the higher ζ-levels. However, 

reoptimizing the cc-pVnZ basis sets specifically for B3LYP does have larger impact on 

the combustion enthalpies. For methane and ethyne (the smallest two molecules in 

Table 5.4), the triple-ζ enthalpies results in changes of 1.9 and 1.0 kcal/mol, 

respectively, while the quadruple-ζ enthalpies results in changes of 1.1 and 1.0 kcal/mol, 

respectively. For spiropentane and benzene (the largest two molecules in Table 5.4), 

the triple-ζ enthalpies change by 5.3 and 3.9 kcal/mol, respectively, while the quadruple-

ζ enthalpies change by 4.0 and 3.1 kcal/mol, respectively. In fact, the differences 
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between the cc-pVnZ and cc-pVnZ-B3LYP P, S3, and S4 KS limits, in Table 5.5, for the 

combustion enthalpies of spiropentane are 1.1, 1.8, and 2.7 kcal/mol, and for benzene 

are 0.1, 1.0, and 1.9 kcal/mol, respectively. All of the B3LYP enthalpies are closer to 

experiment when the recontracted or reoptimized basis sets are employed. The BLYP 

combustion enthalpies experience similar changes with respect to the choice of basis 

set. Considering the BLYP combustion enthalpies, from Table 5.6, of methane, ethane, 

propane, and butane, it is observed that there are changes of 3.4, 10.3, 15.2, and 20.1 

kcal/mol at the double-ζ level, respectively, when the recontracted basis sets are 

employed. Those changes increase to 5.5, 19.3, 27.5, and 35.6 kcal/mol, respectively, 

when the reoptimized basis sets are employed. Significant changes at the triple- and 

quadruple-ζ level are not apparent in the BLYP combustion enthalpies when the 

recontracted basis sets are employed. However, significant changes relative to the cc-

pVnZ basis sets at the triple-ζ and higher levels are observed with the reoptimized basis 

sets. Consider spiropentane and benzene: at the triple-ζ level, their combustion 

enthalpies change by 7.5 and 5.5 kcal/mol, respectively, while at the quadruple-ζ level, 

they change by 4.5 and 3.2 kcal/mol, respectively. In addition, the differences between 

the cc-pVnZ and cc-pVnZ-BLYP P, S3, and S4 KS limits, in Table 5.7, for the 

combustion enthalpies of spiropentane are 0.7, 2.3, and 3.4 kcal/mol, and for benzene 

are 0.5, 1.0, and 2.2 kcal/mol, respectively. Both recontraction and reoptimization move 

the BLYP combustion enthalpies closer to their experimental values. While these 

combustion enthalpies provide a small set for examination of the new basis sets, the 

MADs in Tables 5.4 through 5.7, they are far from experiment. The lowest MAD, 14.3 

kcal/mol, was computed using from the cc-pVnZ-B3LYP P KS limit.  
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The total energies of 86 molecules, listed in Table 5.8 were computed with the 

cc-pVnZ basis sets and the cc-pVnZ[rc](tr) and reoptimized correlation consistent basis 

sets.  The mean signed deviations (MSDs) and mean absolute deviations (MADs) are 

shown in Table 5.9 (tabulated energies of all molecules investigated here can be found 

in the supplemental material). These molecules were chosen from the G2/97 test set. 

Optimized geometries have been used (computed at the B3LYP/cc-pVTZ level; the 

recontracted and reoptimized basis set energetics use the zero-point and thermal 

correction energies calculated using B3LYP/cc-pVTZ) for the energetics in this 

comparison to demonstrate the difference in energies with respect to the change in 

basis set construction. It is noted first that the double-ζ energies are most affected by 

both recontraction and reoptimization, and that the triple- and quadruple-ζ energies tend 

to be only slightly affected by both basis set modifications.  

Comparing the B3LYP energies computed with the cc-pVnZ[rc](tr) basis sets to 

those computed with cc-pVnZ-B3LYP, it is observed that recontraction tends to make 

the largest impact for the double-ζ levels. For example, the MAD of the cc-pVDZ[rc] 

basis set energies in Table 5.9 is 11.3 mEh compared with the cc-pVDZ-B3LYP MAD of 

9.2 mEh, whereas the MADs of the triple-, quadruple-, and quintuple-ζ recontracted 

basis set energies are 2.2, 1.2, and 0.1 mEh, respectively, but are 2.2, 1.1, and 0.1 mEh 

using the cc-pVnZ-B3LYP basis sets. Likewise, in the BLYP energies, recontraction 

makes the largest impact for the double- ζ levels. For example, the MAD of the cc-

pVDZ[rc] basis set energies in Table 5.9 is 16.6 mEh compared with the cc-pVDZ-BLYP 

MAD of 14.1 mEh, whereas the MADs of the triple-, quadruple-, and quintuple-ζ 
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recontracted basis set energies are 3.5, 2.0, and 0.3 mEh, respectively, but are 3.8, 2.0, 

and 0.4 mEh using the cc-pVnZ-BLYP basis sets. 

 

5.3.3 Enthalpies of Formation and Computational Efficiencies 

Table 5.10 lists the enthalpies of formation for the 86 molecules and the 

corresponding MADs and MSDs from experimental values of the test set computed for 

B3LYP with each basis set family. Also, Table 5.11 lists the corresponding extrapolated 

enthalpies of formation using the P, S3, and S4 extrapolation schemes with the MAD 

and MSDs from experimental values. Recontraction of the basis sets lowers the MAD of 

the B3LYP enthalpies of formation from 8.8 to 6.6 kcal/mol at the double-ζ level, but the 

reoptimized B3LYP basis sets raise the MAD to 9.1 kcal/mol. Despite the worsening of 

the MAD at the B3LYP/double-ζ level, the reoptimized basis sets afford a MAD of 3.7 

kcal/mol from experiment at the KS limit (with the Peterson extrapolation scheme), 

compared with 4.0 kcal/mol from the cc-pVnZ basis sets and 3.7 kcal/mol from the cc-

pVnZ[rc](tr) basis sets. Table 5.12 lists the enthalpies of formation for the 86 molecules 

and the corresponding MADs and MSDs from experimental values of the test set 

computed for BLYP with each basis set family. Also, Table 5.13 lists the extrapolated 

enthalpies of formation using the P, S3, and S4 extrapolation schemes with the 

corresponding MADs and MSDs from experimental values. Recontraction also lowers 

the MAD of the BLYP enthalpies of formation from 12.2 kcal/mol, computed with the cc-

pVnZ basis sets, to 9.5 kcal/mol at the double-ζ level, while reoptimization only slightly 

lowers the MAD to 11.5 kcal/mol. Despite this, the reoptimized basis sets yield much 

lower MSDs overall, with the lowest absolute MAD at 1.1 kcal/mol for B3LYP at the 
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triple-ζ level. With regard to the extrapolations, the MSDs and MADs, for a given 

functional and basis set, are all within 0.5 kcal/mol of each other, and the lowest 

deviations from the extrapolations are calculated with the S4 extrapolation. 

Consequently, the S4 extrapolation best accounts for the extrapolated enthalpy of 

formation. Also, the B3LYP and BLYP reoptimized basis sets yield the lowest deviations 

to experimental enthalpies. This indicates that, on average, the reoptimized basis sets 

yield enthalpies of formation closer to experiment than the other basis set families. 

Overall, recontraction of the basis sets reduces the deviation of B3LYP and BLYP 

enthalpies. 

As the basis sets increase in zeta quality, the respective energies should 

converge towards the same limit. This should be reflected in the small deviations of the 

calculated KS limits in Tables 5.11 and 5.13, provided that the extrapolation schemes 

adequately model the behavior of the energies with respect to increasing basis set size. 

An MSD that is closer to zero indicates that the extrapolation scheme more correctly 

models the convergent behavior of the energies with respect to the original cc-pVnZ 

basis sets. What is observed is that the MSD of the three extrapolation schemes is 

negative for both the B3LYP and BLYP energies using both the recontracted and 

reoptimized basis sets. The S4 limits tend to be more negative than the S3 limit 

determined using the extrapolation scheme, implying the S3 fit to be more indicative of 

the correct basis set behavior. Moreover, the magnitude of the S3 KS limits is larger 

than the Peterson KS limits, indicating that the Peterson extrapolation scheme better 

approximates the basis set behavior than the Schwartz schemes. 
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Recontraction and reoptimization impacts the efficiency of B3LYP and BLYP 

molecular total energy calculations. This is illustrated in Tables 5.14 and 5.15, in which 

the mean CPU savings for the cc-pVnZ[rc](tr) and reoptimized basis sets as a percent 

ratio of the cc-pVnZ basis sets. In addition, the tables list CPU savings for groups of N 

molecules containing M atoms, in which M = 2-14. As shown in the tables, the majority 

of CPU savings occurs at the quadruple- and quintuple-ζ levels for both B3LYP and 

BLYP. The CPU savings for the quadruple- and quintuple-ζ sets are in the ranges of 44-

63% and 59-74%, respectively. The high efficiency of these sets are most likely due to 

the removal of the g and h functions. Also, for both cc-pVnZ[rc](tr) and the reoptimized 

sets,  the double- and triple-ζ savings are nearly negligible.  

As previously stated, due to the different convergence rates of molecular 

energies, enthalpies of formation and combustion enthalpies often do not necessarily 

display smooth, monotonic behavior, despite having used a series of cc-pVnZ basis 

sets to obtain them. However, the convergence behavior of enthalpies of formation for 

the cc-pVnZ[rc](tr) and reoptimized basis sets. Figures 5.1 and 5.2 illustrate the 

convergence rates of CHF3 for B3LYP and BLYP, respectively, and Figures 5.3 and 5.4 

illustrate the convergence rates of HCOCOH for B3LYP and BLYP, respectively. In 

addition, these figures illustrate convergence behavior for enthalpies computed with the 

cc-pVnZ, cc-pVnZ[rc](tr) and reoptimized basis sets having augmented functions, 

counterpoise correction, and a combination of both. In these examples, the reoptimized 

sets for both molecules in both functionals yields monotonic convergence of enthalpies. 

Looking at Figures 5.1 and 5.2, the reoptimized basis sets for both functionals seem to 

produce monotonic convergence. The addition of augmented sets do not appear to 

90 



 
 

repair convergence in the cc-pVnZ and cc-pVnZ[rc](tr) sets, and, in fact, convergence 

does not occur in the reoptimized sets.   Interestingly, the counterpoise correction are, 

at the very least (that is, without augmented functions), necessary to produce 

convergence in all the examples in Figures 5.1 and 5.2.  As well, in Figures 5.3 and 5.4, 

the reoptimized basis sets for both functionals seem to produce monotonic convergence. 

The addition of augmented sets for HCOCOH repairs convergence in the cc-pVnZ and 

cc-pVnZ[rc](tr) sets, and only breaks convergence in the reoptimized sets for B3LYP. As 

before, the counterpoise correction are, at the very least (that is, without augmented 

functions), necessary to produce convergence in all the examples in Figures 5.3 and 5.4. 

So, in these examples, the reoptimized sets do indeed produce monotonic convergence 

of the KS limit for enthalpies. Further, for any cases in which monotonic convergence is 

broken, the counterpoise correction alone seems to provide an adequate solution, 

whereas the addition of augmented functions may or may not yield the same 

expectation.113,117  

 

5.3.4 Energetics and Computational Efficiency Comparisons in Fullerene 

Computations 

To assess the utility of the recontracted and reoptimized cc-pVnZ basis sets for 

larger molecules, their efficiency in fullerene calculations has been examined. The 

molecules employed in the tests were C32, C36, C44, C48, C50, and C60. The atomization 

energies were computed using optimized geometries at the B3LYP/cc-pVTZ level. 

Table 5.16 lists the atomization energies for B3LYP and BLYP using the cc-pVnZ sets 

in Eh, and the corresponding differences with regard to the cc-pVnZ[rc](tr) and 

91 



 
 

reoptimized basis sets in mEh. Also, Table 5.17 illustrates the CPU savings that can be 

obtained using the cc-pVnZ[rc](tr) and reoptimized basis sets.  

The CPU savings of the correlation energy recovery is very prevalent in the 

fullerenes, given that these contain upwards of one hundred carbon atoms. In fact, 

Table 5.16 illustrates that the cc-pVnZ[rc](tr) and reoptimized basis sets compute lower 

atomization energies, by a magnitude of 500 kcal/mol. This is reflective of more stable 

fullerene being computed by the cc-pVnZ[rc](tr) and reoptimized basis sets. With 

increasing -ζ level, the atomization energies behave in a convergent manner. Also, we 

did not compute a basis set limit since the point was to address the behavior of the cc-

pVnZ[rc](tr) and reoptimized basis sets for a set of large molecules. However, it should 

be noted that the convergence behavior between the regular cc-pVnZ and the cc-

pVnZ[rc](tr) and reoptimized basis sets are notably different: the regular sets converge 

to an upper bound, whereas the cc-pVnZ[rc](tr) and reoptimized basis sets all converge 

to a lower-bounded atomization energy. This observation obviously stems directly from 

the reconstruction of the cc-pVnZ basis sets. The only experimental comparison that 

could be made was for C60. The experimental values (9797.6, 9762.2, and 9787.4 

kcal/mol) in Table 5.16 compare very well to the results for the B3LYP sets, mainly with 

the cc-pVQZ[rc](-1g) (-9806.8 kcal/mol), cc-pVTZ-B3LYP (-9774.94 kcal/mol), and cc-

pVQZ-B3LYP (-9742.14 kcal/mol) basis sets. 

In Table 5.17, the double-ζ recontracted and reoptimized basis sets perform in a 

similar manner to the standard basis sets. At the triple-ζ level, the recontracted basis 

sets show little difference in computational time relative to the cc-pVnZ basis sets. 

However, the reoptimized cc-pVnZ basis sets show CPU time reductions between 9-
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16% in B3LYP calculations and 13-22% in BLYP calculations. This increase in 

efficiency of the reoptimized basis sets must then be due to their construction, indicating 

that explicit reoptimization of the primitive basis functions for a specific density 

functional leads to greater efficiency than recontraction of the original primitives. At the 

quadruple-ζ level, both the recontracted and reoptimized basis sets display significant 

reductions in CPU time relative to the standard cc-pVnZ sets, primarily due to the 

removal of the g function. Employing the recontracted sets, CPU time reductions 

between 58-66% are observed with B3LYP, while reductions between 56-71% are 

observed with BLYP. Even at the quadruple-ζ level, the reoptimized basis sets show a 

greater increase in computational efficiency having larger reductions in CPU time than 

the recontracted basis sets. For example, the CPU time reduction in computing the C48 

BLYP/cc-pVQZ[rc](-1g) energy is 63%, while the BLYP/cc-pVQZ-BLYP reduction is 

70%; the CPU time reduction in computing the C36 B3LYP/cc-pVQZ[rc](-1g) energy is 

58%, while the B3LYP/cc-pVQZ-B3LYP reduction is 66%. The decrease in CPU 

efficiency required of these reoptimized sets can open the door for the ease of 

applications involving quadruple- and quintuple-ζ level computations of large molecules. 

 

5.4 Conclusions 

New reoptimized cc-pVnZ basis sets for B3LYP and BLYP calculations have 

been presented and discussed. In 20 combustion enthalpies and 86 molecules from first 

row atoms, these new basis sets have demonstrated lower total energies and a marked 

improvement in the computational cost of computing triple-ζ through quintuple-ζ 

thermochemical properties. In atomic energies, the reoptimization makes a larger 
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impact beyond the triple-ζ level than recontraction alone. Even with the g and h 

functions truncated from the reoptimized basis sets, the BLYP energies of the oxygen 

and fluorine atoms are lowered by more than 1 mEh at the quintuple-ζ level. We have 

also found that in KS extrapolations of the total energies, the Peterson extrapolation 

scheme models the convergent behavior of the recontracted and reoptimized basis set 

energies more accurately than the Schwartz schemes relative to the original cc-pVnZ 

basis set energies. 

In calculations of molecular enthalpies of formation and combustion enthalpies, 

the reoptimized cc-pVnZ basis sets produce energetic values that are closer to 

experiment at the triple-ζ through quintuple-ζ levels than both the original and 

recontracted cc-pVnZ basis sets. Differences greater than 1.0 kcal/mol at higher ζ-levels 

coupled to the observation that the reoptimized sets deviate less from experiment, on 

average, indicates that, in order to achieve near “chemical accuracy” with BLYP and 

B3LYP, 1) optimal basis sets need to be employed and 2) basis sets beyond triple-ζ are 

necessary.114,117 To achieve monotonic convergence for enthalpies, the Counterpoise 

correction must be included in these computations, as the addition of augmented 

functions does not always guarantee monotonic convergence.  

The computational efficiency of the recontracted and reoptimized cc-pVnZ basis 

sets has been demonstrated in energy calculations of the 86 molecule test set and 

fullerenes ranging from C32 to C60. At the double- and triple-ζ levels, the recontracted 

and reoptimized sets do not yield much of a reduction in computational time, but at the 

quadruple- and quintuple-ζ level, a reduction in computational time  of at least 40% and 

not more than 80% can be observed, relative to the original cc-pVnZ basis sets. Utilizing 
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the reoptimized sets in B3LYP and BLYP energy calculations yields slightly better 

reductions in computational time than the recontracted basis sets.  

Given the widespread application of B3LYP and BLYP in computational research, 

these newly reoptimized cc-pVnZ basis sets are recommended for use in B3LYP and 

BLYP calculations, due to their performance in computing molecular properties (relative 

to experiment) and their significant reduction in computational cost over the original 

(non-optimal) cc-pVnZ basis sets at higher ζ-levels. 

 

Table 5.1. A comparison of the number of primitive (parentheses) and contracted 
[brackets] functions of the cc-pVnZ, cc-pVnZ[rc](tr), reoptimized cc-pVnZ, and pc-n 
basis sets. 

Atom ζ cc-pVnZ cc-pVnZ[rc](tr) / 
reoptimized 

pc-n 

H D (4s1p) 
[2s1p] 

(4s1p) 
[2s1p] 

(4s1p) 
[2s1p] 

 T (5s2p1d) 
[3s2p1d] 

(5s2p1d) 
[3s2p1d] 

(6s2p1d) 
[3s2p1d] 

 Q (6s3p2d1f) 
[4s3p2d1f] 

(6s3p2d) 
[4s3p2d] 

(9s4p2d1f) 
[5s4p2d1f] 

 5 (8s4p3d2f1g) 
[5s4p3d2f1g] 

(8s4p3d) 
[5s4p3d] 

(11s6p3d2f1g) 
[7s6p3d2f1g] 

B-F D (9s4p1d) 
[3s2p1d] 

(9s4p1d) 
[3s2p1d] 

(7s4p1d) 
[3s2p1d] 

 T (10s5p2d1f) 
[4s3p2d1f] 

(10s5p2d1f) 
[4s3p2d1f] 

(10s6p2d1f) 
[4s3p2d1f] 

 Q (12s6p3d2f1g) 
[5s4p3d2f1g] 

(11s6p3d2f) 
[5s4p3d2f] 

(14s9p4d2f1g) 
[6s5p4d2f1g] 

 5 (14s8p4d3f2g1h) 
[6s5p4d3f2g1h) 

(12s8p4d3f) 
[6s5p4d3f] 

(18s11p6d3f2g1h) 
[8s7p6d3f2g1h] 
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Table 5.2. The atomic energies (Eh) of the B3LYP/cc-pVnZ and their calculated complete basis set limits, followed by the 
differences (mEh) of the cc-pVnZ[rc](tr) and reoptimized basis sets with respect to B3LYP/cc-pVnZ atomic energies (Eh) 
and their calculated complete basis set limits. 

B3LYP H B C N O F 
cc-pVDZ -0.501258 -24.659561 -37.850417 -54.587815 -75.066315 -99.724849 
cc-pVTZ -0.502156 -24.662345 -37.856816 -54.600202 -75.089006 -99.760647 
cc-pVQZ -0.502346 -24.663417 -37.858855 -54.603684 -75.095212 -99.770234 
cc-pV5Z -0.502428 -24.664064 -37.859689 -54.605036 -75.097480 -99.773568 
P -0.502465 -24.664242 -37.860107 -54.605761 -75.098800 -99.775641 
S3 -0.502380 -24.663541 -37.859009 -54.604007 -75.095772 -99.771081 
S4 -0.502341 -24.663393 -37.858699 -54.603430 -75.094726 -99.769443 
cc-pVDZ[rc] -0.228 -1.587 -2.047 -2.712 -3.066 -3.558 
cc-pVTZ[rc] -0.001 -0.631 -0.639 -0.655 -0.663 -0.692 
cc-pVQZ[rc](-1g) 0.000 -0.526 -0.526 -0.602 -0.584 -0.597 
cc-pV5Z[rc](-2g1h) 0.000 -0.063 -0.146 -0.161 -0.123 -0.091 
P 0.000 -0.129 -0.193 -0.240 -0.198 -0.171 
S3 0.013 -0.324 -0.330 -0.329 -0.289 -0.262 
S4 0.005 -0.371 -0.390 -0.410 -0.383 -0.373 
cc-pVDZ-B3LYP -0.346 -1.739 -2.427 -3.458 -4.318 -5.264 
cc-pVTZ-B3LYP -0.059 -0.714 -0.811 -1.013 -1.315 -1.566 
cc-pVQZ-B3LYP -0.030 -0.543 -0.599 -0.756 -0.890 -0.995 
cc-pV5Z-B3LYP -0.006 -0.058 -0.165 -0.200 -0.194 -0.177 
P -0.003 -0.108 -0.194 -0.243 -0.216 -0.183 
S3 -0.012 -0.346 -0.397 -0.471 -0.563 -0.620 
S4 -0.023 -0.398 -0.469 -0.575 -0.696 -0.784 
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Table 5.3. The atomic energies (Eh) of the BLYP/cc-pVnZ and their calculated complete basis set limits, followed by the 
differences (mEh) of the cc-pVnZ[rc](tr) and reoptimized basis sets with respect to BLYP/cc-pVnZ atomic energies (Eh) 
and their calculated complete basis set limits. 

BLYP H B C N O F 
cc-pVDZ -0.496403 -24.646606 -37.836472 -54.571454 -75.052588 -99.711636 
cc-pVTZ -0.497555 -24.650055 -37.843970 -54.585596 -75.077711 -99.750790 
cc-pVQZ -0.497781 -24.651312 -37.846304 -54.589501 -75.084550 -99.761261 
cc-pV5Z -0.497889 -24.652238 -37.847563 -54.591269 -75.087330 -99.765338 
P -0.497931 -24.652413 -37.847979 -54.592030 -75.088727 -99.767513 
S3 -0.497830 -24.651530 -37.846604 -54.589972 -75.085278 -99.762351 
S4 -0.497781 -24.651347 -37.846236 -54.589311 -75.084115 -99.760551 
cc-pVDZ[rc] -0.405 -2.476 -3.192 -4.226 -4.872 -5.744 
cc-pVTZ[rc] -0.002 -1.068 -1.074 -1.093 -1.107 -1.154 
cc-pVQZ[rc](-1g) 0.000 -0.885 -0.871 -0.952 -0.928 -0.947 
cc-pV5Z[rc](-2g1h) -0.001 -0.183 -0.157 -0.262 -0.251 -0.110 
P -0.001 -0.275 -0.247 -0.367 -0.344 -0.228 
S3 0.023 -0.587 -0.532 -0.545 -0.498 -0.415 
S4 0.010 -0.657 -0.626 -0.671 -0.646 -0.596 
cc-pVDZ-B3LYP -0.622 -2.789 -3.941 -5.646 -7.131 -8.814 
cc-pVTZ-B3LYP -0.114 -1.227 -1.437 -1.806 -2.317 -2.782 
cc-pVQZ-B3LYP -0.060 -0.922 -1.029 -1.269 -1.520 -1.719 
cc-pV5Z-B3LYP -0.014 -0.175 -0.199 -0.345 -0.392 -0.291 
P -0.008 -0.240 -0.253 -0.383 -0.397 -0.281 
S3 -0.027 -0.631 -0.678 -0.837 -1.023 -1.108 
S4 -0.047 -0.711 -0.796 -1.007 -1.240 -1.382 
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Table 5.4. Combustion enthalpies at 298 K (kcal/mol) computed with B3LYP and the cc-pVnZ, cc-pVnZ[rc](tr), and 
reoptimized basis sets. 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP   

Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 
CH4 -167.6 -184.8 -189.1 -190.5 -170.4 -184.8 -189.1 -190.5 -171.8 -186.7 -190.2 -190.7 -191.8 
C2H2 -283.8 -295.0 -297.2 -297.6 -288.6 -294.9 -297.2 -297.5 -292.1 -296.0 -298.2 -297.6 -300.2 
C2H4 -284.2 -304.6 -308.8 -310.0 -290.7 -304.5 -308.9 -310.1 -295.4 -307.0 -310.7 -310.4 -316.3 
C2H6 -297.0 -325.7 -331.9 -334.2 -305.2 -325.6 -332.1 -334.3 -311.3 -329.5 -334.8 -334.7 -341.5 
CH3CCH -437.9 -463.6 -468.8 -469.3 -443.7 -463.7 -468.4 -469.2 -444.5 -464.9 -469.0 -469.2 -442.1 
CH2CCH2 (allene) -404.9 -428.8 -433.3 -434.3 -413.6 -428.7 -433.4 -434.3 -419.3 -431.2 -435.2 -434.5 -443.1 
C3H4 (cyclopropene) -429.9 -454.7 -459.2 -460.2 -439.0 -454.6 -459.3 -460.2 -444.7 -457.3 -461.2 -460.4 -464.1 
CH3CHCH2 -412.2 -444.6 -451.0 -452.9 -422.5 -444.4 -451.2 -453.0 -429.6 -448.3 -453.9 -453.4 -460.5 
C3H6 (cyclopropane) -421.6 -454.2 -460.6 -462.5 -432.1 -453.9 -460.7 -462.6 -439.1 -458.1 -463.5 -463.0 -468.4 
C3H8 -432.5 -473.2 -481.5 -484.4 -444.5 -472.9 -481.8 -484.6 -452.9 -478.3 -485.4 -485.2 -530.4 
CH2CHCHCH2 (trans-2-butene) -485.8 -562.2 -573.5 -576.2 -509.7 -562.4 -573.1 -575.7 -510.1 -565.9 -576.0 -576.0 -576.1 
C4H6 (methyl-cyclopropane) -587.6 -633.3 -641.8 -644.3 -602.9 -633.0 -642.0 -644.4 -611.5 -638.4 -645.6 -645.0 -639.4 
C4H6 (bicyclo[1.1.0]butane) -553.0 -591.2 -597.7 -599.4 -566.5 -590.9 -597.9 -599.5 -574.3 -595.2 -600.7 -599.9 -601.7 
C4H6 (cyclobutene) -534.8 -573.1 -579.6 -581.4 -549.0 -572.8 -580.0 -581.6 -558.0 -577.2 -583.1 -582.0 -587.2 
C4H8 (cyclobutane) -551.2 -597.7 -606.3 -609.0 -566.1 -597.4 -606.6 -609.1 -575.5 -602.8 -610.3 -609.7 -650.2 
C4H8 (isobutylene) -539.3 -583.6 -592.1 -594.7 -553.4 -583.4 -592.4 -594.9 -562.9 -588.7 -596.1 -595.4 -645.2 
C4H10 (butane) -559.9 -612.5 -623.0 -626.6 -575.7 -612.2 -623.4 -626.8 -586.5 -618.9 -627.9 -627.6 -687.8 
(CH3)3CH (isobutane) -598.0 -651.6 -662.0 -665.5 -614.3 -651.3 -662.4 -665.7 -624.7 -657.9 -666.8 -666.5 -685.7 
C5H8 (spiropentane) -679.3 -728.4 -737.2 -739.5 -696.1 -728.0 -737.5 -739.7 -706.4 -733.7 -741.2 -740.2 -746.0 
C6H6 (benzene) -695.3 -742.2 -749.5 -750.4 -713.1 -742.0 -749.7 -750.7 -723.0 -746.1 -752.6 -750.9 -746.0 

MAD 58.4 23.1 17.2 15.7 46.5 23.3 17.1 15.6 39.7 19.4 15.0 15.3  
MSD -58.4 -20.9 -14.0 -12.0 -46.3 -21.1 -13.8 -12.0 -39.5 -17.1 -11.1 -11.6  
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Table 5.5. Combustion enthalpies at 298 K (kcal/mol) extrapolated from B3LYP and the cc-pVnZ, cc-pVnZ[rc](tr), and 
reoptimized basis sets. 
 

 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP  

Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
CH4 -191.5 -189.5 -188.7 -191.4 -189.3 -188.6 -191.6 -190.3 -189.7 -191.8 
C2H2 -298.2 -297.4 -297.0 -298.1 -297.1 -296.8 -298.3 -297.6 -297.4 -300.2 
C2H4 -311.0 -309.4 -308.5 -311.1 -309.0 -308.4 -311.5 -310.3 -309.8 -316.3 
C2H6 -335.5 -332.8 -331.6 -335.7 -332.4 -331.4 -336.3 -334.5 -333.7 -341.5 
CH3CCH -470.7 -469.1 -468.1 -470.4 -468.6 -467.8 -470.3 -469.2 -468.4 -442.1 
CH2CCH2 (allene) -435.4 -433.9 -432.9 -435.5 -433.4 -432.7 -435.8 -434.6 -434.1 -443.1 
C3H4 (cyclopropene) -461.3 -459.9 -458.8 -461.4 -459.3 -458.6 -461.7 -460.6 -460.1 -464.1 
CH3CHCH2 -454.3 -451.9 -450.6 -454.6 -451.4 -450.4 -455.1 -453.4 -452.5 -460.5 
C3H6 (cyclopropane) -463.9 -461.5 -460.2 -464.2 -460.9 -459.9 -464.7 -463.0 -462.2 -468.4 
C3H8 -486.2 -482.8 -481.1 -486.6 -482.2 -480.8 -487.3 -484.9 -483.8 -530.4 
CH2CHCHCH2 (trans-2-butene) -578.8 -576.1 -573.1 -578.2 -574.4 -572.1 -578.9 -576.7 -574.4 -576.1 
C4H6 (methyl-cyclopropane) -646.2 -643.2 -641.3 -646.5 -642.3 -640.9 -647.2 -645.1 -643.9 -639.4 
C4H6 (bicyclo[1.1.0]butane) -600.9 -598.9 -597.3 -601.2 -598.1 -597.0 -601.6 -600.2 -599.3 -601.7 
C4H6 (cyclobutene) -582.9 -580.8 -579.3 -583.3 -580.1 -579.0 -583.9 -582.3 -581.4 -587.2 
C4H8 (cyclobutane) -610.9 -607.8 -605.9 -611.3 -607.0 -605.5 -612.0 -609.7 -608.5 -650.2 
C4H8 (isobutylene) -596.6 -593.5 -591.6 -597.0 -592.7 -591.3 -597.7 -595.4 -594.3 -645.2 
C4H10 (butane) -628.8 -624.7 -622.5 -629.3 -623.9 -622.2 -630.2 -627.4 -625.9 -687.8 
(CH3)3CH (isobutane) -667.7 -663.7 -661.5 -668.2 -662.9 -661.2 -669.1 -666.3 -664.9 -685.7 
C5H8 (spiropentane) -741.5 -738.7 -736.6 -742.0 -737.7 -736.2 -742.6 -740.5 -739.3 -746.0 
C6H6 (benzene) -752.3 -750.7 -748.8 -752.7 -749.8 -748.5 -753.1 -751.7 -750.7 -746.0 

MAD 14.9 16.4 17.5 14.7 16.9 17.7 14.3 15.4 16.0  
MSD -10.5 -12.9 -14.4 -10.3 -13.6 -14.7 -9.7 -11.5 -12.5  
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Table 5.6. Combustion enthalpies at 298 K (kcal/mol) computed with BLYP and the cc-pVnZ, cc-pVnZ[rc](tr), and 
reoptimized basis sets. 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  

Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 
CH4 -173.1 -190.5 -195.3 -196.8 -176.5 -190.6 -195.1 -196.7 -178.6 -193.2 -196.5 -197.1 -191.8 
C2H2 -274.4 -286.7 -289.2 -289.5 -280.6 -286.7 -289.1 -289.4 -285.1 -288.3 -290.1 -289.5 -300.2 
C2H4 -272.8 -295.4 -300.2 -301.6 -281.2 -295.4 -300.1 -301.6 -287.8 -299.0 -302.3 -302.0 -316.3 
C2H6 -284.1 -315.8 -322.9 -325.6 -294.4 -315.7 -323.0 -325.7 -303.4 -321.5 -326.3 -326.3 -341.5 
CH3CCH -453.5 -478.8 -484.0 -484.2 -460.9 -479.0 -483.5 -484.1 -461.2 -480.3 -483.9 -484.1 -442.1 
CH2CCH2 (allene) -390.2 -416.6 -421.6 -422.6 -401.3 -416.5 -421.5 -422.6 -409.1 -420.1 -423.6 -422.9 -443.1 
C3H4 (cyclopropene) -417.0 -444.3 -449.2 -450.3 -428.5 -444.2 -449.1 -450.3 -436.1 -448.0 -451.3 -450.5 -464.1 
CH3CHCH2 -396.7 -432.6 -439.7 -442.0 -409.9 -432.5 -439.8 -442.0 -419.8 -438.1 -443.0 -442.6 -460.5 
C3H6 (cyclopropane) -407.9 -444.0 -451.1 -453.4 -421.3 -443.8 -451.1 -453.5 -431.1 -449.6 -454.4 -454.0 -468.4 
C3H8 -415.5 -460.6 -470.0 -473.5 -430.7 -460.4 -470.1 -473.6 -443.0 -468.2 -474.6 -474.4 -530.4 
CH2CHCHCH2 (trans-2-butene) -453.3 -535.1 -547.0 -548.8 -484.0 -535.2 -546.0 -548.6 -483.6 -540.0 -548.9 -548.9 -576.1 
C4H6 (methyl-cyclopropane) -564.3 -615.0 -624.4 -627.4 -583.8 -614.8 -624.4 -627.5 -595.9 -622.4 -628.7 -628.2 -639.4 
C4H6 (bicyclo[1.1.0]butane) -537.9 -580.0 -587.2 -589.1 -554.9 -579.7 -587.2 -589.2 -565.6 -585.7 -590.5 -589.6 -601.7 
C4H6 (cyclobutene) -511.4 -554.4 -561.6 -563.7 -529.4 -554.1 -561.8 -563.9 -541.8 -560.4 -565.5 -564.4 -587.2 
C4H8 (cyclobutane) -533.5 -585.0 -594.5 -597.8 -552.5 -584.7 -594.7 -597.9 -565.6 -592.5 -599.1 -598.6 -650.2 
C4H8 (isobutylene) -519.9 -568.9 -578.5 -581.5 -537.9 -568.8 -578.6 -581.6 -551.1 -576.4 -583.0 -582.4 -645.2 
C4H10 (butane) -538.9 -597.3 -609.0 -613.4 -559.0 -597.0 -609.3 -613.5 -574.5 -606.8 -614.8 -614.5 -687.8 
(CH3)3CH (isobutane) -574.8 -634.1 -645.8 -650.0 -595.6 -633.9 -646.0 -650.2 -610.5 -643.5 -651.5 -651.2 -685.7 
C5H8 (spiropentane) -660.4 -714.6 -724.2 -726.9 -681.7 -714.3 -724.3 -727.0 -695.7 -722.1 -728.7 -727.7 -746.0 
C6H6 (benzene) -675.8 -727.5 -735.3 -736.2 -698.6 -727.4 -735.3 -736.4 -711.4 -733.0 -738.5 -736.7 -746.0 

MAD 74.6 36.0 29.2 27.2 59.9 36.1 29.2 27.1 50.6 30.7 26.1 26.6  
MSD -73.4 -32.3 -24.7 -22.5 -58.1 -32.5 -24.7 -22.4 -48.7 -26.7 -21.4 -21.9  
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Table 5.7. Combustion enthalpies at 298 K (kcal/mol) extrapolated from BLYP and the cc-pVnZ, cc-pVnZ[rc](tr), and 
reoptimized basis sets. 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  

Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
CH4 -197.9 -195.6 -194.8 -197.7 -195.4 -194.7 -197.9 -196.7 -196.1 -191.8 
C2H2 -290.1 -289.4 -288.9 -290.0 -288.9 -288.6 -290.1 -289.5 -289.4 -300.2 
C2H4 -302.6 -300.8 -299.8 -302.7 -300.3 -299.6 -303.0 -302.0 -301.5 -316.3 
C2H6 -327.1 -323.9 -322.5 -327.2 -323.3 -322.3 -327.7 -326.1 -325.3 -341.5 
CH3CCH -485.7 -484.2 -483.1 -485.2 -483.6 -482.8 -485.1 -484.2 -483.4 -442.1 
CH2CCH2 (allene) -423.8 -422.2 -421.1 -423.8 -421.5 -420.8 -424.0 -423.1 -422.6 -443.1 
C3H4 (cyclopropene) -451.5 -449.9 -448.8 -451.5 -449.2 -448.4 -451.6 -450.8 -450.3 -464.1 
CH3CHCH2 -443.5 -440.8 -439.3 -443.7 -440.0 -438.9 -444.1 -442.7 -441.9 -460.5 
C3H6 (cyclopropane) -455.0 -452.2 -450.7 -455.1 -451.4 -450.3 -455.5 -454.1 -453.3 -468.4 
C3H8 -475.5 -471.5 -469.6 -475.7 -470.6 -469.2 -476.3 -474.3 -473.2 -530.4 
CH2CHCHCH2 (trans-2-butene) -551.8 -549.4 -546.2 -551.1 -547.2 -545.0 -551.4 -549.9 -547.7 -576.1 
C4H6 (methyl-cyclopropane) -629.5 -626.1 -624.0 -629.6 -624.9 -623.4 -630.1 -628.4 -627.3 -639.4 
C4H6 (bicyclo[1.1.0]butane) -590.7 -588.5 -586.8 -590.9 -587.4 -586.3 -591.2 -590.1 -589.3 -601.7 
C4H6 (cyclobutene) -565.4 -563.1 -561.3 -565.7 -562.0 -560.8 -566.1 -564.9 -564.1 -587.2 
C4H8 (cyclobutane) -599.8 -596.3 -594.1 -600.1 -595.2 -593.6 -600.6 -598.8 -597.7 -650.2 
C4H8 (isobutylene) -583.6 -580.0 -577.9 -583.8 -579.0 -577.5 -584.4 -582.5 -581.4 -645.2 
C4H10 (butane) -615.8 -611.0 -608.5 -616.2 -609.9 -608.1 -616.9 -614.5 -613.1 -687.8 
(CH3)3CH (isobutane) -652.5 -647.8 -645.3 -652.8 -646.6 -644.8 -653.5 -651.2 -649.8 -685.7 
C5H8 (spiropentane) -729.1 -725.9 -723.7 -729.4 -724.6 -723.1 -729.8 -728.2 -727.1 -746.0 
C6H6 (benzene) -738.2 -736.7 -734.6 -738.4 -735.3 -734.0 -738.7 -737.7 -736.8 -746.0 

MAD 25.7 28.0 29.5 25.6 28.9 29.9 25.2 26.4 27.2  
MSD -20.7 -23.4 -25.1 -20.7 -24.4 -25.6 -20.3 -21.7 -22.6  
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Table 5.8. The 86 molecules for which enthalpies of formation at 298K were computed. 
H2 CH3 HCOCOH (glyoxal) CH3CONH2 
CH NH3 CF3CN C4H4O (furan) 
NH C2H2 C2F4 (CH3)2CH 
OH H2CO CH3NH2 (CH3)2NH 
FH NCCN CH3CCH CH3CH2NH2 
CN BF3 CH2CCH2 (allene) CH2CHCHCH2 (trans-2-butene) 
CO NF3 C3H4 (cyclopropene) C4H6 (methyl-cyclopropane) 
N2 CH4 CH3CHO C4H6 (bicyclo[1.1.0]butane) 
NO C2H3 C2H4O (oxirane) C4H6 (cyclobutene) 
O2 H2COH CH2CHCN C4H6 (dimethylacetylene) 
F2 CH3O CH3NO2 CH3COCH3 
CH2 (triplet) CH2CO (ketene) CH3ONO C4H5N (pyrrole) 
CH2 (singlet) HCOOH CH3COF C3H8 
NH2 CH2F2 C2H6 C5H5N (pyridine) 
H2O CHF3 C2H4NH (aziridine) C4H8 (isobutylene) 
CCH (linear) CF4 CH3CH2O C2H5OCH3 
HCN C2H4 HCOOCH3 C6H6 (benzene) 
HCO H3COH CH3COOH (CH3)3N 
CO2 H2NNH2 CH3CHCH2 C5H8 (spiropentane) 
N2O CH3CN C3H6 (cyclopropane) C4H10 (butane) 
NO2 CH3CO CH3CH2OH 

 O3 CH2CHF CH3OCH3   
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Table 5.9. The differences for total energies (in mEh) of the cc-pVnZ[rc](tr) and reoptimized basis sets 
with respect to B3LYP/cc-pVnZ and BLYP/cc-pVnZ. The energies were computed with fixed 
B3LYP/cc-pVTZ geometries. 

B3LYP MSD MAD 
cc-pVDZ[rc] -11.250 11.250 
cc-pVTZ[rc] -2.213 2.213 
cc-pVQZ[rc](-1g) -1.164 1.164 
cc-pV5Z[rc](-2g1h) -0.075 0.083 
P -0.006 0.116 
S3 -0.495 0.502 
S4 -0.863 0.864 
cc-pVDZ-B3LYP -9.248 9.248 
cc-pVTZ-B3LYP -2.205 2.221 
cc-pVQZ-B3LYP -1.122 1.122 
cc-pV5Z-B3LYP -0.087 0.108 
P 0.000 0.179 
S3 -0.567 0.617 
S4 -0.846 0.908 
BLYP     
cc-pVDZ[rc] -16.627 16.627 
cc-pVTZ[rc] -3.486 3.486 
cc-pVQZ[rc](-1g) -1.986 1.986 
cc-pV5Z[rc](-2g1h) -0.340 0.340 
P -0.273 0.274 
S3 -0.999 1.005 
S4 -1.544 1.546 
cc-pVDZ-BLYP -14.140 14.140 
cc-pVTZ-BLYP -3.790 3.790 
cc-pVQZ-BLYP -1.986 1.986 
cc-pV5Z-BLYP -0.391 0.391 
P -0.221 0.248 
S3 -1.308 1.313 
S4 -1.773 1.775 

 

103 



 
 
Table 5.10. B3LYP enthalpies of formation (kcal/mol) computed with the cc-pVnZ basis sets at geometries optimized with B3LYP/cc-
pVTZ and experimental values. MADs and MSDs are also listed. Zero-point energies and thermal corrections were taken from the 
B3LYP/cc-pVTZ frequencies. 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP Expt. 

Molecule D T Q 5 D T Q 5 D T Q 5   

H2 1.83 -1.20 -1.30 -1.30 0.50 -1.23 -1.30 -1.29 0.90 -1.14 -1.25 -1.28 0.00 
CH 143.38 140.75 140.42 140.29 142.74 140.75 140.42 140.31 143.10 140.79 140.48 140.34 142.40 
NH 85.38 81.60 80.94 80.70 84.54 81.58 80.97 80.72 84.70 81.31 80.85 80.69 85.20 
OH 12.94 7.87 6.81 6.42 12.09 7.85 6.83 6.41 12.02 7.25 6.55 6.34 8.90 
FH -56.05 -63.17 -64.71 -65.27 -56.85 -63.21 -64.69 -65.29 -57.45 -64.00 -65.04 -65.41 -65.10 
CN 110.62 105.83 105.02 105.08 109.49 105.79 105.16 105.21 110.47 106.16 105.32 105.27 104.90 
CO -21.37 -25.73 -26.52 -26.26 -22.21 -25.80 -26.34 -26.16 -20.87 -25.29 -25.99 -26.07 -26.40 
N2 3.79 -2.97 -3.97 -4.02 2.79 -3.02 -3.79 -3.84 4.13 -2.68 -3.70 -3.87 0.00 
NO 19.80 17.14 16.44 16.55 20.20 17.03 16.67 16.71 21.62 17.51 16.95 16.73 21.60 
O2 -3.96 -4.43 -4.79 -4.54 -2.37 -4.57 -4.57 -4.47 0.07 -3.83 -3.94 -4.39 0.00 
F2 -2.02 -3.01 -2.57 -2.10 -1.08 -3.10 -2.51 -2.14 1.06 -2.02 -2.03 -2.07 0.00 
CH2 (triplet) 96.25 91.75 91.38 91.30 94.90 91.73 91.41 91.33 95.81 91.78 91.45 91.35 93.50 
CH2 (singlet) 107.16 102.00 101.39 101.19 105.66 101.99 101.42 101.24 106.43 102.12 101.53 101.29 102.80 
NH2 47.15 40.08 38.87 38.40 45.37 40.05 38.94 38.46 46.18 39.68 38.76 38.41 44.50 
H2O -46.33 -55.67 -57.69 -58.47 -48.06 -55.71 -57.62 -58.45 -47.42 -56.64 -58.11 -58.60 -57.80 
CCH (linear) 144.38 136.41 135.67 135.63 142.54 136.39 135.73 135.70 143.89 136.73 135.85 135.73 135.10 
HCN 36.18 28.69 27.73 27.81 34.41 28.61 27.88 27.91 35.93 28.85 28.06 27.96 31.50 
HCO 11.55 6.37 5.45 5.52 10.75 6.28 5.64 5.64 12.06 6.69 5.95 5.71 10.00 
CO2 -91.32 -97.92 -98.91 -98.39 -92.08 -98.07 -98.62 -98.26 -90.18 -97.13 -98.00 -98.10 -94.10 
N2O 15.87 9.91 8.82 9.14 16.33 9.70 9.17 9.33 19.04 10.81 9.70 9.42 19.60 
NO2 2.22 -1.17 -2.41 -2.12 3.89 -1.41 -1.97 -1.85 6.53 -0.54 -1.36 -1.77 7.90 
O3 37.84 34.66 33.48 33.64 40.72 34.40 33.94 33.81 44.12 35.15 34.78 33.90 34.10 
CH3 38.98 32.29 31.87 31.79 36.64 32.26 31.92 31.85 38.06 32.29 31.97 31.87 35.10 
NH3 -3.44 -13.35 -15.01 -15.71 -6.19 -13.40 -14.88 -15.62 -4.60 -13.87 -15.10 -15.67 -11.00 
C2H2 64.76 54.54 53.71 53.68 62.34 54.51 53.79 53.73 64.10 54.69 53.91 53.75 54.20 
H2CO -21.55 -28.55 -29.57 -29.52 -22.80 -28.65 -29.35 -29.38 -21.34 -28.28 -29.05 -29.32 -26.00 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP Expt. 
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Molecule D T Q 5 D T Q 5 D T Q 5   

NCCN 78.74 68.07 66.56 66.81 76.86 67.87 66.84 66.99 79.69 68.84 67.27 67.11 73.30 
BF3 -264.28 -274.86 -274.42 -273.12 -262.76 -274.99 -274.01 -273.09 -259.95 -271.03 -272.62 -272.93 -271.40 
NF3 -37.02 -41.32 -41.77 -41.15 -33.58 -41.63 -41.36 -41.01 -30.33 -40.40 -40.55 -40.93 -31.60 
CH4 -12.38 -20.06 -20.35 -20.30 -15.44 -20.11 -20.25 -20.22 -13.28 -19.92 -20.09 -20.17 -17.90 
C2H3 76.87 68.03 67.28 67.18 74.31 67.97 67.39 67.32 76.20 68.27 67.53 67.36 71.60 
H2COH 2.18 -6.67 -8.04 -8.32 0.53 -6.80 -7.83 -8.19 2.53 -6.65 -7.75 -8.20 -4.10 
CH3O 6.64 -0.75 -1.71 -1.77 5.17 -0.86 -1.51 -1.64 6.71 -0.62 -1.32 -1.62 5.00 
CH2CO (ketene) -7.34 -16.83 -17.94 -17.71 -9.53 -16.97 -17.68 -17.55 -6.77 -16.13 -17.21 -17.44 -11.40 
HCOOH -84.03 -92.84 -94.25 -94.05 -85.13 -93.04 -93.88 -93.84 -82.92 -92.45 -93.43 -93.75 -90.50 
CH2F2 -102.47 -110.47 -111.10 -110.79 -102.26 -110.60 -110.83 -110.65 -100.44 -109.19 -110.27 -110.58 -107.70 
CHF3 -163.03 -169.28 -169.19 -168.35 -161.39 -169.48 -168.80 -168.16 -158.40 -166.78 -167.80 -168.01 -166.60 
CF4 -222.06 -225.71 -224.64 -223.21 -218.94 -225.98 -224.14 -222.96 -213.96 -221.75 -222.62 -222.73 -223.00 
C2H4 20.79 10.72 9.99 9.92 17.56 10.65 10.13 10.08 19.95 10.96 10.29 10.13 12.50 
H3COH -37.96 -48.72 -50.30 -50.57 -40.22 -48.86 -50.06 -50.42 -38.10 -48.78 -49.97 -50.44 -48.20 
H2NNH2 30.50 17.36 14.91 14.20 27.50 17.18 15.22 14.39 29.81 16.80 15.06 14.36 22.80 
CH3CN 25.92 14.63 13.28 13.37 22.71 14.48 13.54 13.56 25.40 14.97 13.82 13.64 17.70 
CH3CO 2.44 -6.77 -8.13 -8.04 0.28 -6.94 -7.81 -7.83 2.81 -6.29 -7.40 -7.75 -2.50 
CH2CHF -27.35 -37.06 -37.83 -37.70 -29.03 -37.19 -37.59 -37.50 -26.25 -35.98 -37.11 -37.42 -33.20 
HCOCOH (glyoxal) -45.02 -54.17 -55.89 -55.58 -46.01 -54.43 -55.44 -55.29 -43.46 -53.38 -54.73 -55.13 -50.70 
CF3CN -114.79 -122.72 -122.78 -121.52 -113.04 -123.06 -122.22 -121.22 -107.76 -119.34 -120.79 -120.96 -118.40 
C2F4 -160.25 -167.21 -167.19 -166.15 -157.19 -167.56 -166.60 -165.80 -151.84 -162.98 -164.96 -165.58 -157.40 
CH3NH2 3.68 -8.38 -10.08 -10.48 0.16 -8.52 -9.80 -10.29 2.86 -8.49 -9.76 -10.28 -5.50 
CH3CCH 57.34 43.67 42.54 42.55 53.64 43.58 42.73 42.68 56.71 44.04 42.98 42.74 44.20 
CH2CCH2 (allene) 54.15 41.41 40.35 40.31 50.69 41.30 40.53 40.48 53.67 41.81 40.79 40.54 45.50 
C3H4 (cyclopropene) 79.19 67.37 66.24 66.24 76.13 67.21 66.44 66.42 79.02 67.94 66.70 66.48 66.20 
CH3CHO -31.40 -41.86 -43.20 -43.06 -33.94 -42.05 -42.86 -42.83 -31.15 -41.35 -42.41 -42.72 -39.70 
C2H4O (oxirane) -1.92 -13.08 -14.47 -14.55 -3.72 -13.29 -14.17 -14.31 -1.26 -12.52 -13.84 -14.26 -12.60 
CH2CHCN 55.25 41.62 40.04 40.10 51.86 41.44 40.34 40.37 55.05 42.22 40.71 40.47 43.20 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP Expt. 

Molecule D T Q 5 D T Q 5 D T Q 5   
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CH3NO2 15.55 5.76 3.65 3.82 15.58 5.43 4.30 4.21 18.60 6.20 4.93 4.34 -17.80 
CH3ONO -14.33 -22.54 -23.90 -23.55 -14.36 -22.87 -23.30 -23.20 -10.18 -21.73 -22.56 -23.08 -15.90 
CH3COF -98.45 -108.50 -109.58 -109.08 -99.96 -108.74 -109.15 -108.81 -96.51 -107.16 -108.38 -108.66 -105.70 
C2H6 -10.72 -21.62 -22.23 -22.15 -14.88 -21.74 -22.01 -21.97 -11.55 -21.26 -21.74 -21.89 -20.10 
C2H4NH (aziridine) 41.23 28.47 26.72 26.52 38.13 28.22 27.04 26.79 41.16 28.81 27.29 26.85 30.20 
CH3CH2O 17.06 6.20 4.95 5.03 14.48 6.02 5.29 5.25 17.27 6.61 5.67 5.33 -3.30 
HCOOCH3 -76.92 -88.97 -90.49 -90.16 -78.92 -89.25 -89.94 -89.83 -75.55 -88.24 -89.27 -89.71 -85.00 
CH3COOH -92.52 -104.81 -106.54 -106.25 -94.93 -105.09 -106.06 -105.94 -91.30 -104.16 -105.44 -105.82 -103.40 
CH3CHCH2 17.10 3.79 2.74 2.71 12.77 3.65 3.00 2.97 16.44 4.26 3.30 3.06 4.80 
C3H6 (cyclopropane) 26.44 13.36 12.31 12.34 22.32 13.15 12.56 12.59 25.96 13.98 12.88 12.68 12.70 
CH3CH2OH -41.60 -55.64 -57.44 -57.53 -44.98 -55.85 -57.07 -57.29 -41.63 -55.41 -56.76 -57.23 -56.20 
CH3OCH3 -33.13 -45.74 -47.04 -46.98 -36.04 -45.96 -46.62 -46.72 -32.41 -45.22 -46.19 -46.64 -44.00 
CH3CONH2 -46.29 -61.58 -63.95 -63.99 -49.83 -61.86 -63.44 -63.64 -46.35 -61.38 -63.08 -63.56 -57.00 
C4H4O (furan) 4.99 -7.81 -9.49 -9.42 3.22 -8.12 -8.95 -8.97 7.43 -6.67 -8.35 -8.84 -8.30 
(CH3)2CH 31.00 17.79 16.74 16.76 26.38 17.61 17.05 17.03 30.40 18.27 17.37 17.12 21.50 
(CH3)2NH 7.37 -6.85 -8.62 -8.77 3.13 -7.09 -8.19 -8.47 7.01 -6.62 -7.93 -8.41 -4.40 
CH3CH2NH2 1.08 -13.83 -15.73 -15.91 -3.51 -14.05 -15.32 -15.62 0.57 -13.63 -15.08 -15.56 -11.30 
CH2CHCHCH2 (trans-2-butene) 41.05 25.51 24.12 24.03 36.63 25.36 24.44 24.38 40.71 26.18 24.78 24.48 26.30 
C4H6 (methyl-cyclopropane) 60.83 45.55 44.12 44.12 56.60 45.31 44.43 44.41 60.67 46.26 44.80 44.50 47.90 
C4H6 (bicyclo[1.1.0]butane) 70.57 56.86 55.35 55.38 66.99 56.57 55.69 55.70 70.94 57.80 56.09 55.80 51.90 
C4H6 (cyclobutene) 54.36 41.04 39.62 39.65 50.69 40.78 40.02 39.99 54.65 41.73 40.39 40.09 37.40 
C4H6 (dimethylacetylene) 50.91 33.90 32.52 32.56 45.92 33.76 32.81 32.77 50.38 34.54 33.20 32.87 34.80 
CH3COCH3 -40.74 -54.63 -56.29 -56.08 -44.59 -54.89 -55.82 -55.75 -40.38 -53.94 -55.24 -55.60 -51.90 
C4H5N (pyrrole) 39.85 24.71 22.34 22.06 36.83 24.41 22.87 22.56 40.93 25.38 23.20 22.65 25.90 
C3H8 -6.96 -21.10 -22.07 -21.96 -12.18 -21.29 -21.72 -21.68 -7.63 -20.54 -21.34 -21.58 -25.00 
C5H5N (pyridine) 46.94 30.92 28.43 28.34 43.87 30.57 29.06 28.95 48.38 31.91 29.56 29.09 33.60 
C4H8 (isobutylene) 12.53 -4.14 -5.55 -5.52 7.08 -4.35 -5.14 -5.15 12.09 -3.45 -4.72 -5.03 -4.00 
C2H5OCH3 -37.11 -53.11 -54.65 -54.46 -41.20 -53.39 -54.10 -54.10 -36.34 -52.32 -53.50 -53.97 -51.70 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP Expt. 

Molecule D T Q 5 D T Q 5 D T Q 5   
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C6H6 (benzene) 38.16 20.94 18.87 18.70 34.23 20.69 19.38 19.28 39.13 22.14 19.86 19.42 19.70 
(CH3)3N 9.67 -7.01 -8.94 -8.91 4.63 -7.35 -8.34 -8.52 9.81 -6.56 -7.93 -8.41 -5.70 
C5H8 (spiropentane) 65.16 47.18 45.39 45.47 60.07 46.83 45.85 45.89 65.29 48.26 46.37 46.01 44.30 
C4H10 (butane) -11.27 -28.65 -29.98 -29.80 -17.55 -28.91 -29.49 -29.43 -11.82 -27.90 -29.01 -29.31 -30.00 
MAD 8.82 3.16 3.82 3.75 6.57 3.25 3.60 3.60 9.11 2.81 3.34 3.56 

 MSD -8.23 1.73 2.87 2.79 -6.22 1.90 2.57 2.58 -9.05 1.12 2.19 2.51   
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Table 5.11. B3LYP CBS-extrapolated enthalpies of formation (kcal/mol) computed with the cc-pVnZ, cc-pVnZ[rc](tr) , and cc-pVnZ-
B3LYP basis sets at geometries optimized with B3LYP/cc-pVTZ. MADs and MSDs from experiment are also listed. Zero-point energies 
and thermal corrections were taken from the B3LYP/cc-pVTZ frequencies. 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP   
Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 

H2 1.32 1.46 1.35 -1.31 -1.38 -1.32 -1.30 -1.35 -1.28 0.00 
CH 140.22 140.30 140.40 140.24 140.34 140.43 140.29 140.37 140.46 142.40 
NH 80.56 80.80 80.95 80.60 80.86 80.99 80.60 80.71 80.85 85.20 
OH 6.20 6.64 6.86 6.21 6.69 6.88 6.18 6.37 6.56 8.90 
FH -65.59 -64.94 -64.63 -65.59 -64.90 -64.62 -65.63 -65.30 -65.03 -65.10 
CN 104.84 104.97 105.16 105.02 105.12 105.27 105.04 105.27 105.45 104.90 
CO -26.54 -26.48 -26.30 -26.35 -26.34 -26.21 -26.25 -26.10 -25.92 -26.40 
N2 -4.29 -4.13 -3.86 -4.05 -3.95 -3.73 -4.12 -3.90 -3.63 0.00 
NO 16.33 16.51 16.62 16.60 16.59 16.71 16.61 16.77 16.93 21.60 
O2 -4.70 -4.63 -4.61 -4.49 -4.66 -4.59 -4.32 -4.31 -4.17 0.00 
F2 -2.07 -2.57 -2.57 -2.04 -2.65 -2.61 -2.06 -2.22 -2.12 0.00 
CH2 (triplet) 91.22 91.18 91.35 91.26 91.28 91.40 91.29 91.26 91.41 93.50 
CH2 (singlet) 101.06 101.17 101.37 101.12 101.28 101.43 101.17 101.34 101.51 102.80 
NH2 38.16 38.59 38.89 38.24 38.73 38.96 38.22 38.48 38.74 44.50 
H2O -58.89 -58.01 -57.60 -58.83 -57.89 -57.54 -58.91 -58.45 -58.08 -57.80 
CCH (linear) 135.44 135.38 135.67 135.52 135.52 135.76 135.51 135.61 135.89 135.10 
HCN 27.52 27.57 27.85 27.71 27.74 27.96 27.76 27.81 28.08 31.50 
HCO 5.25 5.41 5.62 5.46 5.54 5.72 5.55 5.74 5.95 10.00 
CO2 -98.78 -98.85 -98.60 -98.49 -98.70 -98.48 -98.33 -98.22 -97.95 -94.10 
N2O 8.76 8.87 9.10 9.16 8.97 9.21 9.17 9.40 9.72 19.60 
NO2 -2.54 -2.18 -2.02 -2.02 -2.09 -1.90 -1.91 -1.72 -1.44 7.90 
O3 33.27 33.66 33.81 33.72 33.64 33.87 33.99 34.01 34.35 34.10 
CH3 31.69 31.55 31.79 31.77 31.72 31.88 31.81 31.67 31.88 35.10 
NH3 -16.03 -15.42 -15.01 -15.89 -15.20 -14.88 -15.90 -15.54 -15.17 -11.00 
C2H2 53.46 53.31 53.68 53.54 53.49 53.78 53.57 53.49 53.84 54.20 
H2CO -29.82 -29.70 -29.43 -29.57 -29.53 -29.31 -29.48 -29.36 -29.09 -26.00 
NCCN 66.34 66.42 66.83 66.67 66.63 66.97 66.70 66.98 67.40 73.30 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP   
Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 

BF3 -273.24 -274.69 -274.38 -272.97 -274.66 -274.30 -273.31 -272.98 -272.54 -271.40 
NF3 -41.40 -41.68 -41.53 -40.99 -41.78 -41.53 -40.88 -41.25 -40.90 -31.60 
CH4 -20.38 -20.72 -20.45 -20.25 -20.48 -20.32 -20.19 -20.47 -20.24 -17.90 
C2H3 67.00 66.91 67.24 67.17 67.14 67.38 67.19 67.19 67.48 71.60 
H2COH -8.65 -8.31 -7.95 -8.41 -8.13 -7.84 -8.41 -8.18 -7.82 -4.10 
CH3O -2.03 -1.92 -1.64 -1.79 -1.75 -1.52 -1.76 -1.69 -1.41 5.00 
CH2CO (ketene) -18.06 -18.13 -17.77 -17.77 -17.89 -17.62 -17.70 -17.57 -17.21 -11.40 
HCOOH -94.49 -94.33 -93.98 -94.08 -94.11 -93.82 -93.96 -93.86 -93.50 -90.50 
CH2F2 -111.03 -111.30 -111.01 -110.74 -111.20 -110.92 -110.82 -110.62 -110.28 -107.70 
CHF3 -168.48 -169.27 -169.09 -168.07 -169.23 -168.99 -168.25 -168.11 -167.79 -166.60 
CF4 -223.18 -224.61 -224.56 -222.64 -224.61 -224.47 -222.95 -222.90 -222.60 -223.00 
C2H4 9.74 9.56 9.92 9.95 9.84 10.09 9.98 9.87 10.20 12.50 
H3COH -50.96 -50.63 -50.20 -50.69 -50.39 -50.05 -50.67 -50.47 -50.06 -48.20 
H2NNH2 13.65 14.51 15.06 14.00 14.81 15.25 14.01 14.48 15.00 22.80 
CH3CN 12.98 13.00 13.42 13.29 13.30 13.61 13.36 13.43 13.83 17.70 
CH3CO -8.44 -8.29 -7.93 -8.06 -8.02 -7.74 -7.99 -7.78 -7.43 -2.50 
CH2CHF -37.93 -38.16 -37.81 -37.62 -37.94 -37.65 -37.67 -37.51 -37.13 -33.20 
HCOCOH (glyoxal) -56.13 -55.87 -55.50 -55.60 -55.62 -55.30 -55.43 -55.12 -54.72 -50.70 
CF3CN -121.78 -122.77 -122.53 -121.16 -122.67 -122.39 -121.33 -121.16 -120.72 -118.40 
C2F4 -166.34 -167.23 -167.01 -165.66 -167.18 -166.88 -166.01 -165.33 -164.87 -157.40 
CH3NH2 -10.88 -10.50 -10.02 -10.55 -10.16 -9.81 -10.53 -10.30 -9.86 -5.50 
CH3CCH 42.24 42.03 42.53 42.46 42.34 42.71 42.50 42.41 42.88 44.20 
CH2CCH2 (allene) 40.04 39.86 40.32 40.28 40.16 40.50 40.32 40.26 40.70 45.50 
C3H4 (cyclopropene) 65.93 65.83 66.27 66.22 66.10 66.43 66.18 66.28 66.71 66.20 
CH3CHO -43.47 -43.42 -43.02 -43.06 -43.12 -42.82 -42.95 -42.86 -42.47 -39.70 
C2H4O (oxirane) -14.93 -14.80 -14.37 -14.52 -14.56 -14.20 -14.54 -14.32 -13.88 -12.60 
CH2CHCN 39.65 39.67 40.18 40.06 40.02 40.41 40.10 40.25 40.75 43.20 
CH3NO2 3.18 3.69 4.09 3.92 3.96 4.34 4.11 4.30 4.78 -17.80 
  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP   
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Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
CH3ONO -24.00 -23.90 -23.58 -23.33 -23.66 -23.36 -23.20 -23.22 -22.79 -15.90 
CH3COF -109.48 -109.71 -109.34 -108.98 -109.44 -109.13 -108.94 -108.80 -108.39 -105.70 
C2H6 -22.33 -22.69 -22.30 -22.04 -22.33 -22.09 -21.98 -22.25 -21.90 -20.10 
C2H4NH (aziridine) 26.07 26.35 26.85 26.51 26.66 27.05 26.52 26.79 27.27 30.20 
CH3CH2O 4.66 4.66 5.07 5.06 4.96 5.28 5.14 5.15 5.55 -3.30 
HCOOCH3 -90.66 -90.69 -90.23 -90.04 -90.34 -89.97 -89.90 -89.92 -89.45 -85.00 
CH3COOH -106.80 -106.71 -106.24 -106.23 -106.37 -105.99 -106.09 -106.01 -105.52 -103.40 
CH3CHCH2 2.43 2.21 2.70 2.81 2.62 2.95 2.85 2.73 3.18 4.80 
C3H6 (cyclopropane) 12.05 11.81 12.29 12.43 12.18 12.51 12.42 12.38 12.83 12.70 
CH3CH2OH -58.02 -57.84 -57.30 -57.59 -57.48 -57.07 -57.51 -57.40 -56.88 -56.20 
CH3OCH3 -47.35 -47.43 -46.96 -46.87 -47.07 -46.71 -46.81 -46.87 -46.39 -44.00 
CH3CONH2 -64.65 -64.25 -63.65 -64.04 -63.82 -63.35 -63.93 -63.71 -63.13 -57.00 
C4H4O (furan) -9.90 -9.79 -9.30 -9.19 -9.41 -9.00 -9.20 -8.93 -8.38 -8.30 
(CH3)2CH 16.47 16.24 16.72 16.89 16.67 16.98 16.93 16.79 17.24 21.50 
(CH3)2NH -9.23 -9.06 -8.51 -8.72 -8.61 -8.22 -8.67 -8.58 -8.06 -4.40 
CH3CH2NH2 -16.40 -16.19 -15.61 -15.91 -15.73 -15.32 -15.86 -15.72 -15.18 -11.30 
CH2CHCHCH2 (trans-2-butene) 23.67 23.52 24.10 24.14 23.99 24.40 24.16 24.17 24.71 26.30 
C4H6 (methyl-cyclopropane) 43.73 43.58 44.15 44.18 43.98 44.40 44.16 44.21 44.76 47.90 
C4H6 (bicyclo[1.1.0]butane) 54.95 54.94 55.46 55.46 55.30 55.69 55.38 55.65 56.16 51.90 
C4H6 (cyclobutene) 39.26 39.21 39.71 39.79 39.61 39.98 39.78 39.86 40.35 37.40 
C4H6 (dimethylacetylene) 32.18 31.88 32.50 32.52 32.32 32.76 32.57 32.48 33.08 34.80 
CH3COCH3 -56.58 -56.60 -56.08 -56.02 -56.17 -55.79 -55.89 -55.84 -55.33 -51.90 
C4H5N (pyrrole) 21.45 21.95 22.56 22.19 22.42 22.90 22.15 22.64 23.26 25.90 
C3H8 -22.24 -22.62 -22.11 -21.80 -22.13 -21.81 -21.74 -21.99 -21.52 -25.00 
C5H5N (pyridine)  27.66 28.10 28.73 28.55 28.62 29.13 28.52 29.02 29.68 33.60 
C4H8 (isobutylene) -5.91 -6.16 -5.55 -5.36 -5.62 -5.20 -5.31 -5.43 -4.85 -4.00 
C2H5OCH3 -54.92 -55.13 -54.53 -54.28 -54.64 -54.21 -54.19 -54.32 -53.73 -51.70 
C6H6 (benzene) 18.16 18.32 18.98 18.94 18.88 19.39 18.87 19.28 19.95 19.70 
  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP   

Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
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(CH3)3N -9.45 -9.42 -8.78 -8.75 -8.86 -8.42 -8.68 -8.73 -8.11 -5.70 
C5H8 (spiropentane) 44.97 44.82 45.49 45.62 45.33 45.81 45.56 45.72 46.37 44.30 
C4H10 (butane) -30.19 -30.60 -29.97 -29.59 -29.99 -29.59 -29.54 -29.79 -29.20 -30.00 

MAD 4.00 4.01 3.73 3.74 3.82 3.62 3.71 3.63 3.37  
MSD 3.10 3.10 2.73 2.76 2.88 2.58 2.74 2.64 2.25  
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Table 5.12. BLYP enthalpies of formation (kcal/mol) computed with the cc-pVnZ basis sets at geometries optimized with B3LYP/cc-
pVTZ and experimental values. MADs and MSDs are also listed. Zero-point energies and thermal corrections were taken from the 
B3LYP/cc-pVTZ frequencies. 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 

H2 3.00 -0.44 -0.51 -0.47 1.20 -0.47 -0.51 -0.47 1.88 -0.31 -0.42 -0.45 0.00 

CH 143.56 140.73 140.40 140.33 142.72 140.74 140.42 140.31 143.32 140.80 140.50 140.35 142.40 
NH 84.41 80.39 79.67 79.41 83.38 80.38 79.72 79.44 83.59 80.03 79.58 79.40 85.20 
OH 12.11 6.71 5.52 5.05 11.02 6.67 5.54 5.05 10.83 5.88 5.19 4.95 8.90 
FH -57.13 -64.60 -66.35 -66.95 -58.18 -64.65 -66.32 -67.04 -59.04 -65.76 -66.80 -67.22 -65.10 
CN 98.40 93.90 93.23 93.49 97.01 93.85 93.39 93.56 98.75 94.49 93.69 93.66 104.90 
CO -28.38 -32.22 -32.86 -32.36 -29.43 -32.31 -32.66 -32.30 -27.09 -31.44 -32.11 -32.17 -26.40 

N2 -6.85 -13.31 -14.19 -14.12 -8.08 -13.35 -14.00 -13.94 -5.68 -12.73 -13.79 -13.96 0.00 

NO 7.61 5.77 5.19 5.44 8.12 5.63 5.43 5.60 10.49 6.45 5.86 5.63 21.60 

O2 -18.28 -17.24 -17.39 -16.97 -16.19 -17.42 -17.19 -16.90 -12.55 -16.16 -16.33 -16.77 0.00 

F2 -15.48 -14.95 -14.22 -13.43 -14.11 -15.07 -14.17 -13.60 -10.66 -13.52 -13.41 -13.47 0.00 

CH2 (triplet) 98.92 94.05 93.69 93.71 97.12 94.05 93.76 93.70 98.44 94.14 93.84 93.72 93.50 

CH2 (singlet) 108.66 103.00 102.37 102.25 106.68 103.00 102.44 102.25 107.79 103.15 102.59 102.31 102.80 

NH2 46.27 38.75 37.44 36.95 44.04 38.72 37.54 37.00 44.99 38.20 37.35 36.93 44.50 

H2O -47.05 -56.88 -59.11 -60.01 -49.30 -56.95 -59.03 -59.98 -48.72 -58.21 -59.63 -60.16 -57.80 

CCH (linear) 140.95 132.88 132.22 132.43 138.63 132.88 132.35 132.40 140.76 133.39 132.57 132.45 135.10 
HCN 29.38 21.95 21.06 21.38 27.19 21.86 21.28 21.44 29.64 22.37 21.61 21.53 31.50 
HCO 4.20 -0.49 -1.28 -0.95 3.18 -0.60 -1.04 -0.87 5.46 0.16 -0.52 -0.76 10.00 

CO2 -104.88 -110.05 -110.74 -109.77 -105.79 -110.26 -110.38 -109.68 -102.36 -108.63 -109.39 -109.45 -94.10 

N2O -6.51 -10.69 -11.51 -10.85 -5.90 -10.96 -11.12 -10.66 -1.39 -9.15 -10.23 -10.49 19.60 

NO2 -21.79 -23.11 -24.14 -23.55 -19.69 -23.44 -23.69 -23.27 -15.40 -21.90 -22.74 -23.15 7.90 

O3 6.05 5.93 5.05 5.47 9.89 5.58 5.48 5.63 15.09 7.08 6.63 5.78 34.10 

CH3 42.57 35.24 34.86 34.92 39.47 35.23 34.96 34.94 41.53 35.37 35.09 34.98 35.10 

NH3 -3.22 -13.74 -15.53 -16.30 -6.70 -13.80 -15.36 -16.20 -4.85 -14.44 -15.60 -16.25 -11.00 

C2H2 63.30 52.83 52.08 52.33 60.22 52.84 52.25 52.27 63.01 53.20 52.49 52.33 54.20 

H2CO -26.11 -32.78 -33.67 -33.34 -27.73 -32.91 -33.39 -33.23 -25.22 -32.14 -32.85 -33.12 -26.00 

NCCN 61.23 51.17 49.87 50.63 58.89 50.98 50.28 50.70 63.55 52.57 51.03 50.90 73.30 
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 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 

BF3 -273.53 -279.98 -278.81 -276.59 -271.29 -280.19 -278.27 -276.72 -265.20 -275.76 -276.14 -276.40 -271.40 

NF3 -62.86 -63.06 -62.95 -61.62 -58.34 -63.47 -62.53 -61.70 -52.70 -61.15 -61.12 -61.51 -31.60 

CH4 -7.59 -16.10 -16.30 -16.04 -11.68 -16.13 -16.13 -15.99 -8.65 -15.72 -15.83 -15.93 -17.90 

C2H3 77.80 68.58 67.90 68.08 74.46 68.55 68.10 68.12 77.35 69.03 68.37 68.19 71.60 

H2COH 0.68 -7.94 -9.24 -9.32 -1.46 -8.08 -8.98 -9.22 1.50 -7.74 -8.74 -9.20 -4.10 

CH3O 5.66 -1.85 -2.80 -2.64 3.69 -1.97 -2.53 -2.54 6.02 -1.48 -2.17 -2.50 5.00 

CH2CO (ketene) -14.28 -23.22 -24.10 -23.42 -17.08 -23.37 -23.75 -23.34 -12.68 -22.01 -22.97 -23.18 -11.40 

HCOOH -92.81 -100.47 -101.69 -101.09 -94.16 -100.73 -101.24 -100.91 -90.50 -99.57 -100.44 -100.75 -90.50 

CH2F2 -107.74 -114.07 -114.40 -113.51 -107.41 -114.26 -114.06 -113.54 -103.99 -112.13 -113.06 -113.39 -107.70 

CHF3 -173.13 -176.21 -175.55 -173.86 -170.90 -176.50 -175.10 -173.91 -165.48 -172.61 -173.40 -173.61 -166.60 

CF4 -236.53 -235.39 -233.43 -230.82 -232.37 -235.80 -232.86 -230.89 -223.83 -229.81 -230.35 -230.44 -223.00 

C2H4 23.82 13.28 12.67 12.91 19.62 13.24 12.90 12.99 23.25 13.80 13.23 13.07 12.50 

H3COH -36.92 -47.82 -49.39 -49.43 -39.89 -47.97 -49.07 -49.31 -36.80 -47.69 -48.81 -49.30 -48.20 

H2NNH2 27.94 14.49 11.89 11.23 24.17 14.29 12.28 11.43 27.17 13.85 12.20 11.41 22.80 

CH3CN 22.42 10.98 9.76 10.26 18.27 10.84 10.13 10.36 22.45 11.75 10.67 10.50 17.70 

CH3CO -1.83 -10.69 -11.90 -11.39 -4.71 -10.89 -11.48 -11.26 -0.71 -9.76 -10.78 -11.13 -2.50 

CH2CHF -30.08 -38.87 -39.35 -38.68 -32.21 -39.01 -39.02 -38.63 -27.63 -37.24 -38.17 -38.48 -33.20 

HCOCOH (glyoxal) -56.41 -64.13 -65.59 -64.71 -57.68 -64.45 -65.03 -64.49 -53.24 -62.63 -63.85 -64.23 -50.70 

CF3CN -134.95 -138.61 -137.92 -135.44 -132.54 -139.06 -137.23 -135.45 -123.56 -133.62 -134.82 -134.98 -118.40 

C2F4 -179.84 -181.49 -180.59 -178.25 -175.77 -181.98 -179.91 -178.28 -166.46 -175.64 -177.22 -177.84 -157.40 

CH3NH2 6.48 -6.09 -7.81 -8.00 1.93 -6.24 -7.43 -7.83 5.69 -6.05 -7.22 -7.80 -5.50 

CH3CCH 58.97 44.93 43.94 44.41 54.18 44.89 44.28 44.40 58.86 45.71 44.75 44.51 44.20 

CH2CCH2 (allene) 54.58 41.62 40.71 41.14 50.14 41.56 41.03 41.17 54.76 42.42 41.53 41.28 45.50 

C3H4 (cyclopropene) 81.35 69.34 68.33 68.81 77.31 69.20 68.68 68.86 81.81 70.30 69.19 68.96 66.20 

CH3CHO -32.96 -43.16 -44.32 -43.71 -36.33 -43.36 -43.86 -43.55 -31.92 -42.12 -43.06 -43.37 -39.70 

C2H4O (oxirane) -2.82 -13.49 -14.74 -14.40 -5.25 -13.72 -14.33 -14.23 -1.30 -12.50 -13.71 -14.13 -12.60 

CH2CHCN 49.31 35.84 34.44 35.04 45.01 35.69 34.89 35.17 50.12 36.97 35.57 35.35 43.20 

CH3NO2 -1.71 -9.54 -11.41 -10.73 -1.79 -9.95 -10.67 -10.37 3.22 -8.39 -9.59 -10.14 -17.80 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
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Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 

CH3ONO -32.82 -38.96 -40.00 -39.13 -32.86 -39.37 -39.31 -38.82 -26.34 -37.32 -38.09 -38.59 -15.90 

CH3COF -105.29 -113.79 -114.51 -113.30 -107.28 -114.09 -113.96 -113.18 -101.56 -111.62 -112.65 -112.92 -105.70 

C2H6 -2.80 -14.57 -15.06 -14.59 -8.38 -14.65 -14.70 -14.48 -3.57 -13.80 -14.20 -14.36 -20.10 

C2H4NH (aziridine) 43.11 30.25 28.56 28.75 39.04 30.00 29.01 28.94 43.58 30.93 29.53 29.05 30.20 

CH3CH2O 19.23 8.22 7.01 7.52 15.76 8.03 7.49 7.68 19.96 9.07 8.18 7.82 -3.30 

HCOOCH3 -83.44 -94.15 -95.38 -94.43 -85.96 -94.49 -94.69 -94.17 -80.40 -92.64 -93.53 -93.94 -85.00 

CH3COOH -97.65 -108.92 -110.44 -109.55 -100.80 -109.27 -109.82 -109.31 -95.12 -107.59 -108.72 -109.09 -103.40 

CH3CHCH2 23.19 9.37 8.48 8.94 17.52 9.28 8.90 9.09 23.01 10.30 9.47 9.23 4.80 

C3H6 (cyclopropane) 34.41 20.76 19.86 20.39 28.89 20.59 20.26 20.52 34.35 21.83 20.87 20.66 12.70 

CH3CH2OH -37.46 -51.66 -53.41 -53.05 -41.93 -51.88 -52.89 -52.88 -36.99 -51.01 -52.26 -52.76 -56.20 

CH3OCH3 -30.18 -42.51 -43.61 -43.06 -33.99 -42.74 -43.06 -42.86 -28.50 -41.40 -42.26 -42.72 -44.00 

CH3CONH2 -49.52 -64.19 -66.41 -65.91 -54.04 -64.51 -65.75 -65.62 -48.58 -63.46 -64.98 -65.46 -57.00 

C4H4O (furan) 1.76 -9.56 -10.95 -10.15 -0.46 -9.88 -10.24 -9.87 6.26 -7.68 -9.15 -9.62 -8.30 

(CH3)2CH 39.99 26.02 25.09 25.62 33.84 25.88 25.58 25.77 39.68 26.97 26.19 25.92 21.50 

(CH3)2NH 12.74 -1.79 -3.47 -3.16 7.24 -2.03 -2.86 -2.92 12.94 -1.10 -2.29 -2.81 -4.40 

CH3CH2NH2 6.86 -8.53 -10.38 -10.11 0.88 -8.74 -9.80 -9.89 6.69 -7.94 -9.25 -9.77 -11.30 

CH2CHCHCH2 (trans-2-butene) 44.78 29.16 27.99 28.51 39.14 29.08 28.48 28.69 45.45 30.37 29.16 28.86 26.30 

C4H6 (methyl-cyclopropane) 66.23 50.70 49.44 50.07 60.67 50.51 49.95 50.20 66.88 51.97 50.67 50.35 47.90 

C4H6 (bicyclo[1.1.0]butane) 77.72 63.95 62.60 63.27 72.95 63.69 63.14 63.43 78.99 65.44 63.89 63.59 51.90 

C4H6 (cyclobutene) 60.37 47.00 45.73 46.41 55.49 46.77 46.33 46.58 61.55 48.25 47.05 46.76 37.40 

C4H6 (dimethylacetylene) 55.67 38.15 36.99 37.68 49.15 38.08 37.48 37.71 55.83 39.43 38.21 37.88 34.80 

CH3COCH3 -38.99 -52.65 -54.10 -53.23 -44.10 -52.94 -53.45 -53.02 -37.66 -51.27 -52.42 -52.78 -51.90 

C4H5N (pyrrole) 39.65 25.40 23.23 23.63 35.87 25.12 23.97 23.96 42.35 26.64 24.70 24.14 25.90 

C3H8 4.09 -10.89 -11.71 -11.03 -2.87 -11.03 -11.16 -10.87 3.76 -9.75 -10.45 -10.70 -25.00 

C5H5N (pyridine) 45.27 30.29 28.01 28.75 41.44 29.98 28.88 29.14 48.74 32.05 29.89 29.40 33.60 

C4H8 (isobutylene) 21.83 4.66 3.45 4.15 14.70 4.50 4.07 4.36 22.14 6.00 4.89 4.56 -4.00 

C2H5OCH3 -30.99 -46.76 -48.06 -47.18 -36.36 -47.04 -47.31 -46.92 -29.04 -45.18 -46.21 -46.70 -51.70 

C6H6 (benzene) 42.43 25.87 24.06 24.75 37.44 25.70 24.82 25.08 45.20 27.82 25.79 25.33 19.70 

 cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
Molecule D T Q 5 D T Q 5 D T Q 5 Expt. 
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(CH3)3N 17.76 1.02 -0.74 -0.06 11.26 0.69 0.09 0.23 18.94 2.17 0.94 0.41 -5.70 

C5H8 (spiropentane) 75.78 57.51 55.90 56.79 68.96 57.19 56.62 57.00 76.88 59.28 57.57 57.20 44.30 

C4H10 (butane) 2.94 -15.26 -16.39 -15.48 -5.38 -15.46 -15.65 -15.26 3.01 -13.76 -14.73 -15.05 -30.00 

MAD 12.23 7.92 8.11 7.93 9.51 7.99 8.03 7.92 11.45 7.55 7.77 7.88  
MSD -5.28 4.15 5.12 4.61 -2.68 4.33 4.72 4.49 -7.11 3.08 4.03 4.35  
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Table 5.13. BLYP CBS-extrapolated enthalpies of formation (kcal/mol) computed with the cc-pVnZ, cc-pVnZ[rc](tr) , and cc-pVnZ-
B3LYP basis sets at geometries optimized with B3LYP/cc-pVTZ. MADs and MSDs from experiment are also listed. Zero-point energies 
and thermal corrections were taken from the B3LYP/cc-pVTZ frequencies. 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 

H2 -0.50 -0.68 -0.57 -0.49 -0.58 -0.53 -0.47 -0.53 -0.45 0.00 
CH 140.25 140.29 140.40 140.24 140.35 140.43 140.30 140.37 140.47 142.40 
NH 79.26 79.53 79.69 79.31 79.61 79.74 79.31 79.42 79.56 85.20 
OH 4.80 5.34 5.57 4.83 5.40 5.60 4.81 4.99 5.19 8.90 
FH -67.33 -66.56 -66.23 -67.37 -66.53 -66.24 -67.43 -67.09 -66.81 -65.10 
CN 93.24 93.23 93.40 93.40 93.39 93.51 93.44 93.63 93.81 104.90 
CO -32.64 -32.74 -32.59 -32.47 -32.61 -32.50 -32.35 -32.22 -32.04 -26.40 
N2 -14.38 -14.31 -14.07 -14.13 -14.12 -13.92 -14.22 -14.00 -13.71 0.00 
NO 5.22 5.33 5.41 5.51 5.39 5.48 5.52 5.69 5.85 21.60 
O2 -17.10 -17.13 -17.17 -16.89 -17.22 -17.19 -16.73 -16.67 -16.53 0.00 
F2 -13.38 -14.09 -14.15 -13.45 -14.26 -14.27 -13.42 -13.63 -13.54 0.00 
CH2 (triplet) 93.61 93.50 93.68 93.63 93.63 93.75 93.67 93.62 93.78 93.50 
CH2 (singlet) 102.10 102.15 102.37 102.13 102.30 102.45 102.21 102.36 102.54 102.80 
NH2 36.68 37.15 37.47 36.78 37.33 37.57 36.78 37.01 37.28 44.50 
H2O -60.47 -59.44 -59.01 -60.38 -59.29 -58.93 -60.45 -60.02 -59.64 -57.80 
CCH (linear) 132.22 131.99 132.28 132.24 132.16 132.38 132.25 132.31 132.59 135.10 
HCN 21.07 20.97 21.25 21.25 21.17 21.37 21.34 21.35 21.62 31.50 
HCO -1.24 -1.23 -1.05 -1.03 -1.09 -0.95 -0.90 -0.75 -0.54 10.00 
CO2 -110.16 -110.50 -110.33 -109.85 -110.36 -110.22 -109.65 -109.59 -109.35 -94.10 
N2O -11.21 -11.30 -11.14 -10.79 -11.21 -11.04 -10.75 -10.51 -10.20 19.60 
NO2 -23.97 -23.73 -23.66 -23.43 -23.69 -23.57 -23.30 -23.06 -22.80 7.90 
O3 5.13 5.43 5.46 5.58 5.31 5.45 5.84 5.95 6.26 34.10 
CH3 34.81 34.55 34.80 34.87 34.77 34.92 34.93 34.75 34.97 35.10 
NH3 -16.65 -15.97 -15.54 -16.47 -15.68 -15.37 -16.44 -16.11 -15.73 -11.00 
C2H2 52.08 51.75 52.12 52.11 51.97 52.24 52.17 52.03 52.39 54.20 
H2CO -33.65 -33.71 -33.46 -33.40 -33.51 -33.33 -33.26 -33.17 -32.91 -26.00 
NCCN 50.11 49.90 50.27 50.43 50.15 50.43 50.49 50.73 51.16 73.30 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 

BF3 -276.68 -278.68 -278.55 -276.45 -278.74 -278.54 -276.43 -276.77 -276.39 -271.40 
NF3 -61.86 -62.50 -62.53 -61.59 -62.78 -62.66 -61.41 -61.78 -61.49 -31.60 
CH4 -16.14 -16.66 -16.37 -16.01 -16.34 -16.20 -15.93 -16.26 -16.02 -17.90 
C2H3 67.86 67.59 67.93 68.00 67.87 68.09 68.05 67.98 68.29 71.60 
H2COH -9.67 -9.44 -9.10 -9.42 -9.22 -8.96 -9.38 -9.20 -8.84 -4.10 
CH3O -2.94 -2.94 -2.66 -2.69 -2.73 -2.51 -2.62 -2.56 -2.27 5.00 
CH2CO (ketene) -23.80 -24.14 -23.83 -23.53 -23.87 -23.66 -23.40 -23.35 -23.00 -11.40 
HCOOH -101.55 -101.60 -101.31 -101.11 -101.37 -101.14 -100.93 -100.87 -100.53 -90.50 
CH2F2 -113.78 -114.36 -114.16 -113.58 -114.33 -114.12 -113.58 -113.42 -113.11 -107.70 
CHF3 -174.00 -175.28 -175.24 -173.73 -175.36 -175.25 -173.79 -173.70 -173.42 -166.60 
CF4 -230.77 -232.91 -233.08 -230.42 -233.11 -233.15 -230.57 -230.60 -230.37 -223.00 
C2H4 12.70 12.29 12.66 12.88 12.64 12.86 12.96 12.76 13.10 12.50 
H3COH -49.86 -49.64 -49.21 -49.57 -49.35 -49.03 -49.50 -49.34 -48.92 -48.20 
H2NNH2 10.62 11.53 12.09 11.04 11.91 12.33 11.11 11.55 12.07 22.80 
CH3CN 9.82 9.58 10.00 10.12 9.96 10.23 10.24 10.25 10.66 17.70 
CH3CO -11.84 -11.92 -11.59 -11.47 -11.61 -11.39 -11.34 -11.18 -10.83 -2.50 
CH2CHF -38.94 -39.50 -39.20 -38.70 -39.28 -39.06 -38.68 -38.61 -38.25 -33.20 
HCOCOH (glyoxal) -65.30 -65.34 -65.04 -64.76 -65.08 -64.84 -64.49 -64.23 -63.86 -50.70 
CF3CN -135.74 -137.40 -137.35 -135.26 -137.44 -137.33 -135.28 -135.17 -134.78 -118.40 
C2F4 -178.46 -180.06 -180.09 -177.99 -180.22 -180.13 -178.16 -177.58 -177.20 -157.40 
CH3NH2 -8.44 -8.18 -7.69 -8.09 -7.75 -7.42 -8.01 -7.83 -7.38 -5.50 
CH3CCH 44.05 43.54 44.04 44.21 43.93 44.26 44.30 44.13 44.61 44.20 
CH2CCH2 (allene) 40.81 40.34 40.80 41.00 40.71 41.01 41.09 40.94 41.39 45.50 
C3H4 (cyclopropene) 68.44 68.06 68.49 68.68 68.40 68.69 68.70 68.71 69.14 66.20 
CH3CHO -44.15 -44.40 -44.02 -43.74 -44.03 -43.78 -43.56 -43.53 -43.15 -39.70 
C2H4O (oxirane) -14.82 -14.92 -14.52 -14.42 -14.64 -14.33 -14.38 -14.22 -13.78 -12.60 
CH2CHCN 34.53 34.23 34.72 34.90 34.65 34.98 35.01 35.07 35.57 43.20 
CH3NO2 -11.41 -11.13 -10.81 -10.63 -10.86 -10.56 -10.36 -10.17 -9.72 -17.80 
  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  
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Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
CH3ONO -39.60 -39.77 -39.54 -38.89 -39.53 -39.33 -38.70 -38.73 -38.32 -15.90 
CH3COF -113.75 -114.38 -114.09 -113.29 -114.11 -113.91 -113.15 -113.08 -112.69 -105.70 
C2H6 -14.81 -15.46 -15.05 -14.53 -14.98 -14.78 -14.43 -14.77 -14.40 -20.10 
C2H4NH (aziridine) 28.24 28.31 28.80 28.68 28.70 29.05 28.76 28.96 29.45 30.20 
CH3CH2O 7.09 6.86 7.27 7.50 7.24 7.52 7.66 7.63 8.04 -3.30 
HCOOCH3 -94.96 -95.34 -94.96 -94.32 -94.95 -94.67 -94.09 -94.18 -93.72 -85.00 
CH3COOH -110.16 -110.38 -109.96 -109.56 -109.99 -109.70 -109.32 -109.31 -108.84 -103.40 
CH3CHCH2 8.61 8.06 8.55 8.95 8.57 8.86 9.06 8.84 9.31 4.80 
C3H6 (cyclopropane) 20.04 19.48 19.96 20.39 19.95 20.23 20.44 20.30 20.76 12.70 
CH3CH2OH -53.61 -53.67 -53.13 -53.16 -53.21 -52.84 -52.99 -52.95 -52.42 -56.20 
CH3OCH3 -43.47 -43.85 -43.41 -42.98 -43.42 -43.12 -42.85 -42.97 -42.50 -44.00 
CH3CONH2 -66.64 -66.52 -65.95 -65.99 -66.00 -65.60 -65.78 -65.65 -65.08 -57.00 
C4H4O (furan) -10.70 -10.96 -10.55 -10.03 -10.57 -10.24 -9.93 -9.77 -9.24 -8.30 
(CH3)2CH 25.27 24.70 25.19 25.66 25.25 25.53 25.77 25.54 26.00 21.50 
(CH3)2NH -3.68 -3.78 -3.23 -3.14 -3.22 -2.87 -3.03 -3.01 -2.48 -4.40 
CH3CH2NH2 -10.68 -10.71 -10.13 -10.17 -10.13 -9.76 -10.02 -9.97 -9.42 -11.30 
CH2CHCHCH2 (trans-2-butene) 28.09 27.56 28.12 28.49 28.11 28.47 28.60 28.47 29.03 26.30 
C4H6 (methyl-cyclopropane) 49.60 49.08 49.64 50.01 49.59 49.94 50.06 50.00 50.56 47.90 
C4H6 (bicyclo[1.1.0]butane) 62.76 62.38 62.88 63.23 62.84 63.17 63.22 63.38 63.90 51.90 
C4H6 (cyclobutene) 45.92 45.52 46.00 46.41 46.02 46.32 46.49 46.46 46.96 37.40 
C4H6 (dimethylacetylene) 37.23 36.51 37.12 37.51 37.06 37.45 37.62 37.43 38.03 34.80 
CH3COCH3 -53.81 -54.21 -53.72 -53.24 -53.68 -53.38 -53.02 -53.06 -52.56 -51.90 
C4H5N (pyrrole) 22.94 23.10 23.65 23.64 23.63 24.03 23.71 24.07 24.68 25.90 
C3H8 -11.38 -12.13 -11.61 -10.95 -11.50 -11.23 -10.83 -11.17 -10.68 -25.00 
C5H5N (pyridine) 27.96 27.99 28.57 28.78 28.58 29.00 28.90 29.28 29.93 33.60 
C4H8 (isobutylene) 3.69 3.00 3.61 4.19 3.68 4.04 4.33 4.09 4.69 -4.00 
C2H5OCH3 -47.71 -48.33 -47.77 -47.06 -47.73 -47.37 -46.87 -47.09 -46.50 -51.70 
C6H6 (benzene) 24.11 23.80 24.41 24.79 24.45 24.87 24.86 25.12 25.79 19.70 
  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP  

Molecule P S3 S4 P S3 S4 P S3 S4 Expt. 
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(CH3)3N -0.68 -1.02 -0.41 0.04 -0.33 0.04 0.19 0.06 0.69 -5.70 
C5H8 (spiropentane) 56.17 55.56 56.22 56.78 56.21 56.62 56.81 56.83 57.50 44.30 
C4H10 (trans-butane) -15.96 -16.84 -16.21 -15.37 -16.05 -15.72 -15.24 -15.60 -14.99 -30.00 

MAD 8.04 8.05 8.00 7.96 8.06 8.00 7.94 7.84 7.76  
MSD 4.98 5.24 4.89 4.63 4.95 4.70 4.55 4.51 4.12  

 

119 



 
 

Table 5.14. The mean CPU savings of single point B3LYP calculations on the 86 
molecule set for the cc-pVnZ(rc)(tr) and reoptimized basis sets as a percentage of the 
B3LYP/cc-pVnZ calculation CPU requirements at each basis set level.  All calculations 
were based upon B3LYP/cc-pVTZ optimized structures.  M represents the number of 
atoms in the molecule, and N represents the number of molecules containing M atoms. 

N molecules with M atoms cc-pVnZ[rc](tr) 
N M D T Q 5 
11 2 --- --- 44.07% 59.34% 
10 3 --- --- 50.22% 65.74% 
7 4 --- 2.79% 55.34% 67.67% 
9 5 --- --- 55.10% 67.96% 
9 6 --- --- 57.43% 68.67% 
10 7 --- --- 58.30% 70.27% 
5 8 --- --- 59.94% 71.78% 
6 9 --- --- 60.55% 72.53% 
10 10 1.21% --- 65.44% 72.87% 
2 11 --- --- 60.97% 72.28% 
3 12 --- --- 61.91% 71.57% 
2 13 --- --- 63.09% 73.68% 
1 14 --- --- 62.62% 73.71% 

N molecules with M atoms cc-pVnZ-B3LYP 
N M D T Q 5 
11 2 --- --- 43.82% 59.43% 
10 3 1.60% 1.62% 51.26% 66.43% 
7 4 --- 1.82% 54.95% 67.49% 
9 5 --- --- 54.93% 68.03% 
9 6 --- --- 56.83% 68.64% 
10 7 --- --- 58.73% 70.43% 
5 8 --- 1.36% 60.28% 71.90% 
6 9 2.50% --- 60.53% 72.73% 
10 10 1.92% 5.37% 63.44% 73.15% 
2 11 1.16% --- 61.19% 72.47% 
3 12 1.15% 2.48% 62.13% 72.58% 
2 13 1.18% --- 63.26% 73.97% 
1 14 --- 2.13% 63.02% 74.11% 
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Table 5.15. The mean CPU savings of single point BLYP calculations on the 86 
molecule set for the cc-pVnZ(rc)(tr) and reoptimized basis sets as a percentage of the 
BLYP/cc-pVnZ calculation CPU requirements at each basis set level.  All calculations 
were based upon B3LYP/cc-pVTZ optimized structures.  M represents the number of 
atoms in the molecule, and N represents the number of molecules containing M atoms. 

N molecules with M atoms BLYP [rc](tr) 
N M D T Q 5 
11 2 --- --- 44.18% 59.62% 
10 3 --- --- 49.81% 65.96% 
7 4 --- --- 54.94% 67.66% 
9 5 --- --- 54.75% 67.66% 
9 6 --- --- 57.15% 68.82% 
10 7 --- --- 58.52% 70.50% 
5 8 --- --- 60.55% 71.46% 
6 9 --- --- 61.28% 71.90% 
10 10 --- --- 61.31% 72.14% 
2 11 --- 2.60% 61.53% 72.69% 
3 12 --- --- 62.67% 72.36% 
2 13 --- --- 63.05% 73.57% 
1 14 --- --- 62.47% 73.36% 

N molecules with M atoms cc-pVnZ-BLYP 
N M D T Q v5z 
11 2 --- --- 43.75% 59.22% 
10 3 --- --- 50.51% 65.94% 
7 4 --- --- 58.54% 69.95% 
9 5 --- --- 55.22% 69.32% 
9 6 --- --- 56.83% 69.38% 
10 7 --- --- 58.57% 69.97% 
5 8 1.05% --- 59.97% 71.32% 
6 9 --- --- 60.89% 71.83% 
10 10 1.52% 1.51% 61.47% 72.36% 
2 11 --- 1.02% 61.75% 72.54% 
3 12 2.25% 1.10% 62.29% 72.75% 
2 13 --- 2.50% 62.81% 73.31% 
1 14 2.27% --- 63.58% 73.79% 
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Table 5.16. The atomization energies for fullerenes using B3LYP and BLYP/cc-pVnZ (in 
kcal/mol), and the differences of the cc-pVnZ[rc](tr) and reoptimized basis sets with 
respect to the corresponding method, and experimental values.  

B3LYP C32 C36 C44 C48 C50 C60 
cc-pVDZ 4415.82 5484.09 6832.51 7298.81 7863.64 9599.85 
cc-pVTZ 4794.47 5525.45 6884.09 7355.47 7923.81 9672.87 
cc-pVQZ 4806.81 5539.24 6900.46 7373.24 7942.25 9694.40 
cc-pVDZ[rc] 4756.55 5868.99 7302.87 7809.52 8400.78 10241.78 
cc-pVTZ[rc] 4930.58 5677.47 7068.97 7558.08 8132.90 9922.69 
cc-pVQZ[rc](-1g) 4863.28 5603.58 6980.73 7460.33 8034.54 9806.88 
cc-pVDZ-B3LYP 4678.93 5779.37 7188.01 7686.01 8268.47 10075.42 
cc-pVTZ-B3LYP 4855.64 5589.97 6960.36 7445.34 8009.41 9774.94 
cc-pVQZ-B3LYP 4814.22 5550.60 6924.42 7406.36 7975.27 9742.14 
BLYP             
cc-pVDZ 4801.92 5531.85 6879.75 7351.45 7912.16 9642.03 
cc-pVTZ 4824.73 5557.63 6912.25 7387.12 7950.58 9688.74 
cc-pVQZ 4836.76 5570.98 6928.02 7404.29 7968.29 9709.31 
cc-pVDZ[rc] 5337.52 6135.58 7616.97 8151.14 8752.37 10646.36 
cc-pVTZ[rc] 5041.18 5799.74 7206.58 7709.03 8283.52 10086.39 
cc-pVQZ[rc](-1g) 4942.54 5691.08 7076.60 7565.43 8138.44 9915.58 
cc-pVDZ-BLYP 5231.48 6012.70 7460.82 7983.82 8572.91 10421.90 
cc-pVTZ-BLYP 4966.67 5712.44 7098.38 7598.16 8161.06 9940.33 
cc-pVQZ-BLYP 4925.94 5670.28 7048.15 7536.91 8104.32 9871.86 
Experiment             
Reference 144 - - - - - 9797.6 
Reference 145 - - - - - 9762.2 
Reference 146 - - - - - 9787.4 
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Table 5.17. CPU time savings relative to the standard cc-pVnZ basis sets in computing 
total energies using the recontracted and reoptimized cc-pVnZ basis sets. 

B3LYP C32 C36 C44 C48 C50 C60 
cc-pVDZ[rc] 1% --- --- --- --- --- 
cc-pVTZ[rc] 1% --- --- --- 1% 2% 
cc-pVQZ[rc](-1g) 66% 58% 63% 63% 62% 66% 
cc-pVDZ-B3LYP --- --- --- 4% --- --- 
cc-pVTZ-B3LYP 11% 9% 17% 15% 15% 16% 
cc-pVQZ-B3LYP 67% 66% 70% 65% 64% 65% 
BLYP       
cc-pVDZ[rc] --- --- --- --- --- --- 
cc-pVTZ[rc] 2% 1% 2% 2% 2% 3% 
cc-pVQZ[rc](-1g) 69% 71% 65% 63% 59% 56% 
cc-pVDZ-BLYP --- 6% --- --- --- --- 
cc-pVTZ-BLYP 16% 16% 22% 16% 15% 13% 
cc-pVQZ-BLYP 72% 75% 70% 70% 68% 56% 

  

123 



 
 

 

 
Figure 5.1. Basis set convergence graphs of CHF3 computed with B3LYP with the cc-
pVnZ (top), cc-pVnZ[rc](tr) (middle) , and cc-pVnZ-B3LYP (bottom). Each graph 
illustrates convergence behavior for the given basis set itself, the basis set with 
augmented functions, the basis set with Counterpoise correction, and the basis set with 
augmented functions and Counterpoise correction. The y-axis illustrates deviation from 
experiment. 
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Figure 5.2. Basis set convergence graphs of C2F4 computed with BLYP with the cc-
pVnZ (top), cc-pVnZ[rc](tr) (middle) , and cc-pVnZ-BLYP (bottom). Each graph 
illustrates convergence behavior for the given basis set itself, the basis set with 
augmented functions, the basis set with Counterpoise correction, and the basis set with 
augmented functions and Counterpoise correction. The y-axis illustrates deviation from 
experiment.  
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Figure 5.3. Basis set convergence graphs of HCOCOH computed with B3LYP with the 
cc-pVnZ (top), cc-pVnZ[rc](tr) (middle) , and cc-pVnZ-B3LYP (bottom). Each graph 
illustrates convergence behavior for the given basis set itself, the basis set with 
augmented functions, the basis set with Counterpoise correction, and the basis set with 
augmented functions and Counterpoise correction. The y-axis illustrates deviation from 
experiment. 
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Figure 5.4. Basis set convergence graphs of HCOCOH computed with BLYP with the 
cc-pVnZ (top), cc-pVnZ[rc](tr) (middle) , and cc-pVnZ-BLYP (bottom). Each graph 
illustrates convergence behavior for the given basis set itself, the basis set with 
augmented functions, the basis set with Counterpoise correction, and the basis set with 
augmented functions and Counterpoise correction. The y-axis illustrates deviation from 
experiment
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CHAPTER 6 

THE FRAGMENT HAMILTONIAN METHOD 

6.1 Introduction 

 Atomistic potentials have long been employed successfully to describe material 

behavior in varying solid-state phases147-150 as well as in applications such as 

defects,151 liquids,152 surfaces,151-153 and alloys,151 in which the electron density of at 

least two unlike elements interact. These atomistic potentials, including the embedded 

atom method (EAM),153 the modified embedded atom method (MEAM),147 the Finnis-

Sinclair potential (FS),150 and the angular embedded atom method (A-EAM),149 describe 

the atomic interactions directly but the electronic interactions are treated indirectly. The 

indirect treatment of the electronic interactions is facilitated by implementing the 

potential energy curve of a solid-state structure, computed from a first principles method, 

usually density functional theory (DFT), as a reference on which the atomistic potential 

is constructed. The face cubic centered (fcc) phase is commonly used as a reference 

solid-state phase because it has the highest number of nearest neighbors and this 

atomic arrangement is the most symmetric of any phase. Thus, the fcc potential energy 

curve would be computed, and the dissociation energy would be subtracted from all 

energy points to produce a binding curve, which isolates information concerning the 

binding energy between atoms through the pertinent electronic interactions. From here, 

the reference binding curve, as well as other DFT computations demanded by the 

atomistic potential, are implemented in the derivation of method-specific parameters 

and densities. On a side note, the multi-state modified embedded atom method (MS-

MEAM) is the only current example of an atomistic potential that requires multiple 

reference structures of different symmetries and nearest-neighbors.148 These, in turn, 
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approximate the electronic information for an atomic system involving anywhere from 

two atoms to thousands of atoms. 

 In EAM, MEAM, FS, and other atomistic potentials, the total energy of the system 

is approximated with the following expression: 

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ��𝐹(𝜌̅𝑖) +

1
2
�𝜙�𝑟𝑖𝑗�
𝑗≠𝑖

�
𝑛

𝑖=1

 [6.1] 

In Equation [6.1], for all atoms i, F is the embedding energy functional, which is the 

energy cost to embed a nearest neighbor atom j into the background density, 𝜌̅𝑖 of atom 

i, and the pair potential, ϕij, is the atom interaction between atoms i and j. The latter is 

defined numerically with the reference structure and Equation [6.1]; given the symmetry 

of the reference structure around atoms i, the summation can be removed, and the pair 

potential can be expressed as: 

 𝜙�𝑟𝑖𝑗� = 2�𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐹(𝜌̅𝑖)� [6.2] 

Equation [6.2] demonstrates that the embedding energy is functionally important for 

construction of an atomistic potential. The embedding energy is an analytic functional 

that is specific to the type of atomistic potential, and thus various forms have been 

derived. The embedding energy functional for the FS potential has the form: 

 𝐹𝐹𝑆 = 𝐴�𝜌̅𝑖 [6.3] 

In Equation [6.3], the background density is related to the hopping integral, I, 

corresponding to the nearest-neighbor exchange between electrons in nearby atoms i 

and j: 

 𝐼 = �𝜓𝑖�𝐻�𝜓𝑗� [6.4] 
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The hopping integral, in turn, is related to the bandwidth of the electronic states 

obtained from the second moment of the density of states. Another example of an 

embedding energy functional comes from the MEAM formulation: 

 𝐹𝑀𝐸𝐴𝑀 = 𝐴𝜌̅ ln(𝜌̅) [6.5] 

In Equation [6.5], the MEAM embedding energy is a functional of the background 

density, as well. The presence of the logarithm originates from fitted relationship, 

determined by Baskes, between the electron density and the number of nearest 

neighbors in a set of crystalline systems. Thus, the background density is dependent of 

the atomic configuration. Development of the background density has been executed to 

account for multiple symmetries.147,148 Unlike the previous expressions for the 

embedding energy, the Mishin embedding energy154 is a rational function: 

 
𝐹𝑀𝑖𝑠ℎ𝑖𝑛 =

∑ 𝑋𝑖(𝜌̅𝑖 − 1)𝑖𝑖

∑ 𝑋𝑗�𝜌̅𝑗 − 1�
𝑗

𝑗

 [6.6] 

The only constraints on the expansion of the Mishin embedding energy is that X0 and X2 

are fitted using the cohesive energy and the bulk modulus of the reference structure. All 

other i and j parameters can be freely optimized for other first principles values. Finally, 

the last example is the A-EAM embedding function:149 

 𝐹𝐹𝑆 = 𝐴𝜌̅𝑖2 [6.7] 

In Equation [6.7], the background density for A-EAM accounts for the nearest-neighbor 

interactions of atoms j around atom i, and also for interactions of atoms k and j that 

interact with atoms i. Both sets of interactions are approximated as functions of 

parameterized exponentials.  

 Of the above examples, the FS embedding energy functional alone requires 

information directly from the electronic structure of the reference data. The remaining 
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embedding energy functionals require structural reference data and are fitted by means 

of parameterization or density functionalization. These examples illustrate the fact that 

atomistic potentials are limited to information obtained from either the many-electron 

wavefunction or structural data of a reference atom. The following section presents the 

formulation and application of an atomistic potential called the fragment Hamiltonian 

(FH) method,155 the foundation of which is a new embedding energy functional that 

accounts for both electronic and structural aspect of solid-state structures. The 

development of the FH method, as described within the first and second sections, was 

developed to Dr. Steve Valone,155 and the derivation in the third section was formulated 

by the author. The fourth section describes application of the FH method to Ni, and the 

conclusions are given in the final section.  

 

6.2 The Fragment Hamiltonian Method 

6.2.1 Foundation 

 The basis of the FH method depends upon the solid-state structure as the 

composition of numerous atomic fragments. This includes characterization of the 

constituent atoms or solid-state unit cells, as fragments, and of the electronic behavior 

as a result of any interatomic interactions. Therefore, it is necessary for the method to 

account for traits of the many-electron wavefunction, the Hamiltonian decomposition, 

and charge state variables for these fragments.   

 To understand conceptually what a fragment is in view of the FH method, a 

conceptual understanding of the many-electron wavefunction features in the FH method 

is explored: 
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 𝜓 = �𝑐𝑖|𝑖⟩
𝑖

 [6.8] 

In the above wavefunction, | i > are many-electron nonadiabatic states and ci are the 

expansion coefficients. The nonadiabatic states are antisymmetric and normalized, and 

the number of electrons is an integer value for each fragment. For a fragment, A, 

Equation [6.8] is an implicit functional of the correspondingly defined wavefunction: 

 |𝐴⟩ = �𝑐𝑗�𝐴𝑗�
𝑗

 [6.9] 

 
�𝐴𝑗� = �𝛿𝑖𝑗

𝑖

𝑐𝑗|𝑖⟩ �𝑛𝑗𝐴�  
[6.10] 

 𝑛𝑗𝐴 = �𝛿𝑖𝑗
𝑖

𝑐𝑖∗𝑐𝑖 = 𝐶𝑗∗𝐶𝑗 [6.11] 

The above equations demonstrate that for a fragment A, the wavefunction |A> is 

expanded as a sum of charge states j of | Aj>, all of which are composed of many-

electron wavefunctions of the form in Equation [6.8]. Also, the Kronecker delta function, 

δij, captures the non-adiatbatic state that contributes to the charge state |Aj>. Further, 

the above illustrates that the only normalized occupation numbers, nA, are defined, but 

the coefficients Cj are not defined because the information regarding the phase of the 

wavefunction is not concerned.  

 Ionic and covalent behavior is also considered in the FH method in a manner 

consistent with the Heitler-London model. As an example, the H2 covalent wavefunction; 

with both atoms labeled as A and B, the covalent wavefunction is: 

 |𝑐𝑜𝑣⟩ =
1
√2

[𝜙𝐴(1)𝜙𝐵(2) + 𝜙𝐴(2)𝜙𝐵(1)] [6.12] 

Also, the ionic wavefunction is: 
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 |𝑖𝑜𝑛⟩ = 𝜙𝐴(1)𝜙𝐵(2) = 𝜙𝐴(2)𝜙𝐵(1) [6.13] 

Spin has been neglected, and any covalent and ionic wavefunctions are further referred 

as |A0> and |A->, respectively. 

 Next, a conceptual understanding of Hamiltonian decompositions in the FH 

method is investigated. To begin, the electronic Hamiltonian operator corresponding, 

which is used to solve Schrödinger Equation, is considered: 

 𝐻� = 𝑇�𝑒 + 𝑉�𝑒𝑒 + 𝑉�𝑛𝑒 [6.14] 

The above equation considers the kinetic energy of the electrons, and the potential 

energy between electrons and also between nuclei and electrons, respectively. For an 

arrangement of atoms, denoted as fragment A, the corresponding electronic “fragment 

Hamiltonian”, may be written: 

 𝐻�(𝑓) = �𝐻�𝐴
𝐴

+
1
2
��𝑉�𝐴𝐵

𝐵𝐴

 [6.15] 

Equation [6.14] accounts for not only for the Hamiltonian for fragment A, but also the 

potential energy interactions between fragments A and B. The latter may be like or 

unlike fragments A, therefore allowing impurities to be considered. Consistent with the 

many-electron nature of each fragment, an integer number of electrons must be 

assigned to the fragments.  

 With this Hamiltonian construction, the electron fluctuation between atoms must 

be considered. Looking at the example with H2, the electrons are allowed to move in an 

integer-like fashion between atoms. Thus, the three possible cases are that 1) both 

atoms have a neutral charge; 2) H atom A has a negative charge and H atom B has a 

positive charge; or 3) H atom B has a negative charge and H atom A has a positive 
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charge. This can be extended further for a unit cell having a center atom A surrounded 

by first nearest-neighbor (1NN) atoms B in a two-dimensional square formation (2D-sq): 

   

In the 2D-sq unit cell, qA and qB are the charges on atoms A and B, respectively, 

determined by the difference in the nuclear and electronic charges:  

 𝑞𝛼 = 𝑍𝛼 − 𝑁𝛼 [6.16] 

The α designates the identity of the given atom or fragment, N designates the number of 

electrons, and Z designates the nuclear charge. The allowed electronic fluctuations for 

the 2D-sq cell include the following possibilities:  

 1) |00000⟩ 𝑞𝐴 = 𝑞1
𝐵1 = 𝑞1

𝐵2 = 𝑞1
𝐵3 = 𝑞1

𝐵4 = 0 

2) |+ − 000⟩ 𝑞𝐴 = +1; 𝑞1
𝐵1 = −1; 𝑞1

𝐵2 = 𝑞1
𝐵3 = 𝑞1

𝐵4 = 0 

3) |+0 − 00⟩ 𝑞𝐴 = +1; 𝑞1
𝐵2 = −1; 𝑞1

𝐵1 = 𝑞1
𝐵3 = 𝑞1

𝐵4 = 0 

4) |+00 − 0⟩ 𝑞𝐴 = +1; 𝑞1
𝐵3 = −1; 𝑞1

𝐵1 = 𝑞1
𝐵2 = 𝑞1

𝐵4 = 0 

5) |+000 −⟩  𝑞𝐴 = +1; 𝑞1
𝐵4 = −1; 𝑞1

𝐵1 = 𝑞1
𝐵2 = 𝑞1

𝐵3 = 0 

6) |− + 000⟩ 𝑞𝐴 = −1; 𝑞1
𝐵1 = +1; 𝑞1

𝐵2 = 𝑞1
𝐵3 = 𝑞1

𝐵4 = 

7) |−0 + 00⟩ 𝑞𝐴 = −1; 𝑞1
𝐵2 = +1; 𝑞1

𝐵1 = 𝑞1
𝐵3 = 𝑞1

𝐵4 = 0 

[6.17a] 
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8) |−00 + 0⟩  𝑞𝐴 = −1; 𝑞1
𝐵3 = +1; 𝑞1

𝐵1 = 𝑞1
𝐵2 = 𝑞1

𝐵4 = 0 

9) |−000 +⟩  𝑞𝐴 = −1; 𝑞1
𝐵4 = +1; 𝑞1

𝐵1 = 𝑞1
𝐵2 = 𝑞1

𝐵3 = 0 
[6.17b] 

The charge sets in Equation [6.17] illustrate the wavefunction as a function of the 

charge distribution and the individual charges on atoms A and B. They charge sets obey 

neutrality of the 2D-sq cell, and consider only 1NN electron transitions. This leads to the 

question of how the charge fluctuates from [6.17.2] to [6.17.3] so that the extra electron 

on B1 migrates to B2; indeed, this transition occurs between the cationic state in A and 

the anionic state between both B1 and B2. For the many-electron wavefunction to 

describe the difference in electronic states for these three atoms before and after the 

migration, the | i > states in Equation [6.10] must have their own electronic distribution 

on the Hamiltonian in Equation [6.15], such that: 

 𝐻�𝐴 = �𝐻�𝑖𝐴

𝑖

 [6.18] 

From here, the total FH energy is a sum of the energy for fragment A and the pair 

interactions with fragment B: 

 𝐸 = �𝐸𝐴
𝐴

+ ��𝑉𝐴𝐵

𝐵𝐴

 [6.19] 

The energy for fragment A is first considered and determined using the wavefunctions in 

Equations [6.9] through [6.11]: 

 𝐸𝐴 = �𝐴�𝐻�𝑖𝐴�𝐴� = ���𝑛𝐴𝑗𝑛𝐴𝑗∗𝐻𝑗𝑗∗
𝐴

𝑗∗𝑗

 [6.20] 

in which i is an element of the charge states j, according to Equation [6.10]: 
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 𝐻𝑗𝑗∗
𝐴 = �𝐴𝑗�𝐻𝑗′𝑗𝐴 �𝐴𝑗� [6.21] 

The fragment Hamiltonians from Equation [6.20] are averaged to yield a fragment 

Hamiltonian that is Hermitian in the energy matrix on the right-hand side of Equation 

[6.21]: 

 
𝐻𝑗′𝑗
𝐴 =

𝐻𝑗′
𝐴 + 𝐻𝑗𝐴

2
 

[6.22] 

The right-hand side of Equation [6.21] can be transformed into a matrix: 

 𝐸𝐴 = ���𝑛𝐴𝑗𝑛𝐴𝑗∗𝐻𝑗𝑗∗
𝐴

𝑗∗𝑗

= ��𝐶𝑗𝐶𝑗∗𝐻𝑗𝑗∗
𝐴

𝑗∗𝑗

= 𝑡𝑟(𝑯𝐴Γ𝐴) [6.23] 

In the above expression, ΓA is the occupancy density matrix, and tr(ΓA) = 1 is required 

since the wavefunction is normalized. Also illustrated is that the occupancy density 

matrix contains the Cj coefficients that represent the charge balance that is related to 

the ionic charge of fragment A. This leads to the elucidation of the charge state 

variables that govern the FH method. As stated earlier in this section, the Cj coefficients 

are not defined, but they are used to define the occupational numbers given in Equation 

[6.11]. However, the FH method is an embedded atom method, and therefore not 

directly dependent on occupational numbers. As a result, different variables must be 

used to describe the behavior of the electron density, which has traditionally been the 

foundation of any embedded atom method. Equation [6.23] is a good place to begin for 

this, as it can be rewritten in matrix form as a function of the Cj coefficients. For 

simplicity, a simple diatomic, A-B, is considered; the possible states include |0> = 

|A0B0>, |+> = |A+B->,  and |-> = |A-B+>. The coefficients are labeled such that j denotes 

the net charge: 
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Γ𝐴�𝐶𝑗� = �

𝐶02 𝐶0𝐶+ 𝐶0𝐶−
𝐶+𝐶0 𝐶+2 𝐶+𝐶−
𝐶−𝐶0 𝐶+𝐶0 𝐶−2

� 
[6.24] 

In a previous work by Valone,156 the net charge and the ionic character are defined in 

the following manner: 

 𝑞 = 𝐶+2 − 𝐶−2 [6.25] 

 𝜏 = 𝐶+2 + 𝐶−2 [6.26] 

Also, Co is normalized with respect to the ionic character: 

 1 = 𝐶02 + 𝜏 [6.27] 

Using Equations [6.25] through [6.27], the occupancy density matrix can be rewritten as 

a function of ionic character and net charge: 

 

Γ𝐴(𝜏, 𝑞) = �
1 − 𝜏 �(1 − 𝜏)(𝜏 + 𝑞) 2⁄ �(1 − 𝜏)(𝜏 − 𝑞) 2⁄

�(1 − 𝜏)(𝜏 + 𝑞) 2⁄ (𝜏 + 𝑞) 2⁄ �(𝜏2 − 𝑞2) 2⁄
�(1 − 𝜏)(𝜏 − 𝑞) 2⁄ �(𝜏2 − 𝑞2) 2⁄ (𝜏 − 𝑞) 2⁄

� [6.28] 

The associated fragment Hamiltonian matrix in Equation [6.23] is: 

 
𝑯𝐴 = 𝐻00 + �

0 𝐻0+ 𝐻0−
𝐻+0 𝐻++ − 𝐻00 𝐻+−
𝐻−0 𝐻−+ 𝐻++ − 𝐻00

� [6.29] 

Finally, the energy for fragment A, EA, can be solved using the above matrices: 

 𝐸𝐴 = 𝐸𝐴
𝑔𝑎𝑝(𝑞𝐴, 𝜏𝐴) − 2[𝑊1𝑒+𝑓ℎ𝑜𝑝+(𝑞𝐴, 𝜏𝐴) + 𝑊1𝑒−𝑓ℎ𝑜𝑝−(𝑞𝐴, 𝜏𝐴)] [6.30] 

The interior variables are defined as follows: the electron hopping depends on the 

charge and ionicity: 

 𝑓ℎ𝑜𝑝±(𝑞𝐴, 𝜏𝐴) = �(1 − 𝜏𝐴)(𝜏𝐴 ± 𝑞𝐴)/2 [6.31] 

The one-electron hopping energy is 𝑊1𝑒±. The effective gap energy is written 

 𝐸𝐴
𝑔𝑎𝑝(𝑞𝐴, 𝜏𝐴) = 𝐸𝐴0

∗ + 𝑈𝐴
𝑒𝑓𝑓𝜏𝐴 − 𝜇𝐴∗ 𝑞𝐴 −𝑊𝐴

2𝑒Δ𝑓𝐴
𝑔𝑎𝑝(𝑞𝐴, 𝜏𝐴) [6.32] 
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as a function of the energy of the neutral atom: 

 𝐸𝐴0
∗ = 𝐻00𝐴  [6.33] 

The effective gap energy is a function of the effective fragment gap:  

 𝑈𝐴
𝑒𝑓𝑓 = 𝜂𝐴∗ −𝑊𝐴

2𝑒 [6.34] 

Equation [6.34] is a function of the effective fundamental gap: 

 𝜂𝐴∗ = ��
𝐻++ − 𝐻00

2
� − �

𝐻00 − 𝐻−−
2

�� [6.35] 

The effective gap energy is also a function of the chemical potential: 

 𝜇𝐴∗ = −�
𝐻++ − 𝐻−−

2
� [6.36] 

and the two-electron hopping energy, which modulates the effective fundamental gap: 

 𝑊𝐴
2𝑒 = −𝐻+−𝐴  [6.37] 

Finally, the effective gap function associated with the two-electron hopping energy: 

 
Δ𝑓𝐴

𝑔𝑎𝑝(𝑞𝐴, 𝜏𝐴) = �𝜏𝐴2 − 𝑞𝐴2 − 𝜏𝐴 [6.38] 

Equations [6.30] through [6.38] can be used to model the diatomic molecule A-B 

because they can account for all one- and two-electron hopping and effective energy 

gap that results from atomic cohesion as a function of ionic character and net charge. 

When the diatomic molecule is stretched to infinity, electron hopping is mitigated 

towards the limit of chemical hardness. 

 With the diatomic molecule, the FH method allows for A and B to be either of the 

atoms for fragments. In this possibility, both have atomic substructures that contain 

interatomic interactions. Therefore, the FH method must be able to account for the 

implicit many-body interactions. Another example to use for this is a linear molecule E-

D-E’, which is allowed to be a substructure for either A or B in the previous example. 
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Also, D, E, and E’ may be either atoms or fragments, and E may or may not be identical 

to E’. Keeping with the three-charge-state restriction, Equations [6.25] through [6.39] still 

apply, and the possible wavefunctions are |000>, |+-0>, |-+0>, |0+->, and |0-+>. With 

this example, E-D-E’ is neutral, and charge transfer between both E and E’ is neglected 

(basically, charge transfer is only allowed between 1NN atoms). 

 Many-body effects through the linear molecule can be noted by analyzing the 

charge states of D, which are: |D0> = |000>, |D+> = |-+0> = |0+->, and |D-> = |+-0> = |0-

+>. It should be noted that |D+> = |-0+> = |+0-> is not allowed because this represents a 

second nearest-neighbor charge transfer.  The resulting charge transfer expectation 

values of H0+
D =<D0|H|D+> and H0-

D =<D0|H|D->. The former and the latter values are 

dependent on charge-state coefficients of the end fragments. These coefficients 

quantify the ratio of occupation numbers for the left and right end-fragments, nL+/nL-. 

This ratio can be rewritten in terms of ionicity, because the occupation number is the 

square of the charge coefficients (Equation [6.11]) and the sum of the squares of the 

charge coefficients yields the ionicity (Equation [6.26]). Therefore, the ratio can be 

expressed as: 

 𝜏𝐿 𝜏𝑅� = 𝑛𝐿 𝑛𝑅�  [6.39] 

 Neutral atoms on the end fragments also have their own characteristics. For 

example, having the charge states |E0> = |000>, |0+->, and |0-+>, fragment E always 

experiences a neutral charge, and the central fragment D carries the non-neutral charge 

most of the time. Therefore, it is expected that the FH method can distinguish between 

surface and bulk atoms. 
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 Finally, the pair interactions between fragments are considered. The previous 

examples, being diatomic and linear molecules, or even an atom, can indeed be a 

fragment. Whatever is defined as the fragment must be considered for the pair 

interactions between these embedded fragments to compute the total energy (Equation 

[6.19]). In Equation [6.19] two fragments, C and D, are considered. As written above, 

only one occupational density matrix needs to be considered, with Γ𝐶(𝑞𝐶 , 𝜏𝐶) =

Γ𝐷(𝑞𝐷, 𝜏𝐷) = Γ𝐶𝐷(𝑞𝐶𝐷 , 𝜏𝐶𝐷). Thus, solving for Equation [6.19] yields: 

 𝐸 = 𝐸𝐶𝐷(𝑞𝐶 , 𝜏𝐶) = 𝑉𝐶𝑂𝐷𝑂 − �𝜇𝐶 − 𝜇𝐷 −
𝑉𝐶+𝐷− + 𝑉𝐶−𝐷+

2
� 𝑞𝐶 

+ �𝑈𝐶
𝑒𝑓𝑓 + 𝑈𝐷

𝑒𝑓𝑓 +
𝑉𝐶+𝐷− + 𝑉𝐶−𝐷+ + 2𝑉𝐶0𝐷0

2
+ 𝑉𝐶−+𝐷+−� 𝜏𝐶 

−2�𝑊𝐶
1𝑒+ + 𝑊𝐷

1𝑒− + 𝑉𝐶0+𝐷0−�𝑓
ℎ𝑜𝑝+(𝑞, 𝜏) 

−2�𝑊𝐶
1𝑒− + 𝑊𝐷

1𝑒+ + 𝑉𝐶0−𝐷0+�𝑓
ℎ𝑜𝑝−(𝑞, 𝜏)

− 2�𝑊𝐶
2𝑒 + 𝑊𝐷

2𝑒 + 𝑉𝐶−+𝐷+−�𝑓
ℎ𝑜𝑝+(𝑞, 𝜏) 

[6.40] 

In the first line are two pair interactions (V) due to non-zero charge interactions. In the 

second line, the first three pair interactions (V) also account for non-zero charge 

interactions, and the fourth pair interaction accounts for transitions between states (for 

C, +  -, and for D, -  +) that affect the effective gap. In the last three lines, pair 

interactions exist that vary the one- and two-electron hopping energies. 

 

6.2.2 The Embedding Functional  

 With the foundation of the FH method having been studied, an embedding 

functional can now be derived that depends on the background density, as typified in 

EAMs. The FH method has been applied to Ni. For Ni, it is expected that the net charge, 
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q = 0. Therefore, this is applied to Equation [6.30], which is the embedding energy of 

fragment A, FA, to give the following: 

 𝐹𝐴 = 𝐹𝐴
𝑔𝑎𝑝(𝜏𝐴) − 2𝑊𝐴

1𝑒𝑓ℎ𝑜𝑝(𝜏𝐴) [6.41] 

The “E”s in Equation [6.30] were changed to “F”s, as it is conventional to label the 

embedding energy with “F”. With q = 0, the embedding energy gap is written as: 

 𝐹𝐴
𝑔𝑎𝑝(𝜏𝐴) = 𝐹𝐴𝑜

∗ + 𝑈𝐴
𝑒𝑓𝑓𝜏𝐴 [6.42] 

The charge neutrality removes the functional dependence on the chemical potential and 

the effective gap associated with the two-electron hopping energy. The one-electron 

contribution is written as a sum of cationic and anionic one-electron hopping energies: 

 𝑊𝐴
1𝑒 = (𝑊𝐴

1𝑒+ + 𝑊𝐴
1𝑒− 2⁄ ) [6.43] 

Further, the associated one-electron hopping function is a function of only the ionicity: 

 𝑓ℎ𝑜𝑝±(𝜏𝐴) = �(1 − 𝜏𝐴)(𝜏𝐴) [6.44] 

The embedding energy has been simplified as a functional of only ionicity and is 

independent of the background density. Therefore, the embedding energy needs to be 

reformulated to be functionally dependent on the background density. It should be noted 

that such a reformulation allows for more variability of the embedding energy since the 

background density has no restrictions concerning the functional behavior. In contrast, 

the ionicity depends on the sum of occupation numbers, and consequently the ionicity is 

restricted to be less than 1.  

 The wavefunction defined in Equation [6.9] may be used as a guide to 

reformulating the embedding energy: 

 
|𝐴⟩ =

|𝐴0⟩ + 𝜆𝐴(|𝐴−⟩ + |𝐴+⟩) √2⁄

�1 + 𝜆𝐴2
 [6.45] 
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The above expression is normalized with respect to the mixing parameter, λA. Also, is it 

implied that the mixing parameter is a function of the background density. Using 

Equation [6.26], the ionicity is found to be: 

 
𝜏𝐴(𝜌̅𝐴) =

𝜆𝐴2(𝜌̅𝐴)
1 + 𝜆𝐴2(𝜌̅𝐴) [6.46] 

Substituting the ionicity into the embedding energy gap and the one-electron hopping 

function gives: 

 
𝐹𝐴
𝑔𝑎𝑝(𝜌̅𝐴) = 𝐹𝐴𝑜

∗ +
𝑈𝐴
𝑒𝑓𝑓𝜆𝐴2(𝜌̅𝐴)

1 + 𝜆𝐴2(𝜌̅𝐴)  [6.47] 

So that: 

 
𝑓ℎ𝑜𝑝(𝜏𝐴) =

𝜆𝐴2(𝜌̅𝐴)
1 + 𝜆𝐴2(𝜌̅𝐴) [6.48] 

An approximation is made that assumes that the mixing parameter is the background 

density. Also, the embedding energy of the neutral atom in Equation [6.47] is zero as a 

result of the pair interaction that is introduced shortly. Combining Equations [6.47] and 

[6.48] into the embedding energy in Equation [6.42], the final form of the embedding 

energy becomes: 

 
𝐹𝐴(𝜌̅𝐴) =

𝑈𝐴
𝑒𝑓𝑓𝜌̅𝐴2 + 2𝑊𝐴

1𝑒𝜌̅𝐴
1 + 𝜌̅𝐴2

 [6.49] 

The total cohesive energy is constructed using the FH embedding energy and the pair 

interaction between fragments A and 1NN fragments B is: 

 𝐸𝐴𝐹𝐻 = 𝐹𝐴𝐹𝐻(𝜌̅𝐴) +
𝐿𝐴
2
𝜙𝐴𝐵 [6.50] 
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Equation [6.50] is synonymous with the EAM total energy in Equation [6.1], except that 

symmetry of 1NNs allows for replacement a summation of 1NNs by a constant LA, the 

number of 1NNs.  

 The one-electron hopping energy must be identified for efficient implementation 

of the FH embedding energy. The FH method at this point is constructed to account for 

charge fluctuations between fragments A and 1NNs B. However, since the FH method 

is applied to the elemental material, Ni, then the 1NNs B are the same element as A. 

With that, charge transfer matrices must be constructed: H0+
A =<A0|H|A+> and H0-

A 

=<A0|H|A->. Noting the coordination of the 1NNs A around the central fragment A, 

whatever the symmetry may be, the wavefunctions involved in the charge transfer 

matrix are normalized by the square root of the coordination number. Therefore, the 

one-electron hopping energy is determined to be: 

 𝑊𝐴
1𝑒+ = −⟨𝐴0|𝐻0+𝐴 |𝐴±⟩ ≈

𝐿𝐴±

�𝐿𝐴±
𝑤𝐴
1𝑒± = �𝐿𝐴±𝑤𝐴

1𝑒± [6.51] 

In the above expression, wA
1e is the one-electron hopping energy between A and any of 

the 1NNs. With the FH embedding energy as a function of the background density, then 

wA
1e is also expected to have this functional dependence between the energy and 

background density. Also, with the FH method as an EAM, first principles data is used 

to construct the EAM around the embedding energy functional. In this process, wA
1e is 

be numerically fitted.  

 As for the effective fragment gap in the FH embedding energy, it is known to be a 

function of the two-electron hopping energy and the effective fundamental gap, given in 

Equation [6.35]. The former involves two electrons hopping from the central fragment to 
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two of the 1NNs. Therefore, the two-electron hopping energy has coordination 

dependence: 

 𝑊𝐴
2𝑒+ = 𝐿𝐴±𝑤𝐴

2𝑒± [6.52] 

In the above expression, wA
2e is the two-electron hopping energy between A and any of 

the 1NNs. This parameter, along with the effective fundamental gap, is also fitted to first 

principles data.  

 

6.2.3 Derivation of the Two-Electron Hopping Energy 

This section illustrates the derivation of an expression for the two-electron 

hopping energy for the FH method. The two-electron hopping energy is necessary for 

the method to distinguish between the fcc and hexagonal closed packed (hcp) 

structures for Ni. To begin, the total cohesive energy for the fcc and hcp structures are 

introduced: 

 
𝐸𝑓𝑐𝑐𝐹𝐻 = 𝐹𝑓𝑐𝑐𝐹𝐻(𝜌̅) +

𝐿𝑓𝑐𝑐
2

𝜙(𝑅) [6.53] 

 
𝐸ℎ𝑐𝑝𝐹𝐻 = 𝐹ℎ𝑐𝑝𝐹𝐻 (𝜌̅) +

𝐿ℎ𝑐𝑝
2

𝜙(𝑅) 
[6.54] 

It should be noted that both structures have the same number of 1NNs (Lfcc = Lhcp = 12). 

Also, the pair potential is derived from the one-dimensional linear chain structure. Since 

the background density, like the pair potential, is a function of R, and the 1NNs are the 

same for both structures, then Equation [6.53] can be subtracted from Equation [6.54] to 

remove the pair potential: 

 𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = 𝐹ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐹𝑓𝑐𝑐𝐹𝐻(𝜌̅) [6.55] 
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Substituting the expression for the embedding energy into Equation [6.55] for hcp and 

fcc: 

 
𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = �

𝑈𝑒𝑓𝑓𝜌̅ℎ𝑐𝑝2 + 2𝑊1𝑒𝜌̅ℎ𝑐𝑝
1 + 𝜌̅ℎ𝑐𝑝2 � − �

𝑈𝑒𝑓𝑓𝜌̅𝑓𝑐𝑐2 + 2𝑊1𝑒𝜌̅𝑓𝑐𝑐
1 + 𝜌̅𝑓𝑐𝑐2 � [6.56] 

Further work depends on the identities of the interior functions on the right-hand side of 

Equation [6.56]. The background density is not yet of concern. The one-electron 

hopping function, however, is the same for both hcp and fcc; it is governed by 

coordination, and both structures have the same coordination (Lfcc = Lhcp = 12). 

Therefore: 

 𝑊1𝑒 = 𝑊𝑓𝑐𝑐
1𝑒 = 𝑊ℎ𝑐𝑝

1𝑒  [6.57] 

The effective fragment gap is written as the difference from the effective fundamental 

gap and the two-electron hopping function: 

 𝑈𝑒𝑓𝑓 = 𝜂∗ −𝑊2𝑒 [6.58] 

The effective fundamental gap is singular for the specified element, and therefore the 

same for both fcc and hcp structures: 

 𝜂∗ = 𝜂𝑓𝑐𝑐∗ = 𝜂ℎ𝑐𝑝∗  [6.59] 

The background density for fcc and hcp are similar in this case because they involve the 

same number of nearest neighbors and it is dependent on the specified element. 

Therefore, 

 𝜌̅2 = 𝜌̅𝑓𝑐𝑐2 = 𝜌̅ℎ𝑐𝑝2  [6.60] 

However, the two-electron hopping function is designated by the method to be zero for 

the fcc structure and an unknown non-zero value for the hcp structure: 

 𝑊𝑓𝑐𝑐
2𝑒+ = 0 [6.61] 
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 𝑊ℎ𝑐𝑝
2𝑒+ ≠ 0 [6.62] 

This unknown non-zero value for Equation [6.62] must be solved. With the information 

in Equation [6.57], and the fact that the effective fragment gap for fcc is different than 

that of hcp, Equation [6.56] can be further rewritten: 

 
𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = �

�𝑈ℎ𝑐𝑝
𝑒𝑓𝑓𝜌̅2 + 2𝑊ℎ𝑐𝑝

1𝑒 𝜌̅� − �𝑈𝑓𝑐𝑐
𝑒𝑓𝑓𝜌̅2 + 2𝑊𝑓𝑐𝑐

1𝑒 𝜌̅�
1 + 𝜌̅2

� [6.63] 

The terms containing the one-electron hopping energy cancel and the background 

density can be undistributed in the numerator on the right-hand side: 

 
𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = �

�𝑈ℎ𝑐𝑝
𝑒𝑓𝑓 − 𝑈𝑓𝑐𝑐

𝑒𝑓𝑓�𝜌̅2

1 + 𝜌̅2
� [6.64] 

Substituting in Equation [6.58] for hcp and fcc: 

 
𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = �

��𝜂ℎ𝑐𝑝∗ −𝑊ℎ𝑐𝑝
2𝑒 � − �𝜂𝑓𝑐𝑐∗ −𝑊𝑓𝑐𝑐

2𝑒 ��𝜌̅2

1 + 𝜌̅2
� [6.65] 

 

Then, substituting Equations [6.61] and [6.62] yields cancellation of the effective 

fundamental gaps for fcc and hcp as well as the removal of the two-electron hopping 

energy for fcc: 

 
𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = �

𝑊ℎ𝑐𝑝
2𝑒 𝜌̅2

1 + 𝜌̅2
� [6.66] 

To proceed further, the background density must be further investigated: 

 
𝜌̅(𝐿,𝑅) = �

𝐿
𝐿𝑓𝑐𝑐

� exp �−𝛽 �
𝑅
𝑅𝑒𝑞

− 1�� [6.67] 

In Equation [6.15], the independent variables are L, the number of 1NNs, and R, the 

interatomic distance. The constants include the number of 1NNs, Lfcc = 12, and the 
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equilibrium interatomic distance, Rfcc
eq = 2.49 Å, and a fitted parameter, β, all of which 

were derived from fcc. It was previously noted that for the hcp structure, the number of 

1NNs is Lhcp = 12. In addition, it should be noted that the hcp equilibrium interatomic 

distance is also Rhcp
eq = 2.49 Å. Thus, Rhcp

eq = Rfcc
eq. As a result, the background 

densities for hcp and fcc are equal, not only at the equilibrium interatomic distance, but 

at all interatomic distances: 

 𝜌̅ℎ𝑐𝑝�𝐿ℎ𝑐𝑝,𝑅� = 𝜌̅𝑓𝑐𝑐�𝐿𝑓𝑐𝑐 ,𝑅� [6.68] 

For the hcp-fcc energy difference, the associated interatomic distance is at equilibrium. 

Applying Rhcp
eq = Rfcc

eq to Equation [6.68] with Equation [6.67], it is determined that: 

 𝜌̅ℎ𝑐𝑝�𝐿ℎ𝑐𝑝,𝑅� = 𝜌̅𝑓𝑐𝑐�𝐿𝑓𝑐𝑐 ,𝑅� = 1 [6.69] 

Substitution of Equation [6.69], followed by rearrangement to isolate the two-electron 

hopping energy gives: 

 𝑊ℎ𝑐𝑝
2𝑒 = 2 �𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅)� [6.70] 

The hcp-fcc energy difference, although inherently a function of the background density, 

must be solved by other means. Both the hcp and fcc structures differ by the planar 

stacking pattern; hcp has an ABABAB stacking pattern, whereas fcc has an ABCABC 

stacking pattern. The background density is unable to distinguish between both 

structures, given that Lfcc = Lhcp and Rhcp
eq = Rfcc

eq. Consequently, a generalized 

stacking fault (GSF) curve is obtained using a first principles method, specifically 

density functional theory (DFT) with the PW91 GGA exchange-correlation functional. 

This involved shifting some of the atomic planes of an fcc supercell along the (111) 

plane in the [112] direction such that an hcp ABAB stacking pattern existed within the 

fcc ABCABC stacking pattern. The planes were displaced as far as ao/√6 = 1.44 Å and 
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ten total energy points were obtained between 0.00 Å and 1.44 Å. The hcp stacking 

pattern was found to be at 0.72 Å along the displacement vector, and the fcc stacking 

pattern was existed at 0.00 Å and 1.44 Å along the displacement vector. All total energy 

points were subtracted from the total energy associated with the fcc stacking pattern. 

The total energy difference is divided by the area of the supercell that was parallel to the 

(111) plane. The resulting GSF curve had units of eV/Å2, and was converted to units of 

mJ/m2, for comparison to GSF energies in the literature. The final form of the GSF curve 

was fitted in the following function: 

 ∆𝐸𝐺𝑆𝐹𝑉𝐴𝑆𝑃 = 𝑑2[𝑎1𝑒𝑥𝑝(−𝑏1(𝑑 − 𝑐1)2) + 𝑎2𝑒𝑥𝑝(−𝑏2(𝑑 − 𝑐2)2)]
𝑚𝐽
𝑚2 [6.71] 

The dependent variable is the displacement vector, d, and the fitted variables are ai, bi, 

and ci, for which i=1,2. The above fitted expression fits the stable GSF energy as well as 

the unstable GSF energy, which has the ABCCAB stacking pattern and is an 

intermediate pathway in the GSF curve. 

 Equation [6.71] is related to the VASP hcp-fcc difference, but it does not yet 

equate to the difference for the FH method. Equation [6.71] can be equated to the hcp-

fcc difference through the following: 1) changing the energy units from mJ/m2 to eV, by 

multiplying by the area of the supercell in VASP, which the atomic planes were shifted 

(10.75 Å2), then 2) multiplying by 2 to account for the interaction of two fixed atomic 

planes that are above and below the stacking fault, and finally by 3) dividing by 

16021.7646 mJ/m2. Therefore, Equation [6.18] is rewritten and the VASP hcp-fcc 

energy difference in terms of eV becomes:  

 ∆𝐸𝐺𝑆𝐹𝑉𝐴𝑆𝑃 = 0.001342𝑑2[𝑎1𝑒𝑥𝑝(−𝑏1(𝑑 − 𝑐1)2) + 𝑎2𝑒𝑥𝑝(−𝑏2(𝑑 − 𝑐2)2)]𝑒𝑉 [6.72] 
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Equation [6.72] is illustrated in Figure 6.1, along with the corresponding VASP 

computations. The above expression is equitable to the hcp-fcc difference in Equation 

[6.55]: 

 𝐸ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐸𝑓𝑐𝑐𝐹𝐻(𝜌̅) = 𝐹ℎ𝑐𝑝𝐹𝐻 (𝜌̅) − 𝐹𝑓𝑐𝑐𝐹𝐻(𝜌̅) [6.73] 

Consequently, Equation [6.72] is rewritten using Equation [6.70]: 

 𝑊2𝑒 = 0.002683𝑑2[𝑎1𝑒𝑥𝑝(−𝑏1(𝑑 − 𝑐1)2) + 𝑎2𝑒𝑥𝑝(−𝑏2(𝑑 − 𝑐2)2)]𝑒𝑉 [6.74] 

Equation [6.74] expresses the two-electron hopping energy directly as a function of the 

displacement, d, of atomic planes along the (111) plane in the [112] direction. 

Consequently, the two-electron hopping energy becomes directly related to the hcp-fcc 

difference.  

 

6.3 The Fragment Hamiltonian Method applied to Ni 

 Having developed the FH method, this section demonstrates the application of 

the method with Ni. All first principles computations for the model were done with the 

VASP 4.6 code81 using the PW91 exchange-correlation functional.157,158 Since the FH 

method accounts for only 1NNs, binding curves of the fcc, simple-cubic (sc), 2d square, 

and 1d linear chain structures were computed. They structures were fitted to the third-

order Rose equation of state (EOS): 

 
𝐸𝑅𝑜𝑠𝑒(𝑅) = −𝐸0 �1 + 𝑎∗ + 𝛿

(𝑎∗)3

𝛼 + 𝑎∗
�exp(−𝑎∗) + 𝐸off [6.75] 

In Equation [6.75], Eo is the cohesive energy, R is the 1NN distance, δ is the third-order 

fitted parameter, Eoff is the total offset energy of the binding curve at large R, and a* has 

the following form: 
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 𝑎∗ = 𝛼 �
𝑅
𝑅0

− 1� [6.76] 

In Equations [6.75] and [6.76], α is a fitted parameter related to the radial strain, R is the 

1NN distance, and R0 is the equilibrium 1NN distance. In the fits, the Eoff were fitted for 

each structure because of the total energies of each structure at long range are not 

expected to be similar due to the differences in coordination. Table 6.3 lists the values 

of the parameters for each Rose EOS fit. As mentioned in the Introduction, specific for 

any EAM is the computation of the pair potential. A form like Equation [6.2] is used for 

the FH method with the fcc structure as the reference 

 𝜙(𝑅) =
2
𝐿𝑓𝑐𝑐

�𝐸𝑓𝑐𝑐𝑉𝐴𝑆𝑃(𝑅) − 𝐹𝑓𝑐𝑐𝐹𝐻 �𝜌̅𝑓𝑐𝑐(𝑅)�� [6.77] 

In the above derivation of the pair potential, 𝐸𝑓𝑐𝑐𝑉𝐴𝑆𝑃(𝑅) is the VASP binding curve as a 

function of the 1NN distance, R, 𝐹𝑓𝑐𝑐𝐹𝐻 �𝜌̅𝑓𝑐𝑐(𝑅)� is the embedding functional as a function 

of the fcc background density, and Lfcc is the number of 1NNs for the fcc structure, 

which is 12. 

 The next factor that needs to be examined is the behavior of the VASP total 

energy difference between fcc and the other three structures. Elucidation of these 

energy differences is illustrated here as a preview of the behavior of any function that 

depends on the total energy difference between fcc and the other structures. This is 

done simply with Equation [6.50], the FH cohesive energy expression:   

 ∆𝐸𝑣(𝑅, 𝐿𝑣) = 𝐸𝑣(𝑅, 𝐿𝑣) −
𝐿𝑣
𝐿𝑓𝑐𝑐

𝐸𝑓𝑐𝑐�𝑅, 𝐿𝑓𝑐𝑐� [6.78] 

In the above expression, v specifies the sc, 2D square, or 1D linear chain. Also, 

Equation [6.78] removes the pair potential from each total energy, thereby giving the 
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difference of the embedding energy between the v and fcc structures. Figure 6.2 

illustrates the total energy difference. The illustration demonstrates that only ΔEsc has 

the necessary functional behavior with the increase in ΔE  with decreasing R. The other 

ΔE functions continue to decrease with increasing R. Therefore, the sc binding curve is 

the only other suitable function for fitting other parameters. 

 The background density for the FH method is taken to be a simple exponential 

decay function: 

 
𝜌̅(𝑅, 𝐿) = �

𝐿
𝐿𝑓𝑐𝑐

𝜌(0)exp�−𝛽(0) �
𝑅
𝑅0

− 1�� ≡ √𝐿𝜌(𝑎)(𝑅) [6.79] 

In Equation [6.79], the background density is a function of the 1NN distance, R, and the 

1NN atomic coordination, L. The constants include the β(0) parameter, which is fitted 

from the sc binding curve, R0, which is taken to be the fcc 1NN equilibrium distance in 

Table 6.3, and the ρ(0) coefficient, which is also fitted from the sc binding curve. Both β(0) 

and ρ(0) are listed in Table 4. 

 Finally, the one-electron hopping function, w1e, is also taken to be a simple 

exponential decay function:  

 
𝑤1𝑒(𝑅) = 𝑤1𝑒exp�−𝛾1𝑒 �

𝑅
𝑅0

− 1�� [6.80] 

The w1e coefficient and the γ1e are fitted from the sc binding curve and are listed in 

Table 6.4. Also, the effective gap energy, Ueff, is set to twice the value of the Parr-

Pearson chemical hardness for Ni, listed in Table 6.4.155 No functional relation was 

made between the reference structures and the two electron hopping energy, w2e, and 

the associated decay constant, γ2e, so they were set to zero. 
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 Figure 6.3 illustrates a plot of 𝑤1𝑒(𝑅), 𝜌̅�𝑅, 𝐿𝑓𝑐𝑐�, 𝜙(𝑅), and 𝐹�𝜌̅𝑓𝑐𝑐(𝑅),𝐿𝑓𝑐𝑐�.  The 

𝑤1𝑒(𝑅) function increases slowly with the decreasing R, mainly due to the fitted one-

electron parameter, γ1e. In contrast, the 𝜌̅�𝑅, 𝐿𝑓𝑐𝑐� function increases much faster than 

the 𝑤1𝑒(𝑅) function with decreasing R. The 𝐹�𝜌̅𝑓𝑐𝑐(𝑅),𝐿𝑓𝑐𝑐� functional behaves as a 

negative exponential decay function, thus demonstrating an attractive energetic 

contribution to the FH method. In contrast, the 𝜙(𝑅) function behaves almost like a 

positive exponential decay function, providing the repulsive energetic balance to the 

𝐹�𝜌̅𝑓𝑐𝑐(𝑅),𝐿𝑓𝑐𝑐�, the sum of which produces the FH total energy.  

Figure 6.4 illustrates the fcc, SC, 2d square, and 1d chain binding curves 

computed with the FH method and VASP. The fcc FH curve fits the VASP fcc curves 

perfectly and the sc FH curve fits the VASP curve almost perfectly, by design of course. 

The pair potential was derived using the fcc fitted binding curve, and the parameters in 

Table 6.4 were fitted to the sc VASP binding curve. As for the 2d square curve, the FH 

method deviates from the VASP data at equilibrium by approximately 0.1 eV. Also, for 

the 1d chain, the FH method deviates from VASP data at equilibrium by approximately 

0.3 eV. The latter two structures were not applied as references from which parameters 

were derived, so perfect fits were not expected. Nevertheless, the FH method provides 

an approximation in fitting the 2d square and 1d chain.  

Some energetic properties were computed with the FH method for Ni. This 

include the three principal elastic constants for fcc, C11, C12, and C44, the vacancy 

formation energy, the (100) and (111) surface energies and the generalized stacking 

fault (GSF) pathway. The bulk modulus, 180.4 GPa, is implicitly entered into the FH 

method since the α variable of the Rose EOS is a function of the bulk modulus. The 
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computed elastic constants as well as experimental159 and VASP values are given in 

Table 6.5. The values computed using the FH method agree within 10% of experimental 

values and are thus acceptable. However, the anisotropy ratio, computed with A=(C11-

C12)/(2C44), is 0.5 using elastic constants from the FH method. This differs from the 

anisotropy ratio computed from VASP and experimental elastic constants, 0.48 and 0.4, 

respectively. The deficiency of the anisotropy ratio from the FH method is due to the 

lack of angular contributions to the background density, as found in MEAM. 

 The vacancy formation energy as computed with the FH method is 1.59 eV, 

compared to 1.62 eV from VASP computations, and 1.4-1.6 eV for MEAM.160 The 

vacancy formation energy from the FH method agrees very well with these other values. 

 The (100) and (111) surface energies were computed with the FH method. Since 

the method only accounts for 1NN interactions, only the surface and near-surface atoms 

were considered in the computations. An description of the unit cells for each 

computation is given in Ref. [155]. The surface energies as a function of the surface 

radial strain is given in Figure 6.5. The FH method highly underestimates the surface 

energies, in comparison to VASP computations. This is likely due to the lack of angular 

contributions to the background density in the FH embedding function. Only radial 

contributions are accounted in the FH background density. Also, surface energetics 

depend highly on second nearest-neighbor interactions and the FH method implements 

the 1NN approximation. 

 Finally, the GSF pathway is considered. In this pathway, a displacement of the 

fcc bulk structure is executed along the (111) atomic plane in the <112> direction. This 

process is described as well in the previous section. Figure 6.6 illustrates the GSF 
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pathway as computed with the FH method and VASP. The FH method covers only 

approximately half-way through the GSF pathway, whereas the VASP computations 

were taken to the hcp coordination, which occurs at a displacement magnitude of 

alat/√(6). The value alat is the fcc Ni lattice constant, which is alat = 2.4953 Å * √(2) = 

3.5289 Å. If computations with the FH method were done beyond the GSF energy 

maximum, which is the unstable stacking fault, the FH method would have progressed 

towards a γGSF = 0.0 eV. The FH method lacks the angular contributions to the 

background density to differentiate between the fcc and hcp atomic coordination, since 

they have the same number of nearest neighbors, Lfcc = Lhcp = 12. . Therefore, the FH 

method currently cannot tell between the fcc and hcp structures. Future work will 

concentrate on amending this deficiency. The FH method predicts an unstable stacking 

fault energy of γUSF = 275 mJ/m2, which is in agreement with VASP computations that 

predict γUSF = 265 mJ/m2. 

 

6.4 Conclusions 

 In this chapter, the FH method is developed. It takes into account the many-

electron wavefunction, the Hamiltonian decomposition, and charge state variables for 

the atoms to describe the total energy of a many-electron system. The FH method is 

also able to account for the electronic behavior when two atoms, or fragments, bond as 

it depends on the effective energy gap, the one-hopping energy, the two-electron 

hopping energy, and hopping functions that are modulated with regard to charge and 

ionicity. Finally, the method can be extended to incorporate pair interactions between 

fragments. 
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 The FH method was applied to Ni155 through parameterization of the embedding 

function and the one-electron hopping energy. Parameterization was accomplished 

using VASP binding curve computations with the PW91 exchange-correlation functional 

of the fcc, sc, 2d square, and 1d chain structures. The FH method was found to fit the 

fcc and sc structures very well and the 2d square and 1d chain structures approximately. 

The three principal elastic constants for fcc, C11, C12, and C44, the vacancy formation 

energy, the (100) and (111) surface energies and the generalized stacking fault (GSF) 

pathway were computed with the FH method. The computed elastic constants were 

found to agree very well with VASP computations and experimental findings. As well, 

the vacancy formation energy computed with the FH method also agreed with 

experiment within a few eVs. The (100) and (111) surface energies were highly 

underestimated by the FH method in comparison to VASP computation. The deficiency 

in the FH method was that the background density only accounted for radial 

contributions but not angular contributions, and the 1NN approximation limits the range 

of energetics for surface atom reconstruction.153 Finally, the GSF pathway was 

computed with the FH method. While an unstable stacking fault energy was computed 

that nearly matched VASP computations, the stable GSF energy was not computed. 

The FH method is not able to differentiate between the fcc and hcp coordination, both of 

which include 12 1NN atoms. 

 Despite the performance of the FH method to recreate VASP binding curves of 

various structures, it is limited in the capability to accurately compute other important 

energetic properties. The FH method was found lacking in the computation of surface 

energies and the GSF pathway. More development of the background density is needed, 
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including angular functions that differentiate between atomic coordinations. Also, the 

1NN approximation may not be sufficient. At least 2NN interactions need to be 

accounted, as in MEAM. With these modifications, the FH method will be applicable to a 

larger database of reference structures and should compute surface energetics and the 

GSF pathway more accurately. 

 
Table 6.1: Fitted variables for the GSF curve obtained from VASP 

Fitted Variable 
a1=700.000 

b1=3.000 
c1=0.376 

a2=100.000 
b2=0.473 
c2=2.800 

 

 

Table 6.2: Fitted and VASP GSF energies in mJ/m2 
 Stable GSF Unstable GSF 

VASP (PBE) 135.39 268.49 
Fit 135.20 268.77 

 

 

Table 6.3: Fitted Rose EOS parameters for the reference crystal structures; table is 
taken from Ref. [155]. 

 fcc sc 2d square 1d chain 
E0 (eV) 4.9165 4.2942 3.4962 2.0865 
α 4.8858 4.8365 4.5289 4.2220 
δ 0.22119 0.4041 0.3150 0.0874 
R0 (Å) 2.4953 2.3292 2.2591 2.1793 
Eoff (eV) -0.53803 -0.49792 -0.46425 -0.59421 
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  Table 6.4: Fitted parameters for the FH method; table is taken from Ref. [155]. 
ρ(0) β(0) w1e (eV) γ1e Ueff  

 
2.50 1.55 2.625 2.6 6.46 

 

 

Table 6.5: Elastic constants (in GPa) determined with VASP, FH, and Expt.; Table is 
taken from Ref. [155]. 

 C11 C12 C44 

VASP (PW91) 274.1 154.3 125.1 
FH 262.6 139.3 123.8 
Expt. 246.5 147.3 124.7 

 

 

 
Figure 6.1: Fitted (red) and VASP (blue) GSF pathways 
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Figure 6.2: VASP total energy differences between fcc and the sc, 2d square, and 1d 
linear chain structures. The ΔEsc function has the correct behavior as it only 
demonstrates an increase in the energy difference; figure is taken from Ref. [155]. 
 

 

 
Figure 6.3: The FH embedding functional, the one-electron hopping energy, the pair 
potential, and the fcc background density (listed on top-right from top-to-bottom 
respectively); figure is taken from Ref. [155]. 
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Figure 6.4: Ni binding curves for the fcc, sc, 2d square, and 1d chain structures; figure is 
taken from Ref. [155]. 
 

 

 
Figure 6.5: The (100) and (111) surface energies as a function of surface displacement; 
figure is taken from Ref. [155]. 
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Figure 6.6: The GSF pathway as a function of the (111) planar displacement along the 
<112> direction; figure is taken from Ref. [155]. 
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CHAPTER 7 

THE MULTI-STATE MODIFIED EMBEDDED ATOM METHOD 

7.1 Background – Potential Development 

 The development of atomistic potentials centers upon the refinement of 

mathematical models that capture the correct interatomic interactions. Central to this 

process is how the total energy, Etotal, is described as a function of the atoms that 

comprise the system, and the computational cost. The simplest process by which to 

describe atomic interactions is a pair-potential (ϕ). The potential energy is described 

simply as a sum of all the atomic interactions: 

 
𝐸𝑡𝑜𝑡𝑎𝑙 =

1
2
��𝜙�𝑟𝑖𝑗�

𝑛

𝑗=1

𝑛

𝑖=1

 [7.1] 

In the above, ϕ(rij) is fitted to the attractive and repulsive behavior of the observed atoms, 

i and j. Such pair potentials include the Lennard-Jones (LJ) and the Morse potentials. 

Both are simple and require fitting three and two parameters, respectively. 

 Pair potentials, however, are limited to single bonds, as illustrated in Equation 

[7.1], since they require a summation over pair of bonded atoms. Therefore, local 

coordination must be described. N-body potentials incorporate the local environment for 

each atom. Daw and Baskes153 developed an N-body potential,  the embedded atom 

method (EAM), which incorporates a pair potential, which describes the interaction 

between atom pairs, and the embedding energy functional (F), which accounts for the 

local environment by neighboring atoms in the background density (ρi): 

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ��𝐹(𝜌̅𝑖) +

1
2
�𝜙�𝑟𝑖𝑗�
𝑛

𝑗≠𝑖

�
𝑖

 [7.2] 

161 



 
 

Many forms of both the pair potential ϕ(rij) and the embedding energy functional F within 

EAM exist.48,149,150,153,154,161 For example, Oh and Johnson incorporated simple 

parameterized exponentials in the pair potential and embedding energy functional and 

that yielded reasonable results in earlier EAM models for face cubic centered (fcc) 

metals.162 As a test of fcc metals (Al, Cu, Ag, Au, Ni, Pd, and Pt), they computed 

vacancy formation energies within 0.1 eV of experiment, but they also computed 

anisotropy ratios that had a wide deviation range from 0.02 for Cu to 1.67 for Al. Baskes 

also derived a parameterized logarithmic form of the embedding function and, with a 

cohesive energy curve (as a reference structure), solved for the corresponding pair 

potential using an equation similar to Equation [7.2].163 The only difference is that the 

summation in Equation [7.2] was replaced with Z, which counts the nearest neighbor 

atoms j since the bond distance within the local coordinate is the same for bulk 

materials and surfaces: 

 𝐸𝑡𝑜𝑡𝑎𝑙 = ��𝐹(𝜌̅𝑖) +
𝑍𝑖
2
𝜙�𝑟𝑖𝑗��

𝑖

 [7.3] 

 Implementation of the EAM has been shown to accurately describe numerous 

properties in metals, including defects,151 liquids,152 surfaces,151-153 and alloys.151 It was 

found that only first nearest-neighbor (1NN) interactions were necessary to reproduce 

material properties, including vacancy formation energies, bulk and elastic moduli, and 

lattice constants. However, the EAM was limited in its ability to describe bond bending 

and shearing, which introduces changes in the symmetrical orientation of atoms. Since 

the background density is composed of a sum of symmetric atomic densities, the EAM 

is unable to reproduce changes to the symmetry. To account for this deficiency, Baskes 

introduced corrective densities that would mimic the angular dependency of electron 
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density and therefore incorporate symmetry within the local coordination. As a result of 

this correction, the modified embedded atom method (MEAM) was developed and 

applied to forty-six elements, including ten fcc, twenty hexagonal closed-packed (hcp) 

ten body-cubic centered (bcc), three diamond cubic (DC), and three trimer molecules.  

MEAM was shown to reproduce cohesive energies, lattice constants, bulk and shear 

elastic moduli, and surface properties very well.147,164 In this same study, Baskes also 

revisited the 1NN approximation by considering the atomic screening that occurs 

between the second nearest neighbors (2NN) and 1NNs, With respect to distance, 2NN 

interactions were expected to be negligible when the ratio of the 2NN distance and the 

1NN distance was greater than 1.4 due to the exponential decay of the electron density. 

Therefore, the 1NN approximation should suffice for most solid-state structures. 

 However, for the bcc structure, the 2NN to 1NN ratio is approximately 1.15, and 

therefore the 2NN interactions were considered to be non-negligible. A modification to 

the total energy expression was consequently proposed by Baskes,147,160 which 

incorporated a “screening function” (S): 

 𝐸𝑡𝑜𝑡𝑎𝑙 = ��𝐹(𝜌̅𝑖) +
𝑍𝑖
2
𝜙�𝑟𝑖𝑗�𝑆𝑖𝑗

𝜙(𝐶)�
𝑖

 [7.4] 

In the above, screening is a function of the screening parameter, C, between 2NN 

atoms i and j, and an intervening 1NN atom.  If atoms i and j are both 1NNs, then S =1, 

and the pair potential remains unscreened. However, if atoms i and j are both 2NNs, 

then S may not be unity. To determine the magnitude of screening, a geometric 

perspective is utilized. Consider an ellipse on the [x,y] plane, and at the endpoints of the 

ellipse, on the x axis, 2NN atoms i and k exist. Also, along the ellipse between both 
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atoms, 1NN atom j is allowed to move. In this illustration, the screening parameter, C, 

can be found in the corresponding equation of this ellipse: 

 
𝑥2 + 𝑦2

1
𝐶

= �
1
2
𝑟𝑖𝑘�

2

 [7.5] 

The screening parameter can be evaluated by the following equation:160  

 
𝐶 =

2�𝑋𝑖 + 𝑋𝑗� − 1 − �𝑋𝑖 − 𝑋𝑗�
2

1 − �𝑋𝑖 − 𝑋𝑗�
2  [7.6] 

In which: 

 
𝑋𝑖 = �

𝑟𝑖𝑘
𝑟𝑖𝑗
�
2

, 𝑙 = 𝑖, 𝑗 [7.7] 

The screening of the pair potential between atoms i and j by an atom k is approximated 

by: 

 𝑆𝑖𝑗
𝜙 = �𝑆𝑖𝑘𝑗

𝜙

𝑘≠𝑖,𝑗

 [7.8] 

Modification of the 1NN approximation through the implementation of the screening 

function allowed for an improved description of the bcc structure in MEAM. 

 Central to MEAM is a reference structure that is used to build the potential 

energy expression. This can be fit simply with the Rose equation of state,165 and then 

applied to solve for the embedding energy, pair potential, and the MEAM densities. The 

Rose equation of state is given in the following: 

 
𝐸𝑅𝑜𝑠𝑒(𝑟) = −𝐸𝑜 �1 + 𝛼 �

𝑟
𝑎
− 1� + 𝛿 �

𝑟
𝑎
− 1�

3
� 𝑒𝑥𝑝 �−𝑎 �

𝑟
𝑎
− 1�� [7.9] 

In Equation [7.9], Eo is the cohesive energy, r is a distance variable, a is the distance at 

which the energy minimum occurs, and Eo, α, and δ are fitting parameters to be 

optimized. The MEAM potential performs remarkably well for materials similar to the 
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reference structure. For non-equilibrium structures that are not reference structures or 

not fitted by the MEAM potential, however, it fails to give accurate energetics. At the 

same time, recent advances in the computational efficiency of first principles 

calculations have led to accurate energetics of non-equilibrium structures for materials 

that also exist in nature. This revealed a new opportunity to revise the MEAM formalism 

with a “multi-state” approach. 

 Baskes et al.166 have developed a multi-state modified embedded atom method 

(MS-MEAM), which encompasses a vastly different approach to constructing a potential. 

It uses multiple reference structures from first principles data to solve for the embedding 

function, pair potential, and densities. The largest difference is the way in which these 

functions were fitted; in MEAM, the reference structure is used to solve for variables for 

the MEAM densities, which are parameterized exponentials. By contrast, MS-MEAM 

uses reference structures to map empirical functions for the MS-MEAM densities and 

the pair potential; only the embedding function has an analytical form as an initial guess, 

which is optimized to fit the fcc reference structure with the pair potential. To better 

model local defects and large strains, transformation pathways between reference 

structures are also fitted. MS-MEAM has superior transferability in metals as it not only 

reproduces fitted reference structures, but it also predicts other pathways between other 

reference structures. Screening is an important process for transformation pathways 

because the 1NN approximation fails during the transformation process. It was 

established for MS-MEAM that screening behaves as a sigmoidal function with respect 

to relative distance between atoms. MS-MEAM was first implemented for Cu166 and 

demonstrated a much better fit of binding curves and energetic and thermodynamic 
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properties, compared to other Cu EAMs. It also correctly predicted the stacking fault 

energy for Pu.167 

 A Ti potential has been constructed using MS-MEAM in this study. Ti was chosen 

because it plays a large role in aerospace, marine, industrial, and medical applications. 

The first implementation of MS-MEAM used Cu, which is a fcc stable material at 0 K; 

however, a hexagonally closed-packed (hcp) material, such as Ti, has not yet been 

modeled with MS-MEAM. In addition, the fcc and bcc forms of Ti are less stable than 

the hcp form, but all three have nearly degenerate binding energies, as to be illustrated 

in the DFT computations. Further, the fact that Ti hcp is more stable than fcc is implicit 

within the derived densities, and regulates the predictive capabilities of Ti MS-MEAM. 

  The layout of this report continues with the development of the MS-MEAM 

formalism, followed by a summary of properties that was used to derive the MS-MEAM 

functions. The results section compares and contrast binding curves, transformation 

pathways, optimized energies and volumes, and measurements of energetic and 

thermodynamic properties calculated from MS-MEAM and compared to those obtained 

using two Ti EAMs, each having been constructed by Zhou168 and Ackland.169 These 

EAM potentials were selected for comparison because they were simple to implement 

and they represent a sample of the diversity of EAMs from the literature. Finally, this 

report concludes with a brief summary. 

 

7.2 Methodology 

The total energy expression for MS-MEAM is given above in Equation [7.2]. As 

explained in the Introduction, Equations [7.2] and [7.3] are both applicable when 

symmetry must be described within the local coordination, particularly for the 1NN 
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approximation. To account for 2NNs, the screening function is incorporated into the total 

energy expression, as shown in Equation [7.4]. 

The embedding function has the following analytical form as an initial guess that 

was derived in Baskes163 and is used to solve for the embedding energy for multiple 

atomic symmetries:
 

 𝐹(𝜌̅𝑖) = 𝐴𝜌̅𝑖𝑙𝑛(𝜌̅𝑖) + 𝐵𝜌̅𝑖 [7.10] 

The A and B are the only parameters in Equation [7.9]. In this study, A and B have been 

set to 0.1 and -10, respectively. The background density, 𝜌̅𝑖 , can be expanded as a 

sum of the symmetric and angular densities: 

 
(𝜌̅𝑖)2 = (𝑍𝑖𝜌𝑖0) + �𝑠𝑙Υ𝑙�𝑟𝑖𝑗�

3

𝑙=1

 [7.11] 

The first function on the right-hand side of Equation [7.11] is the product of the number 

of first nearest neighbors, Z1, and the total symmetric density, which contains symmetric 

density calculated from first principles and a corresponding screening function for 2NN 

interactions: 

 𝜌𝑖0 = �𝜌𝑖𝑎0�𝑟𝑖𝑗�𝑆𝑖𝑗
𝜌0

𝑗≠𝑖

 [7.12] 

The second function on the right-hand side of Equation [7.11] contains the angular 

contribution to the background density, which a sum of the symmetry factors (s) and the 

total angular density (Υ) for the angular components l.  The MS-MEAM formalism strives 

to define Υl directly from first principles data. In the original MEAM formalism, the 

angular densities were parameterized exponentials. However, a first principles 
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derivation of Υl may or may not produce angular densities that behave as exponentials 

(this is explored in the next section), and therefore, rewritten as a difference of the 

squares of net partial positive and negative densities. This makes Equation [7.11]: 

 
(𝜌̅𝑖)2 = (𝑍𝑖𝜌𝑖0) + �𝑠𝑙 ��𝜌𝑖𝑙+�

2
− �𝜌𝑖𝑙−�

2
�

3

𝑙=1

 [7.13] 

The symmetry factors have been absorbed into the second part of right-hand side so 

that the net partial positive and negative densities include information about the 

symmetry. This can be illustrated by expanding the net partial densities as a function of 

the x, y, and z coordinates for a corresponding crystal structure: 

 
�𝜌𝑖

1±�
2

= ���
𝑟𝑖𝑗𝛼

𝑟𝑖𝑗
𝜌𝑖
𝑎1±�𝑟𝑖𝑗�𝑆𝑖𝑗

𝜌1

𝑗≠𝑖

�

2

𝛼

 [7.14] 
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��𝜌𝑖
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[7.15] 
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[7.16] 

In the above equations, the α, β and γ terms interchangeably signify the x, y, and z 

Cartesian axes. To maintain orthogonality between the angular electron densities, the 

product of 3/5 and Equation [7.14] is subtracted from the first term on the right-hand 

side of Equation [7.16].170  The screening between atoms in the net partial densities is 

also approximated as a product: 
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 𝑆𝑖𝑗
𝜌𝑙 = �𝑆𝑖𝑘𝑗

𝜌𝑙

𝑘≠𝑖,𝑗

 [7.17] 

The ρal± terms are the net atomic partial densities that come directly fromΥl and contain 

information on the reference data used to derive Υl. Illustrated below, ρal+ is set to be a 

parameterized exponential, and ρal- in the following equations result in exponential 

behavior:  

 𝜌𝑖𝑎1+�𝑟𝑖𝑗� = Υ𝑙�𝑟𝑖𝑗𝑙𝑜𝑤�𝑒𝑥𝑝�−𝜅�𝑟 − 𝑟𝑖𝑗𝑙𝑜𝑤�� [7.18] 

 
𝜌𝑖𝑎1−�𝑟𝑖𝑗� = �Υ𝑙�𝑟𝑖𝑗𝑙𝑜𝑤� + �𝜌𝑖𝑎1+�𝑟𝑖𝑗��

2
 

[7.19] 

In Equation [7.18], a Υl and low rij is used to initialize ρal+ and a positive integer κ is 

selected to ensure the exponential behavior of Equation [7.19]. 

The symmetry factors are quantified contributions to the net partial densities that 

correspond to the symmetry of an atomic configuration. They can be determined for a 

structure using the atomic coordinates for a selected central atom i and its 1NN atoms j. 

The coordinates must be transformed such that the central atom exists at (0, 0, 0) on 

the (x, y, z) coordinate. Expressions for the symmetry factors can be made by setting all 

ρal±  = 1.0, thereby removing the information derived from first principles data, and 

isolating the symmetry information of the crystal structure: 

 
𝑠1 = ���

𝑟𝑖𝑗𝛼

𝑟𝑖𝑗𝑗≠𝑖

�

2

𝛼

 [7.20] 
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[7.21] 
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[7.22] 

Table 7.1 lists the symmetry factors for structures that are analyzed in this study. Thus 

far, the fcc, hcp, bcc, and DC structures have been introduced. The rest of this section 

introduces the other nine structures. It should be noted that “dimer” in Table 7.1 

specifies the dimer molecule, which is the only listed structure that is non-crystalline. 

Also, the graphene structure is a three-coordinate planar structure; the sum of graphene 

stacking is known to produce a graphite structure. 

To construct a Ti MS-MEAM potential, eight MS-MEAM functions must be 

determined: 

 𝜌𝑖𝑎0�𝑟𝑖𝑗�,𝜙�𝑟𝑖𝑗�,Υ𝑙�𝑟𝑖𝑗�, 𝑙 = 1 − 3, 𝑆𝑖𝑘𝑗
𝜙 , 𝑆𝑖𝑘𝑗

𝜌0 , 𝑆𝑖𝑘𝑗
𝜌2  [7.23] 

This is completed with first principles data using the Vienna Ab initio Software Package 

(VASP) 4.6.171 This software package uses density functional theory (DFT) in 

combination with either the Projector Augmented Wave (PAW) method172 or 

pseudopotentials in the Kohn Sham one-electron basis set for atomic configurations 

within periodic boundary conditions. For this study, the PAW method with the Perdew-

Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation 

functional35,36 was used to obtain first principles data for the reference structures. The 
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PAW pseudopotential that incorporates the (3d)2(4s)2 valence states was used. Plane 

wave convergence tests were executed and it was found that an energy cutoff of 500 

eV and a kpoint mesh of 9x9x9 yielded a total energy convergence of 1.0 meV/atom.  

Since Ti is a paramagnetic metal, then spin polarization calculations were attempted, 

but they yielded a negligible change in the total energy in comparison to non-spin 

polarization. Therefore, all calculations were done using non-spin polarization. All total 

energy computations of reference structures and transformation pathways that are 

necessary to solve for the MS-MEAM functions are listed in Equation [7.23].  Total 

energy computations of references structures were computed as a function of the 

nearest neighbor distance, rNN, which defined in reference to the fcc equilibrium 

distance, afcc, computed from VASP: 

 𝑟𝑁𝑁 =
𝑥
𝑎𝑓𝑐𝑐

 [7.24] 

In Equation [7.24], x is the nearest neighbor distance in the considered structure. So, for 

fcc at equilibrium, rNN = 1.0. All total energy computations for reference structures were 

computed at ranges of rNN = 0.7-2.0 at increments of 0.1 and of rNN = 2.0-4.0 at 

increments of 0.2. The first range was extended to smaller values if necessary to obtain 

equilibrium distances for a reference structure. Having computed total energies for the 

reference structures, total energies per atom (E/atom) were determined by dividing each 

total energy by the number of atoms in the VASP computations. Next, the dissociated 

fcc E/atom, taken at rNN = 4.0, was subtracted from all E/atom values for each reference 
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structure, such that they all approached 0 eV with increasing rNN. This produced 

cohesive energy values for each reference structure. They were then divided by the 

equilibrium fcc cohesive energy. In this scheme, the fcc cohesive energy to be -1.0 eV.  

The Rose equation of state165, given in Equation [7.9], was used to fit the cohesive 

energy curves as a function of rNN. 

 

 
7.3 Determination of MS-MEAM Functions 

 The foundation of previous MEAM potentials were rooted upon a single reference 

structure and parameterization within exponential densities; the parameters were 

determined through error minimization between the MEAM total energy and 

experimental or first principles vacancy formation energy, stacking fault energy, and the 

energy associated with the shear elastic constant. In contrast, the foundation of a MS-

MEAM potential is rooted upon the binding curves of multiple structures to capture the 

various symmetries for a given atom type. To do so, a set of MEAM functions, illustrated 

in Equation [7.23], must be determined from the first principles data that is obtained in 

the manner that was described in the previous section. Table 7.2 lists the reference 

structures that are necessary for determination of the MS-MEAM functions. 

 The MEAM total energy expression from Equation [7.6] is a natural starting point 

for this endeavor. In addition, the first five MS-MEAM functions in Equation [7.23] are 

derived using reference structures with negligible 2NN interactions. As a result, the 
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summation of i can be removed, which yields a total energy expression dependent on 

1NNs solely: 

 𝐸𝑖 = 𝐹(𝜌̅𝑖) +
𝑍𝑖
2
𝜙�𝑟𝑖𝑗� 

[7.25] 

At this point, the symmetric density, ρa0, can be determined using the fcc and SC 

binding curves. Using Equation [7.25] and the embedding energy functional, Equation 

[7.8], the fcc and SC fitted functions are divided by the number of 1NNs and the SC 

function is subtracted from the fcc function; this removes the ϕ(rij) dependence. Then 

the symmetric density can be written as a function of the fcc-SC cohesive energy 

difference: 

 
𝜌𝑎0�𝑟𝑖𝑗� =

∆𝐸𝑓𝑐𝑐−𝑆𝐶
𝑟𝑒𝑓 �𝑟𝑖𝑗�
2𝐴 ln 2

 
[7.26] 

Next, the most symmetric structure listed in Table 7.1, fcc, is used with the embedding 

energy function, Equations [7.11], [7.12], and [7.26] to solve for ϕ(rij). Again, 2NNs are 

negligible in fcc, so all screening functions in Equation [7.12] are equal to 1, and the 

summation is removed; Equation [7.25] may consequently be applied in place of 

Equation [7.11]. Since fcc lacks angular density contributions to its structure, then all sl 

equals 0 in Equation [7.10]. With that, Equation [7.26] applied into the embedding 

energy function, and setting A = 1 and B = -10,  the following expression can be used to 

solve for the pair potential: 
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 𝜙�𝑟𝑖𝑗� =
2
𝑍𝑓𝑐𝑐

�𝐸𝑓𝑐𝑐 − 𝐹�𝑍𝑓𝑐𝑐𝜌𝑎0�𝑟𝑖𝑗��� 
[7.27] 

The next set of MEAM functions to be determined is the Υl total angular densities. To do 

so, Equations [7.10] and [7.25] are required. Unlike the two previous MEAM functions, 

Υl are solved numerically since no analytical form can be derived. For this Ti MS-MEAM 

potential, Υ3 is determined first. Table 7.2 shows that either the DC or hcp structures 

should be used to solve for Υ3 because both structures exhibit angular dependency for 

only l = 3. Further, because hcp is the most stable form of Ti at 0 K, the temperature at 

which the first principles data was computed and Ti hcp is important for energetic 

properties including the stacking fault energy, it is preferable to determineΥ3 using hcp. 

At each rij, Υ3 is solved such that the error in following equation is minimized: 

 
∆𝑚𝑖𝑛𝑙=3 = 𝐸ℎ𝑐𝑝

𝑓𝑖𝑡 − �𝐹 ��𝑍𝑓𝑐𝑐𝜌𝑎0�𝑟𝑖𝑗��
2

+ 𝑠3
ℎ𝑐𝑝Υ3�𝑟𝑖𝑗�� +

𝑍ℎ𝑐𝑝
2

𝜙�𝑟𝑖𝑗�� 
[7.28] 

Next, Υ2 is determined. Table 7.2 shows that either the line or 2D-hex structures may be 

used as reference structures for determination of Υ2. Since Ti is a transition metal, high 

coordination would be indicative of metallic bonding. Therefore, 2D-hex is a better 

choice because of its atomic coordination, which is higher than the line structure. Again, 

at each rij, Υ2 is solved such that the error in following equation is minimized: 
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 ∆𝑚𝑖𝑛𝑙=2 = 𝐸2𝐷−ℎ𝑒𝑥
𝑓𝑖𝑡 − 

�𝐹 ��𝑍2𝐷−ℎ𝑒𝑥𝜌𝑎0�𝑟𝑖𝑗��
2

+ 𝑠22𝐷−ℎ𝑒𝑥Υ3�𝑟𝑖𝑗�� +
𝑍2𝐷−ℎ𝑒𝑥

2
𝜙�𝑟𝑖𝑗�� 

[7.29] 

 

Finally, Υ1 is determined. Table 7.1 illustrates that the dimer, beam, and zigzag-2 

structures have Υ1 dependence:. None of these structures have angular dependence 

solely on Υ1, but with Υ2 and Υ3 already known the remaining total angular density is 

easily computed. The dimer structure is used to compute Υ1, despite its fewer 1NNs 

than zigzag-2, in order to incorporate a low coordinative density reminiscent of a 

molecule, which is unlike the other structures in Table 7.1. At each rij, Υ1 is solved such 

that the error in following equation is minimized to 0: 

 ∆𝑚𝑖𝑛𝑙=1 = 𝐸𝑑𝑖𝑚𝑒𝑟
𝑓𝑖𝑡 − 

�𝐹 ��𝑍𝑑𝑖𝑚𝑒𝑟𝜌𝑎0�𝑟𝑖𝑗��
2

+ �𝑠𝑑𝑖𝑚𝑒𝑟𝑙 Υ𝑙�𝑟𝑖𝑗�
𝑙

� +
𝑍𝑑𝑖𝑚𝑒𝑟

2
𝜙�𝑟𝑖𝑗�� 

[7.30] 

It was determined through the fitting process that for the binding curves of the zigzag 

and beam structure to rise in energy with decreasing nearest neighbor distance, a 

dampening function was necessary for the 3rd angular density of the form: 

 Υ3(𝑟) = Υ3(𝑟𝑁𝑁)𝑒𝑥𝑝[3.0(𝑟 − 𝑟𝑁𝑁)], 𝑟 < 0.98 [7.31] 

The range was chosen so that the energy minimum of hcp around rij = 1.00 would not 

be affected. This modification affects all structures that have a dependence on the 3rd 

angular density below a scaled distance of 0.98.
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 The final three MEAM functions are screening functions, Sϕ, Sρ0, and Sρ2, listed 

in Table 7.2 as being fitted using the Bain, Trigonal, and 2D transformation pathways, 

respectively. For the angular densities, it was noted in Baskes147 that the total energy of 

the symmetric densities with respect to the shear elastic constants is a function of ρa0 

and Υ2; therefore, the approximation is made for the angular screening functions that: 

 𝑆𝑖𝑘𝑗
𝜌1 = 𝑆𝑖𝑘𝑗

𝜌2 = 𝑆𝑖𝑘𝑗
𝜌3  [7.32] 

The transformation pathways require non-uniform strains, so this approximation based 

on the shear elastic constants was found to be adequate for Cu MS-MEAM calculations, 

and are used in this paper as well. Consequently, screening functions for ϕ, ρa0 and Υ2 

are only required.
 
The reality of this numerical fitting procedure is somewhat more 

complex however and requires some in-depth analysis. The concept of screening 

invites the energetic contributions of 2NNs from reference structures that have 

negligible 2NN interactions. The transformation pathways between reference structures 

occur due to deformations that break the symmetry of the reference structures. As a 

result, atomic rearrangements can reduce the screening of 2NN atoms by 1NN atoms, 

thus allowing for the increase in energetic contributions by 2NN atoms. The orientation 

of an atom i with respect to the 1NN and 2NN atom, which functionally relates to the 

screening parameter, can be computed with Equations [7.6] and [7.7] within a screening 

ellipse that essentially varies the possible energetic interaction between atom i and its 

1NN and 2NN. For the reference pathways, the fcc, bcc, SC, 2D-sq, and 2D-hex 
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structures are involved. Of these, significant 2NN interactions are present only in bcc. 

Consequently, to obtain accurate energetics of the bcc structure, the screening 

functions must be computed. 
 

The screening functions for the Bain, Trigonal, and 2D transformation pathways 

were found in Baskes et al.166 to be like a sigmoid function: 

 𝑦(𝑥) = [1 − (1 − 𝑥)𝑚]2 [7.33] 

In Equation [7.33], m is the only fitted parameter. This function can be used to develop 

trial solutions for the screening functions, which are then optimized to fit the 

transformation pathways. For convenience, in Equation [7.33], the independent variable 

is renamed from x to C, the screening parameter, and y(x) is renamed to S(C), denoting 

the screening function. For ϕ, ρa0 and Υ2, screening values are determined at C = 2.0 

and C = 1.5; the former allows for exact fitting of the bcc cohesive energy at rij = 1.0 and 

the latter was chosen to obtain screening data in the middle of the Trigonal and 2D 

pathways.  Shown in Figure 7.1, for the fitting procedure, the Bain, C3, and C4 screening 

parameters are used. This permits exact fitting of the Bain pathway, and flexibility for 

fitting the Trigonal and 2D pathways, since C3 and C4 can be applied for both, as 

previously noted by Equations [B.14] and [B.15] in Appendix B.  Specifically, to solve 

S(C) at C = 2 for ϕ, ρa0 and Υ2, the Bain and C4 screening parameters are applied. The 

Bain path at C = 2 corresponds to the bcc structure, which does not contribute angular 
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density to the energetics. Therefore, the following equation is minimized on the Bain 

screening parameter: 

 
∆𝐶=2𝑏𝑐𝑐 = 𝐸𝐶=2𝑏𝑎𝑖𝑛 − �𝐹[𝜌̅𝑖] +

𝑍𝑏𝑐𝑐1𝑁𝑁

2
𝜙�𝑟𝑖𝑗� +

𝑍𝑏𝑐𝑐2𝑁𝑁

2
𝜙�𝑟𝑖𝑗�𝑆𝑖𝑗

𝜙(𝐶)� [7.34] 

in which the background density contains 1NN and 2NN atoms: 

 𝜌̅𝑖 = 𝜌0 = 𝑍𝑏𝑐𝑐1𝑁𝑁𝜌𝑎0�𝑟𝑖𝑗� + 𝑍𝑏𝑐𝑐2𝑁𝑁𝜌𝑎0�𝑟𝑖𝑗�𝑆𝑖𝑗
𝜌0(𝐶) [7.35] 

The screening between atoms i and j is given by Equation [7.16]. Following that, on the 

Trigonal pathway with C4 screening parameter, C = 2.0 has θ = 70.59o. This is midway 

between the fcc and SC structures, so the symmetry is broken on the pathway and 2NN 

atoms do contribute to the energetics. Therefore, the following equation is minimized on 

the C4 screening parameter, using the S(C) already determined for ϕ and ρa0: 

 
∆𝐶=2
𝑡𝑟𝑖𝑔= 𝐸𝐶=2
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𝜙(𝐶)
2𝑁𝑁

𝑖≠𝑗

� [7.36] 

in which the background density contains 1NN and 2NN atoms: 

 
(𝜌̅𝑖)2 = �� 𝜌𝑎0�𝑟𝑖𝑗�
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𝜌0(𝐶)

2𝑁𝑁

𝑖≠𝑗

� 

+�� Υ2�𝑟𝑖𝑗�
1𝑁𝑁

𝑖≠𝑗

+ �Υ2�𝑟𝑖𝑗�𝑆𝑖𝑗
𝜌2(𝐶)

2𝑁𝑁

𝑖≠𝑗
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[7.37] 

Next, S(C) is determined at C = 1.5 for ϕ, ρa0 and Υ2. At this screening parameter, no 

reference structures exist along the Bain, Trigonal, or 2D pathways for the Bain, C3, and 

C4 screening parameters. Therefore, three guess S(C) values must be selected for ϕ, 
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ρa0 and Υ2 at C = 1.5, and resulting energies on the three pathways must be minimized 

with the VASP reference pathways at C = 1.5. The resultant S(C) must each be greater 

than 0.0. A multi-dimensional optimizer, such as the Amoeba algorithm,173 can be used 

to execute this process in the following equation: 

 
∆𝐶=1.5
𝑝𝑎𝑡ℎ𝑤𝑎𝑦= 𝐸𝐶=1.5

𝑝𝑎𝑡ℎ𝑤𝑎𝑦 − �𝐹[𝜌̅𝑖] +
1
2
�𝜙�𝑟𝑖𝑗�
1𝑁𝑁

𝑖≠𝑗

+
1
2
�𝜙�𝑟𝑖𝑗�𝑆𝑖𝑗

𝜙(𝐶)
2𝑁𝑁

𝑖≠𝑗

� [7.38] 

The background density, 𝜌̅𝑖, in Equation [7.30] is given in [7.29]. In Equation [7.30],  the 

superscript “pathway” specifies all three pathways. The optimization process is subject 

to minimizing the sum of the squares of the error from Equation [7.29]: 

 �∆𝐶=1.5
𝑝𝑎𝑡ℎ𝑤𝑎𝑦�

2
= �∆𝐶=1.5
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2

+ �∆𝐶=1.5
𝑡𝑟𝑖𝑔 �

2
+ �∆𝐶=1.5

𝑡𝑟𝑖𝑔2𝐷�
2
 [7.39] 

 

7.4  Results 

7.4.1 MS-MEAM Functions 

 The MS-MEAM functions in Table 7.2 must first be determined. The total 

symmetric and angular densities are given in Figure 7.2. The symmetric density exhibits 

exponential behavior, which stems from Equation [7.49], since the ∆𝐸𝑓𝑐𝑐−𝑆𝐶
𝑟𝑒𝑓 �𝑟𝑖𝑗� 

behaves this way. Equations [7.28]-[7.30] are used to derive the angular densities. As 

illustrated in Figure 7.2, the functionals behave differently. They are dependent on the 

symmetric density and the reference fits in their derivation. Despite the symmetric 

density being an exponential function, the angular densities resemble the reference fits. 

Specifically, the 1st angular density, derived from the ∆𝐸𝑓𝑐𝑐−𝑑𝑖𝑚𝑒𝑟
𝑟𝑒𝑓 �𝑟𝑖𝑗� fit, behaves like a 

positive Rose equation of state, Equation [7.9]; the 2nd angular density, derived from 

the ∆𝐸𝑓𝑐𝑐−2𝐷ℎ𝑒𝑥
𝑟𝑒𝑓 �𝑟𝑖𝑗�, behaves like an negative Rose equation of state; and the 3rd 
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angular density, derived from the ∆𝐸𝑓𝑐𝑐−ℎ𝑐𝑝
𝑟𝑒𝑓 �𝑟𝑖𝑗� fit, behaves like a positive Rose 

equation of state. The partial angular densities, derived from Equations [7.18] and [7.19], 

are given in Figures 7.3a and 7.3b. With one of the angular density types, taking the 

difference of the squares of the positive and negative partial densities yields the 

corresponding total angular density.  

 The screening functions for the pair potential, the symmetric, and angular 

densities, are given in Figure 7.4. They all have sigmoid behavior. The screening 

functions for the pair potential and the symmetric density were set equal in the range of 

0 < C < 2. This range partially relates to the Trigonal transformation pathway, as it 

applies to the range of 0.5 < C < 2. Fitting the screening functions in this range with the 

Trigonal pathway produced screening values for the symmetric density that were larger 

in magnitude than screening values for the pair potential at each C. Preliminary 

computations of hcp containing self-interstitials yielded disordered structures that were 

more stable than hcp. It was found that the resulting disordered structures involved 

relaxed interstitial atoms having C values within the range of 0.5 < C < 1.5. The 

corresponding screening values for the symmetric density, being larger than those for 

the pair potential, were lowering the embedding energy too much during relaxation of 

the interstitial atom. The screening function for the angular densities was found to have 

very little effect in destabilizing the interstitial atom in hcp. Therefore, the screening 

functions for the pair potential and the symmetric density were set equal in the range of 

0 < C < 2, and varied in tandem along with the screening function of the angular 

densities. This was found to destabilize the hcp structures containing the interstitial 

atoms, on the range of approximately between 9 eV and 20 eV. To increase the stability 
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of these interstitial atoms between 1 and 5 eV, the screening function for the symmetric 

density was optimized in the range of 2 ≤ C < 3 for fitting with the Bain transformation 

pathway. The resulting difference between the screening functions for the symmetric 

density and the pair potential at each C exists at the sixth decimal. Therefore, the Bain 

pathway requires nearly equal 2NN interactions with the pair potential and the 

symmetric density and both giving a higher screening contribution than screening from 

angular density. Also, fitting to the Bain pathway using equal screening functions as an 

initial guess was found to stabilize the preliminary hcp interstitial atoms within the range 

of 1 to 5 eV. The self-interstitials are further explored in a later section. 

 

7.4.2 Comparison of EAM Potentials with DFT 

7.4.2.1 Binding Curves 

 An analysis of computed binding curves is observed here for MS-MEAM, the 

Zhou EAM, and the Ackland EAM and compared to VASP computations. Figures 7.5 

through 7.17 illustrate these computations for a corresponding crystal structure. Each 

figure shows sets of binding energy curves, which have been scaled with regard to the 

fcc equilibrium cohesive energy, as a function of rNN defined in Equation [7.24]. For the 

Figures 7.5 through 7.10, it is seen that all three EAMs fit well with the VASP binding 

curves for the fcc, hcp, bcc, oDC10, SC, and 2D-hex structures, particularly at the 

energy well of each binding curve. For all six structures except 2D-hex, MS-MEAM 

replicates the binding energies within the expansion regions of the curves very well, but 

the MS-MEAM binding energies deviate for the expansion of SC by a scaled energy of 

approximately 0.1. The binding energies computed with the Zhou EAM also seem to 
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deviate within the expansion regions of the curves, not only for SC, but also for hcp, fcc, 

bcc, oDC10, and 2D-hex. It should be noted that the hcp and 2D-hex were reference 

structures, and thus it is no surprise that MS-MEAM fits the hcp and 2D-hex VASP 

computations very well. Despite the low cut-off around rNN ~ 1.7, the Ackland EAM is 

able to replicate the expansion regions of all six structures. All three EAMs do not 

replicate the energetics of the compression regions very well.  

 A formidable test of these EAMs is the computation of binding curves for low 

coordinative structures. Figures 7.10 through 7.17 show computed binding curves for 

the 2D-sq, DC, zigzag, beam, graphene, line, and dimer, respectively, for all three 

EAMs in comparison to VASP computations. For the 2D-sq binding curve, MS-MEAM 

seems to deviate within the energy well by about 0.5 eV, while the Zhou and Ackland 

EAMs overlap more closely with VASP energy well. For all three EAMs, the binding 

curves follow closely the VASP binding energies within the expansion regions, but they 

deviate very largely in the compression regions. Figure 7.12 illustrates binding energy 

curves for the DC structure. The Zhou and Ackland EAMs seem to overlap with VASP 

computations approximately well within the energy well and the compression regions, 

whereas MS-MEAM suffers a large deviation from the energy well computed by VASP. 

The source of this large deviation stems from application of the 3rd angular density, 

which was derived with hcp. The DC structure has density contribution from the 

symmetry and 3rd angular density only (see Table 7.1 for corresponding symmetry 

factors). As noted in Table 7.2, either the hcp or DC structures may be used to derive 

the 3rd angular density. Preliminary computations had shown that if DC was used to 

derive the 3rd angular density, hcp would be less stable than fcc by a scaled energy of 
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0.003 eV, but the DC fit would be exact. However, the DC structure could not be applied 

because Ti is a hcp-stable material; that is, hcp Ti is more stable than Ti fcc. Attempts 

were made to rectify the DC binding curve using a dampening function on the 

symmetric density of the form like in Equation [7.31], except with Υ3(𝑟) replaced with 

𝜌𝑎0(𝑟), but this could not raise the energy without compromising the behavior of all 

other binding curves. It was found that Equation [7.33], as shown applied to the 3rd 

angular density, raised the energy well to its current energy around a scaled energy of -

0.9. Figure 7.13 illustrates the graphene binding curves computed by all three EAMs 

and VASP. Unfortunately, MS-MEAM deviates from the corresponding VASP binding 

curve, but not as much as the Zhou EAM deviates. Figure 7.14 illustrates the zigzag 

binding curves. The binding curve computed by MS-MEAM overlaps the energy well of 

the VASP binding curve very well, whereas the other EAMs deviate. It was found that 

the dampening function, Equation [7.33], was essential for MS-MEAM to fit the zigzag 

structure. Without the dampening function, the zigzag binding curve was observed to 

lower infinitely in energy as rNN decreased. Figure 7.15 illustrates the beam binding 

curves. The energy wells of all three EAMs seem to surround the energy well computed 

by VASP; however, the computed compression and expansion energetics do not agree 

with VASP computations. Finally, Figures 7.16 and 7.17 illustrate the binding curves for 

the line and dimer structures, respectively. All three EAMs do not agree very well with 

the VASP binding curve for the line structure. The same lack of overlap with VASP is 

observed with the dimer structure for all three EAMs. It is, at first, surprising to see that 

MS-MEAM does not replicate the VASP binding curve for dimer because it was used as 

a reference structure to derive the 1st angular density. However, the dimer structure also 
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has density contributions from the 3rd angular density, which contains the dampening 

function, Equation [7.33]. The absence of a perfect fit by MS-MEAM for the dimer 

binding curve may stem from the presence of this dampening function.  

 

7.4.2.2 Equilibrium Curves 

Table 7.3 shows the equilibrium energies and the associated nearest-neighbor 

distance in different crystals considered in this work. All structures are scaled by the fcc 

cohesive energies, Eeq, and nearest-neighbor distance, rNN. The fcc cohesive energies 

of fcc for all EAMs are in agreement, but differ very much from that obtained with VASP. 

This is likely due to the PBE functional used in the VASP computation, as GGA 

functionals in general are known to overcorrect for cohesive energies, in comparison to 

Local Density Approximation (LDA) functionals, which are known to generally 

overestimate cohesive energies.174 The difference between both hcp structures in Table 

7.3 is that the ideal c/a = √(8/3) = 1.633, whereas the other hcp has a non-ideal c/a, 

which are measured later in this section. The hcp equilibrium energies are quite 

comparable to each other, with the MS-MEAM hcp non-ideal equilibrium energy being 

closest to the VASP value. The ideal c/a hcp structures are also nearly exact, with the 

MS-MEAM value being closest to the VASP value as well. Both ideal and non-ideal c/a 

hcp values are more stable than fcc. Especially important is the stabilities of hcp, fcc, 

and bcc with respect to each other. The non-ideal hcp structure is most stable, followed 

by the ideal hcp, then fcc, and then bcc in VASP. This trend is followed the Ackland 

EAM and the Zhou EAM, but not with MS-MEAM. For MS-MEAM, oDC10 is more stable 

than bcc. This is due to the construction of the screening functions. The oDC10 and the 
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bcc structures have screening values that are a function of C=5/3 and C=2, respectively. 

As a result, the screening for bcc with all screening functions is higher than the 

screening for oDC10. However, the screening in the symmetric and angular densities 

are too high at C=5/3. These screening functions can be altered but it is not desirable 

because lowering the screening functions of the symmetric and angular densities would 

compromise MS-MEAM fits for the Trigonal and 2D transformation pathways. The rNN 

for bcc and oDC10 are very close between VASP computations and all three EAMs, 

with differences occurring at the third decimal place. 

 The absolute deviations in E and r increase with the remaining structures. For 

example, for the beam structure, the deviations in Eeq with respect to VASP are 

approximately 0.0265, 0.0560, and 0.0301 for the MS-MEAM, Zhou, and Ackland EAMs, 

respectively. Also, for the beam structure, the absolute deviations in rNN with respect to 

VASP are approximately 0.0016, 0.0555, and 0.0886, for MS-MEAM, the Zhou, and 

Ackland EAMs, respectively. Another example is the graphene structure, the absolute 

deviations in Eeq with respect to VASP are approximately 0.1463, 0.2944, and 0.6219 

for MS-MEAM, Zhou, and Ackland EAMs, respectively. Also, the absolute deviations in r 

with respect to VASP are approximately 0.1743, 0.0051, and 0.0808, respectively, for 

the MS-MEAM, Zhou, and Ackland EAMs. The large deviation in the Eeq scaled energy 

for graphene occurs because of the dampening function, Equation [7.33], that was used 

to correct for the compression behavior of the zigzag binding curve in MS-MEAM. As a 

final example, the absolute deviations in Eeq for zigzag with respect to VASP are 

approximately 0.0170, 0.1277, and 0.0262 for MS-MEAM, Zhou, and Ackland EAMs, 
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respectively. Also, the absolute deviations in r with respect to VASP are approximately 

0.1743, 0.0335, and 0.0387, respectively, for the MS-MEAM, Zhou, and Ackland EAMs. 

 

7.4.2.3 Transformation Pathways 

 Figures 7.18 through 7.22 show the transformation pathways computed with MS-

MEAM, Zhou and Ackland EAM potentials. Figures 7.18 illustrates that the MS-MEAM-

computed Bain pathway nearly matches the VASP-computed Bain pathway by virtue of 

the fitting procedure for the screening table. The Bain pathway computed with the Zhou 

and Ackland EAMs yield large deviations around the bcc scaled energy at f = 0, but they 

all converge to the same scaled energy for fcc at f = 1. Figure 7.19 illustrates the 

Trigonal pathways computed with VASP and all three EAMs. MS-MEAM computations 

yield the best fitting pathway with regard to VASP, with the SC point (f = 0.4) having an 

absolute deviation in the scaled energy of approximately 0.03. The Zhou and Ackland 

EAMs deviate very largely at the SC point in the Trigonal pathways with regard to VASP 

computations, but they do yield the same shape with the characteristic energy hill 

between bcc (f = 0) and fcc (f = 1).  The 2D pathway computations are shown in Figure 

7.20. Although the Zhou and Ackland EAM computations deviate less than the MS-

MEAM computations, the latter illustrate a lowering in scaled energy with increasing f in 

line with the VASP computations. Unlike the VASP and MS-MEAM 2D pathways, the 

Ackland and Zhou EAMs compute 2D pathways in which the scaled energies change 

very little with increasing f. 

 The next two pathways were not used in fitting the screening functions. Figure 

7.21 illustrates computations of the Zigzag transformation. Although MS-MEAM 
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computed a Zigzag pathway that deviates less than those computed by the Zhou and 

Ackland EAMs, the shape of the MS-MEAM Zigzag pathway varies through the VASP 

Zigzag pathway. This is probably due to the change in the density contributions with the 

change in the angle; as f goes from 0 to 1, the angle in the zigzag structure changes 

from 60.0o to 180.0o. Table 7.2 shows that the beam structure, having an angle of 60.0o, 

has contributions from all three angular densities by virtue of non-zero symmetry factors.  

As the angle increases, the pathway passes through the zigzag structure, having an 

angle of 70.5o, which also has contributions from all three angular densities, but the 

values of the symmetry factors change. The density contributions would be expected to 

change as the Zigzag pathway reaches the line structure, which has contributions only 

from the 2nd angular density. In contrast to MS-MEAM, the Zhou and Ackland EAMs 

deviate more from the VASP Zigzag pathway, but they yield the same shape. Figure 

7.22 illustrates the oDC pathways computed from VASP and all three EAMs. The MS-

MEAM oDC pathway matches the VASP oDC pathway most precisely. In contrast, the 

Zhou and Ackland EAMs compute pathways that change very little and do not match 

the behavior of the VASP oDC pathway. It is expected that the screening functions play 

a dominant role in the MS-MEAM oDC pathway since, as the pathway goes from DC to 

oDC10, the corresponding C changes from 1 to 5/3, respectively. 

  

7.4.2.4 Structural, Elastic, and Deformation Energetics 

 Table 7.4 compares lattice and elastic constants computed from MS-MEAM with 

those computed from Zhou and Ackland EAM potentials. In addition, comparisons have 

been made to DFT and known experimental values. Overall, the MS-MEAM results 

187 



 
 

underestimate the DFT and experimental hcp lattice constant a within 0.076 Å and 

0.031 Å, respectively. In contrast, the Zhou and Ackland EAMs are much closer to DFT 

and experiment. However, MS-MEAM predicts a c/a ratio to within .003 Å and .005 Å of 

DFT and experiment, respectively, which is much better than the other two EAMs and 

MEAM. It is noted below Table 7.4 that the lattice constants were measured at an 

unspecified temperature less than 900oC, and therefore a comparison of lattice 

constants computed at 0 K to those measured experimentally at or near 0 K is not 

possible. The DFT lattice constants may thus be the better benchmark by which 

comparisons can be made with the EAMs in this chapter. As for the elastic constants, 

MS-MEAM predicts C11, C12, C33, C44, and C66, and the bulk modulus within 10% of 

DFT and experiment. However, MS-MEAM overestimates C13, respectively.  The 

source of this derivation may lie within the contribution by the 2nd angular density, and is 

thus related to the choice of 2D-hex to derive this density. In addition, MS-MEAM 

outperforms the Zhou and Ackland EAMs for the computed values of C11, C33, C66, 

and the bulk modulus with regard to DFT and experiment. It is noted below Table 7.4 

that the elastic constants and bulk modulus were measured at a temperature of 4 K. 

Although not exactly at 0 K as with the DFT and EAM elastic constants, these 

experimental elastic constants provide a qualitative benchmark with which to compare 

the elastic constants computed from DFT and the EAMs. 

 Table 7.5 compares surface and stacking fault energies computed from MS-

MEAM with those computed from Zhou and Ackland EAM potentials. In addition, 

comparisons have been made to DFT and known experimental values. With regard to 

stacking faults and the twin boundary energies, MS-MEAM outperforms the Zhou and 
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Ackland EAMs, yielding energetics closest to DFT and experiment. This is to be 

expected because the stacking faults are related to the hcp and fcc energy difference, 

which is expected to be exact within MS-MEAM due to fitting of the fcc and hcp 

equilibrium energies. However, MS-MEAM suffers with regard to surface energetics, 

being consistent with the Zhou and Ackland EAMs. This deficiency is likely related to 

how the screening functions were fitted, since surface energetics rely heavily upon 2NN 

interactions. 

 Table 7.6 compares vacancy and self-interstitial energetics computed from MS-

MEAM with those computed from Zhou and Ackland EAM potentials. In addition, 

comparisons have been made to DFT. MS-MEAM underestimates and overestimates 

the vacancy formation and migration energies, respectively. This may be due to the 

presence of the dampening function applied to the 3rd angular density, since a vacancy 

may require contributions from all angular densities. The other EAMs perform in line 

with DFT. On the other hand, the MS-MEAM computes some self-interstitial energies 

consistent with DFT, including the split, and octahedral self-interstitials. The MS-MEAM 

tetrahedral self-interstitial deviates from the split self-interstitial by 0.22 eV, unlike DFT, 

which predicts that the split self-interstitial relaxes to the tetrahedral self-interstitial. 

Finally, MS-MEAM overestimates all three basal self-interstitials. The self-interstitials 

are dependent on 2NN interactions and therefore directly dependent on the screening 

functions. The constraint that the screening functions for the pair potential and the 

symmetric density are equal to each other for 0 < C < 2 may have affected the accuracy 

of the basal self-interstitials, in comparison to DFT. This is suggested because 

preliminary computations showed that fitting the screening functions to Trigonal 
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pathway, within the range of 0.5 < C < 1.5, caused MS-MEAM computations of self-

interstitials to be too stable with regard to hcp. The Zhou and Ackland EAMs 

overestimate the self-interstitial energies with regard to DFT. For the Zhou EAMs, the 

basal crowd-ion and octahedral self-interstitials appear energetically degenerate, but 

they do maintain the basal crowd-ion and octahedral configurations. The same can be 

said for the basal tetrahedral and the crowd-ion self-interstitials. However, for the 

Ackland EAM, the octahedral self-interstitial relaxed to the basal octahedral 

configuration.  

 

7.5 Conclusions 

 In this study, a MS-MEAM potential was constructed for Ti using first-principles 

DFT data from the VASP code. The binding curves, equilibrium energies, transformation 

pathways, and various energetic properties for known solid-state structures were 

computed with MS-MEAM, as well as the Zhou and Ackland EAMs, and compared to 

each other and DFT. This work shows the ability of MS-MEAM to replicate DFT data 

very well, and produces the correct hierarchy of energetic stabilities between solid-state 

structures, with the exception of oDC10 having been predicted as more stable than bcc 

as well as the DC structure being more stable than predicted by VASP. Also, MS-MEAM 

can reproduce transformation pathways very well, particularly the Bain, Trigonal, and 

oDC pathways. The lattice and elastic constants predicted by MS-MEAM are consistent 

with DFT and experiment, particularly the bulk modulus, C11, C33, and C66. MS-MEAM 

was shown to outperform the Zhou and Ackland EAMs in the accuracy of stacking fault 

behavior, but it yielded results consistent with both EAMs. Finally, MS-MEAM deviated 
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in accuracy for vacancy formation and migration energies, but it showed some 

consistency in self-interstitial energies with regard to DFT self-interstitial energies.  

 This was the second application of MS-MEAM, the first of which involved Cu, an 

fcc stable material. Recommended future work should involve an MS-MEAM application 

with Fe, which is a bcc stable material. Any future applications of MS-MEAM involving 

an hcp stable material, such as Zr or Hf, would be expected to face the same 

challenges that were present in this MS-MEAM involving Ti. Such challenges include 

fitting the screening functions to yield accuracy self-interstitial formation energies, and 

applying any necessary dampening functions to any of the angular functions to correct 

binding curvature behavior, like with the zigzag structure. Also, a new disorder model 

should be investigated, that may allow for better fitting of, at least, 2NN interactions, so 

that the correct order of stability between oDC10 and bcc is maintained while 

simultaneously replicating the behavior of the transformation pathways. Indeed, this 

model has confirmed that modeling 2NN interactions is sufficient for deformation 

energetics, given the MS-MEAM self-interstitial energies that match DFT self-interstitial 

energies. Although the MS-MEAM surface energies, which rely on 2NN interactions, 

were found lacking compared to DFT and experiment, the deviation in those results 

could be attributed more to the fitting procedure of the screening functions and the 

choice of reference structures for the MS-MEAM functions. In any case, this application 

of MS-MEAM with Ti has shed light on the challenges of developing an hcp-stable MS-

MEAM potential and has illustrated to work well in computing energetics for multiple 

structures as well as structural, elastic, and deformation  energetics for hcp Ti. 
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Table 7.1: Symmetry factors for structures analyzed in this study. The following are 
variables to be considered: Z1 is the number of 1NNs; s1, s2, and s3

  are the symmetry 
factors for the first, second, and third angular densities, respectively; Z2 is the number of 
2NNs; a is the ratio of the 2NN to 1NN distance; and C is screening parameter for the 
2NNs. Available reference structures are listed with asterisks. 

 Structure Z1 s1 s2 s3 Z2 a C 

fcc* 12 0 0 0 6 √2 1 

hcp* 12 0 0 1/3 6 √2 1 

o-DC10 10 0 7/24 27/32 4 √(3/2) 5/3 

bcc 8 0 0 0 6 √(4/3) 2 

SC* 6 0 0 0 12 √2 1 

2D-hex* 6 0 6 0 6 √3 1/3 

DC* 4 0 0 32/9 12 √(8/3) 1/2 

2D-sq 4 0 8/3 0 4 √2 1 

beam 4 3 19/6 4/9 2 √3 1/3 

graphene 3 0 3/2 9/4 6 √3 1/3 

zigzag 2 8/3 8/9 183/386 2 √(4/3) 2 

line* 2 0 8/3 0 2 2 0 

dimer* 1 1 2/3 2/5 0 - - 
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Table 7.2: Selected reference structures and transformation pathways that correspond 
to the MEAM functions

 Reference Structure Path MEAM Function 

SC/fcc X  
 

fcc X  
 

hcp or DC X  
 

line or 2D-hex 

  

X  
 

dimer X  
 

Bain  X 
 

Trigonal  X 
 2D  X 
  

Table 7.3: Scaled equilibrium energies and nearest neighbor distances for selected 
structures; all Eeq and rNN are unitless. 

Structure VASP MS-MEAM  EAM (Zhou) EAM (Ackland) 

 Eeq rNN Eeq rNN Eeq rNN Eeq rNN 
fcc 6.5455 2.8938 4.8089 2.8939 4.8639 2.9379 4.8391 2.9505 
hcp -1.0085 1.0061 -1.0084 1.0003 -1.0013 0.9968 -1.0028 1.0055 

hcp (ideal c/a) -1.0082 0.9994 -1.0081 1.0089 -1.0013 0.9194 -1.0022 0.9972 
bcc -0.9937 0.9683 -0.9922 0.9685 -0.9972 0.9703 -0.9935 0.9576 

o-DC10 -0.9915 0.9781 -0.9963 0.9871 -0.9883 0.9841 -0.9869 0.9760 
SC -0.8916 0.9039 -0.8512 0.8870 -0.8892 0.9369 -0.9097 0.9317 

2D-hex -0.7270 0.9218 -0.6516 0.9289 -0.7257 0.9460 -0.7766 0.6657 
2D-sq -0.7017 0.8637 -0.6037 0.8706 -0.6714 0.9103 -0.7766 0.9577 
zigzag -0.6622 0.8300 -0.9159 0.9799 -0.7239 0.8917 -0.7340 0.9340 

DC -0.6515 0.8180 -0.6685 0.7845 -0.5238 0.8706 -0.6253 0.8567 
beam -0.6483 0.8510 -0.6218 0.8494 0.5923 0.9065 -0.6754 0.9396 

graphene -0.5446 0.8057 -0.6909 0.9800 -0.2502 0.8006 -0.6219 0.8865 
line -0.4809 0.7390 -0.2500 0.8120 -0.3662 0.8431 -0.4969 0.9034 

dimer -0.4162 0.6650 -0.2885 0.7925 -0.2412 0.8073 -0.3999 0.8738 
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Table 7.4: Computations of lattice and elastic constants from selected EAMs, DFT, and experiment. 

hcp (non-ideal c/a) MS-MEAM EAM 
(Zhou) 

EAM 
(Ackland) DFT Ref Expt. Ref 

a (Å) 2.920 2.941 2.967 2.996 175 2.951a 176 

c/a 1.591 1.623 1.592 1.588 175 1.587a 176 

c11 (GPa) 165.2 160.8 190.0 183.4 175 176.1b 177 

c12 (GPa) 76.2 74.0 76.6 84.6 175 86.9b 177 
c33 (GPa) 192.4 203.2 217.1 204.9 175 190.5b 177 
c13 (GPa) 88.9 70.0 76.1 63.8 175 68.3b 177 
c44 (GPa) 51.8 34.8 50.1 48.8 175 50.8b 177 
c66 (GPa) 44.5 43.4 56.7 49.4 175 44.6b 177 

Bulk modulus (GPa) 114.4 105.9 117.2 110.2 175 109.7b 177 
a) Values were measured at an unspecified temperature less than 900oC 
b) Values were measured at 4oK 

 

Table 7.5: Computations of surface and stacking fault energies from selected EAMs, DFT, and experiment. 

hcp (non-ideal c/a) MS-MEAM EAM 
(Zhou) 

EAM 
(Ackland) DFT Ref Expt. Ref 

Intrinsic(1) stacking fault (mJ/m^2) 132.3 121.2 75.9 148.6 175 - - 
Intrinsic(2) stacking fault (mJ/m^2) 239.6 138.3 112.9 259.1 175 290 178 

Extrinsic stacking fault (mJ/m^2) 376.1 280.0 195.8 353.1 175 - - 
Twin boundary (0001)[11-20] (mJ/m^2) 190.3 29.1 68.3 233.2 179 - - 

Basal surface (0001) (mJ/m^2) 1178 1290 1007 1936 180 2100 181 

Prismatic surface (10-10) (mJ/m^2) 1477 1533 1203 2448 180 1920 182 

Prismatic surface (11-20) (mJ/m^2) 1348 1373 1070 1872 180 - - 
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Table 7.6: Computations of vacancy and self-interstitial energies from selected EAMs, DFT, and experiment. 

hcp (non-ideal c/a) MS-MEAM EAM 
(Zhou) 

EAM 
(Ackland) DFT Ref Expt. Ref 

Vacancy formation (eV) 1.23 1.69 1.45 1.97 49 - - 
Vacancy migration (eV) 3.29 3.09 2.67 - - - - 

Crowd-ion self-interstitial (eV) 2.65 3.74(1) 3.34(0) 2.53 49 - - 
Octahedral self-interstitial (eV) 2.35 3.70(7)  Basal O 2.13 49 - - 

Split self-interstitial (eV) 2.73 3.71(0) 3.66(3) 2.48 49 - - 
Tetrahedral self-interstitial (eV) 2.95 3.73(9)  Basal T  Split 49 - - 

Basal octahedral self-interstitial (eV) 4.17 3.75(2) 3.11(3) 2.25 49 - - 
Basal crowd-ion self-interstitial (eV) 3.04 3.70(3) 3.07(3)  Basal O 49 - - 
Basal tetrahedral self-interstitial (eV) 3.73 3.74(1) 3.10(9)  Basal O 49 - - 
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Figure 7.1: The screening ellipse described by Equation [4]. Screening between atoms i 
and k occurs by the presence of atom j, depending on the value of C. At C=0.8, atom i 
does not see atom j. However, at C=2.0 and greater, the atom j becomes present and 
modifies the pair interaction between atoms i and k. 

 

 
Figure 7.2: The symmetric and angular densities. 

  

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fu
nc

tio
n 

[a
rb

.] 

rNN 

rho0

rho1

rho2

rho3 

196 



 
 

 

 
Figure 7.3: Logarithmic plots for the partial positive (a) and negative (b) densities. Both 
sets of partial densities appear similar, only because for each l, a Υ𝑙�𝑟𝑖𝑗𝑙𝑜𝑤 = 𝑟𝑁𝑁 = 0.0� 
and κ = 6 were used for the construction of these functions in Equations [18] and [19]. 
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Figure 7.4: The screening functions; the 𝑆𝑖𝑗𝑘

𝜙  function is equal to the 𝑆𝑖𝑗𝑘
𝜌𝑎0 function below 

C = 2 and is approximately equal to the 𝑆𝑖𝑗𝑘
𝜌𝑎0 function to the six decimal place. The 𝑆𝑖𝑗𝑘

𝜌𝑎2 
function is applied to the other angular densities. 

 

 
 

Figure 7.5: The fcc binding curves computed with VASP, MS-MEAM, and the Zhou and 
Ackland EAMs. 
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Figure 7.6: The hcp binding curves computed with VASP, MS-MEAM, and the Zhou and 
Ackland EAMs. 
 

 
Figure 7.7: The bcc binding curves computed with VASP, MS-MEAM, and the Zhou and 
Ackland EAMs. 
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Figure 7.8: The oDC10 binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
 

 
Figure 7.9: The SC binding curves computed with VASP, MS-MEAM, and the Zhou and 
Ackland EAMs. 
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Figure 7.10: The 2D-hex binding curves computed with VASP, MS-MEAM, and the 
Zhou and Ackland EAMs. 
 

 
Figure 7.11: The 2D-sq binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
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Figure 7.12: The DC binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
 

 
Figure 7.13: The graphene binding curves computed with VASP, MS-MEAM, and the 

Zhou and Ackland EAMs. 
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Figure 7.14: The zigzag binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
 

 
Figure 7.15: The beam binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
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Figure 7.16: The line binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
 

 
Figure 7.17: The dimer binding curves computed with VASP, MS-MEAM, and the Zhou 
and Ackland EAMs. 
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Figure 7.18: The Bain transformation pathway computed with VASP, MS-MEAM, and 
the Zhou and Ackland EAMs, as a function of the fractional deformation, f. 
 

 
Figure 7.19: The Trigonal transformation pathway computed with VASP, MS-MEAM, 
and the Zhou and Ackland EAMs, as a function of the fractional deformation, f. 
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Figure 7.20: The 2D transformation pathway computed with VASP, MS-MEAM, and the 
Zhou and Ackland EAMs, as a function of the fractional deformation, f. 
 

 
Figure 7.21: The Zigzag transformation pathway computed with VASP, MS-MEAM, and 
the Zhou and Ackland EAMs, as a function of the fractional deformation, f. 
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Figure 7.22: The oDC transformation pathway computed with VASP, MS-MEAM, and 
the Zhou and Ackland EAMs, as a function of the fractional deformation, f. 
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CHAPTER 8 

CONCLUDING REMARKS 

 In this dissertation, the foundation of quantum chemistry has been reviewed. This 

includes topics such as the Schrödinger equation, the Born-Oppenheimer 

approximation, and the variational principle. Also, ab initio methodologies that are 

employed in solving the Schrödinger equation have been briefly examined. These 

methodologies include the Hartree-Fock (HF) approximation, many-body perturbation 

theory (MBPT), configuration interaction (CI), coupled cluster (CC) theory, complete 

active space self-consistent field theory (CASSCF), and density functional theory (DFT). 

Finally, basis functions and various types of basis sets, with which a wavefunction is 

expanded in ab initio methodologies, were reviewed. 

 Topics in solid-state physics were investigated. A brief summary of fourteen 

types of crystal structures was observed. Also, the topic of translational invariance that 

is associated with crystal lattices was mathematically developed, as well as the 

corresponding reciprocal lattice that exists inversely of real space. The electronic 

structure theory of crystals and types of chemical bonding that occurs was reviewed. 

Finally, the necessity of kpoint sampling in reciprocal space was illustrated as a means 

of measuring the energetics of crystal structures. 

 A study of nickel carbides was executed using plane-wave DFT, with emphasis 

on Ni2C due to the scarcity of data on this crystal. It was determined that the most 

stable crystal structure of Ni2C exits within an orthorhombic lattice. Also, computations 

were done that reaffirmed the most stable form of Ni3C existed within a hexagonal 

lattice. A face cubic centered form of NiC was assumed, and computed lattice constants 
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were in agreement within 0.2 Å of previously reported simulations. The calculated 

formation energies (kcal mol-1 ) of NiC, Ni2C, and Ni3C are 48.6, 7.9 and 6.4, 

respectively, which illustrates that Ni2C could be a metastable nickel carbide.  

 Next, the performance and accuracy of correlation consistent basis sets that 

were reoptimized for first row atoms using the B3LYP and BLYP functionals was studied. 

Computations of formation enthalpies, combustion enthalpies, and atomization energies 

were computed and compared to those done with Dunning’s correlation consistent sets. 

The chapter demonstrates that for the B3LYP and BLYP functionals, the reoptimized 

sets recover enthalpies greater than 1 kcal mol-1, even at the quadruple- and quintuple-ζ 

levels. Also, while the double- and triple-ζ reoptimized sets require the same CPU 

demands of Dunning’s correlation consistent sets, the quadruple- and quintuple-ζ 

reduce the CPU requirements in half or more in comparison.  

 The fragment Hamiltonian (FH) method, a semi-empirical atomistic potential, was 

investigated and applied to Ni. Using VASP computations, a set of binding curves for 

reference structures were used to derive the pair potential and parameterize the 

embedding functional and the one-electron hopping energy. The FH method was able to 

predict the VASP fcc and sc binding curves almost exactly and it predicts the other 

structures approximately well. Also, it is able to predict properties such as the fcc elastic 

constants, the vacancy formation energy, and the unstable stacking fault energy. 

However, the FH method is deficient at predicting fcc surface energies and the stable 

stacking fault energy. To improve the predictability of the method, angular functions 

need to be added to the background density. Also, second nearest-neighbor 

interactions should to be included to better describe surface reconstruction. 
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 Finally, a Ti semi-empirical atomistic potential was developed with the multi-state 

modified embedded atom method (MS-MEAM). Unlike the previous incantation of 

MEAM, MS-MEAM uses multiple reference crystal structures and implements the MS-

MEAM densities by solving for functionals rather fitting to parameters. In comparison to 

Ti EAMs produced by Zhou and Ackland, MS-MEAM provides a better, almost exact, fit 

to binding curves of multiple crystal structures and transformation pathways between 

crystals structures. The lattice and elastic constants predicted by MS-MEAM are 

consistent with DFT and experiment. MS-MEAM was shown to outperform the Zhou and 

Ackland EAMs in the accuracy of stacking fault behavior, but it performed on par with 

both EAMs. Finally, MS-MEAM deviated in accuracy for vacancy formation and 

migration energies, but it showed some consistency in self-interstitial energies with 

regard to DFT self-interstitial energies. 
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR THE CORRELATION CONSISTENT BASIS SETS 

OPTIMIZED FOR DENSITY FUNCTIONAL THEORY
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Table A.1. Comparisons between B3LYP total energies (Eh) computed with the cc-pVnZ, cc-pVnZ[rc](tr), and cc-pVnZ-
B3LYP basis sets at geometries optimized with B3LYP/cc-pVTZ. The cc-pVnZ[rc](tr) and cc-pVnZ-B3LYP basis sets are 
listed as energy differences (mEh) from the cc-pVnZ sets. 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

H2 -1.173361 -1.180000 -1.180535 -1.180688 -2.584 -0.040 0.001 0.004 -2.175 -0.008 0.025 0.011 
CH -38.483326 -38.494823 -38.497573 -38.498705 -3.307 -0.644 -0.532 -0.110 -3.224 -0.810 -0.538 -0.077 
NH -55.221145 -55.240454 -55.245176 -55.246990 -4.265 -0.680 -0.550 -0.123 -4.883 -1.534 -0.921 -0.213 
OH -75.730770 -75.762434 -75.770519 -75.773484 -4.638 -0.703 -0.552 -0.138 -6.126 -2.358 -1.327 -0.340 
FH -100.435530 -100.483586 -100.495816 -100.500115 -5.075 -0.746 -0.557 -0.133 -7.853 -2.941 -1.551 -0.409 
CN -92.717585 -92.744003 -92.750825 -92.752910 -6.562 -1.368 -0.905 -0.098 -6.121 -1.304 -0.867 -0.060 
CO -113.321208 -113.357252 -113.366748 -113.369447 -6.462 -1.409 -0.829 -0.099 -5.954 -1.419 -0.653 -0.049 
N2 -109.532872 -109.568426 -109.576976 -109.579759 -7.024 -1.380 -0.923 -0.036 -6.368 -1.566 -1.081 -0.158 
NO -129.899462 -129.938788 -129.949589 -129.953030 -5.143 -1.491 -0.820 -0.037 -4.884 -1.738 -0.837 -0.115 
O2 -150.330512 -150.376647 -150.389626 -150.393766 -3.595 -1.541 -0.818 -0.131 -2.211 -1.662 -0.428 -0.141 
F2 -199.513234 -199.586401 -199.604880 -199.610802 -5.605 -1.532 -1.098 -0.233 -5.607 -1.548 -1.119 -0.295 
CH2 (triplet) -39.151677 -39.167038 -39.170045 -39.171179 -4.659 -0.674 -0.479 -0.092 -3.824 -0.891 -0.553 -0.091 
CH2 (singlet) -39.133578 -39.149995 -39.153392 -39.154707 -4.893 -0.672 -0.473 -0.076 -4.295 -0.743 -0.443 -0.020 
NH2 -55.875998 -55.901454 -55.907248 -55.909500 -6.007 -0.711 -0.490 -0.081 -5.705 -1.774 -0.988 -0.212 
H2O -76.420470 -76.459839 -76.469642 -76.473327 -6.282 -0.738 -0.483 -0.088 -6.753 -2.983 -1.616 -0.402 
CCH (linear) -76.609099 -76.635492 -76.640945 -76.642751 -7.244 -1.317 -0.951 -0.188 -5.979 -1.176 -0.933 -0.188 
HCN -93.429758 -93.461365 -93.468616 -93.470755 -7.797 -1.430 -0.882 -0.140 -6.631 -1.630 -0.857 -0.126 
HCO -113.859154 -113.897410 -113.907309 -113.910370 -6.617 -1.447 -0.801 -0.083 -6.278 -1.672 -0.709 -0.068 
CO2 -188.598266 -188.660569 -188.676606 -188.681145 -9.394 -2.204 -1.231 -0.182 -9.248 -2.179 -0.928 -0.090 
N2O -184.678220 -184.735189 -184.750093 -184.754553 -7.763 -2.304 -1.228 -0.137 -6.179 -1.907 -0.988 -0.144 
NO2 -205.091020 -205.154201 -205.172063 -205.177502 -6.194 -2.362 -1.072 0.039 -5.233 -2.643 -0.869 -0.018 
O3 -225.425915 -225.499057 -225.519558 -225.526101 -4.603 -2.402 -1.013 -0.100 -2.948 -3.169 -0.593 -0.174 
CH3 -39.837481 -39.857233 -39.860517 -39.861726 -6.456 -0.700 -0.442 -0.053 -4.927 -0.987 -0.519 -0.053 
NH3 -56.553849 -56.584728 -56.591417 -56.594138 -7.780 -0.746 -0.404 -0.019 -6.356 -2.014 -1.003 -0.154 
C2H2 -77.332661 -77.363544 -77.369320 -77.371200 -8.409 -1.328 -0.925 -0.218 -6.589 -1.496 -0.942 -0.229 
H2CO -114.507349 -114.549386 -114.559647 -114.562830 -7.567 -1.470 -0.761 -0.051 -7.099 -1.812 -0.711 -0.050 
NCCN -185.667858 -185.722434 -185.735880 -185.739851 -12.519 -2.900 -1.809 -0.335 -10.258 -2.426 -1.575 -0.262 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

BF3 -324.569330 -324.696365 -324.725487 -324.734079 -9.828 -2.911 -1.668 -0.285 -10.618 0.688 -0.673 -0.271 
NF3 -354.096077 -354.222700 -354.255673 -354.266035 -7.896 -3.224 -1.740 -0.214 -8.582 -4.248 -1.789 -0.377 
CH4 -40.515990 -40.538215 -40.541479 -40.542567 -7.824 -0.732 -0.361 -0.008 -5.249 -0.824 -0.299 0.018 
C2H3 -77.905043 -77.934623 -77.940473 -77.942540 -8.863 -1.372 -0.866 -0.077 -6.962 -1.419 -0.887 -0.067 
H2COH -115.062658 -115.108542 -115.119533 -115.123333 -8.427 -1.505 -0.787 -0.058 -7.222 -2.275 -1.119 -0.188 
CH3O -115.053850 -115.097410 -115.107754 -115.111194 -8.126 -1.482 -0.787 -0.069 -7.664 -2.089 -0.958 -0.146 
CH2CO (ketene) -152.611462 -152.663881 -152.676302 -152.680039 -11.116 -2.166 -1.236 -0.161 -8.958 -1.937 -0.993 -0.116 
HCOOH -189.773006 -189.840629 -189.857715 -189.862916 -10.397 -2.284 -1.092 -0.059 -9.995 -2.942 -1.131 -0.099 
CH2F2 -238.989268 -239.081798 -239.104406 -239.111577 -9.280 -2.248 -1.292 -0.099 -10.406 -2.033 -1.330 -0.191 
CHF3 -338.249275 -338.373925 -338.404765 -338.414354 -10.333 -3.031 -1.708 -0.108 -11.190 -1.586 -1.412 -0.158 
CF4 -437.506218 -437.661624 -437.700315 -437.712204 -11.314 -3.838 -2.114 -0.107 -10.584 -0.774 -1.351 -0.106 
C2H4 -78.590734 -78.623163 -78.629166 -78.631281 -10.144 -1.401 -0.834 -0.032 -7.568 -1.483 -0.843 -0.016 
H3COH -115.722385 -115.772227 -115.783750 -115.787600 -9.628 -1.521 -0.731 -0.037 -8.359 -2.460 -1.082 -0.179 
H2NNH2 -111.866539 -111.915839 -111.927478 -111.931630 -11.119 -1.607 -0.705 -0.027 -9.392 -3.156 -1.390 -0.180 
CH3CN -132.760938 -132.806810 -132.817081 -132.820215 -12.600 -2.180 -1.250 -0.154 -10.173 -2.275 -1.189 -0.113 
CH3CO -153.188755 -153.241615 -153.254636 -153.258679 -11.291 -2.224 -1.130 -0.073 -9.622 -2.353 -1.016 -0.081 
CH2CHF -177.831443 -177.898205 -177.913666 -177.918712 -11.016 -2.191 -1.271 -0.064 -9.397 -1.648 -1.133 -0.081 
HCOCOH (glyoxal) -227.835233 -227.909797 -227.929411 -227.935283 -12.273 -3.017 -1.504 -0.077 -11.701 -3.119 -1.193 -0.018 
CF3CN -430.476103 -430.621307 -430.657736 -430.668738 -14.687 -4.558 -2.541 -0.258 -12.899 -1.960 -1.761 -0.177 
C2F4 -475.534748 -475.701834 -475.744240 -475.757580 -13.454 -4.606 -2.494 -0.103 -12.522 -1.150 -1.612 -0.125 
CH3NH2 -95.857517 -95.900005 -95.909189 -95.912424 -11.505 -1.536 -0.687 0.001 -8.923 -2.299 -0.994 -0.080 
CH3CCH -116.659057 -116.703629 -116.712305 -116.715131 -12.954 -2.067 -1.279 -0.232 -9.670 -2.093 -1.226 -0.216 
CH2CCH2 (allene) -116.663416 -116.706516 -116.715079 -116.717969 -12.573 -2.090 -1.292 -0.171 -9.431 -2.025 -1.215 -0.153 
C3H4 (cyclopropene) -116.624031 -116.665646 -116.674336 -116.677156 -11.932 -2.184 -1.250 -0.156 -8.926 -1.771 -1.170 -0.148 
CH3CHO -153.837727 -153.893494 -153.906668 -153.910714 -12.131 -2.246 -1.097 -0.039 -10.160 -2.356 -0.947 0.001 
C2H4O (oxirane) -153.791992 -153.848867 -153.862130 -153.866523 -10.939 -2.281 -1.157 -0.023 -9.516 -2.288 -1.188 -0.080 
CH2CHCN -170.841362 -170.897362 -170.910050 -170.914064 -14.946 -2.865 -1.704 -0.169 -12.099 -2.678 -1.582 -0.121 
CH3NO2 -245.026948 -245.109413 -245.131277 -245.137976 -11.532 -3.155 -1.265 0.068 -10.698 -3.936 -1.193 0.056 
CH3ONO -245.025100 -245.105046 -245.125715 -245.132126 -11.626 -3.155 -1.342 0.000 -8.938 -3.335 -1.093 -0.018 
CH3COF -253.108295 -253.198295 -253.220458 -253.227176 -13.822 -3.029 -1.547 -0.078 -12.392 -2.554 -1.272 -0.051 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

C2H6 -79.828718 -79.864272 -79.870473 -79.872501 -12.094 -1.479 -0.694 -0.005 -8.254 -1.407 -0.582 0.044 
C2H4NH (aziridine) -133.924943 -133.974949 -133.986255 -133.989997 -12.878 -2.340 -1.150 -0.033 -10.161 -2.403 -1.194 -0.043 
CH3CH2O -154.367296 -154.424575 -154.437802 -154.442031 -12.411 -2.246 -1.093 -0.061 -10.559 -2.588 -1.098 -0.071 
HCOOCH3 -229.075153 -229.156130 -229.175802 -229.181809 -14.309 -3.046 -1.341 -0.011 -12.691 -3.322 -1.150 -0.011 
CH3COOH -229.099827 -229.181190 -229.201208 -229.207267 -14.979 -3.061 -1.447 -0.052 -12.937 -3.458 -1.328 -0.056 
CH3CHCH2 -117.911037 -117.956842 -117.965780 -117.968818 -14.413 -2.146 -1.149 -0.017 -10.419 -2.044 -1.080 0.027 
C3H6 (cyclopropane) -117.897233 -117.942669 -117.951599 -117.954546 -14.077 -2.253 -1.175 -0.030 -10.121 -1.793 -1.057 0.013 
CH3CH2OH -155.042698 -155.105957 -155.120253 -155.124822 -13.919 -2.281 -1.047 -0.032 -11.299 -2.921 -1.174 -0.085 
CH3OCH3 -155.028834 -155.089819 -155.103305 -155.107648 -13.177 -2.296 -0.978 0.009 -10.111 -2.457 -0.919 -0.018 
CH3CONH2 -209.226159 -209.302896 -209.321385 -209.327154 -16.653 -3.053 -1.429 -0.013 -14.450 -3.926 -1.602 -0.059 
C4H4O (furan) -230.036403 -230.108696 -230.126486 -230.132319 -14.990 -3.710 -1.833 0.021 -11.536 -2.974 -1.589 0.061 
(CH3)2CH -118.478332 -118.524863 -118.533980 -118.537028 -15.086 -2.208 -1.085 -0.006 -10.657 -2.091 -1.002 0.043 
(CH3)2NH -135.165822 -135.219956 -135.231668 -135.235496 -15.156 -2.325 -0.963 0.022 -11.308 -2.689 -1.057 -0.006 
CH3CH2NH2 -135.176151 -135.231397 -135.243310 -135.247193 -15.724 -2.297 -1.008 0.006 -11.557 -2.726 -1.127 -0.011 
CH2CHCHCH2 (trans-2-butene) -156.000134 -156.055883 -156.067400 -156.071373 -16.592 -2.801 -1.597 -0.025 -12.335 -2.541 -1.523 0.024 
C4H6 (methyl-cyclopropane) -155.968167 -156.023504 -156.035081 -156.038908 -16.285 -2.937 -1.600 -0.117 -12.039 -2.461 -1.476 -0.090 
C4H6 (bicyclo[1.1.0]butane) -155.953395 -156.006225 -156.017928 -156.021711 -15.258 -3.028 -1.561 -0.065 -11.185 -2.106 -1.395 -0.023 
C4H6 (cyclobutene) -155.979400 -156.031613 -156.043165 -156.046945 -15.405 -2.978 -1.477 -0.052 -11.320 -2.490 -1.354 0.004 
C4H6 (dimethylacetylene) -155.983503 -156.041599 -156.053091 -156.056854 -17.500 -2.786 -1.649 -0.252 -12.622 -2.569 -1.495 -0.201 
CH3COCH3 -193.163826 -193.233233 -193.249338 -193.254270 -16.702 -3.015 -1.423 -0.036 -13.097 -3.001 -1.200 0.032 
C4H5N (pyrrole) -210.182366 -210.248974 -210.265340 -210.270882 -16.858 -3.696 -1.851 0.045 -13.182 -3.488 -1.922 0.045 
C3H8 -119.143380 -119.192302 -119.201483 -119.204456 -16.289 -2.227 -1.011 -0.002 -11.118 -2.011 -0.869 0.058 
C5H5N (pyridine) -248.298708 -248.373110 -248.391696 -248.397772 -18.975 -4.407 -2.239 0.066 -15.019 -3.779 -2.097 0.125 
C4H8 (isobutylene) -157.230574 -157.289913 -157.301840 -157.305782 -18.692 -2.898 -1.450 -0.003 -13.170 -2.615 -1.306 0.066 
C2H5OCH3 -194.348778 -194.423344 -194.439640 -194.444772 -17.543 -3.049 -1.295 0.012 -13.140 -2.970 -1.097 0.037 
C6H6 (benzene) -232.262132 -232.333355 -232.350024 -232.355799 -19.912 -4.232 -2.342 0.055 -15.095 -3.308 -2.186 0.126 
(CH3)3N -174.475766 -174.542023 -174.556396 -174.560953 -18.938 -3.119 -1.229 0.027 -13.640 -3.260 -1.211 0.044 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

C5H8 (spiropentane) -195.276600 -195.344431 -195.359000 -195.363699 -20.176 -3.774 -1.901 -0.069 -14.702 -2.810 -1.681 -0.025 
C4H10 (butane) -158.457887 -158.520170 -158.532333 -158.536212 -20.479 -2.978 -1.323 0.004 -14.052 -2.630 -1.146 0.071 
        MAD 11.250 2.213 1.164 0.083 9.248 2.221 1.122 0.108 

    MSD -11.250 -2.213 -1.164 -0.075 -9.248 -2.205 -1.122 -0.087 
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Table A.2. Comparisons between B3LYP complete basis set limit energies (Eh) computed with the cc-pVnZ, cc-
pVnZ[rc](tr), and cc-pVnZ-B3LYP basis sets at fixed geometries optimized with B3LYP/cc-pVTZ. The cc-pVnZ[rc](tr) and 
cc-pVnZ-B3LYP basis sets are listed as energy differences (mEh) from the cc-pVnZ sets. The different extrapolation 
schemes are denoted as: the Peterson exponential formula (P), Schwartz cubic formula (S3), and Schwartz quartic 
formula (S4). 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

H2 -1.180801 -1.180848 -1.180601 0.010 0.143 0.056 0.019 0.141 0.067 
CH -38.499261 -38.497955 -38.497440 -0.168 -0.245 -0.348 -0.096 -0.294 -0.395 
NH -55.247972 -55.245757 -55.244890 -0.179 -0.211 -0.346 -0.183 -0.619 -0.770 
OH -75.775198 -75.771378 -75.769944 -0.186 -0.202 -0.350 -0.245 -1.007 -1.194 
FH -100.502745 -100.497056 -100.494885 -0.172 -0.190 -0.352 -0.242 -1.200 -1.442 
CN -92.754441 -92.751377 -92.750186 -0.136 -0.416 -0.626 -0.105 -0.394 -0.590 
CO -113.371621 -113.367397 -113.365768 -0.087 -0.408 -0.616 0.045 -0.359 -0.554 
N2 -109.581639 -109.577877 -109.576299 -0.093 -0.376 -0.602 -0.213 -0.578 -0.778 
NO -129.955431 -129.950365 -129.948561 -0.006 -0.487 -0.653 -0.003 -0.618 -0.774 
O2 -150.396652 -150.390493 -150.388363 -0.062 -0.631 -0.742 0.163 -0.615 -0.686 
F2 -199.614891 -199.606573 -199.603287 -0.289 -0.647 -0.819 -0.345 -0.683 -0.854 
CH2 (triplet) -39.171803 -39.170591 -39.169936 -0.121 -0.148 -0.298 -0.091 -0.295 -0.416 
CH2 (singlet) -39.155407 -39.153965 -39.153256 -0.107 -0.125 -0.283 -0.025 -0.152 -0.292 
NH2 -55.910697 -55.908076 -55.906953 -0.110 -0.079 -0.275 -0.146 -0.672 -0.851 
H2O -76.475384 -76.470775 -76.469002 -0.104 -0.072 -0.276 -0.254 -1.300 -1.505 
CCH (linear) -76.643936 -76.641753 -76.640621 -0.247 -0.409 -0.639 -0.278 -0.433 -0.620 
HCN -93.472391 -93.469385 -93.468002 -0.142 -0.370 -0.621 -0.057 -0.490 -0.703 
HCO -113.912585 -113.908118 -113.906392 -0.049 -0.395 -0.609 0.076 -0.450 -0.655 
CO2 -188.684818 -188.677780 -188.674982 -0.123 -0.668 -0.969 0.094 -0.524 -0.827 
N2O -184.757919 -184.751218 -184.748644 -0.053 -0.780 -1.028 -0.054 -0.661 -0.858 
NO2 -205.181527 -205.173142 -205.170226 0.185 -0.770 -0.972 0.326 -0.867 -1.039 
O3 -225.530659 -225.520945 -225.517571 0.119 -0.909 -1.055 0.500 -1.132 -1.230 
CH3 -39.86241 -39.86128 -39.86047 -0.068 -0.021 -0.233 -0.018 -0.234 -0.394 
NH3 -56.59549 -56.59251 -56.59116 -0.011 0.070 -0.188 -0.038 -0.695 -0.897 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

C2H2 -77.37246 -77.37034 -77.36904 -0.257 -0.345 -0.614 -0.221 -0.518 -0.726 
H2CO -114.56512 -114.56063 -114.55876 0.001 -0.319 -0.567 0.129 -0.440 -0.674 
NCCN -185.74289 -185.73707 -185.73464 -0.333 -0.973 -1.370 -0.294 -0.843 -1.167 
BF3 -324.74065 -324.72858 -324.72302 -0.214 -1.068 -1.378 -0.776 0.513 0.175 
NF3 -354.27338 -354.25838 -354.25266 -0.097 -1.285 -1.531 0.051 -1.655 -1.924 
CH4 -40.54326 -40.54235 -40.54146 0.015 0.096 -0.164 0.099 -0.055 -0.231 
C2H3 -77.94378 -77.94146 -77.94020 -0.104 -0.258 -0.546 -0.088 -0.391 -0.615 
H2COH -115.12570 -115.12078 -115.11874 -0.009 -0.291 -0.567 -0.047 -0.782 -1.012 
CH3O -115.11345 -115.10890 -115.10697 -0.024 -0.306 -0.571 0.011 -0.621 -0.869 
CH2CO (ketene) -152.68283 -152.67754 -152.67523 -0.124 -0.546 -0.906 -0.031 -0.496 -0.787 
HCOOH -189.86675 -189.85918 -189.85615 0.065 -0.537 -0.878 0.210 -0.804 -1.132 
CH2F2 -239.11659 -239.10663 -239.10251 -0.074 -0.680 -0.979 -0.233 -0.591 -0.924 
CHF3 -338.42123 -338.40763 -338.40207 -0.059 -1.025 -1.356 -0.381 -0.417 -0.774 
CF4 -437.72086 -437.70380 -437.69686 -0.023 -1.376 -1.736 -0.549 -0.148 -0.483 
C2H4 -78.63255 -78.63031 -78.62894 -0.046 -0.162 -0.495 -0.008 -0.340 -0.587 
H3COH -115.79011 -115.78512 -115.78292 0.038 -0.197 -0.514 0.031 -0.757 -1.027 
H2NNH2 -111.93411 -111.92889 -111.92671 0.082 -0.122 -0.491 0.081 -1.034 -1.336 
CH3CN -132.82251 -132.81827 -132.81628 -0.124 -0.465 -0.874 -0.028 -0.603 -0.933 
CH3CO -153.26158 -153.25586 -153.25350 0.016 -0.483 -0.853 0.108 -0.587 -0.902 
CH2CHF -177.92210 -177.91545 -177.91251 -0.056 -0.537 -0.895 -0.159 -0.414 -0.717 
HCOCOH (glyoxal) -227.93971 -227.93087 -227.92749 0.059 -0.819 -1.219 0.293 -0.752 -1.138 
CF3CN -430.67693 -430.66088 -430.65439 -0.149 -1.619 -2.085 -0.463 -0.569 -0.980 
C2F4 -475.76702 -475.74798 -475.74048 0.014 -1.633 -2.062 -0.586 -0.256 -0.653 
CH3NH2 -95.91438 -95.91051 -95.90866 0.091 -0.059 -0.441 0.105 -0.603 -0.895 
CH3CCH -116.71702 -116.71373 -116.71184 -0.235 -0.446 -0.865 -0.181 -0.626 -0.936 
CH2CCH2 (allene) -116.71982 -116.71647 -116.71463 -0.185 -0.459 -0.866 -0.145 -0.591 -0.894 
C3H4 (cyclopropene) -116.67906 -116.67558 -116.67379 -0.123 -0.507 -0.894 -0.193 -0.520 -0.806 
CH3CHO -153.91366 -153.90802 -153.90557 0.064 -0.416 -0.815 0.207 -0.500 -0.836 
C2H4O (oxirane) -153.86942 -153.86366 -153.86115 0.060 -0.514 -0.873 0.004 -0.634 -0.943 
CH2CHCN -170.91687 -170.91154 -170.90909 -0.164 -0.717 -1.201 -0.115 -0.764 -1.154 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

CH3NO2 -245.14288 -245.13292 -245.12918 0.336 -0.768 -1.150 0.596 -1.049 -1.407 
CH3ONO -245.13675 -245.12742 -245.12381 0.244 -0.815 -1.198 0.412 -0.951 -1.247 
CH3COF -253.23215 -253.22248 -253.21847 0.038 -0.746 -1.197 0.058 -0.568 -0.974 
C2H6 -79.87384 -79.87171 -79.87024 0.065 -0.010 -0.412 0.146 -0.158 -0.433 
C2H4NH (aziridine) -133.99246 -133.98765 -133.98546 0.069 -0.419 -0.842 0.063 -0.621 -0.953 
CH3CH2O -154.44495 -154.43930 -154.43679 0.048 -0.406 -0.814 0.143 -0.633 -0.980 
HCOOCH3 -229.18622 -229.17768 -229.17408 0.198 -0.623 -1.095 0.378 -0.740 -1.162 
CH3COOH -229.21176 -229.20303 -229.19941 0.115 -0.642 -1.134 0.293 -0.851 -1.278 
CH3CHCH2 -117.97074 -117.96729 -117.96534 0.022 -0.257 -0.732 0.069 -0.422 -0.764 
C3H6 (cyclopropane) -117.95648 -117.95305 -117.95112 0.031 -0.327 -0.790 -0.005 -0.355 -0.686 
CH3CH2OH -155.12797 -155.12196 -155.11919 0.101 -0.299 -0.759 0.191 -0.730 -1.101 
CH3OCH3 -155.11061 -155.10500 -155.10235 0.174 -0.308 -0.745 0.236 -0.533 -0.868 
CH3CONH2 -209.33127 -209.32323 -209.31983 0.150 -0.518 -1.067 0.290 -1.013 -1.488 
C4H4O (furan) -230.13622 -230.12828 -230.12505 0.174 -0.964 -1.455 0.116 -0.829 -1.205 
(CH3)2CH -118.53900 -118.53549 -118.53351 0.079 -0.210 -0.709 0.134 -0.389 -0.741 
(CH3)2NH -135.23806 -135.23323 -135.23089 0.197 -0.189 -0.693 0.243 -0.582 -0.956 
CH3CH2NH2 -135.24980 -135.24491 -135.24252 0.152 -0.168 -0.691 0.215 -0.606 -0.988 
CH2CHCHCH2 (trans-2-butene) -156.07384 -156.06917 -156.06677 -0.018 -0.505 -1.049 -0.011 -0.630 -1.032 
C4H6 (methyl-cyclopropane) -156.04143 -156.03675 -156.03437 -0.052 -0.603 -1.135 -0.101 -0.648 -1.037 
C4H6 (bicyclo[1.1.0]butane) -156.02428 -156.01940 -156.01710 0.038 -0.660 -1.160 -0.111 -0.529 -0.891 
C4H6 (cyclobutene) -156.04947 -156.04464 -156.04237 0.075 -0.600 -1.106 0.044 -0.621 -0.990 
C4H6 (dimethylacetylene) -156.05936 -156.05493 -156.05246 -0.231 -0.549 -1.118 -0.168 -0.696 -1.103 
CH3COCH3 -193.25787 -193.25107 -193.24802 0.123 -0.509 -1.060 0.291 -0.614 -1.048 
C4H5N (pyrrole) -210.27444 -210.26706 -210.26408 0.176 -0.846 -1.399 0.086 -1.024 -1.452 
C3H8 -119.20646 -119.20309 -119.20103 0.123 -0.116 -0.657 0.187 -0.281 -0.651 
C5H5N (pyridine) -248.40186 -248.39349 -248.39016 0.206 -1.083 -1.705 0.145 -1.042 -1.532 
C4H8 (isobutylene) -157.30837 -157.30370 -157.30117 0.097 -0.350 -0.967 0.151 -0.510 -0.944 
C2H5OCH3 -194.44838 -194.4417 -194.43847 0.233 -0.405 -0.987 -0.337 0.562 0.999 
C6H6 (benzene) -232.35939 -232.35202 -232.34888 0.092 -1.012 -1.662 0.038 0.917 1.406 
(CH3)3N -174.56412 -174.55825 -174.55538 0.296 -0.315 -0.946 0.371 -0.665 -1.119 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

C5H8 (spiropentane) -195.36690 -195.36095 -195.35802 0.077 -0.733 -1.395 -0.053 -0.652 -1.130 
C4H10 (butane) -158.53888 -158.53428 -158.53165 0.186 -0.220 -0.900 0.237 -0.402 -0.869 
      MAD 0.116 0.502 0.864 0.179 0.617 0.908 
   MSD -0.006 -0.495 -0.863 0.000 -0.567 -0.846 
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Table A.3. Comparisons between BLYP total energies (Eh) computed with the cc-pVnZ, cc-pVnZ[rc](tr), and cc-pVnZ-
BLYP basis sets at fixed geometries optimized with B3LYP/cc-pVTZ. The cc-pVnZ[rc](tr) and cc-pVnZ-B3LYP basis sets 
are listed as energy differences (mEh) from the cc-pVnZ sets. 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

H2 -1.161788 -1.169578 -1.170143 -1.170301 -3.688 -0.051 0.001 0.005 -3.030 -0.025 0.027 0.014 
CH -38.464240 -38.477400 -38.480485 -38.481965 -4.934 -1.058 -0.847 -0.191 -4.948 -1.450 -0.931 -0.181 
NH -55.201474 -55.223161 -55.228442 -55.230736 -6.264 -1.117 -0.875 -0.215 -7.565 -2.507 -1.470 -0.374 
OH -75.713510 -75.748388 -75.757351 -75.760984 -7.014 -1.163 -0.885 -0.245 -9.792 -3.749 -2.099 -0.564 
FH -100.419183 -100.471408 -100.484880 -100.490034 -7.831 -1.233 -0.900 -0.246 -12.483 -4.737 -2.506 -0.733 
CN -92.706754 -92.735569 -92.742879 -92.745494 -9.628 -2.246 -1.556 -0.296 -9.035 -2.303 -1.563 -0.271 
CO -113.304715 -113.343454 -113.353642 -113.356893 -9.727 -2.329 -1.475 -0.309 -9.015 -2.514 -1.352 -0.286 
N2 -109.517108 -109.555679 -109.564898 -109.568319 -10.411 -2.261 -1.596 -0.245 -9.422 -2.700 -1.896 -0.444 
NO -129.888811 -129.930996 -129.942664 -129.946817 -8.274 -2.429 -1.506 -0.267 -8.174 -3.046 -1.721 -0.430 
O2 -150.325879 -150.374464 -150.388388 -150.393269 -6.417 -2.508 -1.533 -0.389 -5.131 -2.920 -1.350 -0.475 
F2 -199.508255 -199.585714 -199.605499 -199.612397 -9.308 -2.504 -1.814 -0.488 -9.949 -3.288 -2.142 -0.638 
CH2 (triplet) -39.123764 -39.141328 -39.144692 -39.146137 -6.877 -1.080 -0.760 -0.174 -5.953 -1.524 -0.906 -0.202 
CH2 (singlet) -39.107547 -39.126359 -39.130155 -39.131818 -7.150 -1.080 -0.758 -0.150 -6.566 -1.436 -0.785 -0.135 
NH2 -55.851333 -55.879761 -55.886204 -55.888981 -8.593 -1.151 -0.796 -0.168 -8.928 -2.918 -1.542 -0.394 
H2O -76.398186 -76.441276 -76.452112 -76.456553 -9.253 -1.212 -0.803 -0.192 -11.031 -4.663 -2.473 -0.657 
CCH (linear) -76.581812 -76.610833 -76.616767 -76.619057 -10.488 -2.143 -1.542 -0.374 -8.818 -2.161 -1.560 -0.381 
HCN -93.405433 -93.440063 -93.447943 -93.450565 -11.307 -2.306 -1.469 -0.331 -9.787 -2.686 -1.477 -0.325 
HCO -113.838346 -113.879593 -113.890244 -113.893872 -10.096 -2.366 -1.426 -0.287 -9.684 -2.832 -1.405 -0.299 
CO2 -188.578485 -188.644463 -188.661570 -188.666858 -14.382 -3.620 -2.164 -0.512 -14.184 -3.816 -1.922 -0.465 
N2O -184.667430 -184.727507 -184.743455 -184.748719 -12.350 -3.711 -2.212 -0.477 -10.262 -3.466 -2.029 -0.519 
NO2 -205.085482 -205.151969 -205.171189 -205.177585 -10.617 -3.826 -2.090 -0.317 -9.709 -4.510 -2.082 -0.481 
O3 -225.435398 -225.510961 -225.532884 -225.540544 -8.498 -3.879 -2.087 -0.495 -6.987 -5.121 -2.041 -0.686 
CH3 -39.803249 -39.825879 -39.829504 -39.830991 -9.352 -1.102 -0.710 -0.128 -7.472 -1.576 -0.838 -0.152 
NH3 -56.522579 -56.556946 -56.564369 -56.567699 -10.987 -1.188 -0.686 -0.096 -10.104 -3.256 -1.569 -0.304 
C2H2 -77.297389 -77.331363 -77.337686 -77.340023 -12.090 -2.137 -1.474 -0.404 -9.588 -2.526 -1.527 -0.428 
H2CO -114.477235 -114.522787 -114.533827 -114.537553 -11.453 -2.388 -1.361 -0.247 -10.897 -2.963 -1.359 -0.271 
NCCN -185.635149 -185.694456 -185.709004 -185.713858 -18.559 -4.643 -2.996 -0.720 -15.482 -4.256 -2.752 -0.655 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

BF3 -324.531474 -324.662658 -324.693463 -324.703083 -16.130 -4.873 -2.868 -0.724 -15.956 -2.855 -1.816 -0.743 
NF3 -354.081257 -354.213179 -354.248320 -354.260201 -14.240 -5.203 -3.115 -0.722 -15.881 -7.096 -3.510 -1.044 
CH4 -40.474988 -40.500649 -40.504208 -40.505495 -11.329 -1.136 -0.603 -0.075 -8.111 -1.295 -0.527 -0.068 
C2H3 -77.861105 -77.894257 -77.900682 -77.903241 -12.918 -2.198 -1.428 -0.241 -10.459 -2.491 -1.481 -0.256 
H2COH -115.022811 -115.072615 -115.084541 -115.089025 -12.688 -2.416 -1.381 -0.250 -11.625 -3.792 -1.933 -0.449 
CH3O -115.013172 -115.061220 -115.072579 -115.076690 -12.408 -2.382 -1.365 -0.252 -12.356 -3.507 -1.718 -0.403 
CH2CO (ketene) -152.571209 -152.627865 -152.641229 -152.645655 -16.521 -3.499 -2.114 -0.448 -13.700 -3.495 -1.893 -0.440 
HCOOH -189.735891 -189.808148 -189.826558 -189.832629 -15.903 -3.714 -2.009 -0.374 -15.764 -4.877 -2.202 -0.480 
CH2F2 -238.947575 -239.045786 -239.070036 -239.078247 -14.975 -3.681 -2.226 -0.424 -16.839 -4.126 -2.454 -0.609 
CHF3 -338.206932 -338.337954 -338.370870 -338.381769 -17.272 -4.990 -2.993 -0.569 -18.815 -4.159 -2.824 -0.697 
CF4 -437.462487 -437.624786 -437.665871 -437.679280 -19.534 -6.336 -3.755 -0.708 -18.949 -3.662 -2.991 -0.766 
C2H4 -78.538594 -78.574988 -78.581532 -78.584109 -14.687 -2.224 -1.386 -0.187 -11.270 -2.512 -1.402 -0.192 
H3COH -115.673648 -115.728245 -115.740823 -115.745349 -14.415 -2.429 -1.291 -0.217 -13.368 -3.997 -1.852 -0.440 
H2NNH2 -111.818485 -111.872799 -111.885656 -111.890679 -16.073 -2.524 -1.280 -0.203 -15.001 -5.092 -2.290 -0.451 
CH3CN -132.707695 -132.758525 -132.769718 -132.773532 -18.431 -3.472 -2.095 -0.417 -15.352 -3.790 -2.051 -0.398 
CH3CO -153.139380 -153.197078 -153.211188 -153.216001 -17.064 -3.579 -2.001 -0.351 -15.088 -4.049 -1.973 -0.412 
CH2CHF -177.780119 -177.851738 -177.868324 -177.874174 -16.735 -3.533 -2.166 -0.350 -14.664 -3.396 -2.071 -0.416 
HCOCOH (glyoxal) -227.788332 -227.868183 -227.889311 -227.896196 -18.968 -4.882 -2.710 -0.475 -18.335 -5.356 -2.443 -0.454 
CF3CN -430.424338 -430.576761 -430.615649 -430.628224 -24.000 -7.428 -4.428 -0.922 -21.818 -5.087 -3.554 -0.870 
C2F4 -475.485233 -475.659483 -475.704597 -475.719695 -22.871 -7.539 -4.430 -0.793 -21.807 -4.673 -3.561 -0.897 
CH3NH2 -95.798473 -95.845906 -95.856007 -95.859886 -16.689 -2.409 -1.215 -0.153 -13.949 -3.744 -1.667 -0.293 
CH3CCH -116.595209 -116.644681 -116.654158 -116.657625 -18.831 -3.291 -2.082 -0.490 -14.486 -3.530 -2.039 -0.497 
CH2CCH2 (allene) -116.601490 -116.649242 -116.658587 -116.662121 -18.254 -3.330 -2.116 -0.418 -14.010 -3.485 -2.024 -0.425 
C3H4 (cyclopropene) -116.559332 -116.605576 -116.615082 -116.618524 -17.637 -3.449 -2.061 -0.406 -13.572 -3.232 -1.964 -0.415 
CH3CHO -153.779179 -153.840167 -153.854424 -153.859180 -18.247 -3.590 -1.941 -0.307 -15.851 -3.988 -1.810 -0.300 
C2H4O (oxirane) -153.732394 -153.794128 -153.808530 -153.813725 -16.747 -3.624 -2.017 -0.294 -15.085 -4.074 -2.168 -0.410 
CH2CHCN -170.778067 -170.839630 -170.853447 -170.858368 -21.876 -4.568 -2.854 -0.516 -18.044 -4.655 -2.732 -0.489 
CH3NO2 -244.982127 -245.069948 -245.093531 -245.101349 -18.506 -5.047 -2.491 -0.352 -17.865 -6.392 -2.610 -0.437 
CH3ONO -244.982237 -245.067369 -245.089611 -245.097143 -18.439 -5.045 -2.590 -0.430 -15.397 -5.611 -2.488 -0.517 
CH3COF -253.049812 -253.146082 -253.169893 -253.177659 -21.374 -4.899 -2.737 -0.483 -19.752 -4.854 -2.510 -0.510 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

C2H6 -79.759085 -79.799743 -79.806543 -79.808964 -17.697 -2.299 -1.181 -0.145 -12.833 -2.336 -1.043 -0.123 
C2H4NH (aziridine) -133.853420 -133.908815 -133.921210 -133.925728 -19.121 -3.656 -1.978 -0.277 -15.890 -4.174 -2.080 -0.336 
CH3CH2O -154.297941 -154.361371 -154.375924 -154.380952 -18.807 -3.569 -1.907 -0.317 -16.960 -4.404 -2.014 -0.381 
HCOOCH3 -229.010779 -229.097698 -229.118896 -229.125896 -21.750 -4.903 -2.504 -0.402 -19.773 -5.551 -2.388 -0.458 
CH3COOH -229.033254 -229.121057 -229.142722 -229.149819 -22.756 -4.923 -2.612 -0.441 -20.586 -5.854 -2.599 -0.512 
CH3CHCH2 -117.830372 -117.881808 -117.891584 -117.895269 -21.039 -3.386 -1.944 -0.243 -15.837 -3.513 -1.854 -0.225 
C3H6 (cyclopropane) -117.813575 -117.864729 -117.874526 -117.878107 -20.788 -3.514 -1.965 -0.252 -15.648 -3.288 -1.826 -0.249 
CH3CH2OH -154.965354 -155.035023 -155.050669 -155.056044 -20.804 -3.609 -1.846 -0.286 -17.995 -4.835 -2.095 -0.401 
CH3OCH3 -154.953392 -155.020073 -155.034690 -155.039760 -19.764 -3.637 -1.788 -0.249 -16.067 -4.110 -1.776 -0.327 
CH3CONH2 -209.149057 -209.232459 -209.252536 -209.259341 -24.708 -4.873 -2.559 -0.372 -22.262 -6.408 -2.866 -0.483 
C4H4O (furan) -229.952631 -230.030404 -230.049686 -230.056665 -22.804 -5.907 -3.276 -0.426 -18.211 -5.515 -3.013 -0.398 
(CH3)2CH -118.388182 -118.441000 -118.451058 -118.454756 -22.202 -3.460 -1.847 -0.225 -16.665 -3.596 -1.755 -0.209 
(CH3)2NH -135.079031 -135.139389 -135.152207 -135.156756 -22.196 -3.630 -1.737 -0.208 -17.565 -4.377 -1.868 -0.290 
CH3CH2NH2 -135.088711 -135.150441 -135.163536 -135.168160 -22.980 -3.589 -1.778 -0.222 -18.158 -4.548 -1.952 -0.292 
CH2CHCHCH2 (trans-2-butene) -155.909281 -155.971074 -155.983636 -155.988493 -24.176 -4.444 -2.698 -0.338 -18.433 -4.509 -2.606 -0.315 
C4H6 (methyl-cyclopropane) -155.874646 -155.936297 -155.949000 -155.953674 -24.051 -4.619 -2.665 -0.426 -18.457 -4.423 -2.515 -0.436 
C4H6 (bicyclo[1.1.0]butane) -155.857083 -155.915929 -155.928777 -155.933391 -22.806 -4.726 -2.629 -0.375 -17.475 -4.058 -2.414 -0.367 
C4H6 (cyclobutene) -155.884906 -155.943131 -155.955831 -155.960441 -22.974 -4.672 -2.532 -0.361 -17.611 -4.427 -2.371 -0.325 
C4H6 (dimethylacetylene) -155.891003 -155.955837 -155.968367 -155.972955 -25.586 -4.416 -2.711 -0.585 -19.248 -4.387 -2.528 -0.565 
CH3COCH3 -193.076337 -193.152649 -193.170148 -193.175973 -25.026 -4.792 -2.511 -0.379 -20.573 -5.112 -2.283 -0.350 
C4H5N (pyrrole) -210.086265 -210.158871 -210.176697 -210.183410 -25.039 -5.847 -3.263 -0.371 -20.228 -6.150 -3.346 -0.398 
C3H8 -119.045101 -119.100686 -119.110786 -119.114350 -23.896 -3.465 -1.740 -0.215 -17.316 -3.408 -1.556 -0.193 
C5H5N (pyridine) -248.191001 -248.272266 -248.292601 -248.300037 -28.323 -6.979 -3.934 -0.427 -22.937 -6.761 -3.720 -0.372 
C4H8 (isobutylene) -157.121131 -157.187703 -157.200773 -157.205548 -27.359 -4.560 -2.488 -0.303 -20.239 -4.528 -2.294 -0.259 
C2H5OCH3 -194.244631 -194.326585 -194.344305 -194.350322 -26.244 -4.808 -2.347 -0.319 -20.807 -5.033 -2.144 -0.341 
C6H6 (benzene) -232.142525 -232.220820 -232.239058 -232.246156 -29.530 -6.717 -4.015 -0.416 -22.962 -6.199 -3.775 -0.348 
(CH3)3N -174.360994 -174.434676 -174.450406 -174.455843 -27.794 -4.859 -2.253 -0.282 -21.171 -5.306 -2.218 -0.323 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 ΔD ΔT ΔQ Δ5 ΔD ΔT ΔQ Δ5 

C5H8 (spiropentane) -195.151117 -195.226946 -195.242984 -195.248719 -30.059 -5.896 -3.207 -0.447 -22.924 -5.264 -2.954 -0.451 
C4H10 (butane) -158.330909 -158.401427 -158.414828 -158.419484 -30.074 -4.635 -2.293 -0.279 -21.880 -4.508 -2.060 -0.256 
        MAD 16.627 3.486 1.986 0.340 14.140 3.790 1.986 0.391 
    MSD -16.627 -3.486 -1.986 -0.340 -14.140 -3.790 -1.986 -0.391 

223 



 
 

Table A.4. Comparisons between BLYP complete basis set limit energies (Eh) computed with the cc-pVnZ, cc-pVnZ[rc](tr), 
and cc-pVnZ-BLYP basis sets at fixed geometries optimized with B3LYP/cc-pVTZ. The cc-pVnZ[rc](tr) and cc-pVnZ-
B3LYP basis sets are listed as energy differences (mEh) from the cc-pVnZ sets. The different extrapolation schemes are 
denoted as: the Peterson exponential formula (P), Schwartz cubic formula (S3), and Schwartz quartic formula (S4). 

  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

H2 -1.170430 -1.173468 -1.172030 0.012 0.206 0.082 0.026 0.188 0.085 
CH -38.482553 -38.486565 -38.483817 -0.270 -0.427 -0.579 -0.188 -0.580 -0.733 
NH -55.231792 -55.238382 -55.233840 -0.288 -0.385 -0.582 -0.302 -1.034 -1.267 
OH -75.762830 -75.773286 -75.765929 -0.305 -0.370 -0.592 -0.403 -1.602 -1.901 
FH -100.492873 -100.508602 -100.497596 -0.294 -0.350 -0.599 -0.453 -1.973 -2.356 
CN -92.747072 -92.755866 -92.749821 -0.364 -0.828 -1.130 -0.330 -0.875 -1.158 
CO -113.359175 -113.370957 -113.362804 -0.310 -0.824 -1.131 -0.174 -0.874 -1.159 
N2 -109.570283 -109.582274 -109.574253 -0.340 -0.781 -1.110 -0.516 -1.166 -1.454 
NO -129.949342 -129.961779 -129.952798 -0.259 -0.939 -1.198 -0.313 -1.284 -1.535 
O2 -150.396297 -150.410424 -150.400018 -0.343 -1.131 -1.324 -0.195 -1.307 -1.460 
F2 -199.616706 -199.640340 -199.624083 -0.568 -1.096 -1.380 -0.620 -1.487 -1.787 
CH2 (triplet) -39.146812 -39.152595 -39.149046 -0.211 -0.280 -0.500 -0.172 -0.542 -0.730 
CH2 (singlet) -39.132574 -39.138664 -39.134834 -0.191 -0.254 -0.483 -0.086 -0.408 -0.620 
NH2 -55.890273 -55.899150 -55.893265 -0.206 -0.211 -0.488 -0.235 -1.119 -1.398 
H2O -76.458774 -76.471788 -76.462729 -0.212 -0.203 -0.502 -0.395 -1.995 -2.332 
CCH (linear) -76.620302 -76.629759 -76.623858 -0.451 -0.767 -1.096 -0.457 -0.882 -1.154 
HCN -93.452306 -93.463351 -93.456223 -0.334 -0.728 -1.087 -0.218 -0.943 -1.253 
HCO -113.896209 -113.908768 -113.900101 -0.258 -0.788 -1.108 -0.118 -0.961 -1.269 
CO2 -188.670725 -188.690954 -188.677112 -0.441 -1.290 -1.743 -0.225 -1.260 -1.712 
N2O -184.752255 -184.770405 -184.757731 -0.406 -1.446 -1.831 -0.417 -1.440 -1.756 
NO2 -205.181837 -205.201201 -205.186959 -0.180 -1.483 -1.815 -0.102 -1.817 -2.118 
O3 -225.545317 -225.567174 -225.550956 -0.301 -1.692 -1.950 -0.059 -2.240 -2.448 
CH3 -39.831732 -39.839546 -39.835079 -0.148 -0.104 -0.408 -0.086 -0.425 -0.666 
NH3 -56.569160 -56.580026 -56.572956 -0.088 -0.013 -0.374 -0.079 -1.135 -1.456 
C2H2 -77.341370 -77.352765 -77.345949 -0.446 -0.656 -1.039 -0.372 -0.960 -1.259 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

H2CO -114.539982 -114.554191 -114.544719 -0.189 -0.676 -1.044 -0.036 -0.904 -1.255 
NCCN -185.717071 -185.735509 -185.723157 -0.726 -1.752 -2.332 -0.661 -1.698 -2.178 
BF3 -324.710022 -324.751634 -324.724537 -0.593 -1.927 -2.428 -0.682 -0.908 -1.411 
NF3 -354.267933 -354.307644 -354.279781 -0.612 -2.236 -2.671 -0.508 -3.015 -3.499 
CH4 -40.506257 -40.515435 -40.510457 -0.046 0.062 -0.312 0.051 -0.152 -0.420 
C2H3 -77.904572 -77.915514 -77.908818 -0.277 -0.548 -0.964 -0.224 -0.815 -1.148 
H2COH -115.091554 -115.107007 -115.096645 -0.196 -0.619 -1.028 -0.219 -1.404 -1.770 
CH3O -115.079131 -115.094159 -115.084191 -0.199 -0.620 -1.020 -0.162 -1.172 -1.566 
CH2CO (ketene) -152.648613 -152.666477 -152.654752 -0.405 -1.081 -1.608 -0.284 -1.165 -1.601 
HCOOH -189.836711 -189.858889 -189.843751 -0.229 -1.122 -1.632 -0.065 -1.617 -2.122 
CH2F2 -239.083578 -239.114001 -239.093518 -0.385 -1.264 -1.738 -0.518 -1.449 -1.980 
CHF3 -338.389057 -338.429467 -338.402078 -0.499 -1.884 -2.425 -0.766 -1.508 -2.098 
CF4 -437.688418 -437.738397 -437.704439 -0.595 -2.514 -3.121 -1.052 -1.426 -2.014 
C2H4 -78.585470 -78.597731 -78.590453 -0.209 -0.416 -0.893 -0.129 -0.721 -1.084 
H3COH -115.748058 -115.765293 -115.754014 -0.124 -0.475 -0.945 -0.115 -1.333 -1.760 
H2NNH2 -111.893365 -111.910228 -111.898937 -0.083 -0.398 -0.924 -0.020 -1.754 -2.233 
CH3CN -132.775986 -132.792337 -132.781920 -0.383 -0.940 -1.531 -0.246 -1.204 -1.694 
CH3CO -153.219095 -153.237019 -153.225002 -0.249 -0.997 -1.546 -0.141 -1.281 -1.764 
CH2CHF -177.877770 -177.900378 -177.885576 -0.344 -1.062 -1.597 -0.385 -1.131 -1.596 
HCOCOH (glyoxal) -227.900898 -227.925082 -227.908251 -0.319 -1.610 -2.214 -0.027 -1.697 -2.286 
CF3CN -430.636898 -430.683737 -430.651811 -0.786 -2.925 -3.672 -0.998 -1.959 -2.638 
C2F4 -475.729652 -475.782742 -475.746126 -0.649 -2.981 -3.693 -1.146 -1.838 -2.515 
CH3NH2 -95.862009 -95.877284 -95.867584 -0.046 -0.281 -0.830 0.018 -1.094 -1.546 
CH3CCH -116.659652 -116.676132 -116.666172 -0.489 -0.880 -1.482 -0.394 -1.204 -1.662 
CH2CCH2 (allene) -116.664096 -116.679875 -116.670227 -0.436 -0.912 -1.497 -0.341 -1.186 -1.629 
C3H4 (cyclopropene) -116.620566 -116.635684 -116.626286 -0.363 -0.963 -1.529 -0.378 -1.104 -1.534 
CH3CHO -153.862329 -153.881606 -153.869000 -0.183 -0.892 -1.483 0.010 -1.114 -1.628 
C2H4O (oxirane) -153.816824 -153.836226 -153.823446 -0.198 -1.016 -1.555 -0.229 -1.359 -1.839 
CH2CHCN -170.861353 -170.880972 -170.868307 -0.522 -1.402 -2.099 -0.406 -1.605 -2.176 
CH3NO2 -245.106570 -245.132970 -245.114405 -0.062 -1.566 -2.161 0.211 -2.115 -2.691 
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  cc-pVnZ cc-pVnZ[rc](tr) cc-pVnZ-B3LYP 

Molecule P S3 S4 ΔP ΔS3 ΔS4 ΔP ΔS3 ΔS4 

CH3ONO -245.102034 -245.127853 -245.109931 -0.174 -1.634 -2.224 -0.018 -1.995 -2.485 
CH3COF -253.182955 -253.212853 -253.192787 -0.338 -1.484 -2.169 -0.257 -1.494 -2.127 
C2H6 -79.810431 -79.824451 -79.816406 -0.057 -0.170 -0.753 0.049 -0.415 -0.836 
C2H4NH (aziridine) -133.928385 -133.946022 -133.934625 -0.160 -0.863 -1.484 -0.098 -1.284 -1.795 
CH3CH2O -154.384129 -154.404247 -154.391163 -0.182 -0.843 -1.453 -0.035 -1.287 -1.835 
HCOOCH3 -229.130592 -229.157693 -229.139612 -0.157 -1.348 -2.051 0.052 -1.655 -2.295 
CH3COOH -229.154631 -229.181913 -229.163617 -0.238 -1.348 -2.083 -0.008 -1.802 -2.465 
CH3CHCH2 -117.897337 -117.914473 -117.904122 -0.200 -0.636 -1.321 -0.093 -0.949 -1.462 
C3H6 (cyclopropane) -117.880203 -117.897245 -117.886947 -0.179 -0.704 -1.380 -0.164 -0.886 -1.391 
CH3CH2OH -155.059466 -155.081726 -155.067404 -0.119 -0.703 -1.382 0.035 -1.402 -1.985 
CH3OCH3 -155.042947 -155.064399 -155.050737 -0.050 -0.739 -1.385 0.041 -1.139 -1.660 
CH3CONH2 -209.263753 -209.289819 -209.272494 -0.175 -1.170 -1.972 0.043 -1.967 -2.686 
C4H4O (furan) -230.060810 -230.084724 -230.068466 -0.265 -1.900 -2.630 -0.219 -1.942 -2.520 
(CH3)2CH -118.456903 -118.474520 -118.463894 -0.118 -0.549 -1.275 -0.008 -0.885 -1.427 
(CH3)2NH -135.159529 -135.179101 -135.166785 0.001 -0.558 -1.287 0.101 -1.155 -1.728 
CH3CH2NH2 -135.170997 -135.191029 -135.178436 -0.044 -0.518 -1.272 0.107 -1.207 -1.798 
CH2CHCHCH2 (trans-2-butene) -155.991126 -156.011294 -155.998738 -0.344 -1.101 -1.882 -0.249 -1.423 -2.014 
C4H6 (methyl-cyclopropane) -155.956386 -155.976503 -155.963967 -0.345 -1.186 -1.962 -0.325 -1.406 -1.995 
C4H6 (bicyclo[1.1.0]butane) -155.936159 -155.955064 -155.943005 -0.253 -1.263 -1.999 -0.326 -1.284 -1.842 
C4H6 (cyclobutene) -155.963167 -155.981863 -155.969929 -0.209 -1.195 -1.939 -0.162 -1.364 -1.930 
C4H6 (dimethylacetylene) -155.975634 -155.997179 -155.984111 -0.558 -1.104 -1.927 -0.447 -1.400 -2.013 
CH3COCH3 -193.179839 -193.204117 -193.188391 -0.182 -1.110 -1.923 0.059 -1.387 -2.056 
C4H5N (pyrrole) -210.187188 -210.209510 -210.194341 -0.237 -1.722 -2.528 -0.201 -2.148 -2.791 
C3H8 -119.116537 -119.135347 -119.124240 -0.058 -0.406 -1.192 0.047 -0.707 -1.274 
C5H5N (pyridine) -248.304393 -248.329270 -248.312252 -0.287 -2.157 -3.066 -0.191 -2.310 -3.042 
C4H8 (isobutylene) -157.208345 -157.230377 -157.216932 -0.183 -0.859 -1.751 -0.047 -1.187 -1.844 
C2H5OCH3 -194.354211 -194.380730 -194.363979 -0.050 -0.961 -1.819 0.111 -1.293 -1.972 
C6H6 (benzene) -232.249972 -232.274426 -232.258192 -0.399 -2.025 -2.973 -0.365 -2.137 -2.867 
(CH3)3N -174.459275 -174.483177 -174.468139 0.038 -0.837 -1.749 0.169 -1.380 -2.072 
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C5H8 (spiropentane) -195.252178 -195.276785 -195.261318 -0.265 -1.445 -2.420 -0.316 -1.577 -2.312 
C4H10 (butane) -158.422401 -158.446019 -158.431852 -0.050 -0.641 -1.629 0.063 -0.997 -1.713 

   MAD 0.274 1.005 1.546 0.248 1.313 1.775 
   MSD -0.273 -0.999 -1.544 -0.221 -1.308 -1.773 
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Table A.5. Comparisons of CPU savings for B3LYP total energy calculations computed with the cc-pVnZ[rc](tr) and cc-
pVnZ-B3LYP basis sets as a percent ratio of the cc-pVnZ basis sets, using fixed geometries optimized with B3LYP/cc-
pVTZ. 

 
B3LYP cc-pVnZ[rc](tr) B3LYP cc-pVnZ-B3LYP 

Molecule vdz vtz vqz v5z vdz vtz vqz v5z 

H2 0.00% 0.00% 44.12% 62.50% 0.00% 0.00% 41.18% 62.50% 

CH -4.00% 0.00% 41.06% 57.69% 0.00% -2.13% 41.72% 58.37% 
NH -3.85% -2.08% 41.45% 57.83% 0.00% 0.00% 41.45% 58.04% 
OH -4.00% 0.00% 41.06% 57.69% 0.00% -2.13% 41.72% 58.37% 
FH 0.00% -2.86% 44.35% 60.84% 0.00% -5.71% 44.35% 60.57% 
CN 4.76% -0.99% 41.18% 59.05% -4.76% -1.98% 41.94% 59.93% 
CO -3.23% -1.41% 45.69% 61.66% -6.45% 1.41% 45.69% 60.90% 

N2 0.00% -2.08% 45.41% 58.82% 0.00% 0.00% 45.87% 59.54% 

NO 5.13% 1.12% 48.24% 60.55% 2.56% 1.12% 48.24% 60.31% 

O2 -4.35% -1.96% 46.22% 57.52% -4.35% -1.96% 45.33% 58.14% 

F2 0.00% 0.00% 45.97% 58.64% 4.76% 0.00% 44.55% 57.07% 

CH2 (triplet) 0.00% 0.71% 48.15% 67.46% -1.79% 1.43% 48.46% 67.10% 

CH2 (singlet) 0.00% -2.27% 51.55% 69.80% 0.00% 1.14% 51.55% 69.54% 

NH2 -1.96% -1.65% 49.15% 68.39% 1.96% -0.83% 48.98% 68.48% 

H2O -5.71% -4.71% 52.32% 70.61% 2.86% -3.53% 52.11% 70.57% 

CCH (linear) 0.00% 1.59% 47.57% 62.52% 14.29% 17.14% 57.11% 70.17% 
HCN -2.13% 0.76% 52.12% 64.54% -2.13% 4.55% 52.69% 64.96% 
HCO 3.30% 0.00% 49.75% 66.31% 2.20% -0.38% 49.68% 66.02% 

CO2 0.00% -0.69% 52.40% 62.98% -2.38% -0.69% 52.05% 63.59% 

N2O 1.49% 1.33% 51.91% 63.08% 1.49% -0.44% 51.25% 62.88% 

NO2 0.00% 0.22% 47.31% 62.83% 0.00% -0.22% 49.94% 62.72% 

O3 1.05% 0.00% 50.19% 64.61% 1.05% -0.29% 50.09% 64.66% 

CH3 2.04% 2.33% 54.92% 70.91% -14.29% 0.78% 54.92% 70.98% 

NH3 0.00% 7.28% 56.14% 73.17% 1.92% 7.95% 53.73% 73.26% 

C2H2 2.50% 3.68% 58.20% 67.64% 5.00% 1.47% 59.17% 67.55% 
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B3LYP cc-pVnZ[rc](tr) B3LYP cc-pVnZ-B3LYP 

Molecule vdz vtz vqz v5z vdz vtz vqz v5z 

H2CO -1.79% 4.95% 57.42% 69.35% -3.57% 3.30% 57.51% 69.57% 

NCCN -1.43% 0.60% 55.48% 64.00% 0.00% 0.30% 55.52% 64.09% 

BF3 -1.20% 0.25% 53.62% 64.35% -3.61% -0.50% 52.86% 63.19% 

NF3 -0.63% 0.43% 51.60% 64.25% -0.63% -0.58% 50.95% 63.80% 

CH4 -1.64% 0.00% 58.94% 74.03% -6.56% 0.00% 59.05% 71.60% 

C2H3 -0.65% 0.32% 56.04% 68.37% 0.00% 0.16% 55.93% 69.75% 

H2COH 0.85% 2.91% 54.06% 69.21% 0.00% 2.82% 54.26% 69.13% 

CH3O -2.04% 1.58% 56.19% 68.54% -0.68% 2.11% 56.38% 70.09% 

CH2CO (ketene) -0.98% 0.00% 55.70% 67.03% 0.00% -0.66% 55.68% 67.19% 

HCOOH 0.00% -3.39% 55.69% 69.15% 1.85% -4.07% 55.60% 68.94% 

CH2F2 0.00% 0.00% 56.20% 69.50% -4.08% 1.07% 55.09% 68.40% 

CHF3 -2.79% -2.75% 53.79% 66.89% -3.35% -2.75% 53.53% 66.59% 

CF4 5.29% -2.76% 53.12% 64.96% 4.81% -3.38% 53.00% 64.16% 

C2H4 -1.85% -0.35% 64.17% 71.48% 0.00% 0.35% 64.17% 71.43% 

H3COH 0.83% 0.17% 59.94% 71.16% -7.50% -0.67% 59.99% 71.13% 

H2NNH2 0.00% -0.19% 58.54% 72.36% 0.00% 0.66% 58.59% 72.29% 

CH3CN 0.61% 0.11% 57.43% 69.01% 1.22% 0.32% 55.36% 69.05% 

CH3CO -0.78% 2.22% 57.28% 68.87% 0.78% 1.84% 56.82% 68.88% 

CH2CHF 4.43% -5.46% 56.08% 67.96% 4.93% -5.93% 55.93% 67.96% 

HCOCOH (glyoxal) -0.70% -3.58% 55.81% 68.03% 2.82% 0.49% 55.69% 69.83% 

CF3CN 0.28% -0.90% 52.43% 64.75% 0.85% -1.61% 51.59% 63.95% 

C2F4 3.66% -0.50% 55.22% 64.43% 3.05% -2.43% 53.34% 63.23% 

CH3NH2 -0.68% 0.00% 60.00% 71.94% -1.35% -0.24% 60.16% 71.98% 

CH3CCH 0.45% -0.36% 57.76% 68.51% 0.45% 3.20% 58.17% 68.91% 

CH2CCH2 (allene) -0.70% -0.12% 59.25% 68.16% -5.63% 0.96% 60.82% 68.66% 

C3H4 (cyclopropene) -0.70% -0.69% 59.35% 70.27% 0.70% 0.14% 61.54% 70.39% 

CH3CHO 0.88% 0.00% 59.04% 70.27% 0.88% -0.28% 58.90% 70.33% 
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B3LYP cc-pVnZ[rc](tr) B3LYP cc-pVnZ-B3LYP 

Molecule vdz vtz vqz v5z vdz vtz vqz v5z 

C2H4O (oxirane) 3.50% -1.96% 60.31% 71.37% 1.40% -2.09% 60.44% 71.46% 

CH2CHCN 0.28% 0.23% 57.43% 69.06% -1.11% 0.77% 57.38% 69.52% 

CH3NO2 -1.61% -0.05% 56.35% 71.47% -1.61% -0.24% 56.39% 71.44% 

CH3ONO 0.00% 3.23% 56.22% 72.74% 0.19% 3.64% 56.41% 72.82% 

CH3COF 0.68% 0.40% 57.27% 68.89% 1.02% 0.60% 57.09% 68.81% 

C2H6 2.04% 0.72% 64.31% 73.09% 2.04% 0.72% 64.36% 73.02% 

C2H4NH (aziridine) 0.84% -0.06% 60.44% 71.32% 0.84% 0.00% 60.26% 71.53% 

CH3CH2O 2.45% 0.60% 60.96% 72.16% 1.40% 0.64% 60.88% 72.07% 

HCOOCH3 0.00% 0.69% 57.43% 73.12% 0.31% 0.83% 57.38% 72.99% 

CH3COOH -0.79% 0.22% 56.56% 69.22% 0.26% 4.63% 58.52% 69.91% 

CH3CHCH2 -1.46% -0.19% 61.12% 72.07% 0.29% 0.23% 60.85% 72.13% 

C3H6 (cyclopropane) -1.10% -0.07% 63.45% 72.64% 0.55% -0.82% 63.57% 73.45% 

CH3CH2OH 2.45% 0.60% 60.96% 72.16% 1.40% 0.64% 60.88% 72.07% 

CH3OCH3 -1.23% 2.91% 60.88% 72.15% 1.23% 2.79% 60.95% 72.26% 

CH3CONH2 1.06% -5.38% 58.80% 75.87% 9.69% -5.81% 58.51% 75.92% 

C4H4O (furan) 0.45% 0.54% 58.11% 70.29% 1.81% 0.70% 58.41% 70.53% 

(CH3)2CH -0.43% 0.40% 82.58% 75.29% 1.41% 1.20% 59.42% 75.63% 

(CH3)2NH 9.00% -2.04% 61.37% 75.87% 9.49% -2.54% 61.44% 76.45% 

CH3CH2NH2 -0.29% 0.10% 62.55% 73.34% 0.29% -0.37% 62.13% 73.36% 

CH2CHCHCH2 (trans-2-butene) 0.88% -0.37% 80.68% 71.77% 8.30% 1.34% 80.81% 72.40% 

C4H6 (methyl-cyclopropane) 1.05% 0.00% 61.30% 72.16% -4.20% -0.12% 61.86% 72.52% 

C4H6 (bicyclo[1.1.0]butane) -0.38% -0.66% 61.81% 72.28% 1.52% 1.04% 61.66% 72.61% 

C4H6 (cyclobutene) 0.00% -0.08% 61.76% 71.98% 0.74% 0.83% 63.65% 71.96% 

C4H6 (dimethylacetylene) 1.32% 0.71% 60.40% 72.27% 0.44% 3.79% 61.08% 72.30% 

CH3COCH3 0.21% 4.74% 61.72% 72.98% 1.24% 4.52% 61.66% 73.12% 

C4H5N (pyrrole) 0.74% 0.44% 60.24% 70.72% 0.00% 1.03% 60.72% 71.18% 

C3H8 -1.25% 0.50% 62.75% 73.83% 1.00% -0.16% 62.75% 73.81% 
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C5H5N (pyridine) 0.00% 0.82% 59.20% 70.73% 1.32% 1.66% 59.63% 71.12% 

C4H8 (isobutylene) -0.95% -0.08% 63.72% 72.46% 0.79% 0.26% 63.84% 73.42% 

C2H5OCH3 0.46% -1.24% 59.11% 71.32% 2.01% 0.88% 59.42% 71.70% 

C6H6 (benzene) -0.54% 0.77% 62.92% 70.93% 0.66% 6.29% 63.14% 72.62% 

(CH3)3N 0.46% -0.13% 62.69% 73.20% 1.15% -0.08% 62.75% 73.74% 

C5H8 (spiropentane) -1.09% -0.50% 63.48% 74.17% 1.21% 0.82% 63.77% 74.20% 

C4H10 (butane) -0.68% 0.20% 62.62% 73.71% 0.14% 2.13 % 63.02% 74.11% 
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Table A.6. Comparisons of CPU savings for BLYP total energy calculations computed with the cc-pVnZ[rc](tr) and cc-
pVnZ-BLYP basis sets as a percent ratio of the cc-pVnZ basis sets, using fixed geometries optimized with B3LYP/cc-
pVTZ. 

  cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 D T Q 5 

H2 -10.00% -7.69% 41.67% 58.03% 0.00% -7.69% 44.12% 61.36% 
CH 0.00% 0.00% 40.79% 57.77% 0.00% 0.00% 42.36% 58.03% 
NH -3.70% 0.00% 41.67% 58.03% 3.70% 2.00% 40.79% 57.77% 
OH 0.00% 0.00% 45.45% 60.60% 0.00% 0.00% 42.36% 58.03% 
FH 0.00% 0.00% 43.01% 59.79% 0.00% -2.86% 45.45% 60.05% 
CN -2.50% 0.00% 44.34% 61.45% -7.50% 3.23% 43.01% 61.52% 
CO -3.23% -1.37% 46.33% 58.52% -3.23% 0.00% 44.98% 61.28% 
N2 -5.00% -4.26% 45.24% 57.81% 0.00% 0.00% 46.33% 60.22% 
NO -8.57% -4.94% 43.44% 58.21% -8.57% -3.70% 42.86% 57.54% 
O2 0.00% -3.85% 46.45% 58.63% 0.00% -1.92% 43.44% 57.84% 
F2 0.00% 2.08% 47.58% 66.94% 0.00% 0.00% 45.50% 57.71% 
CH2 (triplet) -1.89% -1.53% 51.64% 71.47% 0.00% 0.00% 47.23% 67.13% 
CH2 (singlet) 2.56% 0.00% 49.64% 67.62% 0.00% 1.08% 51.41% 71.36% 
NH2 0.00% -0.84% 51.63% 70.76% 1.89% 0.84% 50.00% 67.90% 
H2O 0.00% 0.00% 49.43% 63.17% -2.78% -1.11% 51.63% 70.09% 
CCH (linear) -1.72% 0.00% 52.95% 64.40% -1.72% -0.63% 50.19% 63.27% 
HCN -4.44% -2.36% 51.46% 66.72% 0.00% -3.94% 54.07% 64.33% 
HCO 0.00% 8.47% 52.69% 62.82% -1.18% 8.47% 51.22% 66.82% 
CO2 -2.38% -3.55% 51.06% 62.94% -4.76% -2.13% 52.22% 63.75% 
N2O -1.59% 0.00% 48.69% 64.13% -3.17% -0.93% 50.83% 62.81% 
NO2 -0.86% -4.58% 51.61% 65.55% -1.72% -4.83% 46.45% 62.87% 
O3 1.06% -0.63% 37.12% 66.00% -1.06% -0.63% 50.32% 65.02% 
CH3 -2.04% 0.00% 54.49% 70.93% -1.02% -2.19% 74.38% 79.21% 
NH3 -2.17% 0.00% 55.76% 74.27% -4.35% 0.00% 54.34% 71.07% 
C2H2 -2.08% 0.00% 57.42% 67.28% -2.08% 0.00% 55.65% 75.51% 
H2CO -5.41% 0.00% 56.72% 68.84% -2.70% 2.26% 59.98% 67.00% 
NCCN -3.70% 5.88% 55.37% 63.82% -3.70% 5.35% 56.89% 69.59% 
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  cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 D T Q 5 

BF3 -2.94% -2.17% 53.97% 64.18% -2.94% -1.55% 55.73% 63.87% 
NF3 0.00% 2.78% 50.84% 64.34% 4.71% 1.77% 52.81% 63.43% 
CH4 -0.65% 0.77% 58.34% 74.32% -9.80% 0.31% 50.51% 63.68% 
C2H3 -3.17% -2.67% 56.70% 67.29% -1.59% -1.78% 58.40% 74.28% 
H2COH -1.37% 1.02% 54.52% 68.87% -2.05% 0.68% 56.37% 70.18% 
CH3O 1.20% 1.84% 54.03% 67.39% 1.99% 2.23% 51.38% 68.69% 
CH2CO (ketene) -0.69% -3.32% 55.72% 67.36% 0.00% -3.14% 54.61% 68.67% 
HCOOH 0.94% 2.81% 53.79% 69.50% 0.00% 3.46% 56.16% 67.59% 
CH2F2 -0.60% 2.18% 54.49% 68.59% 0.00% 0.68% 53.79% 69.46% 
CHF3 3.09% 1.30% 55.63% 66.93% 1.03% 2.07% 55.48% 68.16% 
CF4 0.00% 0.55% 53.09% 65.37% -0.52% -3.75% 55.55% 67.52% 
C2H4 0.49% -2.59% 63.72% 71.33% 1.47% -2.34% 53.03% 64.84% 
H3COH 0.00% -1.40% 59.62% 73.10% 0.00% -1.75% 64.04% 71.47% 
H2NNH2 -0.81% 2.65% 58.34% 71.89% 0.81% 3.15% 59.75% 73.18% 
CH3CN -1.04% 0.11% 57.60% 69.01% -1.56% -8.54% 58.25% 71.91% 
CH3CO 0.61% 0.22% 56.42% 68.77% 0.00% 0.43% 57.31% 69.11% 
CH2CHF -1.24% 2.72% 57.21% 68.65% -0.41% 2.55% 56.26% 70.70% 
HCOCOH (glyoxal) -4.08% 0.00% 56.26% 67.89% -2.04% 0.00% 56.96% 68.61% 
CF3CN 1.44% 0.12% 50.29% 65.10% 0.72% 0.49% 56.09% 70.22% 
C2F4 1.38% 1.83% 54.88% 63.61% 1.38% -2.78% 49.80% 64.35% 
CH3NH2 1.84% -0.33% 61.38% 71.92% -1.23% -2.50% 52.72% 62.49% 
CH3CCH -0.70% -0.24% 57.92% 70.59% 0.00% -1.21% 61.27% 71.97% 
CH2CCH2 (allene) -1.44% -0.38% 59.36% 69.98% 0.48% 3.23% 58.17% 71.06% 
C3H4 (cyclopropene) -1.30% -2.09% 58.98% 70.21% 0.00% 0.37% 60.85% 70.32% 
CH3CHO -1.39% -0.27% 59.13% 70.51% -0.69% -0.54% 61.58% 70.23% 
C2H4O (oxirane) -9.35% -0.61% 61.18% 71.73% -7.94% -0.23% 59.25% 70.58% 
CH2CHCN -0.68% 3.70% 57.52% 70.05% 0.68% 7.28% 62.20% 71.86% 
CH3NO2 -0.58% -0.84% 56.41% 69.85% 1.16% -0.19% 57.22% 70.42% 
CH3ONO -6.40% 2.53% 56.08% 71.16% -6.18% 2.76% 56.32% 69.71% 
CH3COF 0.18% -2.92% 57.25% 68.95% 2.03% -0.06% 56.14% 71.07% 
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  cc-pVnZ[rc](tr) cc-pVnZ-BLYP 
Molecule D T Q 5 D T Q 5 

C2H6 0.35% 0.05% 63.95% 72.92% 1.76% -4.53% 57.11% 68.87% 
C2H4NH (aziridine) 0.00% -1.17% 60.34% 70.92% 1.05% -1.61% 64.21% 73.14% 
CH3CH2O -0.83% 0.37% 61.36% 73.03% -0.41% -0.56% 60.12% 71.07% 
HCOOCH3 -1.37% -0.14% 57.08% 70.41% 0.68% -0.64% 61.26% 73.02% 
CH3COOH 1.22% -2.73% 60.02% 70.03% 2.14% -2.28% 57.15% 70.52% 
CH3CHCH2 0.27% 2.28% 62.43% 71.26% 0.54% 2.17% 59.97% 70.05% 
C3H6 (cyclopropane) 0.57% -0.41% 63.03% 72.41% 0.28% -0.69% 62.22% 71.59% 
CH3CH2OH -0.56% -0.15% 61.36% 73.03% -5.06% -0.45% 63.04% 72.79% 
CH3OCH3 -1.37% -0.14% 60.89% 71.87% 0.68% -0.64% 61.26% 73.02% 
CH3CONH2 0.90% 0.13% 59.81% 71.51% 0.90% -0.17% 61.10% 72.17% 
C4H4O (furan) 2.24% 2.71% 60.20% 71.34% 3.51% 2.18% 57.78% 71.40% 
(CH3)2CH 2.13% 4.17% 60.64% 72.22% 3.05% 4.33% 60.13% 71.69% 
(CH3)2NH 0.44% -0.38% 60.90% 74.28% 0.00% -0.66% 62.16% 72.37% 
CH3CH2NH2 -1.59% -0.06% 62.74% 73.16% 0.18% -0.46% 60.72% 74.25% 
CH2CHCHCH2 (trans-2-butene) -0.60% -0.61% 63.25% 71.17% 0.00% -0.47% 62.66% 73.28% 
C4H6 (methyl-cyclopropane) 0.66% 2.51% 61.54% 71.94% 0.99% 4.19% 63.33% 71.49% 
C4H6 (bicyclo[1.1.0]butane) -0.34% 0.00% 61.69% 71.96% 0.68% 0.29% 61.52% 72.24% 
C4H6 (cyclobutene) 0.00% -2.05% 61.56% 71.66% 0.78% 0.57% 61.51% 72.51% 
C4H6 (dimethylacetylene) -0.36% -0.37% 60.25% 72.38% 0.00% -0.12% 61.81% 72.01% 
CH3COCH3 -0.42% 0.71% 60.32% 71.98% 1.67% 3.59% 60.69% 72.74% 
C4H5N (pyrrole) 1.69% 4.03% 60.19% 70.69% 7.84% 3.81% 60.20% 71.04% 
C3H8 -1.68% 2.61% 62.93% 73.88% 0.24% -0.09% 60.59% 71.11% 
C5H5N (pyridine) 0.51% 2.59% 60.14% 71.49% 0.51% 2.13% 62.91% 73.96% 
C4H8 (isobutylene) 1.44% -0.04% 64.31% 73.57% 3.21% 0.77% 61.47% 71.96% 
C2H5OCH3 0.25% 0.21% 60.84% 72.32% 2.03% 0.69% 64.11% 73.73% 
C6H6 (benzene) 5.44% -0.11% 62.85% 71.20% 1.51% 1.84% 61.28% 72.58% 
(CH3)3N 0.00% 0.10% 62.54% 73.51% 0.42% 5.42% 63.24% 72.74% 
C5H8 (spiropentane) -0.85% -0.58% 63.55% 73.64% -0.85% -0.41% 62.37% 73.88% 
C4H10 (butane) 0.00% 0.45% 62.47% 73.36% 2.27% 0.98% 63.58% 73.79% 
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Tables A.7: Hydrogen cc-pVDZ-B3LYP 
(4s1p)  [2s1p] 
s Exponent Coefficient Coefficient 
 1.2412060E+01 2.1987109E-02 - 
 1.8911710E+00 1.5073329E-01 - 
 4.2468271E-01 4.8584667E-01 - 
 1.1006130E-01 4.8957333E-01 1.0000000E+00 
 
p Exponent Coefficient 
 9.8827060E-01 1.0000000E+00 
 
 
 
Tables A.8: Hydrogen cc-pVTZ-B3LYP 
(5s2p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 3.3638981E+01 6.3580722E-03 - - 
 5.1757202E+00 4.7122482E-02 - - 
 1.1737961E+00 2.0877273E-01 - - 
 3.1995761E-01 5.0213146E-01 1.0000000E+00 - 
 9.3408182E-02 3.8866943E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.7460300E+00 1.0000000E+00 - 
 4.8582710E-01 - 1.0000000E+00 
 
d Exponent Coefficient 
 1.0570000E+00 1.0000000E+00 
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Tables A.9: Hydrogen cc-pVQZ-B3LYP 
(6s3p2d)  [4s3p2d]  
s Exponent Coefficient Coefficient Coefficient Coefficient 
 8.2845871E+01 2.1339275E-03 - - - 
 1.2242850E+01 1.6309276E-02 - - - 
 2.8669810E+00 7.7692658E-02 - - - 
 8.1378722E-01 2.5703800E-01 1.0000000E+00 - - 
 2.5508261E-01 4.9218780E-01 - 1.0000000E+00 - 
 8.1797399E-02 3.0990607E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 2.3636190E+00 1.0000000E+00 - - 
 7.7487650E-01 - 1.0000000E+00 - 
 3.1704410E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 2.0620000E+00 1.0000000E+00 - 
 6.6200000E-01 - 1.0000000E+00 
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Tables A.10: Hydrogen cc-pV5Z-B3LYP 
(8s4p3d)  [5s4p3d] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 4.0170740E+02 2.9168426E-04 - - - - 
 6.0258839E+01 2.2934561E-03 - - - - 
 1.3698810E+01 1.1750787E-02 - - - - 
 3.9292610E+00 4.7781955E-02 - - - - 
 1.2702980E+00 1.5066747E-01 1.0000000E+00 - - - 
 4.6678180E-01 3.0907935E-01 - 1.0000000E+00 - - 
 1.8542220E-01 4.1817626E-01 - - 1.0000000E+00 - 
 6.9170877E-02 2.1666324E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 4.5567800E+00 1.0000000E+00 - - - 
 1.7439500E+00 - 1.0000000E+00 - - 
 5.9312240E-01 - - 1.0000000E+00 - 
 2.5541990E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.9500000E+00 1.0000000E+00 - - 
 1.2060000E+00 - 1.0000000E+00 - 
 4.9300000E-01 - - 1.0000000E+00 
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Tables A.11: Hydrogen cc-pVDZ-BLYP 
(4s1p)  [2s1p] 
s Exponent Coefficient Coefficient 
 1.2201100E+01 2.2905463E-02 - 
 1.8670670E+00 1.5558469E-01 - 
 4.1831961E-01 4.8881057E-01 - 
 1.0611300E-01 4.8493332E-01 1.0000000E+00 
 
p Exponent Coefficient 
 1.0122660E+00 1.0000000E+00 
 
 
 
Tables A.12: Hydrogen cc-pVTZ-BLYP 
(5s2p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 3.3608871E+01 6.4998353E-03 - - 
 5.1799650E+00 4.8004787E-02 - - 
 1.1782560E+00 2.1132055E-01 - - 
 3.1820601E-01 5.0147569E-01 1.0000000E+00 - 
 9.0442330E-02 3.8991678E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.6859790E+00 1.0000000E+00 - 
 4.5488730E-01 - 1.0000000E+00 
 
d Exponent Coefficient 
 1.0570000E+00 1.0000000E+00 
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Tables A.13: Hydrogen cc-pVQZ-BLYP 
(6s3p2d)  [4s3p2d] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 8.2880318E+01 2.1794455E-03 - - - 
 1.2201580E+01 1.6747758E-02 - - - 
 2.8710539E+00 7.8731902E-02 - - - 
 8.1936961E-01 2.5789666E-01 1.0000000E+00 - - 
 2.5389409E-01 4.9095026E-01 - 1.0000000E+00 - 
 7.8964889E-02 3.1321308E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 2.4171850E+00 1.0000000E+00 - - 
 7.4448520E-01 - 1.0000000E+00 - 
 3.3070400E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 2.0620000E+00 1.0000000E+00 - 
 6.6200000E-01 - 1.0000000E+00 
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Tables A.14: Hydrogen cc-pV5Z-BLYP 
(8s4p3d)  [5s4p3d] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 4.0151651E+02 2.9608700E-04 - - - - 
 6.0282291E+01 2.3560671E-03 - - - - 
 1.3678970E+01 1.1910522E-02 - - - - 
 3.9430830E+00 4.9121302E-02 - - - - 
 1.2619240E+00 1.5386097E-01 1.0000000E+00 - - - 
 4.6835271E-01 3.0276006E-01 - 1.0000000E+00 - - 
 1.8628730E-01 4.1290429E-01 - - 1.0000000E+00 - 
 6.7738377E-02 2.2791709E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 4.5160570E+00 1.0000000E+00 - - - 
 1.7120260E+00 - 1.0000000E+00 - - 
 6.4894090E-01 - - 1.0000000E+00 - 
 2.4576360E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.9500000E+00 1.0000000E+00 - - 
 1.2060000E+00 - 1.0000000E+00 - 
 4.9300000E-01 - - 1.0000000E+00 
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Tables A.15: Boron cc-pVDZ-B3LYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 4.5590122E+03 7.0625549E-04 -1.3031314E-04 - 
 6.8574048E+02 5.4174908E-03 -1.0194045E-03 - 
 1.5703960E+02 2.7350210E-02 -5.0788256E-03 - 
 4.4697289E+01 1.0240930E-01 -2.0418540E-02 - 
 1.4454290E+01 2.7554917E-01 -5.7880044E-02 - 
 5.0587292E+00 4.5117405E-01 -1.3390805E-01 - 
 1.8290790E+00 2.9533142E-01 -1.2050352E-01 - 
 3.3823901E-01 2.0503862E-04 5.5276555E-01 - 
 1.0300980E-01 -2.0092893E-02 5.7198256E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 5.9131131E+00 4.1037280E-02 - 
 1.2285089E+00 2.1467604E-01 - 
 3.3493650E-01 5.0746548E-01 - 
 9.0326183E-02 4.7005835E-01 1.0000000E+00 
 
d Exponent Coefficient 
 3.7196890E-01 1.0000000E+00 
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Tables A.16: Boron cc-pVTZ-B3LYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 5.4690811E+03 5.6282867E-04 -1.0965834E-04 - - 
 8.1930280E+02 4.3468606E-03 -8.4578840E-04 - - 
 1.8661459E+02 2.2292368E-02 -4.4025541E-03 - - 
 5.2601479E+01 8.6284287E-02 -1.7434314E-02 - - 
 1.6903191E+01 2.4276984E-01 -5.3899508E-02 - - 
 5.8885241E+00 4.3682471E-01 -1.1976314E-01 - - 
 2.1250510E+00 3.4353051E-01 -1.5663539E-01 - - 
 5.5424601E-01 3.6768679E-02 1.5904182E-01 1.0000000E+00 - 
 2.3228960E-01 -2.3251612E-02 5.9095871E-01 - - 
 8.2305819E-02 -5.0759790E-03 3.8369474E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 1.1831730E+01 1.4783619E-02 - - 
 2.6927240E+00 8.4723905E-02 - - 
 7.6203239E-01 2.9261130E-01 - - 
 2.3831390E-01 4.9864087E-01 1.0000000E+00 - 
 7.2421558E-02 3.5369256E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6293090E+00 1.0000000E+00 - 
 3.2426380E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.0918700E+00 1.0000000E+00 
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Tables A.17: Boron cc-pVQZ-B3LYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.3888811E+04 8.9485045E-05 -1.7520508E-05 - - - 
 3.5718059E+03 6.9297972E-04 -1.3563778E-04 - - - 
 8.1743732E+02 3.6045567E-03 -7.0792175E-04 - - - 
 2.3033279E+02 1.5200527E-02 -3.0015826E-03 - - - 
 7.4467194E+01 5.2274294E-02 -1.0555740E-02 - - - 
 2.6910509E+01 1.4242513E-01 -3.0164218E-02 - - - 
 1.0420780E+01 2.9756871E-01 -7.1380116E-02 - - - 
 4.1872492E+00 4.0388069E-01 -1.2753461E-01 - - - 
 1.6912110E+00 2.3677310E-01 -1.2126037E-01 - - - 
 4.7579369E-01 1.3298037E-02 2.7724627E-01 1.0000000E+00 - - 
 1.9025511E-01 -1.5669564E-02 5.7989645E-01 - 1.0000000E+00 - 
 7.2394997E-02 -4.2121359E-03 2.8794819E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 2.2321720E+01 5.5234209E-03 - - - 
 5.0870490E+00 3.8115785E-02 - - - 
 1.4859760E+00 1.4204226E-01 - - - 
 5.1174313E-01 3.4154892E-01 1.0000000E+00 - - 
 1.7934319E-01 4.5827946E-01 - 1.0000000E+00 - 
 6.0589369E-02 2.6387382E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8268320E+00 1.0000000E+00 - - 
 1.0070220E+00 - 1.0000000E+00 - 
 2.5726550E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270050E+00 1.0000000E+00 - 
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 6.8428770E-01 - 1.0000000E+00 
 
 
 
Tables A.18: Boron cc-pV5Z-B3LYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.8263461E+04 2.3974646E-05 -4.6903774E-06 - - - - 
 1.0270900E+04 1.8572812E-04 -3.6565889E-05 - - - - 
 2.3352100E+03 9.7728195E-04 -1.9084406E-04 - - - - 
 6.6376233E+02 4.0632919E-03 -8.0490467E-04 - - - - 
 2.1735960E+02 1.4551631E-02 -2.8593589E-03 - - - - 
 7.8628777E+01 4.4583518E-02 -9.0901721E-03 - - - - 
 3.1029160E+01 1.1355940E-01 -2.3566175E-02 - - - - 
 1.2963590E+01 2.3478347E-01 -5.5097044E-02 - - - - 
 5.6305680E+00 3.5146031E-01 -9.7014844E-02 - - - - 
 2.5308690E+00 3.0084702E-01 -1.2721422E-01 - - - - 
 1.1608480E+00 9.8510981E-02 -5.0712183E-02 1.0000000E+00 - - - 
 4.3603089E-01 -2.2028843E-03 3.3858997E-01 - 1.0000000E+00 - - 
 1.7163040E-01 -1.0888292E-02 5.6842232E-01 - - 1.0000000E+00  
 6.7188501E-02 -4.3088146E-03 2.3993392E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.6826492E+01 9.2647062E-04 - - - - 
 1.5692400E+01 6.9455337E-03 - - - - 
 4.9460492E+00 3.3170499E-02 - - - - 
 1.7439700E+00 1.0039590E-01 - - - - 
 7.0212650E-01 2.3306432E-01 1.0000000E+00 - - - 
 2.9572889E-01 3.5276070E-01 - 1.0000000E+00 - - 
 1.2312730E-01 3.6165169E-01 - - 1.0000000E+00 - 
 4.8172291E-02 1.6369157E-01 - - - 1.0000000E+00 
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d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6446800E+00 1.0000000E+00 - - - 
 1.7836430E+00 - 1.0000000E+00 - - 
 7.4798890E-01 - - 1.0000000E+00 - 
 2.0552200E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9419710E+00 1.0000000E+00 - - 
 1.2040080E+00 - 1.0000000E+00 - 
 4.9249340E-01 - - 1.0000000E+00 
 
 
 
Tables A.19: Boron cc-pVDZ-BLYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 4.5637329E+03 7.0603652E-04 -1.3662707E-04 - 
 6.8804230E+02 5.4120044E-03 -1.0648854E-03 - 
 1.5719650E+02 2.7466083E-02 -5.3554927E-03 - 
 4.4646679E+01 1.0286691E-01 -2.1394247E-02 - 
 1.4433520E+01 2.7562091E-01 -6.0900267E-02 - 
 5.0437899E+00 4.4973758E-01 -1.3779560E-01 - 
 1.8132060E+00 2.9500079E-01 -1.2145973E-01 - 
 3.3870369E-01 3.6065117E-03 5.5808216E-01 - 
 1.0162900E-01 -1.6840037E-02 5.6846762E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 5.9083881E+00 4.2006265E-02 - 
 1.2325470E+00 2.1610248E-01 - 
 3.3641389E-01 5.0595051E-01 - 
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 8.8356487E-02 4.7429815E-01 1.0000000E+00 
 
d Exponent Coefficient 
 3.7161550E-01 1.0000000E+00 
 
 
 
Tables A.20: Boron cc-pVTZ-BLYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 5.4645962E+03 5.6453317E-04 -1.1440166E-04 - - 
 8.1921283E+02 4.3629566E-03 -8.8136218E-04 - - 
 1.8630080E+02 2.2434672E-02 -4.6115159E-03 - - 
 5.2462742E+01 8.6834662E-02 -1.8192196E-02 - - 
 1.6851761E+01 2.4336247E-01 -5.6327172E-02 - - 
 5.8674278E+00 4.3536675E-01 -1.2325900E-01 - - 
 2.1104310E+00 3.4224918E-01 -1.5765980E-01 - - 
 5.5421591E-01 3.8604066E-02 1.6250180E-01 1.0000000E+00 - 
 2.3230889E-01 -2.0762630E-02 5.9049016E-01 - - 
 8.0977388E-02 -3.3881185E-03 3.8277510E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 1.1846890E+01 1.5189775E-02 - - 
 2.6960080E+00 8.5799210E-02 - - 
 7.6649129E-01 2.9292917E-01 - - 
 2.3959820E-01 4.9444887E-01 1.0000000E+00 - 
 7.0510551E-02 3.6237738E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.0781610E+00 1.0000000E+00 - 
 2.8910640E-01 - 1.0000000E+00 
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f Exponent Coefficient 
 1.0918480E+00 1.0000000E+00 
 
 
 
Tables A.21: Boron cc-pVQZ-BLYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.3969650E+04 8.9294430E-05 -1.8171560E-05 - - - 
 3.5779451E+03 6.9593010E-04 -1.4123347E-04 - - - 
 8.1466681E+02 3.6347557E-03 -7.4276538E-04 - - - 
 2.3017500E+02 1.5192654E-02 -3.1065103E-03 - - - 
 7.4702339E+01 5.2218765E-02 -1.0982544E-02 - - - 
 2.6958561E+01 1.4266098E-01 -3.1205252E-02 - - - 
 1.0431390E+01 2.9661784E-01 -7.4393161E-02 - - - 
 4.1860061E+00 4.0248621E-01 -1.2920719E-01 - - - 
 1.6812680E+00 2.3780507E-01 -1.2338728E-01 - - - 
 4.7813600E-01 1.5203206E-02 2.8096163E-01 1.0000000E+00 - - 
 1.9014920E-01 -1.3225527E-02 5.7885462E-01 - 1.0000000E+00 - 
 7.1022108E-02 -2.9914335E-03 2.8807974E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 2.2321341E+01 5.6252419E-03 - - - 
 5.0915322E+00 3.9119355E-02 - - - 
 1.4820290E+00 1.4455424E-01 - - - 
 5.1149988E-01 3.4036085E-01 1.0000000E+00 - - 
 1.8084720E-01 4.4677413E-01 - 1.0000000E+00 - 
 5.9693009E-02 2.7940378E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
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 2.8268220E+00 1.0000000E+00 - - 
 1.0069710E+00 - 1.0000000E+00 - 
 2.5701540E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270100E+00 1.0000000E+00 - 
 6.8426990E-01 - 1.0000000E+00 
 
 
 
Tables A.22: Boron cc-pV5Z-BLYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.8177430E+04 2.3993012E-05 -4.8673023E-06 - - - - 
 1.0290110E+04 1.8627854E-04 -3.8094953E-05 - - - - 
 2.3359380E+03 9.7751955E-04 -1.9778071E-04 - - - - 
 6.6372443E+02 4.0954626E-03 -8.4333523E-04 - - - - 
 2.1673010E+02 1.4606483E-02 -2.9706082E-03 - - - - 
 7.8717453E+01 4.4634506E-02 -9.4682015E-03 - - - - 
 3.1019890E+01 1.1391910E-01 -2.4426637E-02 - - - - 
 1.2968880E+01 2.3417850E-01 -5.7279866E-02 - - - - 
 5.6291628E+00 3.4987926E-01 -9.9484600E-02 - - - - 
 2.5304339E+00 2.9878470E-01 -1.2706874E-01 - - - - 
 1.1608710E+00 1.0154132E-01 -5.2948371E-02 1.0000000E+00 - - - 
 4.3603590E-01 -4.4075350E-04 3.4483972E-01 - 1.0000000E+00 - - 
 1.7184700E-01 -8.4920833E-03 5.5783468E-01 - - 1.0000000E+00  
 6.7012258E-02 -3.3855324E-03 2.4666615E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.6826492E+01 9.4249839E-04 - - - - 
 1.5692460E+01 7.0785256E-03 - - - - 
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 4.9460492E+00 3.4172457E-02 - - - - 
 1.7439260E+00 1.0122474E-01 - - - - 
 7.0216191E-01 2.3584385E-01 1.0000000E+00 - - - 
 2.9570991E-01 3.4871924E-01 - 1.0000000E+00 - - 
 1.2313970E-01 3.5055098E-01 - - 1.0000000E+00 - 
 4.8116110E-02 1.8073842E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6447310E+00 1.0000000E+00 - - - 
 1.7836400E+00 - 1.0000000E+00 - - 
 7.4794820E-01 - - 1.0000000E+00 - 
 2.0532830E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9419750E+00 1.0000000E+00 - - 
 1.2040150E+00 - 1.0000000E+00 - 
 4.9247910E-01 - - 1.0000000E+00 
 
 
 
Tables A.23: Carbon cc-pVDZ-B3LYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 6.6486338E+03 7.0101517E-04 -1.3046099E-04 - 
 1.0028500E+03 5.3728353E-03 -1.0260957E-03 - 
 2.2910390E+02 2.7264800E-02 -5.0963596E-03 - 
 6.5118240E+01 1.0249297E-01 -2.0874389E-02 - 
 2.1090860E+01 2.7743122E-01 -5.8912318E-02 - 
 7.4328299E+00 4.5205471E-01 -1.4047322E-01 - 
 2.7216671E+00 2.9255077E-01 -1.1474977E-01 - 
 5.2354407E-01 -3.0745864E-03 5.6076521E-01 - 
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 1.5456089E-01 -2.2747638E-02 5.6838429E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 9.2682571E+00 4.2837888E-02 - 
 1.9636370E+00 2.2483097E-01 - 
 5.3505683E-01 5.1133424E-01 - 
 1.4136700E-01 4.6015173E-01 1.0000000E+00 
 
d Exponent Coefficient 
 5.5646300E-01 1.0000000E+00 
 
 
 
Tables A.24: Carbon cc-pVTZ-B3LYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 8.1998330E+03 5.3891051E-04 -1.0647176E-04 - - 
 1.2351310E+03 4.1459310E-03 -8.2037441E-04 - - 
 2.8092709E+02 2.1381332E-02 -4.2774742E-03 - - 
 7.8977242E+01 8.3589807E-02 -1.7223451E-02 - - 
 2.5338800E+01 2.3916627E-01 -5.3907499E-02 - - 
 8.8426418E+00 4.3780375E-01 -1.2379430E-01 - - 
 3.2017801E+00 3.4899575E-01 -1.5955921E-01 - - 
 8.4506941E-01 3.5639793E-02 1.8864039E-01 1.0000000E+00 - 
 3.4018040E-01 -2.5375042E-02 5.9589183E-01 - - 
 1.1842740E-01 -6.1905622E-03 3.5771450E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 1.8585180E+01 1.5242425E-02 - - 
 4.2075620E+00 9.1386922E-02 - - 
 1.2047840E+00 3.0456644E-01 - - 
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 3.7612081E-01 4.9642140E-01 1.0000000E+00 - 
 1.1178160E-01 3.4334862E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6771810E+00 1.0000000E+00 - 
 4.0582580E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.0918660E+00 1.0000000E+00 
 
 
 
Tables A.25: Carbon cc-pVQZ-B3LYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 3.4040641E+04 9.1886977E-05 -1.8228708E-05 - - - 
 5.0847231E+03 7.0706534E-04 -1.4076701E-04 - - - 
 1.1661980E+03 3.7004668E-03 -7.3525734E-04 - - - 
 3.2721420E+02 1.5588205E-02 -3.1389331E-03 - - - 
 1.0616190E+02 5.3442549E-02 -1.0919464E-02 - - - 
 3.8310299E+01 1.4652207E-01 -3.1938866E-02 - - - 
 1.4892060E+01 3.0242813E-01 -7.4121580E-02 - - - 
 6.0751328E+00 3.9925990E-01 -1.3317238E-01 - - - 
 2.5037551E+00 2.3050894E-01 -1.1570054E-01 - - - 
 7.4023932E-01 1.1419312E-02 2.8852820E-01 1.0000000E+00 - - 
 2.8842789E-01 -1.7612198E-02 5.8111459E-01 - 1.0000000E+00 - 
 1.0633340E-01 -5.5624070E-03 2.8239435E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 3.4934502E+01 5.6659826E-03 - - - 
 7.8840389E+00 4.0827349E-02 - - - 
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 2.3090489E+00 1.5567358E-01 - - - 
 7.9023570E-01 3.5711381E-01 1.0000000E+00 - - 
 2.7416131E-01 4.5102370E-01 - 1.0000000E+00 - 
 9.0506360E-02 2.4643981E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8369890E+00 1.0000000E+00 - - 
 9.6801980E-01 - 1.0000000E+00 - 
 3.3463990E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270190E+00 1.0000000E+00 - 
 6.8429680E-01 - 1.0000000E+00 
 
 
 
Tables A.26: Carbon cc-pV5Z-B3LYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 9.6770961E+04 2.4940788E-05 -4.9541613E-06 - - - - 
 1.4367300E+04 1.9410405E-04 -3.8780290E-05 - - - - 
 3.2980320E+03 1.0059986E-03 -1.9951361E-04 - - - - 
 9.3554413E+02 4.2479183E-03 -8.5392373E-04 - - - - 
 3.0522681E+02 1.5074411E-02 -3.0115377E-03 - - - - 
 1.1169190E+02 4.5277003E-02 -9.3897283E-03 - - - - 
 4.4262810E+01 1.1670753E-01 -2.4745915E-02 - - - - 
 1.8430071E+01 2.4259788E-01 -5.8668822E-02 - - - - 
 7.9993539E+00 3.5957456E-01 -1.0318566E-01 - - - - 
 3.5723939E+00 2.9654470E-01 -1.3599050E-01 - - - - 
 1.6166070E+00 8.3544999E-02 -2.3840379E-02 1.0000000E+00 - - - 
 6.4481860E-01 -6.1539141E-03 3.5640711E-01 - 1.0000000E+00 - - 
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 2.5544599E-01 -1.2535532E-02 5.5260056E-01 - - 1.0000000E+00  
 9.8235287E-02 -5.3302548E-03 2.3303716E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.0122230E+02 9.4794785E-04 - - - - 
 2.4469601E+01 7.1373656E-03 - - - - 
 7.7507539E+00 3.4547169E-02 - - - - 
 2.7690101E+00 1.0724649E-01 - - - - 
 1.1075180E+00 2.4717979E-01 1.0000000E+00 - - - 
 4.5429429E-01 3.6890689E-01 - 1.0000000E+00 - - 
 1.8243331E-01 3.5085264E-01 - - 1.0000000E+00 - 
 6.9417886E-02 1.4323646E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470020E+00 1.0000000E+00 - - - 
 1.8129960E+00 - 1.0000000E+00 - - 
 7.0701030E-01 - - 1.0000000E+00 - 
 2.7571750E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9419700E+00 1.0000000E+00 - - 
 1.2040020E+00 - 1.0000000E+00 - 
 4.9250140E-01 - - 1.0000000E+00 
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Tables A.27: Carbon cc-pVDZ-BLYP 
(9s4p1d)  [3s2p1d]  
s Exponent Coefficient Coefficient Coefficient 
 6.6486338E+03 7.0270186E-04 -1.3566023E-04 - 
 1.0028500E+03 5.3844168E-03 -1.0653595E-03 - 
 2.2910390E+02 2.7348211E-02 -5.3049233E-03 - 
 6.5118240E+01 1.0266523E-01 -2.1633789E-02 - 
 2.1090860E+01 2.7736300E-01 -6.1153639E-02 - 
 7.4328299E+00 4.4904143E-01 -1.4325106E-01 - 
 2.7216671E+00 2.9400158E-01 -1.1495226E-01 - 
 5.2354407E-01 3.8493099E-04 5.6108564E-01 - 
 1.5456089E-01 -2.0601783E-02 5.6770635E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 9.3124428E+00 4.3481793E-02 - 
 1.9594210E+00 2.2811316E-01 - 
 5.3103769E-01 5.1239675E-01 - 
 1.3711810E-01 4.6018630E-01 1.0000000E+00 
 
d Exponent Coefficient 
 5.5593220E-01 1.0000000E+00 
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Tables A.28: Carbon cc-pVTZ-BLYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 8.1975518E+03 5.4128206E-04 -1.1027027E-04 - - 
 1.2301310E+03 4.1836975E-03 -8.5240678E-04 - - 
 2.7950650E+02 2.1566462E-02 -4.4515636E-03 - - 
 7.8671051E+01 8.4057614E-02 -1.7816603E-02 - - 
 2.5271980E+01 2.3949064E-01 -5.5774763E-02 - - 
 8.8196735E+00 4.3665585E-01 -1.2656692E-01 - - 
 3.1839609E+00 3.4810460E-01 -1.6053683E-01 - - 
 8.4544581E-01 3.7009943E-02 1.9189657E-01 1.0000000E+00 - 
 3.4044999E-01 -2.3397608E-02 5.9432095E-01 - - 
 1.1696250E-01 -4.9867756E-03 3.5794875E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 1.8416040E+01 1.5551971E-02 - - 
 4.2464280E+00 9.1225274E-02 - - 
 1.2103710E+00 3.0708599E-01 - - 
 3.7466809E-01 4.9466932E-01 1.0000000E+00 - 
 1.0846360E-01 3.4792987E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6770600E+00 1.0000000E+00 - 
 4.0542980E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.0918580E+00 1.0000000E+00 
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Tables A.29: Carbon cc-pVQZ-BLYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 3.4137148E+04 9.1394424E-05 -1.8689203E-05 - - - 
 5.1123340E+03 7.0738641E-04 -1.4496713E-04 - - - 
 1.1644060E+03 3.7206276E-03 -7.6248130E-04 - - - 
 3.2703720E+02 1.5631214E-02 -3.2377243E-03 - - - 
 1.0620830E+02 5.3444263E-02 -1.1268768E-02 - - - 
 3.8452110E+01 1.4572483E-01 -3.2614887E-02 - - - 
 1.4958870E+01 3.0141124E-01 -7.6391615E-02 - - - 
 6.0807528E+00 3.9929533E-01 -1.3483205E-01 - - - 
 2.4901440E+00 2.3153390E-01 -1.1756561E-01 - - - 
 7.4279302E-01 1.2642108E-02 2.9280242E-01 1.0000000E+00 - - 
 2.8781840E-01 -1.5598548E-02 5.7997668E-01 - 1.0000000E+00 - 
 1.0457910E-01 -4.6084519E-03 2.8182605E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 3.4918308E+01 5.7200138E-03 - - - 
 7.9044399E+00 4.1677747E-02 - - - 
 2.2997360E+00 1.5779272E-01 - - - 
 7.9144478E-01 3.5408095E-01 1.0000000E+00 - - 
 2.7622929E-01 4.4327471E-01 - 1.0000000E+00 - 
 8.9251392E-02 2.5980884E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8369790E+00 1.0000000E+00 - - 
 9.6803960E-01 - 1.0000000E+00 - 
 3.3428590E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270340E+00 1.0000000E+00 - 
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 6.8429050E-01 - 1.0000000E+00 
 
 
 
Tables A.30: Carbon cc-pV5Z-BLYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 9.6771133E+04 2.4956653E-05 -5.1026568E-06 - - - - 
 1.4367220E+04 1.9518865E-04 -4.0190051E-05 - - - - 
 3.2887190E+03 1.0103441E-03 -2.0612538E-04 - - - - 
 9.3604858E+02 4.2486377E-03 -8.8071806E-04 - - - - 
 3.0547720E+02 1.5114916E-02 -3.1039440E-03 - - - - 
 1.1147640E+02 4.5710832E-02 -9.7810738E-03 - - - - 
 4.4057121E+01 1.1737505E-01 -2.5554659E-02 - - - - 
 1.8397280E+01 2.4164295E-01 -6.0442109E-02 - - - - 
 7.9913960E+00 3.5888073E-01 -1.0526872E-01 - - - - 
 3.5530930E+00 2.9631504E-01 -1.3691884E-01 - - - - 
 1.6000590E+00 8.4130250E-02 -2.4266269E-02 1.0000000E+00 - - - 
 6.4607638E-01 -5.2452944E-03 3.6148816E-01 - 1.0000000E+00 - - 
 2.5452739E-01 -1.0621125E-02 5.4919392E-01 - - 1.0000000E+00  
 9.6793666E-02 -4.5677442E-03 2.3354894E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.0123270E+02 9.6351979E-04 - - - - 
 2.4475330E+01 7.2001866E-03 - - - - 
 7.7623711E+00 3.5428647E-02 - - - - 
 2.7650931E+00 1.0767310E-01 - - - - 
 1.1093270E+00 2.4926101E-01 1.0000000E+00 - - - 
 4.5345721E-01 3.6458263E-01 - 1.0000000E+00 - - 
 1.8299110E-01 3.4270200E-01 - - 1.0000000E+00 - 
 6.9074348E-02 1.5842751E-01 - - - 1.0000000E+00 
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d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470830E+00 1.0000000E+00 - - - 
 1.8129980E+00 - 1.0000000E+00 - - 
 7.0702040E-01 - - 1.0000000E+00 - 
 2.7543110E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9420000E+00 1.0000000E+00 - - 
 1.2040000E+00 - 1.0000000E+00 - 
 4.9250660E-01 - - 1.0000000E+00 
 
 
 
Tables A.31: Nitrogen cc-pVDZ-B3LYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 8.9787969E+03 7.1348820E-04 -1.3366426E-04 - 
 1.3553910E+03 5.4467754E-03 -1.0515427E-03 - 
 3.1009671E+02 2.7707139E-02 -5.2078003E-03 - 
 8.7724503E+01 1.0505009E-01 -2.1734716E-02 - 
 2.8344910E+01 2.8419772E-01 -6.1030697E-02 - 
 1.0041000E+01 4.5279646E-01 -1.4663322E-01 - 
 3.7270000E+00 2.8232339E-01 -1.0582105E-01 - 
 7.4073982E-01 -5.8971294E-03 5.6801879E-01 - 
 2.1390229E-01 -2.3723492E-02 5.6330252E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.3299790E+01 4.4065077E-02 - 
 2.8540161E+00 2.3187968E-01 - 
 7.7738369E-01 5.1324368E-01 - 
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 2.0246071E-01 4.5400947E-01 1.0000000E+00 
 
d Exponent Coefficient 
 8.1618300E-01 1.0000000E+00 
 
 
 
Tables A.32: Nitrogen cc-pVTZ-B3LYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.1350960E+04 5.2971294E-04 -1.0568530E-04 - - 
 1.7169640E+03 4.0717921E-03 -8.1563933E-04 - - 
 3.8838971E+02 2.1236842E-02 -4.2871400E-03 - - 
 1.0868880E+02 8.3380133E-02 -1.7438555E-02 - - 
 3.4923641E+01 2.3899291E-01 -5.4492142E-02 - - 
 1.2252450E+01 4.3803272E-01 -1.2702075E-01 - - 
 4.4638271E+00 3.4907481E-01 -1.5961167E-01 - - 
 1.1908530E+00 3.4030724E-02 2.0851718E-01 1.0000000E+00 - 
 4.6536320E-01 -2.6044190E-02 5.9878105E-01 - - 
 1.5939739E-01 -6.6342331E-03 3.4076115E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 2.5654869E+01 1.6445685E-02 - - 
 5.8601451E+00 9.8478526E-02 - - 
 1.7096090E+00 3.1456867E-01 - - 
 5.3541690E-01 4.9277264E-01 1.0000000E+00 - 
 1.5733640E-01 3.3336201E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6540000E+00 1.0000000E+00 - 
 4.6853100E-01 - 1.0000000E+00 
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f Exponent Coefficient 
 1.0919070E+00 1.0000000E+00 
 
 
 
Tables A.33: Nitrogen cc-pVQZ-B3LYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 4.5971559E+04 9.3016191E-05 -1.8632716E-05 - - - 
 6.8796592E+03 7.2214025E-04 -1.4551102E-04 - - - 
 1.5635060E+03 3.7994327E-03 -7.6160493E-04 - - - 
 4.4162439E+02 1.5712138E-02 -3.2079942E-03 - - - 
 1.4510970E+02 5.2975763E-02 -1.0915007E-02 - - - 
 5.2816349E+01 1.4592664E-01 -3.2392312E-02 - - - 
 2.0489519E+01 3.0650041E-01 -7.6006986E-02 - - - 
 8.3355360E+00 4.0133619E-01 -1.3883339E-01 - - - 
 3.4531479E+00 2.2537220E-01 -1.0984296E-01 - - - 
 1.0433640E+00 9.3909036E-03 3.0295950E-01 1.0000000E+00 - - 
 3.9762250E-01 -1.8350402E-02 5.8202779E-01 - 1.0000000E+00 - 
 1.4324480E-01 -6.0270200E-03 2.7103159E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 4.9909950E+01 5.7322797E-03 - - - 
 1.1397110E+01 4.1519981E-02 - - - 
 3.3696361E+00 1.6068016E-01 - - - 
 1.1519600E+00 3.6153904E-01 1.0000000E+00 - - 
 3.9687279E-01 4.4767416E-01 - 1.0000000E+00 - 
 1.2829320E-01 2.4421334E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
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 2.8370000E+00 1.0000000E+00 - - 
 9.6800000E-01 - 1.0000000E+00 - 
 3.3466500E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270000E+00 1.0000000E+00 - 
 6.8431500E-01 - 1.0000000E+00 
 
 
 
Tables A.34: Nitrogen cc-pV5Z-B3LYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.2877860E+05 2.5771253E-05 -5.1777733E-06 - - - - 
 1.9167180E+04 2.0062948E-04 -4.0488798E-05 - - - - 
 4.4029102E+03 1.0341251E-03 -2.0758419E-04 - - - - 
 1.2538840E+03 4.3592402E-03 -8.8476721E-04 - - - - 
 4.0786450E+02 1.5599378E-02 -3.1589807E-03 - - - - 
 1.4849780E+02 4.7088139E-02 -9.8691275E-03 - - - - 
 5.8867748E+01 1.2004390E-01 -2.5942067E-02 - - - - 
 2.4714291E+01 2.4649288E-01 -6.0740199E-02 - - - - 
 1.0774640E+01 3.6495480E-01 -1.0830541E-01 - - - - 
 4.7695551E+00 2.9440451E-01 -1.4108780E-01 - - - - 
 2.1015611E+00 7.1274772E-02 3.0306315E-03 1.0000000E+00 - - - 
 8.6011910E-01 -9.2923306E-03 3.8036889E-01 - 1.0000000E+00 - - 
 3.4142551E-01 -1.2964862E-02 5.3555387E-01 - - 1.0000000E+00  
 1.3050070E-01 -5.4461136E-03 2.1506655E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.4655740E+02 9.5061655E-04 - - - - 
 3.4817341E+01 7.3148557E-03 - - - - 
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 1.1218160E+01 3.4745742E-02 - - - - 
 4.0470052E+00 1.1116327E-01 - - - - 
 1.6096570E+00 2.5473422E-01 1.0000000E+00 - - - 
 6.5166938E-01 3.7464330E-01 - 1.0000000E+00 - - 
 2.5670439E-01 3.4530139E-01 - - 1.0000000E+00 - 
 9.5331967E-02 1.3629605E-01 - - - 1.0000000E+00 

 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470000E+00 1.0000000E+00 - - - 
 1.8130000E+00 - 1.0000000E+00 - - 
 7.0700000E-01 - - 1.0000000E+00 - 
 2.7572400E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9420000E+00 1.0000000E+00 - - 
 1.2040000E+00 - 1.0000000E+00 - 
 4.9250700E-01 - - 1.0000000E+00 
 
 
 
Tables A.35: Nitrogen cc-pVDZ-BLYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 8.9695957E+03 7.1399874E-04 -1.3822455E-04 - 
 1.3571140E+03 5.4597179E-03 -1.0871688E-03 - 
 3.0914621E+02 2.7937405E-02 -5.4308851E-03 - 
 8.7348160E+01 1.0572384E-01 -2.2531131E-02 - 
 2.8230631E+01 2.8478149E-01 -6.3334391E-02 - 
 9.9987898E+00 4.5132345E-01 -1.4939983E-01 - 
 3.7014830E+00 2.8158024E-01 -1.0611400E-01 - 
 7.4233907E-01 -3.6988810E-03 5.7088447E-01 - 
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 2.1205850E-01 -2.1340664E-02 5.6178766E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.3124790E+01 4.5614768E-02 - 
 2.8081100E+00 2.3756948E-01 - 
 7.6377690E-01 5.1409656E-01 - 
 1.9547050E-01 4.5071974E-01 1.0000000E+00 
 
d Exponent Coefficient 
 8.1536680E-01 1.0000000E+00 
 
 
 
 
Tables A.36: Nitrogen cc-pVTZ-BLYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.1383780E+04 5.2934047E-04 -1.0832716E-04 - - 
 1.7161930E+03 4.0930831E-03 -8.4006443E-04 - - 
 3.8739819E+02 2.1342780E-02 -4.4212192E-03 - - 
 1.0859080E+02 8.3550259E-02 -1.7888913E-02 - - 
 3.4912350E+01 2.3901367E-01 -5.5976640E-02 - - 
 1.2244330E+01 4.3696702E-01 -1.2925270E-01 - - 
 4.4478431E+00 3.4891453E-01 -1.6066165E-01 - - 
 1.1934670E+00 3.5205487E-02 2.1075651E-01 1.0000000E+00 - 
 4.6598330E-01 -2.4323931E-02 5.9740460E-01 - - 
 1.5770170E-01 -5.6633363E-03 3.4162703E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 2.5592310E+01 1.6748354E-02 - - 
 5.8556528E+00 9.9756517E-02 - - 
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 1.6997590E+00 3.1899261E-01 - - 
 5.2794981E-01 4.9140105E-01 1.0000000E+00 - 
 1.5157160E-01 3.3410421E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6540000E+00 1.0000000E+00 - 
 4.6806250E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.0919070E+00 1.0000000E+00 
 
 
 
Tables A.37: Nitrogen cc-pVQZ-BLYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 4.5956621E+04 9.3019516E-05 -1.9108938E-05 - - - 
 6.9006040E+03 7.2129292E-04 -1.4893513E-04 - - - 
 1.5630291E+03 3.8192887E-03 -7.8539480E-04 - - - 
 4.4128531E+02 1.5727583E-02 -3.2891200E-03 - - - 
 1.4526120E+02 5.3074807E-02 -1.1220963E-02 - - - 
 5.2784180E+01 1.4627136E-01 -3.3227209E-02 - - - 
 2.0494360E+01 3.0537885E-01 -7.7844545E-02 - - - 
 8.3417444E+00 3.9979586E-01 -1.3986649E-01 - - - 
 3.4452369E+00 2.2687732E-01 -1.1136784E-01 - - - 
 1.0459610E+00 1.0532610E-02 3.0658612E-01 1.0000000E+00 - - 
 3.9644331E-01 -1.6682882E-02 5.8143926E-01 - 1.0000000E+00 - 
 1.4087071E-01 -5.1911236E-03 2.7008244E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 4.9984119E+01 5.8010500E-03 - - - 
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 1.1371170E+01 4.2406365E-02 - - - 
 3.3662341E+00 1.6093948E-01 - - - 
 1.1596670E+00 3.5941043E-01 1.0000000E+00 - - 
 3.9732170E-01 4.4567594E-01 - 1.0000000E+00 - 
 1.2518691E-01 2.5249264E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8370000E+00 1.0000000E+00 - - 
 9.6800000E-01 - 1.0000000E+00 - 
 3.3433030E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.0270000E+00 1.0000000E+00 - 
 6.8431500E-01 - 1.0000000E+00 
 
 
 
Tables A.38: Nitrogen cc-pV5Z-BLYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.2868870E+05 2.5870962E-05 -5.3256886E-06 - - - - 
 1.9171180E+04 2.0047415E-04 -4.1492771E-05 - - - - 
 4.4017852E+03 1.0409255E-03 -2.1399475E-04 - - - - 
 1.2531570E+03 4.3442813E-03 -9.0472028E-04 - - - - 
 4.1010120E+02 1.5535895E-02 -3.2198797E-03 - - - - 
 1.4873360E+02 4.7276478E-02 -1.0169927E-02 - - - - 
 5.8947369E+01 1.1990115E-01 -2.6486758E-02 - - - - 
 2.4704880E+01 2.4760683E-01 -6.2740646E-02 - - - - 
 1.0719220E+01 3.6535528E-01 -1.1043286E-01 - - - - 
 4.7367449E+00 2.9205018E-01 -1.4154504E-01 - - - - 
 2.0913470E+00 7.1979165E-02 3.9500371E-03 1.0000000E+00 - - - 
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 8.6074942E-01 -8.4621077E-03 3.8375616E-01 - 1.0000000E+00 - - 
 3.3994359E-01 -1.1329014E-02 5.3337133E-01 - - 1.0000000E+00  
 1.2839830E-01 -4.8189741E-03 2.1491843E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.4664510E+02 9.6142362E-04 - - - - 
 3.4817612E+01 7.3877485E-03 - - - - 
 1.1220740E+01 3.5474818E-02 - - - - 
 4.0417418E+00 1.1160848E-01 - - - - 
 1.6117110E+00 2.5630531E-01 1.0000000E+00 - - - 
 6.5075850E-01 3.7078810E-01 - 1.0000000E+00 - - 
 2.5718701E-01 3.3863023E-01 - - 1.0000000E+00 - 
 9.5033541E-02 1.4955582E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470000E+00 1.0000000E+00 - - - 
 1.8130000E+00 - 1.0000000E+00 - - 
 7.0700000E-01 - - 1.0000000E+00 - 
 2.7544830E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9420000E+00 1.0000000E+00 - - 
 1.2040000E+00 - 1.0000000E+00 - 
 4.9250700E-01 - - 1.0000000E+00 
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Tables A.39: Oxygen cc-pVDZ-B3LYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 1.1798660E+04 7.1741920E-04 -1.3535086E-04 - 
 1.7495540E+03 5.6068925E-03 -1.0901673E-03 - 
 3.9689871E+02 2.8610215E-02 -5.4197651E-03 - 
 1.1248200E+02 1.0756321E-01 -2.2502417E-02 - 
 3.6567211E+01 2.8836462E-01 -6.2867731E-02 - 
 1.3054590E+01 4.5285603E-01 -1.5061191E-01 - 
 4.8974042E+00 2.7502850E-01 -1.0161837E-01 - 
 1.0104361E+00 -8.1593404E-03 5.6929636E-01 - 
 2.9045519E-01 -2.5238205E-02 5.6397718E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.7175920E+01 4.8253734E-02 - 
 3.7285700E+00 2.4862967E-01 - 
 1.0064189E+00 5.2791333E-01 - 
 2.5233969E-01 4.2787829E-01 1.0000000E+00 
 
d Exponent Coefficient 
 1.1689680E+00 1.0000000E+00 
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Tables A.40: Oxygen cc-pVTZ-B3LYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.5381630E+04 5.1346497E-04 -1.0321473E-04 - - 
 2.2889790E+03 4.0036985E-03 -8.0757763E-04 - - 
 5.1859460E+02 2.0727480E-02 -4.2178407E-03 - - 
 1.4562720E+02 8.1441663E-02 -1.7156079E-02 - - 
 4.6880260E+01 2.3536062E-01 -5.4212991E-02 - - 
 1.6486919E+01 4.3678802E-01 -1.2775806E-01 - - 
 6.0363078E+00 3.5389021E-01 -1.6292593E-01 - - 
 1.6761320E+00 3.6326975E-02 1.9552691E-01 1.0000000E+00 - 
 6.5045780E-01 -2.7446005E-02 6.0247934E-01 - - 
 2.1984050E-01 -8.1570940E-03 3.5242295E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 3.2896969E+01 1.8240677E-02 - - 
 7.5222449E+00 1.0958789E-01 - - 
 2.2027731E+00 3.3531865E-01 - - 
 6.7874008E-01 4.9992222E-01 1.0000000E+00 - 
 1.9159320E-01 3.0094203E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6922840E+00 1.0000000E+00 - 
 4.7055710E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.1374240E+00 1.0000000E+00 
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Tables A.41: Oxygen cc-pVQZ-B3LYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.1546770E+04 9.0980786E-05 -1.8379726E-05 - - - 
 9.1624521E+03 7.0879818E-04 -1.4414421E-04 - - - 
 2.0906541E+03 3.6945634E-03 -7.4662000E-04 - - - 
 5.9137000E+02 1.5395009E-02 -3.1735576E-03 - - - 
 1.9242700E+02 5.2951325E-02 -1.1005475E-02 - - - 
 6.9491814E+01 1.4664270E-01 -3.2964762E-02 - - - 
 2.7008841E+01 3.0625680E-01 -7.7039383E-02 - - - 
 1.1065400E+01 4.0054929E-01 -1.4107850E-01 - - - 
 4.6156340E+00 2.2564539E-01 -1.0989009E-01 - - - 
 1.4366500E+00 9.2113316E-03 2.9893798E-01 1.0000000E+00 - - 
 5.4742920E-01 -1.9722473E-02 5.8390456E-01 - 1.0000000E+00 - 
 1.9566029E-01 -6.9787386E-03 2.7588034E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 6.4132172E+01 6.3735973E-03 - - - 
 1.4564340E+01 4.6422146E-02 - - - 
 4.3254399E+00 1.7772520E-01 - - - 
 1.4690100E+00 3.8105544E-01 1.0000000E+00 - - 
 4.9513051E-01 4.4607487E-01 - 1.0000000E+00 - 
 1.5358301E-01 2.1071422E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8370220E+00 1.0000000E+00 - - 
 9.6800290E-01 - 1.0000000E+00 - 
 3.3466950E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.4753770E+00 1.0000000E+00 - 
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 5.8638400E-01 - 1.0000000E+00 
 
 
 
Tables A.42: Oxygen cc-pV5Z-B3LYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.6404241E+05 2.6653055E-05 -5.4081097E-06 - - - - 
 2.4535650E+04 2.0707591E-04 -4.2189069E-05 - - - - 
 5.5779888E+03 1.0925028E-03 -2.2154993E-04 - - - - 
 1.5809480E+03 4.5478097E-03 -9.3200256E-04 - - - - 
 5.1781403E+02 1.6267175E-02 -3.3308368E-03 - - - - 
 1.8697050E+02 4.9876861E-02 -1.0575793E-02 - - - - 
 7.3999977E+01 1.2510999E-01 -2.7479814E-02 - - - - 
 3.1338720E+01 2.5180468E-01 -6.3513860E-02 - - - - 
 1.3783680E+01 3.6610574E-01 -1.1183384E-01 - - - - 
 6.1527009E+00 2.8504390E-01 -1.4215016E-01 - - - - 
 2.7313261E+00 6.5275438E-02 1.9612705E-02 1.0000000E+00 - - - 
 1.1294430E+00 -1.0660388E-02 3.8968834E-01 - 1.0000000E+00 - - 
 4.5371810E-01 -1.3985751E-02 5.2603847E-01 - - 1.0000000E+00  
 1.7420180E-01 -5.7918807E-03 2.0717429E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.9756190E+02 9.5632422E-04 - - - - 
 4.6784321E+01 7.6798745E-03 - - - - 
 1.4699250E+01 3.8308568E-02 - - - - 
 5.2098398E+00 1.2582576E-01 - - - - 
 2.0318661E+00 2.7991390E-01 1.0000000E+00 - - - 
 8.0135423E-01 3.8899496E-01 - 1.0000000E+00 - - 
 3.0572709E-01 3.2559833E-01 - - 1.0000000E+00 - 
 1.0996910E-01 1.0306729E-01 - - - 1.0000000E+00 
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d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470000E+00 1.0000000E+00 - - - 
 1.8130000E+00 - 1.0000000E+00 - - 
 7.0700000E-01 - - 1.0000000E+00 - 
 2.7600000E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9422060E+00 1.0000000E+00 - - 
 1.2039920E+00 - 1.0000000E+00 - 
 4.9250120E-01 - - 1.0000000E+00 
 
 
 
Tables A.43: Oxygen cc-pVDZ-BLYP 
(9s4p1d)  [3s2p1d]  
s Exponent Coefficient Coefficient Coefficient 
 1.1728890E+04 7.2168512E-04 -1.3975654E-04 - 
 1.7558890E+03 5.5567119E-03 -1.1077949E-03 - 
 4.0147290E+02 2.8193422E-02 -5.4830564E-03 - 
 1.1383810E+02 1.0650358E-01 -2.2791777E-02 - 
 3.6909611E+01 2.8680509E-01 -6.4194746E-02 - 
 1.3133260E+01 4.5242131E-01 -1.5223251E-01 - 
 4.9002318E+00 2.7776784E-01 -1.0352600E-01 - 
 1.0120341E+00 -6.1632334E-03 5.7232928E-01 - 
 2.8723460E-01 -2.3281777E-02 5.6249386E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 1.7007170E+01 4.9610980E-02 - 
 3.6814110E+00 2.5352550E-01 - 
 9.9186552E-01 5.2838016E-01 - 
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 2.4447019E-01 4.2543858E-01 1.0000000E+00 
 
d Exponent Coefficient 
 0.1167797D+01 1.0000000E+00 
 
 
 
Tables A.44: Oxygen cc-pVTZ-BLYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.5222680E+04 5.1730452E-04 -1.0601152E-04 - - 
 2.2941040E+03 3.9916001E-03 -8.1961660E-04 - - 
 5.2146521E+02 2.0530837E-02 -4.2614457E-03 - - 
 1.4766360E+02 7.9849489E-02 -1.7095881E-02 - - 
 4.7711140E+01 2.3174982E-01 -5.4402553E-02 - - 
 1.6729429E+01 4.3553907E-01 -1.2845625E-01 - - 
 6.0837612E+00 3.5864052E-01 -1.6552375E-01 - - 
 1.6975610E+00 3.8773462E-02 1.9114482E-01 1.0000000E+00 - 
 6.5661442E-01 -2.6448902E-02 6.0368961E-01 - - 
 2.1830390E-01 -7.4144718E-03 3.5664016E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 3.2614529E+01 1.8719204E-02 - - 
 7.4688230E+00 1.1159462E-01 - - 
 2.1802950E+00 3.4009996E-01 - - 
 6.6752100E-01 4.9775630E-01 1.0000000E+00 - 
 1.8462750E-01 3.0069128E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 1.6924260E+00 1.0000000E+00 - 
 4.7010470E-01 - 1.0000000E+00 
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f Exponent Coefficient 
 1.1433350E+00 1.0000000E+00 
 
 
 
Tables A.45: Oxygen cc-pVQZ-BLYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 6.1157969E+04 9.0646441E-05 -1.8660194E-05 - - - 
 9.2343037E+03 7.0879969E-04 -1.4681954E-04 - - - 
 2.0761960E+03 3.7479529E-03 -7.7201735E-04 - - - 
 5.8819769E+02 1.5494043E-02 -3.2527808E-03 - - - 
 1.9158830E+02 5.3305954E-02 -1.1295009E-02 - - - 
 6.9313583E+01 1.4670922E-01 -3.3575431E-02 - - - 
 2.7026110E+01 3.0466878E-01 -7.8253657E-02 - - - 
 1.1093000E+01 3.9884260E-01 -1.4132829E-01 - - - 
 4.6176472E+00 2.2772428E-01 -1.1186457E-01 - - - 
 1.4475230E+00 1.0296348E-02 2.9855433E-01 1.0000000E+00 - - 
 5.4930937E-01 -1.8464534E-02 5.8367532E-01 - 1.0000000E+00 - 
 1.9364040E-01 -6.3916259E-03 2.7853429E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 6.4179428E+01 6.4354488E-03 - - - 
 1.4539610E+01 4.7355056E-02 - - - 
 4.2934432E+00 1.8063635E-01 - - - 
 1.4562510E+00 3.8328767E-01 1.0000000E+00 - - 
 4.8711690E-01 4.4277015E-01 - 1.0000000E+00 - 
 1.4787871E-01 2.1301608E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
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 2.8370860E+00 1.0000000E+00 - - 
 0.9680087D+00 - 1.0000000E+00 - 
 3.3433620E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.4514500E+00 1.0000000E+00 - 
 5.9685110E-01 - 1.0000000E+00 
 
 
 
Tables A.46: Oxygen cc-pV5Z-BLYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.6559830E+05 2.6539095E-05 -5.4839015E-06 - - - - 
 2.4449189E+04 2.0931130E-04 -4.3464966E-05 - - - - 
 5.5849590E+03 1.0811363E-03 -2.2316269E-04 - - - - 
 1.5930031E+03 4.5403587E-03 -9.4869989E-04 - - - - 
 5.1717950E+02 1.6377088E-02 -3.4117857E-03 - - - - 
 1.8722701E+02 4.9709342E-02 -1.0752690E-02 - - - - 
 7.4027382E+01 1.2598494E-01 -2.8121136E-02 - - - - 
 3.1175880E+01 2.5341177E-01 -6.5446302E-02 - - - - 
 1.3725170E+01 3.6327291E-01 -1.1205329E-01 - - - - 
 6.1558042E+00 2.8276804E-01 -1.4242376E-01 - - - - 
 2.7580111E+00 6.7750841E-02 1.8229326E-02 1.0000000E+00 - - - 
 1.1388390E+00 -9.7184591E-03 3.8818705E-01 - 1.0000000E+00 - - 
 4.5638749E-01 -1.2795168E-02 5.2474564E-01 - - 1.0000000E+00  
 1.7322829E-01 -5.4298150E-03 2.1229413E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 1.9736420E+02 9.6692424E-04 - - - - 
 4.6944439E+01 7.6579913E-03 - - - - 
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 1.4880660E+01 3.8079772E-02 - - - - 
 5.2754841E+00 1.2496073E-01 - - - - 
 2.0527790E+00 2.7994791E-01 1.0000000E+00 - - - 
 8.0855709E-01 3.8502932E-01 - 1.0000000E+00 - - 
 3.0822429E-01 3.2376239E-01 - - 1.0000000E+00 - 
 1.1070540E-01 1.1484668E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6470140E+00 1.0000000E+00 - - - 
 1.8130020E+00 - 1.0000000E+00 - - 
 7.0700030E-01 - - 1.0000000E+00 - 
 2.7572400E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9422300E+00 1.0000000E+00 - - 
 1.2039910E+00 - 1.0000000E+00 - 
 4.9250110E-01 - - 1.0000000E+00 
 
 
 
Tables A.47: Fluorine cc-pVDZ-B3LYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 1.4697140E+04 7.3076540E-04 -1.3875370E-04 - 
 2.2089670E+03 5.6110676E-03 -1.0996147E-03 - 
 5.0415540E+02 2.8582653E-02 -5.4487376E-03 - 
 1.4266679E+02 1.0817848E-01 -2.2847423E-02 - 
 4.6293789E+01 2.9090616E-01 -6.4074315E-02 - 
 1.6553471E+01 4.5367128E-01 -1.5392448E-01 - 
 6.2435460E+00 2.7119830E-01 -9.8295495E-02 - 
 1.3170930E+00 -9.4454801E-03 5.7001507E-01 - 
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 3.7649080E-01 -2.6071291E-02 5.6440830E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 2.2098789E+01 4.9723499E-02 - 
 4.8357172E+00 2.5429654E-01 - 
 1.3007070E+00 5.2935314E-01 - 
 3.2038110E-01 4.2368305E-01 1.0000000E+00 
 
d Exponent Coefficient 
 1.4516520E+00 1.0000000E+00 
 
 
 
Tables A.48: Fluorine cc-pVTZ-B3LYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.9613721E+04 5.1184918E-04 -1.0367771E-04 - - 
 2.9132510E+03 3.9847703E-03 -8.0991676E-04 - - 
 6.6431458E+02 2.0387251E-02 -4.1811168E-03 - - 
 1.8804840E+02 7.9552375E-02 -1.6889820E-02 - - 
 6.0880939E+01 2.3097932E-01 -5.3632371E-02 - - 
 2.1477011E+01 4.3463236E-01 -1.2789671E-01 - - 
 7.8850141E+00 3.5965964E-01 -1.6610585E-01 - - 
 2.2574270E+00 3.9124530E-02 1.8338394E-01 1.0000000E+00 - 
 8.6726660E-01 -2.8076384E-02 6.0465026E-01 - - 
 2.8925949E-01 -9.1639413E-03 3.6401656E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 4.2248070E+01 1.8764539E-02 - - 
 9.6949158E+00 1.1341477E-01 - - 
 2.8512480E+00 3.4013686E-01 - - 
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 8.7383598E-01 4.9822864E-01 1.0000000E+00 - 
 2.4234390E-01 2.9785183E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 2.0093220E+00 1.0000000E+00 - 
 4.6528050E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.5652790E+00 1.0000000E+00 
 
 
 
Tables A.49: Fluorine cc-pVQZ-B3LYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 7.4382430E+04 9.6304415E-05 -1.9629273E-05 - - - 
 1.1219010E+04 7.3685625E-04 -1.5131678E-04 - - - 
 2.5599250E+03 3.8958560E-03 -7.9428084E-04 - - - 
 7.1829102E+02 1.6247539E-02 -3.3857636E-03 - - - 
 2.3554730E+02 5.4719679E-02 -1.1485649E-02 - - - 
 8.5932426E+01 1.4964938E-01 -3.4173068E-02 - - - 
 3.3714180E+01 3.0840328E-01 -7.8770429E-02 - - - 
 1.3958640E+01 3.9675122E-01 -1.4340201E-01 - - - 
 5.8864379E+00 2.2124071E-01 -1.0651373E-01 - - - 
 1.8758260E+00 8.6679971E-03 2.9922959E-01 1.0000000E+00 - - 
 7.1419370E-01 -2.0108502E-02 5.8263546E-01 - 1.0000000E+00 - 
 2.5409430E-01 -7.4661514E-03 2.7850860E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 8.0992828E+01 6.6890717E-03 - - - 
 1.8557550E+01 4.8325166E-02 - - - 
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 5.5748782E+00 1.8264100E-01 - - - 
 1.9000950E+00 3.8250640E-01 1.0000000E+00 - - 
 6.3804263E-01 4.4200867E-01 - 1.0000000E+00 - 
 1.9491901E-01 2.1043797E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8371680E+00 1.0000000E+00 - - 
 9.6799950E-01 - 1.0000000E+00 - 
 3.3466220E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.5111880E+00 1.0000000E+00 - 
 6.3981820E-01 - 1.0000000E+00 
 
 
 
Tables A.50: Fluorine cc-pV5Z-B3LYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.1095959E+05 2.6157988E-05 -5.3611434E-06 - - - - 
 3.1725631E+04 2.0214228E-04 -4.1559833E-05 - - - - 
 7.2227158E+03 1.0662948E-03 -2.1851146E-04 - - - - 
 2.0344659E+03 4.5130742E-03 -9.3288504E-04 - - - - 
 6.6487939E+02 1.5907457E-02 -3.2932742E-03 - - - - 
 2.4291029E+02 4.8286203E-02 -1.0320735E-02 - - - - 
 9.5896873E+01 1.2417057E-01 -2.7608689E-02 - - - - 
 4.0308048E+01 2.5221413E-01 -6.4162947E-02 - - - - 
 1.7728609E+01 3.6590460E-01 -1.1357617E-01 - - - - 
 7.9332662E+00 2.8697267E-01 -1.4371353E-01 - - - - 
 3.5109439E+00 6.5899171E-02 2.4146389E-02 1.0000000E+00 - - - 
 1.4595860E+00 -1.1371299E-02 3.9087820E-01 - 1.0000000E+00 - - 
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 5.8760703E-01 -1.4350056E-02 5.2319288E-01 - - 1.0000000E+00  
 2.2489180E-01 -6.0588014E-03 2.0705710E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.4084151E+02 1.0697782E-03 - - - - 
 5.7367779E+01 8.3667208E-03 - - - - 
 1.8460791E+01 4.0125165E-02 - - - - 
 6.6633720E+00 1.3023357E-01 - - - - 
 2.6164970E+00 2.8302950E-01 1.0000000E+00 - - - 
 1.0332370E+00 3.8569552E-01 - 1.0000000E+00 - - 
 3.9318919E-01 3.2106936E-01 - - 1.0000000E+00 - 
 1.3993430E-01 1.0507691E-01 - - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6469620E+00 1.0000000E+00 - - - 
 1.8130010E+00 - 1.0000000E+00 - - 
 7.0700200E-01 - - 1.0000000E+00 - 
 2.7572400E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9422760E+00 1.0000000E+00 - - 
 1.2039800E+00 - 1.0000000E+00 - 
 4.9251020E-01 - - 1.0000000E+00 
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Tables A.51: Fluorine cc-pVDZ-BLYP 
(9s4p1d)  [3s2p1d] 
s Exponent Coefficient Coefficient Coefficient 
 1.4578420E+04 7.3477940E-04 -1.4287976E-04 - 
 2.2145530E+03 5.5916505E-03 -1.1214693E-03 - 
 5.0583649E+02 2.8490778E-02 -5.5631418E-03 - 
 1.4341930E+02 1.0756336E-01 -2.3217330E-02 - 
 4.6552841E+01 2.8958264E-01 -6.5297045E-02 - 
 1.6621691E+01 4.5277753E-01 -1.5546569E-01 - 
 6.2459030E+00 2.7336124E-01 -9.9745199E-02 - 
 1.3178240E+00 -7.6082647E-03 5.7305694E-01 - 
 3.7211201E-01 -2.4115507E-02 5.6275088E-01 1.0000000E+00 
 
p Exponent Coefficient Coefficient 
 2.1886480E+01 5.1017027E-02 - 
 4.7792430E+00 2.5887612E-01 - 
 1.2827719E+00 5.3015804E-01 - 
 3.1094769E-01 4.2090270E-01 1.0000000E+00 
 
d Exponent Coefficient 
 0.1450208D+01 1.0000000E+00 
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Tables A.52: Fluorine cc-pVTZ-BLYP 
(10s5p2d1f)  [4s3p2d1f] 
s Exponent Coefficient Coefficient Coefficient Coefficient 
 1.9705570E+04 5.0996285E-04 -1.0522683E-04 - - 
 2.9155291E+03 4.0033688E-03 -8.2865771E-04 - - 
 6.6128247E+02 2.0577800E-02 -4.2995797E-03 - - 
 1.8702139E+02 8.0209896E-02 -1.7338978E-02 - - 
 6.0508671E+01 2.3239358E-01 -5.5032834E-02 - - 
 2.1329580E+01 4.3493894E-01 -1.3023229E-01 - - 
 7.8115711E+00 3.5752088E-01 -1.6609183E-01 - - 
 2.2226479E+00 3.8430985E-02 1.9416694E-01 1.0000000E+00 - 
 8.5169357E-01 -2.6659787E-02 6.0395771E-01 - - 
 2.8214121E-01 -7.9623209E-03 3.5597143E-01 - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient 
 4.1544460E+01 1.9450402E-02 - - 
 9.5700884E+00 1.1600222E-01 - - 
 2.8119221E+00 3.4522867E-01 - - 
 8.5712898E-01 4.9632716E-01 1.0000000E+00 - 
 2.3324990E-01 2.9584700E-01 - 1.0000000E+00 
 
d Exponent Coefficient Coefficient 
 2.0093520E+00 1.0000000E+00 - 
 4.6490480E-01 - 1.0000000E+00 
 
f Exponent Coefficient 
 1.5410140E+00 1.0000000E+00 
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Tables A.53: Fluorine cc-pVQZ-BLYP 
(11s6p3d2f)  [5s4p3d2f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 7.5563180E+04 9.5495176E-05 -1.9796464E-05 - - - 
 1.1121780E+04 7.5501320E-04 -1.5767061E-04 - - - 
 2.5288091E+03 3.9234059E-03 -8.1344735E-04 - - - 
 7.2076978E+02 1.6069733E-02 -3.4056846E-03 - - - 
 2.3691240E+02 5.4601721E-02 -1.1652390E-02 - - - 
 8.6133087E+01 1.4992315E-01 -3.4791790E-02 - - - 
 3.3698608E+01 3.0880773E-01 -8.0315135E-02 - - - 
 1.3931450E+01 3.9564687E-01 -1.4411551E-01 - - - 
 5.8674679E+00 2.2149217E-01 -1.0749914E-01 - - - 
 1.8860900E+00 9.3385261E-03 2.9997200E-01 1.0000000E+00 - - 
 7.1432030E-01 -1.8818129E-02 5.8258319E-01 - 1.0000000E+00 - 
 2.5089979E-01 -6.8496424E-03 2.7979553E-01 - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient 
 8.1395630E+01 6.7063887E-03 - - - 
 1.8607540E+01 4.8859626E-02 - - - 
 5.5670338E+00 1.8436699E-01 - - - 
 1.8926539E+00 3.8476604E-01 1.0000000E+00 - - 
 6.2967420E-01 4.4048959E-01 - 1.0000000E+00 - 
 1.8790171E-01 2.1208106E-01 - - 1.0000000E+00 
 
d Exponent Coefficient Coefficient Coefficient 
 2.8373160E+00 1.0000000E+00 - - 
 9.6800430E-01 - 1.0000000E+00 - 
 3.3432990E-01 - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient 
 2.5952650E+00 1.0000000E+00 - 
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 6.2915030E-01 - 1.0000000E+00 
 
 
 
Tables A.54: Fluorine cc-pV5Z-BLYP 
(12s8p4d3f)  [6s5p4d3f] 
s Exponent Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.1119041E+05 2.6017064E-05 -5.4210445E-06 - - - - 
 3.1793080E+04 2.0369384E-04 -4.2596850E-05 - - - - 
 7.1996172E+03 1.0636119E-03 -2.2153385E-04 - - - - 
 2.0522200E+03 4.4616833E-03 -9.3826838E-04 - - - - 
 6.6629187E+02 1.6051641E-02 -3.3766553E-03 - - - - 
 2.4204420E+02 4.8589386E-02 -1.0570062E-02 - - - - 
 9.5752159E+01 1.2414236E-01 -2.8022196E-02 - - - - 
 4.0331551E+01 2.5114027E-01 -6.5147929E-02 - - - - 
 1.7780140E+01 3.6401200E-01 -1.1379936E-01 - - - - 
 7.9455628E+00 2.8807494E-01 -1.4518107E-01 - - - - 
 3.5112410E+00 6.7324311E-02 2.4660738E-02 1.0000000E+00 - - - 
 1.4619730E+00 -1.0830996E-02 3.9141864E-01 - 1.0000000E+00 - - 
 5.8693522E-01 -1.3107544E-02 5.2127606E-01 - - 1.0000000E+00  
 2.2227550E-01 -5.6350017E-03 2.0927414E-01 - - - 1.0000000E+00 
 
p Exponent Coefficient Coefficient Coefficient Coefficient Coefficient 
 2.4199600E+02 1.0769049E-03 - - - - 
 5.7323631E+01 8.4405504E-03 - - - - 
 1.8559669E+01 4.0140022E-02 - - - - 
 6.7378550E+00 1.2835400E-01 - - - - 
 2.6570561E+00 2.8167248E-01 1.0000000E+00 - - - 
 1.0435510E+00 3.8632470E-01 - 1.0000000E+00 - - 
 3.9088219E-01 3.2396278E-01 - - 1.0000000E+00 - 
 1.3500559E-01 1.0959807E-01 - - - 1.0000000E+00 

283 



 
 

 
d Exponent Coefficient Coefficient Coefficient Coefficient 
 4.6469480E+00 1.0000000E+00 - - - 
 1.8130000E+00 - 1.0000000E+00 - - 
 7.0700230E-01 - - 1.0000000E+00 - 
 2.7544830E-01 - - - 1.0000000E+00 
 
f Exponent Coefficient Coefficient Coefficient 
 2.9564030E+00 1.0000000E+00 - - 
 1.2031960E+00 - 1.0000000E+00 - 
 4.9245110E-01 - - 1.0000000E+00 
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TRANSFORMATION PATHWAYS FOR THE MULTI-STATE MODIFIED  
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The transformation pathways listed in Table 7.2 are used for the derivation of the 

screening functions for the pair potential, the symmetric and angular densities. The 

Bain,53 Trigonal,183 and 2D166 pathways are required to solve for the screening functions. 

The Bain pathway links the fcc and bcc pathways by modifying the ratio of the c and a 

lattice vectors, as shown in Figure B.1. For fcc, c/a = √2, and for bcc, c/a = 1. The 

fractional deformation along the Bain path is given by: 

 
𝑓 = �

𝑐
𝑎
�
2
− 1 [B.1] 

For each point along the Bain path, the following functions both apply for the screening 

parameters: 

 𝐶1𝐵𝑎𝑖𝑛 = 2 + 𝑓 [B.2] 

 𝐶2𝐵𝑎𝑖𝑛 =
2

1 + 𝑓
 [B.3] 

At c/a = 1, for bcc, f = 0, and C1
Bain = C2

Bain = 2, in agreement with Table 1. However, 

with c/a = √2, for fcc, f = 1, and thus C1
Bain = 3.0 and C2

Bain = 1.0. The latter screening 

parameter is in agreement with Table 1 for fcc; however, C1
Bain = 3.0 also correctly 

applies to fcc because f = 1. Also, as in Table 7.2, the 2NN to 1NN distance ratio for fcc 

is large enough that the 2NNs contribute negligibly to the total energy, despite that the 

screening ellipse from Equation [7.4] and [7.5] is at its largest.  

 The 2D pathway links a two-dimensional hexagonal plane (2D-hex) to a two-

dimensional square plane (2D-sq) through the deformation of the angle, θ, between 
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nearest neighbor atoms. This is illustrated in Figure B.2. At θ = 60o, the two-dimensional 

structure is a hexagonal plane, and at θ = 90o, it is a square plane. The fractional 

deformation is a function of the angle: 

 𝑓 =
2
5

[1 + 3 cos 𝜃] [B.4] 

 Two screening parameters are applicable for the 2D pathway: 

 
𝐶12𝐷 =

1 + cos 𝜃
1 − cos 𝜃

=
4 + 5𝑓
8 − 5𝑓

 
[B.5] 

 𝐶22𝐷 =
1
𝐶12𝐷

 [B.6] 

In Table 7.1, the screening parameters for 2D-sq are C1
2D = C2

2D = 1. For 2D-hex, C1
2D 

= 1/3, which is in agreement with Table 1;  however, Equation [7.29] allows that C2
2D = 3. 

This produces a large screening ellipse, but the 2NN to 1NN distance ratio 2D-hex is √3 

and thus indicates a negligible contribution to the total energy by the 2NN atoms. 

 The Trigonal pathway183 links the bcc and fcc structures through a different 

deformation route that intersects the SC structure, as shown in Figure B.3. It can be 

described as a constant volume deformation of a bcc lattice. If the bcc lattice is oriented 

such that the x, y, and z  axes are oriented in the [110], [112], and [111] directions, 

respectively, then the transformation pathway can be described by the following 

equations: 

 𝑎 = 𝑎𝑜√2𝑝(−1/3) [B.7] 

 𝑏 = 𝑎𝑜√6𝑝(−1/3) [B.8] 
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𝑐 = 𝑎𝑜

√3
2
𝑝(−1/3) 

[B.9] 

The equations for a, b, and c correspond to the deformation of the bcc lattice on the  x, 

y, and z axes, respectively. The constant, ao, corresponds to the bcc lattice constant. 

The values of p = 1, 2, or 4 are used to specify the bcc, SC, and fcc lattice structures, 

respectively, on the pathway. The angle, θ, between nearest neighbor atoms can be 

related to p by the following: 

 
cos 𝜃 =

𝑝2 − 4
𝑝2 + 8

 
[B.10] 

Thus bcc, SC, and fcc structures can be described as having angles of 109.47o, 90o, 

and 60o, respectively.   With f as described by Equation [B.4], the relevant screening 

parameters for the Trigonal pathway are given as well: 

 
𝐶1
𝑡𝑟𝑖𝑔 =

1 − cos 𝜃
1 + 2 cos 𝜃

=
8 − 5𝑓

2 + 10𝑓
 

[B.11] 

 
𝐶2
𝑡𝑟𝑖𝑔 =

cos𝜃 − 1
2 cos 𝜃

=
8 − 5𝑓

4 − 10𝑓
 

[B.12] 

 𝐶3
𝑡𝑟𝑖𝑔 = 𝐶22𝐷 [B.13] 

 𝐶4
𝑡𝑟𝑖𝑔 = 𝐶12𝐷 [B.14] 

With the increasing variety  and interchangeability of the screening parameters for the 

Trigonal and 2D pathways, a table of screening parameters is illustrated on Figure B.4, 

in which Equations [B.2]-[B.3] and [B.11]-[B.12] are plotted.  

 Approximately between ten and twenty total energy data points along each 

pathway, at constant fcc volume, were calculated using VASP 4.6. The fcc dissociation 
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energy, which is the total E/atom for fcc at rNN = 4.0, was subtracted from each data 

point, followed by division of each data point by the fcc cohesive energy to maintain 

consistency with the reference binding curves, such that the resulting minimum fcc 

binding energy, at the fcc volume rij = 1.0, is -1.0 eV. The Bain pathway is fitted with 

respect to the fractional deformation parameter, f, with the equation: 

 𝐸𝑓𝑖𝑡𝐵𝑎𝑖𝑛 = 𝑎1 + 𝑎2 cos(𝜋 ∙ 𝑓) [B.15] 

The variables f, a2, and a1 are set such that a1 equals the bcc cohesive energy, which 

occurs at f = 0, and a2 = | -1 –  a1 |, so that at f =1, Efit
Bain = -1 eV. The 2D pathway can 

be fitted with respect to the angle between atoms, θ, with the equation: 

 
𝐸𝑓𝑖𝑡2𝐷 = 𝑎6 + �

𝜃 − 90
30

�
2

(𝑎6 − 𝑎5) + �
𝜃 − 60

30
��𝑎𝑖

4

𝑖=1

�
𝜃

100
�
𝑖−1

 [B.16] 

The variables are optimized such that a6 and a5 are constrained to the 2D-hex and 2D-

sq binding energies and the remaining variables are optimized to fit the pathway 

between the endpoints. Finally, the Trigonal pathway can also be fitted with respect to 

the angle between atoms, θ, with the equation: 

 
𝐸𝑓𝑖𝑡
𝑡𝑟𝑖𝑔 = −1 + 𝑎6(𝑝 − 4)4(𝑝 − 1)2 + �𝑎𝑖(−1)𝑖−1

5

𝑖=1

�𝑝𝑖 − 4𝑖� 
[B.17] 

 
𝑝 = �

8 cos(𝜃𝜋 180⁄ ) + 2
1 − cos(𝜃𝜋 180⁄ )  

[B.18] 

For this fit, no constraints should be imposed on the variables. Equation [B.17] was 

constructed such that at p = 4, which corresponds to fcc, the fit equals -1 eV. 
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 Two more pathways are introduced because they involve structures that are 

listed in Table 7.1, but not yet introduced. Both pathways are not implemented in the 

determination of MS-MEAM function, but they are evaluated in the Results section to 

gauge the predictive capability of MS-MEAM. The first applied pathway is the 

orthorhombic diamond cubic (oDC) pathway, which mandates an orthorhombic 

transformation of the DC structure. The oDC pathway transforms the DC structure, with 

four 1NNs, into the oDC10 structure, with 10 1NNs. The constant-volume transformation 

is a function of θ, and has a range of 60o ≤ θ ≤ 90o. For DC, the angle between 1NN 

atoms is θ = 90o, and for oDC10, which is illustrated in Figure B.5, the angle between 

1NN atoms is θ = 60o. The deformations that occur on the lattice are given: 

 𝛿𝑥 = 𝜔(𝜃) sin(𝜃) [1 − cos(𝜃)] [B.19] 

 𝛿𝑦 = 𝜔(𝜃)[1 − cos(𝜃) 2⁄ ] [B.20] 

 
𝛿𝑧 = 𝜔(𝜃)�3 − 𝛿𝑥

2 − 𝛿𝑦
2 

[B.21] 

 
At each angle, the 𝜔(𝜃) is solved so that volume is constant for each deformation on 

the pathway:  

 𝜔(𝜃) = 𝛿𝑥𝛿𝑦𝛿𝑧 [B.22] 

 The second applied pathway is the Zigzag pathway. It is a low-coordination 

deformation characterized by involved an infinite zigzag structure. Starting with angle 

between the atoms being θ = 60o,, the beam structure is present. The angle is increased, 

through θ = 70.53o, at which the zigzag structure exists, towards an infinite line structure, 
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which is present at θ = 180o. Figure B.6 depicts mechanism of the transformation with 

the following functions 

 𝜁𝑥 = 2 sin(𝜃) [B.23] 

 𝜁𝑦 = cos �
𝜃
2
� [B.24] 

 

 
Figure B.1: The Bain transformation pathway. Top-left: the bcc cell has a c/a ratio of 1.0. 
Top-right: the transformation occurs causing the c/a ratio to be 1.44. However, the fcc 
cell here is not obvious due to periodic boundary conditions. Bottom-right: the top-right 
cell is replicated in directions orthogonal to the c axis to produce the fcc structure. 
Bottom-left: the corner atoms are whited-out, only to illustrate the fcc structure in the 
2x2 replication. 
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Figure B.2: The 2D transformation pathway. The 2D-hex and 2D-sq structures have 
angles of 60.00o and 90.00o, respectively.  
 
 
 

Figure B.3: The Trigonal transformation pathway. The bcc, SC, and fcc structures have 
angles of 109.471o, 90.00o, and 60.00o, respectively.  
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Figure B.4: The screening parameters for Bain, Trigonal, and 2D pathways from 
Equations [B.3]-[B.4] and [B.11]-[B.14]. Further, Equations [B.13]-[B.14], for C3 and C4 
of the Trigonal pathway, are the same as Equations [B.5]-[B.6] for the C1 and C2 of the 
2D pathway. 
 
 
 

 

Figure B.5: The oDC10 structure. The 1NN atoms are illustrated with solid bonds, and 
2NN atoms are illustrated with dashed bonds. 
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Figure B.6: The Zigzag pathway. The beam (top) and line (bottom) structures are 
illustrated. 
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