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Networks of communicating agents require distributed algorithms for a variety of tasks in 

the field of network analysis and control. For applications such as swarms of autonomous 

vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as 

exploring and patrolling a robust autonomous system that uses a distributed algorithm for self-

partitioning can be significantly helpful. A single team of autonomous vehicles in a field may 

need to self-dissemble into multiple teams, conducive to completing multiple control tasks. 

Moreover, because communicating agents are subject to changes, namely, addition or failure of 

an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. 

A framework to help with the study of self-partitioning of such multi agent systems that have 

most basic mobility model not only saves our time in conception but also gives us a cost 

effective prototype without negotiating the physical realization of the proposed idea.  

In this thesis I present my work on the implementation of a flexible and distributed 

stochastic partitioning algorithm on the Lego® Mindstorms’ NXT on a graphical programming 

platform using National Instruments’ LabVIEW™ forming a team of communicating agents via 

NXT-Bee radio module. We single out mobility, communication and self-partition as the core 

elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who 

have discovered the reference sites announce their target acquisition to form a network formed 

based upon the distance of each agent with the other wherein the self-partitioning begins to find 

an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT 

robots is presented. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Background 

Animals that travel in groups exhibit a variety of mobility patterns through fascinating 

detailed interactions. A familiar but remarkable example includes the flocking of birds, their 

abrupt splitting, their unity in flying, their sudden change of course, and their synchronized 

landing, all scenarios that demonstrate rapid co-operative decision-making. In this thesis, I take 

inspiration from this avian behavior of such an inter-individual interaction, where individuals 

both influence the other group members into a collective behavior, yet seemingly carry out an 

action that is leaderless, decentralized, thus giving us insights for similar models of self-

organization. It suggests that much of the complex group behavior can be coordinated by 

relatively simple interaction of the group.  

There are ample embedded computational means in autonomous vehicles that enable 

improved operational potency through cooperative teamwork. Multi vehicle systems are an 

important category of networked systems due to their commercial and military applications 

[28] and that offer considerable advantages over an individual agent.  In comparison to 

autonomous entities that perform solo missions, greater efficiency and operational ability can 

be comprehended from the teams of autonomous vehicles operating in coordinated 

mannerisms. Potential applications for multivehicle systems include space based 

interferometers, surveillance systems, combat, and reconnaissance systems as in military and 

civil operations, planetary exploration distributed re- configurable sensor networks. To back 

these applications a need arises to develop various co-operative control capabilities: formation 

control flocking, foraging, , exploration, rendezvous attitude alignment, task and role 
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assignment, air traffic control and cooperative search, search and destroy,  and search and 

rescue algorithms. 

Distributed algorithms for self-partitioning may be valuable for various sensor 

networking and autonomous vehicle control applications. Need arises when a swarm of 

autonomous vehicles in a field have got to self-organize themselves in order to accomplish 

multiple control tasks all at the same time. To infuse a real-time behavior, with a variety of 

situations, considering their environment and the treatment of unexpected events can be quite 

challenging. It is necessary to simulate and analyze the main functions, design and analysis of 

each agent in an autonomous and decentralized multi agent robotic system. Also it is 

important to find out an efficient strategy to realize effective means for the agents to form a 

cooperative manner that supports target exploration and self-partitioning. In the latter section, 

I provide some pointers to the literature on related systems and briefly note their difference 

with my test model. 

A motivation for the model, where it can be applied, is in a planetary mission. Robotic 

planetary missions cover a wide range of scenarios from grabbing a piece of rock near the 

space craft landing site to building and maintaining a large radio observatory on the lunar 

front. I discuss how a team of autonomous robots can be applied to similar missions. A team 

of small autonomous robots can provide savings in launch mass, landing mass, and fabrication 

costs [5]. 

1.2 Contribution to the Research 

Various multi-robot systems have been developed in the last decades. There has been 

an increased interest in the field of distributed robotic systems due to its promising applications 

in many fields. These systems are desirable in realizing an advanced robot system to achieve 



3 

arch level tasks. This thesis is a contribution to multi-agent systems that interact with its 

neighbors to self-partition themselves. 

To build such interacting multi-agent models, I emphasize on its physical construction, 

communication and algorithms. When realizing the (a) physical construction I focus on actual 

robotic units that form the systems. I concentrate on their mobile behavior such that they 

exhibit a realistic behavior. I take care of (b) communication, such that it is robust and reliable, 

and try to realize its effective means for units to form a cooperating and interacting system. 

Last, for the core of the model I give prominence to the (c) algorithms used to create an 

effective realistic model [9]. 

A starting point to this research is to examine the applicability of the existing systems 

for autonomous and decentralized co-operative robots. Research on robotics has primarily 

focused on enabling self-capable robots and a number of algorithms that utilize these robots to 

accomplish a common task [13]. Approaches have been developed towards enabling 

cooperation to instill wireless communication and networking capabilities on the robots. The 

robot teams are built to undertake search and rescue missions [3] [7] [15]. [9] discusses 

simulation environment for autonomous and multi agent decentralized robotic system, an 

intelligent robot system that is capable of executing high level tasks. 

Various studies for multi-robot systems have been developed that dealt with algorithms 

focusing on a construction of system that could search an environment for randomly placed 

objects and push them to a predetermined space [16]. The study involved in the development of 

an algorithm exercised explorative searching and dynamic task allocation. Multi-agent 

rendezvous problems have also been discussed in [14]. Distributed robotic systems that portray 
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a self-organizing behavior and swarm intelligence using mobile robots have been addressed in 

[12] [13]. 

My work revolves around the partitioning algorithm [1]. I take a note of the consensus 

algorithms used to impose similar dynamics on the information states of each vehicle, with the 

communication network among the vehicles allowing continuous information updates. [10]. 

Collective group behavior through local interaction is also explained in [10] [20] [21] [22]. 

Shared information is necessary for co-ordination. One needs to know what information and to 

whom the information needs to be shared [11]. I use LEGO® MINDSTORMS® NXT devices 

as my mobile devices to form a multi robot system. Works have been published that have used 

the NXT devices as multi-agent systems [8]. 

1.3 Objectives of the Research 

The consensus algorithms are designed to be distributed, assuming neighbor to 

neighbor interaction between vehicles. Vehicles update the value of their information state 

based on the information states of their neighbors. The goal is to design a standalone unit such 

that the information states of all the vehicles converge to a steady state, with each vehicle 

deciding what state is suitable for itself. In other words, I have developed an automaton that 

can group vehicles in such a manner that the self-assembly takes a little time, and the 

vehicles/robots/agents in the group can easily communicate. 

I provide a test bed of a group of mobile robots that have mostly the same physical 

structure and self-decision making capability to track targets, to form a network and to self-

partition depending upon the influence of its distances (that correspond to probabilities) with 

the other robots. The partitioning is decided by each robot with the help of the information 

acquired by each of its neighbors from its corresponding immediate neighbors. The 
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information is mainly about changes in the local network influences and is retrieved at every 

time-step using simple mathematical calculations. Each of the agents integrates a basic 

collection of software components, including a perception system, or a tracking system, such as 

a light intensity sensor, a motion system, and a motion controlled strategy defined as a mobility 

model, a communication module for agent to agent interaction which enables signaling or 

passing the status information to the neighbors. 

I infused in the robot a mobility model and an odometric system to explore targets and 

acquired them. I then classified a swarm of robots using a classifying or partitioning algorithm 

called as copying influence model [1] [2] for self-classification into two distinct statuses which 

are nothing but distinct target locations. 

1.4 Organization of the Thesis 

The thesis report is organized as follows: Chapter 1: Introduction. Chapter 2 presents 

the fundamentals that form the basis of this research. It explains several hardware features such 

as LEGO® MINDSTORMS® NXT and, NXTBee radio module that are used in this test 

bench. Chapter 3 describes mobility models and gives reasons for the use of the mobility model 

I have implemented particularly. It makes familiar the communication strategies that can be 

used, and describes the communication platform I have implemented. Chapter 4 brings forward 

the distributed partitioning algorithm, the behavior of individual agents to and the multi agent 

co-ordination developed in the test-bed. Certain examples are used in all the sections to 

illustrate various points. Finally, I have developed a demonstration to put forth a unit that 

justifies the title of this thesis, i.e. “A LEGO® MINDSTORMS® NXT based test-bench for 

Multi-agent Exploratory System and Distributed Network Partitioning.” The last chapter, 
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Chapter 5, analyzes and gives appreciable results and concludes the thesis with the potential to 

work further on developing the automated unit. 
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2 CHAPTER 2 

MULTI ROBOT SYSTEMS 

2.1 Introduction 

Practical implementations reflecting real time instances can be quite challenging. One has 

to choose an appropriate physical system meeting several academic as well as practical needs. 

Some of the essentials of a system are to 1) being able to replicate the experiment like a real time 

environment to a substantial extent, 2) work within an existing software environment, 3) be low 

cost 4) be locally purchasable for easy maintenance, and 5) be easily programmable and 

reconfigurable. 

The LEGO® MINDSTORMS® NXT provides a viable solution to accommodate all the 

above needs. The NXT is a commercial kit that the Lego Company sells for building various 

types of robots. The NXT's interesting attribute is its mini-computer called NXT-brick and its 

various other LEGO components including sensors and motors. The motor system has enough 

inertia for educational purposes with the result that the combination of appropriate software can 

serve as an ideal system for various test benches.  

Similarly, the software that interfaces with the hardware must: 1) support the hardware 

justifying its use to a full, appreciable extent, 2) generate an executable program that can directly 

be and compiled and uploaded on the hardware, 3) run independently of the computer, and 4) 

provide powerful and varied functionality. 

 National Instruments’ LabVIEW is used as a software interface with the LEGO® 

MINDSTORMS® NXT to extract the best out of the system. This section gives us an overview 

of the software and hardware platforms. Also discussed later in the section, is the wireless 

communication strategy used in the test bed. 
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2.2 Hardware Platform: LEGO® MINDSTORMS® NXT 

The use of LEGO® MINDSTORMS® NXT robots has become quite popular in recent 

years in implementing classical and modern control theories. When combining the NXT devices 

with a programming platform, it becomes possible to showcase frameworks related to modeling, 

state feedback control, estimator designing, and so forth. The Lego building systems has enabled 

engineers to build, to program, and to have hands on research in real-life robotic solutions.  

I chose LEGO® MINDSTORMS® NXT to be the agent prototype due to its low cost but 

diverse functionality and flexible re-configurability. The LEGO® MINDSTORMS® NXT 

robotics kit costs from $294.95. It comes with a programmable NXT Brick, a 32-bit arm 

processor providing on-brick programming and data logging; interactive servo motors; 

ultrasonic, sound, light, and touch sensors; a rechargeable battery; and connecting cables. The 

aim is to allow a team of robots to perform a combination of explorative searching and dynamic 

task allocations. 

 

 

Figure 1: LEGO® MINDSTORMS® NXT: NXT Brick, NXT-Robot, light intensity sensor. 

 
A NXT robot can be individually programmed or can be connected to a computer via a 

USB cable. The test bench consists of a team of five robots programmed robots to be individuals 

and is a unit of five standalones. The unit runs independently, and without a computer since I 
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pre-program each robots. I chose the most basic three-wheeled design for my agents: two wheels, 

each operating independently, and a rear wheel for stability. All of the agents are more or less 

functionally and structurally the same. Thus, each of the agents is an NXT robot built with two 

motors (rear wheels) for mobility, a light sensor for exploratory properties, and an NXTBee 

sensor for communication. Thus conformed all five robots identically with the above sensory, 

mobility, and communication features. Such five robots together, called as agents, formed a 

multi-robot or multi-agent automaton. A prototype of one of the agent robot is shown in the 

figure below: 

 

 

Figure 2: An agent finds a reference site 
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2.3 Software Platform: LabVIEW™ 

Numerous programming languages can be used to program the NXT including National 

Instruments’ LabVIEW™, NXT-G, RobotC, Next byte Codes and Not eXactly C. I use the 

LabVIEW™ environment to program the agents as LabVIEW™ utilizes NXT and its sensors to 

their full extent, and LabVIEW™ also allows data logging.    

National Instruments’ LabVIEW™ is a graphical programming tool ideal for any 

measurement or control system. It is useful in a broad range of applications and is relatively easy 

and time saving for multiple operating systems and devices [23]. The block diagram below gives 

an idea of a single graphical development platform.  

 

Figure 3: LabVIEW™ is a single graphical programming platform. 

 

The LabVIEW™ for LEGO® MINDSTORMS® NXT is designed specifically for the 

use of the Lego Education robotics platform. While one can graphically configure and test motor 

and sensor connections, one can also easily log and analyze that data that is collected from NXT. 

2.4 Wireless Communication  

For the agents to communicate with each other it is extremely crucial to have a smooth 

and a robust communication. As explained earlier, LabVIEW™ is a command box programming 

tool so the time required to execute a block in LabVIEW™ is relatively more than the time 

required in executing a few lines (those analogous to the block) in command line programming 

tool (E.g. RobotC). This particularly makes the communication between two NXT devices even 
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more challenging to make it smooth, perfect and as fast as possible. Moreover, adding delays 

would slow the automaton, but would ensure a trustworthy connection. Nevertheless, in 

attempting to achieve a communication as smooth as possible, I have kept in mind that the 

automaton should not be a unit slow to the extreme, but should be appreciably fast. This section 

explains the cons of using the built-in Bluetooth technology of the NXT device and my 

reasoning for why I have used the XBee radio module instead of using the built-in Bluetooth. 

2.4.1 Bluetooth Wireless Technology 

Bluetooth is a wireless technology of the IEEE 802.15.1 standard. It operates at 2.4 GHz 

frequency and can exchange data over a physical range of up to 100 meters. The NXT devices 

are built-in with the Bluetooth technology. This Bluetooth feature can be used to connect the 

NXT devices to other NXT units, mobile phones, and other computers. Under ideal conditions 

such as flat ground, no wireless interference, no walls or obstacles between NXT robots, 

Bluetooth can communicate up to 15-20 feet (4.5-6 meters). Although Bluetooth communication 

is robust and reliable, the number of devices that can be connected together are limited. A group 

of connected robots can contain only up to four NXT devices (Lego Bluetooth manual). 

Moreover, Bluetooth in NXT devices uses master-slave model in which the unidirectional 

control of the master NXT is limited to only three devices.  Even supposing that I switch the 

NXT agents as a master or slave; it is unconvincing to make communication so complex. 

 So, I shifted my effort to a radio module called XBee sensor that is capable of 

broadcasting information to the NXT agents under similar ideal conditions.  The XBee radio 

system is a versatile communication solution for the LEGO® MINDSTORMS® NXT system. 

These high-speed long-distance radios allow your NXT to communicate with any other device 
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with an XBee radio. The performance of the NXTBee greatly exceeds Bluetooth, infrared, and 

other forms of communication currently available for the NXT.   

2.4.2 XBee Wireless Radio Technology 

 XBee is a product of Digi International. It supports IEEE 802.15.4 networking protocol 

which is the standard for robots everywhere. It includes point-to-point networking and meshes 

networking. It operates at 2.4 GHz frequency and can be used to exchange data up to 300 feet 

(90 meters) and the XBee-pro up to 1.2 km; 10 times farther than Bluetooth or IR. The Dexter 

Industries NXTBee sensor brings the Digi XBee radios to the LEGO® MINDSTORMS® NXT.  

The Digi XBee module uses the Dexter Industries’ adapter when interfacing with the NXT 

devices (NXT Bee). The NXTBee utilizes the NXT's high speed RS-485 line for high speed 

communication. The NXTBee’s standout feature is its ability to mesh devices together i.e. to 

create a mesh network. NXTBee automatically finds other XBee radios (other NXTBees or 

devices using XBees) and can relay information to them and between them. A notable thing is 

that the NXTBee needs no set up as it is done automatically. XBee radios pass on data and also 

gather information from other XBees, ensuring a two-way communication. Dexter Industries 

claims that one can create a whole network of 65,000 different devices talking to each other. 

Each agent in my test bed is equipped with an NXTBee sensor to receive as well as to pass on 

information, thus aiding inter robot communication. I have discussed the usability and relevance 

of all the above components in the chapters ahead. 
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Figure 4: NXTBee communication point to multipoint communication 
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3 CHAPTER 3 

 RANDOM EXPLORATION 

3.1 Introduction 

 My test bed’s purpose is to have an interacting network model for distributed 

partitioning. The first step ensures to replicate real time movement in the NXT-robots like those 

of the unmanned vehicles or exploratory systems. I attempt to develop a model of exploratory 

search behavior; thus form a robust system of multi-agents each capable of exploration.  

 The following chapter gives a detailed knowledge about the random exploration using a 

random direction (RD) mobility model. One gets a brief idea about the mobility models and what 

led to the choice of the RD model. With the help of LabVIEW™ as a programming tool and 

LEGO NXT devices and sensors, the chapter explains the implementation and test set up and the 

communication strategies to form a network. 

3.2 Mobility Models- Random Exploration 

A mobility model is intended to describe the movement pattern of mobile users based on 

the location, velocity and acceleration change over time. Mobility models are commonly used in 

studies related to mobile and ad hoc networks. They form the premise for the evaluation of 

communication strategies and routing protocols [25]. The purpose of using a mobility model is to 

have agents perform uniformly distributed random exploration in a predefined area and search 

for targets. 

3.2.1 Choosing a Mobility Model 

 A number of mobility models have been proposed for analysis or simulations of the 

movement of users in a mobile wireless network [4]. We need an abstracted mobility model that 
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simplifies the agents’ act of exploration. A planned exploration or a human controlled model via 

tele-operation is encouraged, but what interests us is random exploration.  

In random-based mobility models, the mobile nodes move randomly and freely without 

restrictions. To be more specific, the destination, speed and direction are all chosen randomly 

and independently of other nodes.  Two of the ground based mobility models (also aerial based) 

are the random way-point model and the random direction model. Of these, the random direction 

mobility model, although physically unappealing, is easy to understand, and yet realistically 

reflects the real world scenario and its constraints. The simplicity of this model is that the 

positions and the directions are uniformly distributed [24]. The random direction mobility model 

captures realistic mobility patterns and can produce large trajectory ensembles [3]. Since, the 

main goal is to showcase an automaton for distributed partitioning; we keep to the use of basic 

random direction mobility model. 

3.2.2 Random Direction Model (RD Model) 

The random direction model or the RD model explores a predefined area by randomly 

choosing a direction and moves till the boundary is reached. An agent, thus, chooses a random 

direction (α) from a uniform distribution from –π to π (with probability density function 𝑓𝑓(𝛼𝛼) =

1
2𝜋𝜋 

) and moves till the boundary reaches. It then chooses another random direction, α, till the 

boundary is met again [3]. My test bed uses a modified RD model; it explores an area by 

randomly choosing a direction and a distance and moving until the target is found. It takes a 

random direction, moves forward for an exponential period of time T, with probability density 

function 𝑓𝑓(𝑇𝑇) = 𝑚𝑚𝑒𝑒−𝑚𝑚𝑑𝑑𝑇𝑇 where 1
𝑚𝑚𝑑𝑑

 is the mean duration. After the duration completes, the agent 

then chooses a new random direction. Exponential distribution is used for its memory less 
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property. Random direction mobility model can also be developed considering boundary 

reflection. 

3.2.3 LabVIEW™ Implementation 

The LabVIEW™ implementation takes care of the movement and tracking of agents in 

the test bench. The movement is the random direction mobility model in which the agent will 

choose a random heading, i.e., direction, and then move forward until the target is found. The 

random exploration is shown by the flow chart i.e. Figure 5.  

 

Figure 5: Overview of the random exploration 

 

 We divide the RD model as 1) heading 2) distance change, i.e., the forward movement of 

the agent. While the heading changes are uniformly distributed, the forward movement of the 

agent is distributed exponentially.  

The agent’s NXT motor has a built-in encoder with the resolution of 360 ticks per 

revolution. We use the built-in encoder to control and track the agent’s heading and travelling 
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distance. Vardhman et. al. claim that the encoder shows better precision than the angle sensor 

and the compass sensor. If T was the time required for an agent to travel in the forward direction, 

the distance required to travel can be given by  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑣𝑣 × 𝑇𝑇  

……. (1) 

where, T is randomly selected from the exponential distribution𝑓𝑓(𝑇𝑇) and 𝑣𝑣 is the speed of the 

agent.  As the robot changes the heading, the changing angle ∝ is selected from the uniform 

distribution; both the wheels of the agent are allowed to move opposite to each other instead of 

letting just one wheel to move. This helps realize the heading change and also helps to reduce the 

rotation of the wheels.  

The NXT motors do not have a high level of precision. So I developed a proportional 

controller.  

 

Figure 6: Proportional controller used for the RD model 

 

The reference heading or desired heading ′𝛼𝛼′ is compared to the encoder reading which 

can be calculated from the equation given below: 
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∝= 2(𝑒𝑒𝑐𝑐
2𝜋𝜋𝑟𝑟𝑤𝑤ℎ

2𝜋𝜋𝜋𝜋� ) 

….. (2) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑒𝑒𝑐𝑐  2𝜋𝜋𝑟𝑟𝑤𝑤ℎ 𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟�  

….. (3) 

where, 𝑒𝑒𝑐𝑐 is the count of the encoder of the motor and its resolution is given by  𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 , while 𝑟𝑟𝑤𝑤ℎ 

is the radius of the wheel. And the output (i.e., the power from the equation (5)) from the 

proportional block actuates the motor.  

 

𝐸𝐸𝐸𝐸𝐸𝐸 =∝ −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

….. (4) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐾𝐾𝐾𝐾 ×  𝐸𝐸𝐸𝐸𝐸𝐸 

….. (5) 

The proportional controller permits better precision of the heading direction change. I 

developed the heading adjustment SubVI that rotates the agent to the desired heading. 

 

Figure 7: LabVIEW™ snippet for heading adjustment in the RD model 
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There is an important feature of LabVIEW™, where multi-thread is successfully used to 

carry out two or more operations simultaneously. Multithreading extends the idea of multitasking 

into applications, so that specific operations within a single application can be subdivided into 

individual threads, each of which can then run in parallel. Similarly, in a LabVIEW™ 

multithreaded program, the application can be divided into three threads − a user  interface, a 

data acquisition, and a control– each of which can be assigned a priority and can operate 

independently. Thus, multithreaded applications can have multiple tasks progressing in parallel 

along with other applications. I have used this multi-threading capability of LabVIEW™ to 

simultaneously run the RD model, search for targets, and to receive information from the agents 

of target acquisition resulting in random exploration. Let us look at the test bench set up of the 

randomized exploration. 

3.3 Test Bench Setup 

Once the random direction model is established and implemented in each of the agents, 

we can focus on the exploration of the targets. To track the targets each agent is provided with a 

light intensity sensor. This section acquaints one with the arrangement of the test bed that 

accomplishes random exploration. 

The test set up has five agents, each is an LEGO® MINDSTORMS® NXT equipped 

with a light intensity sensor and an NXTBee sensor in a pre-defined area. Figure 8 and Figure 9 

show the test field and the initial positions of the five agents.  
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                       Figure 8: Test field                 Figure 9: Initial position of the agents 

 

The two red circles/spots denote the reference sites. All the five agents search the area 

with the help of the light intensity sensor. The exploration is complete once the two reference 

targets are found. The agents who hit the reference sites announce their acquisition. When all the 

reference sites are found, the agents stop in their current position. The current position is 

independent of the heading and the position of the agents. With all the agents at a halt, 

communication of the agents begins to form a network, which is supported with the NXTBee 

module to collect the  information of the current location and statuses of all the agents. The 

information of the loctions af all the agents is required as we form a network, for distributed 

partitioning; that comprises of reference sites and the sites of the other agents.   

The  grid shown above is independent of the movement and tracking of the agents. The 

agents can explore the entire area. The agents are not bounded to the periphery of the grid. The 

grid is a referrel to the co-ordinate system carved for localization. The area and so the agents are 

in the positive quadrant of the axis, each of them oriented at 90 degrees to the axis, when in their 

initial position. The co-ordinate axis represents the x-y plane. The length of the rectangle 

represents the x-axis and the breadth, the y- axis. The alphabetical letters in xy plane represent 

the  co-ordinates in the plane. The smallest of the blocks in the grid represents the alphabet inside 
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it and the whole block is considered as one co-ordinate. This compromise was done to aid the 

communication between the agents. 

 

Figure 10: A snapshot of the test field and its simplified interpretation of the coordinate axis 

developed for the test-bed 

 

Mathematically, a tracking algorithm was developed to track the location of the robots. 

If ‘𝑡𝑡’ was the index to change direction or the heading, 𝜏𝜏 as the angle to change at t, 𝑠𝑠𝑡𝑡 as the 

distance to travel for the 𝑡𝑡𝑡𝑡ℎ directional movement then  the following set of calculations help us 

to track the position of the agents.  

The heading of the agent (w.r.t to the x-axis), can be calculated using equation (6). The 

value of is kept in between -180 to 180, where mod is the modular operator. The location of the 

robot can be calculated using equation (7), where (x, y) represents the coordinates of the robot 

𝜃𝜃𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃𝑡𝑡−1 + 𝜏𝜏 𝑡𝑡 + 180,180) − 180 

….. (6) 

�
𝑥𝑥𝑡𝑡
𝑦𝑦𝑡𝑡
� = �

𝑥𝑥𝑡𝑡−1
𝑦𝑦𝑡𝑡−1

� + 𝑠𝑠𝑡𝑡 �
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑡𝑡
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑡𝑡

� 

….. (7) 
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3.4 Communication: Formation of the Network 

The NXTBee sensor is used for the communication between the agents. The, NXTBee 

sensor helps in informing on the location of each agent’s position, i.e ., its  x and y co-ordinates, 

which needs to be broadcasted so that a network can be formed. The NXTBee sensor comes with 

its own limitation of its ability to send or receive single string at a time. The co-ordinates of the 

location, hence, were stashed in the series of alphabetized letters(as explained in the previous 

section). The agent would then broadcast an alphabet corresponding to its location. The rest of 

the agents match the received location from their cached table. This not only benefited in sending 

information of the location but also simplified the communication. 

As soon as any agent would broadcast its location information the remaining agents 

would calculate their distance with this sending agent. The criteria to form a link or a connection 

between any two agents was a threshold distance. What I call the ‘threshold distance’ is a fixed 

maximum distance between any two agents that will still allow them to link. If the distance 

between the agents is less than the threshold distance, a connection is  formed, or else it is not.  

This continues till all the agents broadcast their location and form a network. 

The network that forms depends upon the acquisition of the targets and when the agents 

halt after the acquisiton announcement. Hence, the network can take any shape until the targets 

or reference sites are acquired. This checks about the stochasticity and the flexibility of the 

network. The next chapter deals with the further implementation of the flexible partitioning 

algorithm of the stochastic network. 
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4 CHAPTER 4 

DISTRIBUTED PARTITIONING 

4.1 Introduction 

This chapter concentrates on the implementation of flexible and distributed stochastic 

automaton capable of finding an optimal k-way partitioning algorithm with respect to a broad 

range of cost functions, and given various constraints [1]. Given a set of hardware components, I 

have shown how a partitioning algorithm can be incorporated while considering the real-time 

constraints stated in the system's specification. 

To establish the foundation for the distributed partitioning algorithm, the beginning of the 

chapter acquaints one with the general influence model, which is a self-partitioning model and a 

modified case of the influence model that I have implemented. The latter part of this chapter 

discusses about the implementation with the Lego NXT devices using the graphical LabVIEW™ 

interface. Finally, one gets to interpret the impressive achievement of the agents that self-

organize and carry out the adaptive and iterative self-division.   

4.1.1 Mathematical Background 

Consider a graph of vertices or nodes or sites and weighted edges as shown in the 

examples given in Figure 11, in both the cases, the system is made of a finite number of states, 

and transitions between states occur at discrete instants according to specified probabilities.   
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Figure 11: Examples for graphs of nodes and edges 

 

Specifically, let us consider a graph of a finite vertex set 𝑉𝑉 and a set of directed edges. 

Each vertex is associated with a positive mass of its own and each edge is associated with a 

positive weight. This can be denoted as a finite vertex set  𝜗𝜗 𝜖𝜖 𝑉𝑉 each with a positive 

mass 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝜗𝜗 . In addition to the vertices, this graph also comprises a set of positively weighted 

directed edges. For each of the orderly pair of distinct vertices 𝜗𝜗 𝑖𝑖 and 𝜗𝜗 𝑗𝑗 we associate a weight, 

i.e.,  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖𝑖𝑖. Note that if  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖𝑖𝑖 = 0 then a directed edge is not present while 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖𝑖𝑖 >

0 shows that a weighted edge is present.  

In this thesis I have considered a partitioning problem so as to classify the finite  𝑛𝑛 

vertices into 𝑚𝑚 disjoint non-empty subsets so as to minimize a cost function, while possibly 

enforcing one or more constraints.  

4.2 The Influence Model 

The influence model is a network of interacting Markov Chains, with each chain being 

associated with a vertex site of the network and with the chains being allowed to differ from one 

site to another. The evolution of each chain is not just influenced by its own present status but 

also by the statuses of the chains at each neighboring sites on the network.  All the nodes or 
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vertices, or the sites, are updated simultaneously at each time step.  Every node is associated with 

a status. These statuses associated with each of the nodes form patterns as they evolve with time 

which eventually results in good partition(s).  The influence model is claimed to have a rich 

mathematical structure and may provide a fruitful way of representing and studying a variety of 

dynamics [2].  

The influence model is a network of  𝑛𝑛 nodes or vertices or sites. Each of the sites is 

capable of taking a status 𝑠𝑠𝑖𝑖[𝑘𝑘] of the possible finite 𝑚𝑚 number of possible statuses. The model is 

updated at each discrete time step 𝑘𝑘. We refer to the statuses of all sites at each time step.  

Generally, each site 𝑖𝑖 picks a site 𝑗𝑗 as its determining site with a probability 𝑝𝑝𝑖𝑖𝑖𝑖. The next 

status of the site 𝑖𝑖 is determined with respect to the current status of the determining site 𝑗𝑗. The 

status of the site 𝑖𝑖 is determined probabilistically, depending on the current status of the 

determining site.  

                        

Figure 12: The influence model 
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4.2.1 Special Case of the Influence Model 

I have used a special case of the influence model, called the copying influence model, 

developed by Y. Wan et al [1]. The model that I use evolves in discrete rather than continuous 

time, so the structure of the network is focused on determining whether all sites reach a 

consensus state.  The notations used in this section are the same as those of the previous section.  

Each site takes on the same number of m statuses. At each time step, each site merely 

copies the status of its determining site. As a recursive algorithm, at each time step, each site 𝑖𝑖 

picks a neighbor, 𝑗𝑗 , or itself, with a probability 𝑝𝑝𝑖𝑖𝑖𝑖 and copies the current status of that neighbor 

or of itself. It is noted that the model requires interaction along with the immediate neighbors 

only and one can infer that the algorithm is decentralized in nature.  

4.3 Algorithm Description 

I have used the copying influence model as a tool to solve this partitioning problem. The 

copying influence model can be outlined as: 

1) Mapping and formulation    2) Recursion   3) Termination 

4.3.1 Mapping and Formulation 

We map the graph to the copying influence model with 𝑚𝑚 possible statuses to acquire 𝑚𝑚 

number of partitions at the end of the iterative algorithm.  The mapping of the graph is such that 

large influences are associated with strong interconnections and weak influences with weak 

interconnections. However, asymmetric interconnection strengths are permitted. To map the 

graph to the copying influence model we need the copying probabilities. These indicate the 

branch weights between the connected sites as shown in the Figure 13. 
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Figure 13: Distance between sites is then converted into branch weights 

The branch weight 𝑝𝑝𝑖𝑖𝑖𝑖 can be calculated as  

 

𝑝𝑝𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧∆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑗𝑗𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖
,                             𝑖𝑖 ≠ 𝑗𝑗

1 − ∆�
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

,              𝑖𝑖 = 𝑗𝑗
𝑙𝑙

 

….. (8) 

where Δ is chosen as: 𝛥𝛥 ≤ 1

   ∑
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝑙𝑙  𝑖𝑖    
𝑚𝑚𝑚𝑚𝑚𝑚

 

….. (9) 

This implies that large weights are associated with large influences and small weights are 

associated with small influences. In upcoming sections I discuss implementation on formulating 

and mapping the network practically.  
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4.3.2 Recursion 

We choose the initial state for the copying influence model. The statuses of each site are 

updated iteratively, according to the developed copying influence model. Hence, a sequence of 

possible partitions of the graphs is generated. Since this is a distributed computation, the sites use 

information only from the immediate neighbors. I have found it convenient to consider the case 

of self-partitioning with reference nodes.  Since the network has sites each with a status 

associated with them, I have implemented a slightly modified algorithm [1]. There is one 

reference node per status.  Hence, for the problem of 𝑘𝑘-way partitioning algorithm, we fix k 

reference sites; in this case 𝑚𝑚 reference sites, with distinctive or recognizable statuses from 0 to 

m-1. The reference nodes are assigned with distinctive statuses, while the rest of the sites are 

initialized with random statuses. The reference site always chooses itself as its determining site. 

A little modification to the influence model developed in the above equation (8) prompts the 

reference site to always choose itself as its determined site: 

 

𝑝𝑝𝑖𝑖𝑖𝑖 = � 0,        𝑖𝑖 ≠ 𝑗𝑗,
  1,       𝑖𝑖 = 𝑗𝑗 , 

….. (10) 

Since the partitioning is distributed in manner, we only require that the reference nodes know 

their own identities to implement this initialization. We then update the copying influence model. 

The state at each time step of the recursion offers a partition of the graph. 

Note that: 

1. The partition identified at each time step of the recursion automatically satisfies the set 

inclusion constraints for the k-way partitioning with reference nodes. 
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2. The recursion generates a random sequence of partitions and eventually finds an optimal 

solution with probability 1 under a broad assumption, after a certain while.  

Moreover, the recursion is completely distributed. For simplicity, we assume that the 

agents have a common clock. Each agent in the network only needs to randomly select a 

neighbor at each time step, so the communication, at each time step, does not increase with the 

size of the network.  The recursion generates a random sequence of partitions, until it finds an 

optimal solution with probability 1 which then concludes to m number of partitions.  

Our next concern is to stop the algorithm. To have good stopping measures the algorithm 

should: (1) Select or identify low cost partitions quickly (2) Permit identification of the optimal 

solution with probability 1, under broad conditions.  

As mentioned earlier, weakly connected sites do not influence each other and tend to 

maintain distinct statuses. The influence strengths are nothing but the edge weights and node 

masses. Thus a good partition can be considered in the model, where the strongly connected 

subsets have weak cuts between them.  Thus, we can expect the copying influence model to find 

weak cuts between the stronger links and conclude an optimal partition. The following section 

discusses the stopping criterion used in the algorithm.  

4.3.3 Stopping 

  The algorithm proposes to stop the updating when the minimum cost partition has not 

changed for a certain number of algorithm stages. The strategy is to progressively reduce the 

influence between sites with different statuses at each time step and after each update, such that 

there is a partition.  Particularly, we gradually reduce the influence between the sites with 

distinct statuses after each update as we correspondingly increase the self-influence, 

simultaneously. 
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Mathematically, the time varying influence pij[k] is modifies a follows: 

− If   𝑠𝑠𝑖𝑖[𝑘𝑘] ≠  𝑠𝑠𝑗𝑗[𝑘𝑘]  and   𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘] ≥ ∆,  

then   𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘 + 1] = 𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘] − 𝛿𝛿    (𝑖𝑖 ≠ 𝑗𝑗)  and  𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘 + 1] = 𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘] + 𝛿𝛿; 

….. (11) 

− If 𝑠𝑠𝑖𝑖[𝑘𝑘] ≠  𝑠𝑠𝑗𝑗[𝑘𝑘]  and   𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘] < ∆,  

 then   𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘 + 1] = 𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘] + 𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘]    and  𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘 + 1] = 0  (𝑖𝑖 ≠ 𝑗𝑗); 

….. (12) 

− If  𝑠𝑠𝑖𝑖[𝑘𝑘] =  𝑠𝑠𝑗𝑗[𝑘𝑘] ,  

then 𝑝𝑝𝑖𝑖𝑖𝑖[𝑘𝑘 + 1]   will remain the same. 

….. (13) 

The algorithm promises to find a good partition. This is because the weak edges in the 

initial graph tend to have different statuses at their ends in the influence model. Hence, these 

edges are removed by the algorithm. This strategy is referred as partitioning with adaptive 

stopping.    

 

Figure 14: Illustration of the influence model, Source: [1] Permissions: [1]  
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4.4 Programming Platform 

4.4.1 MATLAB® Implementation 

To test the feasibility and the potential of the copying influence model, I present a 

MATLAB® testing environment. MATLAB® is an analytical tool; a numerical computing 

environment developed by MathWorks. MATLAB® is a commonly used program for computer 

modeling.  It, normally, allows the implementation of algorithms, plotting functions of data, and 

matrix manipulations. Its code is relatively straightforward, so even though one may not use 

MATLAB®, and its pseudo-code flavor should be easy to translate into any other programming 

language.  

In this testing environment I present results that prove the copying influence model finds 

a good partition, i.e., identifies an optimal solution with probability 1, given that the optimal 

solution satisfies certain broad connectivity conditions. Although the general case can find given 

number of 𝑘𝑘 partitions for any finite 𝑛𝑛 number of sites, it is necessary to note the value of 𝛿𝛿. The 

𝛿𝛿 will depend on the value of the branch weights, i.e., the 𝑝𝑝𝑖𝑖𝑖𝑖. 

The following series of figures show a partition for a five node network where 𝑚𝑚 = 2, 

i.e., the nodes can be associated with only one of the two statuses 0 and 1. We recall that the 

influence model always has one reference node for each status.  The results may vary for 

different values of 𝛿𝛿. 
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Figure 15: Copying influence model for five nodes with five numbers of iterations   

 

Figure 16: MATLAB® illustration for five nodes representing an instant of an example 

 
Additionally, I have created a MATLAB® setting where one can input any number of 

nodes, their locations, and their initial statuses to analyze the copying influence model. The 

MATLAB® setting shows the framework with all the iterations carried out to conclude a 

partition. One can refer to [30] to watch the iterative framework of five nodes with two different 

statuses and gradually achieving a partition. 
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4.4.2 LabVIEW™ Implementation 

LabVIEW™ was used as a tool to program the NXT devices as all the agents (Refer to 

section- 2.3). My system partitions the network formed after the agents announce discovery of 

the targets to their immediate neighbors and exchange the location information to form 

interconnect for the network. The flexible stochastic partitioning algorithm implementation is 

comprised of the following stages: mapping, initialization, partitioning, and stopping. The block 

diagram below suggests implementation on an agent level.  

 

 

Figure 17: Distributed partitioning on agent level 

 
Agents that discover target become reference agents (like the reference nodes). The rest 

of the agents, copying agents, are influenced by the reference agents. At the end of the 

partitioning algorithm, when there is a successful partition, a new planned trip is initiated with a 

final destination that matches to that of the target.  

Let us take a look at the stages of the partitioning algorithm implemented in the 

LabVIEW™. 

Mapping:  
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The formation of the network is explained in the previous chapters. I formed links 

between the agents based on the distances with the other agents, which helped to define an 

agent’s immediate neighbors. 

   As a first step towards building the partitioning algorithm, we map a graph to the 

influence model such that the copying probabilities reflect the distances between the agents. A 

farther distance is unfit for a rendezvous, so the weights or the copying probabilities between the 

two agents (sites) have an inverse relationship with the corresponding distance. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∝
1
𝑝𝑝𝑖𝑖𝑖𝑖

 

….. (14) 

We refer to the Metropolis theorem [26] [27] to calculate the weights or the copying 

probabilities, given the distances between each node. This can be calculated as the following: 

𝑝𝑝𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

1
(1 + 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑝𝑝𝑖𝑖,𝑝𝑝𝑗𝑗})

,                             𝑖𝑖 ≠ 𝑗𝑗;

1 −�𝑝𝑝𝑖𝑖𝑖𝑖 ,                                        𝑖𝑖 = 𝑗𝑗
𝜗𝜗𝜗𝜗𝜗𝜗

;

0                                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

 

….. (15) 

Recursion:  

To develop an algorithm for a 2-way partitioning algorithm with reference nodes, we 

refer to two reference sites 0 and 1. We choose the initial status of the sites arbitrarily. Once the 

distances between the linked agents are calculated, we determine the copying probabilities. Since 

the probabilities are inversely proportional to the relative neighboring distances, for the 

neighboring agents that are at a farther distance, the copying probability between the agents is 

smaller. In this stage, i.e., the iteration stage, every agent updates its state by copying the status 
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of the neighbors, according to the copying probability of that neighbor. The agents begin the 

process with a low probability of keeping their status, and a subsequently high probability of 

being influenced by the neighboring nodes. This influence is dependent on the copying 

probabilities. Nodes with better connectedness have a better chance of spreading their statuses. 

 

Figure 18: A snapshot of the algorithm for randomly picking the neighbor based on the influence 

of the copying probability 

 
Stopping:  

Initially when the algorithm starts, there may or may not be weak copying probabilities 

(the agents at a relatively farther distance). Nevertheless, the goal is to produce these poor 

connections so that the poorest connection ultimately decays below the threshold 𝛿𝛿, thus 

partitioning the network. One needs to be careful while choosing 𝛿𝛿 such that it can be less than 

all of the possible connected copying probabilities. It is proved in [1] that the smaller the  𝛿𝛿 the 

better is the partition with probability 1.  
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Figure 19: LabVIEW™-snapshot showing the stopping criteria for the distributed partitioning 

 

4.5 Test Bench Set up 

The same arrangement of the agents with a network formed (as discussed in the previous 

chapters) is continued in the distributed partitioning. Once all the targets were discovered, 

partitioning began. Agents that found the targets became the reference nodes and always chose 

themselves as their determining site (the reference site always chooses itself). Moreover, the 

copying agents (rest of the agents in the network) are then influenced by these nodes to 

encourage an optimal partition. Because all the reference agents had distinct statuses, which were 

nothing but at the target location, the sub-sequential planned trip for the copying agents was 
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towards the respective reference agents. Note that all of the agents are more or less identical. 

        

Figure 20: A snapshot of the algorithm, showing the formed network and the final trip of the 

copying agents to the reference agents. 

 

4.6 Communication 

I have used the NXTBee radio module for exchanging information about the statuses. 

The statuses of the copying agents are updated iteratively. For reiteration, the agents require the 

updated statuses of their immediate neighbors. Since all the agents are independent, each is 

capable of extracting status information from its neighbors.  

I developed an environment where each agent sends an acknowledgement after the 

reception of the information of the statuses. Importantly, the stopping of the algorithm is 

essentially decentralized in nature. When the weakest of the interconnect decays below the 

threshold value, an agent broadcasts a signal and the recursion ends. Just as the recursion ends, 

the copying agents plan a trip to their final destinations which are merely locations of the 

reference nodes.   
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Figure 21: Example of a network carrying out iterations for distributed partitioning and its real 

time mapping on the computer via Xbee module 

 
To verify the real time mapping of the copying influence model an XBee model is 

connected to the computer and the influence iterations are mapped w.r.t. to the statuses. The 

figure 21 shows the snapshot of real time mapping corresponding to the formed network. 

 

Figure 22: Series of snapshots showing the partition and the trip to the final destination 

expressing partition 
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5 CHAPTER 5 

 RESULTS AND DISCUSSIONS 

5.1 Introduction 

This chapter displays graphical and pictorial results of the random exploration and 

distributed partitioning. I prove that with the use of low cost NXT devices and a simple but 

reliable communication mode it is possible to have a practical environment of a mobile 

automaton which is self-tracking and self-organizing in-order to stimulate a steady state. I also 

discuss the futuristic potentiality of the automaton and its possible applications.  

5.2 Results and Analysis 

The results mainly depend on two prospects: 1) the accuracy with the heading and 

forward movement of the agents, i.e., the NXT devices and 2) the test-bed’s ability to find an 

optimal partition with probability 1 with the formed network after the target acquisition.  In this 

section I analyze the implementation results of the test bench with NXT devices that showcase 

target acquisition through random exploration and distributed partitioning algorithm.  

Physically, the most common challenges during the implementation were 1) the accuracy 

of the motors corresponding to the heading changes, 2) the accuracy of the sensors to sense the 

targets and the 3) synchronization of the communication. In random exploration, when tracking 

became prolonged the use of the proportional controller for the heading and forward movement 

accumulated an error. The rotational heading adjustment Sub-VI results in a heading accuracy 

within ±5°. Moreover, unlike in most of the NXT movements performed till now, I have saved 

the time required for the rotation (by rotating both the wheels in opposite direction to each 

other).  I have run, in parallel, the tracking of the targets (with a light sensor), with a 
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multithreading capability of the LabVIEW™ used. The figure below shows the real time 

movement of an agent. Note that the tracking is more or less uniformly distributed.  

 

Figure 23: Real time random movement of an agent for random exploration 

 

The partitioning algorithm did not encounter a lot of physical challenges, although a good 

partition was entirely dependent on the network links that were formed. Nevertheless, a partition 

would be accomplished with the gradual weakening of the least probable link. The agents were 

required to converge to a reference point after the partition. It was then noticed that the more the 

time taken for random movement of the agents to track a target, the more the agents deviated to 

reach to their final reference destination. But this deviation entirely depended on the time taken 

for the random mobility, which was, in turn, because of the accumulation of the heading error.  
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Another criteria for the fast convergence of the agents to have a steady state depended on 

the δ. We choose 𝛿𝛿 such that we find the optimal partition with probability 1 and also want to 

have a steady state as quickly as possible. The lower the 𝛿𝛿, the more the number of iterations but 

the better is the performance. Shown below is an example of a five-node network to perform the 

distributed partitioning. In this example the partition takes place when the weakest link goes 

below the δ.  

 

Figure 24: Results of the distributed partitioning algorithm with a 5 agent network 

 
I demonstrate a decentralized robot swarm for randomized exploration and distributed 

partitioning based on a local data and realistically constrained network architecture. The 

communication with the help of the NXTBee radio module is slow but accurate. I have 

compromised with the operation speed in order to provide considerable accuracy.   
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Figure 25: A magnified view of the convergence of the five agents in a stable state 

 

5.3 Conclusions and Discussions 

This thesis has described what I have termed as the ‘A LEGO® MINDSTORMS® NXT 

based test-bench for Multi-Agent Exploratory Systems and Distributed Network Partitioning’. 

The LEGO® MINDSTORMS® NXT kits prove to be a prototypical platform to present a stand-

alone unit capable of tracking and organizing itself to come to a steady state. My model is 

generalized and relates to other models of the networked stochastic automatons. The distributed 

nature of the algorithm is my model’s important feature. The generalization demonstrated could 

prove to have important degrees of freedom in particular applications.  

5.4 Future Possibilities 

 My test-automaton, on a generalized basis, performs a rendezvous task and can be 

applied to execute decentralized formation maneuvers. The test bed presents a practical 

prototype that can be implemented in several applications with the UAVs, drones, mobile ad hoc 

networks (MANET), and in military and civilian applications, and so on. 
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As a part of further modifications, one can use a better controller, like a proportional-

integral or proportional-integral-differential controller for better accuracy and smoother mobility. 

Additionally, advanced mobility patterns can be implemented that mimic the practical behavior 

of ground or aerial vehicles.  

I have used the LEGO® MINDSTORMS® NXT for the multi-agent exploration. The 

NXT Light Sensor I have used is quite sensitive and precise. It reads light intensity from the 

surrounding environment, as well as the reflection from the infrared transmitter. The LED light 

source can be turned off for an accurate ambient light reading. Also, the motors used have an 

encoder count of 360°/revolution. One can shift to motors with better encoder resolution, 

yielding sharper and smoother mobility. For tracking, one could use more advanced odometry 

methods and sensors with better sensitivity and precision.  

In the case of distributed partitioning, the selection of reference vertex sets required in 

my test bed is objectionable when a large number of partitions are needed.  My further 

amendment involves in reference free partitioning methods. The time required for the 

partitioning depends on the formation of the network and  δ chosen to partition with respect to 

the weakest influence.  The time required to find an optimal partition increases with the 

reduction in δ. I am exploring strategies to initialize the agents with different states and to keep 

updating till the desired number of partitions is identified. There can be further development with 

considering unexpected events while navigating a given field. 

My test bench has a rich mathematical structure. It can represent and study a variety of 

issues in network dynamics. My test-bench, thus serves as a basis for developing more 

complicated models better able to characterize the essentials in applications of interest, along 

with several other dimensions to be explored.   
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