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This dissertation considers certain issues in support vector machines (SVMs), includ-

ing a description of their construction, aspects of certain exponential kernels used in some

SVMs, and a presentation of an algorithm that computes the necessary elements of their

operation with proof of convergence.

In its first section, this dissertation provides a reasonably complete description of

SVMs and their theoretical basis, along with a few motivating examples and counter-

examples. This section may be used as an accessible, stand-alone introduction to the subject

of SVMs for the advanced undergraduate.

Its second section provides a proof of the positive-definiteness of a certain useful

function here called E and defined as follows: Let V be a complex inner product space. Let

N be a function that maps a vector v from V to its norm. Let p be a real number between 0

and 2 inclusive and for any v in V , let f(v) be N(v) raised to the p-th power. Finally, let a

be a positive real number. Then E(v) is exp(−af(v)). Although the result is not new (other

proofs are known but involve deep properties of stochastic processes) this proof is accessible

to advanced undergraduates with a decent grasp of linear algebra.

Its final section presents an algorithm by Dr. Kallman (preprint), based on earlier

Russian work by B.F. Mitchell, V.F Demyanov, and V.N. Malozemov, and proves its con-

vergence. The section also discusses briefly architectural features of the algorithm expected

to result in practical speed increases.
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CHAPTER 1

INTRODUCTION

1.1. Justification for Study: General Aspects of Support Vector Machines

A “support vector machine” is a variety of binary classifier, a procedure that, when

given appropriate inputs, decides whether a case under consideration belongs in a certain

category or a separate disjoint category. Such problems are virtually innumerable and include

as examples: determining whether a potential loan recipient is a “good” or a “bad” credit

risk depending on known credit information, determining whether a patient’s lab results

indicate the presence or absence of a particular disease, and determining whether radar and

visual sensor information indicates the presence of an enemy tank or not. Since any sort of

discrete finite categorization scheme can be cast as a sequence of binary classifications, much

as in the children’s game of “20 Questions,” the variety of “real world” problems potentially

addressed by a support vector machine is vast. They are capable of basing their decisions on

any information that can be expressed as a vector of real numbers which, by using elementary

techniques from computer science, includes virtually any sort of information. Because of the

breadth of their input and the generality of their results, it is clear that support vector

machines are worthy of study.

We begin this study with a recognition of a debt: this dissertation owes much to

Dr. Kallman’s article [2]. Though the proofs presented here are independent of the proofs

there, except where explicitly noted, the fundamentals (separating suitable images of two

sets by hyperplane, the “kernel trick,” the realization that the transform-plus-geometry and

the kernel-based method of approach are identically expressive) are taken from there and the

references therein. I deeply appreciate the support I received while developing the theory

using the “Moore Method” and I hope the alternative approache shown here can both serve

as an independent verification of what has been shown before and also provide a useful

alternative method of presentation.
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1.2. Geometric Classification: Obstacles to be Overcome

Support vector machines classify individuals by mapping them via their traits into a

geometrical space. The mapping is designed so that the disjoint categories can be separated

from each other by means of a hyperplane in the space. As real Hilbert spaces are the logical

extension of Euclidean spaces to high- or infinite-dimensional settings, the mapping pairs

individuals (by means of their traits) and points in a real Hilbert space. It is a strength of

the techniques used that the mapping does not need to be calculated explicitly.

1.3. Lemmata and Proofs

As real Hilbert spaces and convex sets are important to the discussion to follow, a

few important lemmata are here developed:

Lemma 1.1. Let V be a real Hilbert space and D a non-empty convex subset of that space.

There exists a unique vector v such that all minimizing sequences for ‖·‖ from D converge

to it. Further, ‖v‖ = infd∈D ‖d‖, and for any d ∈ D, 〈d− v, v〉 ≥ 0.

Proof. (after Kallman [2]:) Let η = infd∈D ‖d‖. Let S = {sn}∞n=1 be an arbitrary minimiz-

ing sequence for ‖·‖ from D. Since limn→∞ ‖sn‖ = η and squaring is a continuous function

from R to R, we know that limn→∞ ‖sn‖2 = η2, Note that for any sm, sn from the sequence,

we have∥∥∥∥sm + sn
2

∥∥∥∥2

+

∥∥∥∥sm − sn2

∥∥∥∥2

=
1

4

(
‖sm + sn‖2 + ‖sm − sn‖2)

=
1

4

(
‖sm‖2 + ‖sn‖2 + 2 〈sm, sn〉+ ‖sm‖2 + ‖sn‖2 − 2 〈sm, sn〉

)
=

1

2

(
‖sm‖2 + ‖sn‖2)

Since D is convex, sm+sn
2
∈ D, as are sm and sn. So

∥∥ sm+sn
2

∥∥ ≥ η and −2
∥∥ sm+sn

2

∥∥2 ≤ −2η2.
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Continuing, we see:∥∥∥∥sm + sn
2

∥∥∥∥2

+

∥∥∥∥sm − sn2

∥∥∥∥2

=
1

2

(
‖sm‖2 + ‖sn‖2)

∥∥∥∥sm − sn2

∥∥∥∥2

=
1

2

(
‖sm‖2 + ‖sn‖2 − 2

∥∥∥∥sm + sn
2

∥∥∥∥2
)

‖sm − sn‖2 = 2

(
‖sm‖2 + ‖sn‖2 − 2

∥∥∥∥sm + sn
2

∥∥∥∥2
)

and

−2

∥∥∥∥sm + sn
2

∥∥∥∥2

≤ −2η2

‖sm‖2 + ‖sn‖2 − 2

∥∥∥∥sm + sn
2

∥∥∥∥2

≤
(
‖sm‖2 − η2

)
+
(
‖sn‖2 − η2

)
‖sm − sn‖2 = 2

(
‖sm‖2 + ‖sn‖2 − 2

∥∥∥∥sm + sn
2

∥∥∥∥2
)
≤ 2

((
‖sm‖2 − η2

)
+
(
‖sn‖2 − η2

))
Now let ε be an arbitrary positive number. Let N be such that for any n > N ,

∣∣‖sn‖2 − η2
∣∣ <

ε2/4, which number N exists because limn→∞ ‖sn‖2 = η2. Since ‖sn‖ ≥ η for any valid index

n, ‖sn‖2 ≥ η2, so 0 ≤ ‖sn‖2 − η2 < ε2/2 for any n > N . This implies

‖sm − sn‖2 ≤ 2
((
‖sm‖2 − η2

)
+
(
‖sn‖2 − η2

))
< 2

((
ε2

4

)
+

(
ε2

4

))
= ε2

Therefore

‖sm − sn‖ < ε

Since ε was chosen arbitrarily, it is the case that for any ε > 0, there exists N such that

for any m,n > N , ‖sm − sn‖ < ε. So the minimizing sequence is a Cauchy sequence, and

V is a Hilbert space (hence complete), so the sequence converges to a vector v. Since ‖·‖ is

continuous, ‖v‖ = ‖limn→∞ sn‖ = limn→∞ ‖sn‖ = η = infd∈D ‖d‖.

To see that any two minimizing sequences for ‖·‖ from D converge to the same value,

merely note that interleaving two such minimizing sequences (taking {dn}∞n=1 and {en}∞n=1

3



to generate a sequence {gn}∞n=1 by

gn =


dn+1

2
n odd

en
2

n even

) is itself such a minimizing sequence, hence converges to some value. Since each (infinite)

subsequence of a convergent sequence converges to the same limit, it follows that d and e

converge to the same value. Since d and e were arbitrary, it follows that any such minimizing

sequences all converge to the same value v.

Finally, let d be an arbitrary element of D and let {sn}∞n=1 be a minimizing sequence

for ‖·‖ from D. For any λ ∈ [0, 1] and any natural number n, since D is convex, λd + (1 −

λ)sn ∈ D. So we must have:

‖sn + λ(d− sn)‖2 = ‖sn‖2 + 2λ 〈d− sn, sn〉+ λ2 ‖d‖2 ≥ η2

Since this is true for all natural numbers n, and since 〈·, ·〉 is a continuous function on V (as

are addition and scalar multiplication), it follows that

lim
n→∞

(
‖sn‖2 + 2λ 〈d− sn, sn〉+ λ2 ‖d‖2) ≥ η2∥∥∥ lim

n→∞
sn

∥∥∥2

+ 2λ
〈
d− lim

n→∞
sn, lim

n→∞
sn

〉
+ λ2 ‖d‖2 ≥ η2

‖v‖2 + 2λ 〈d− v, v〉+ λ2 ‖d‖2 ≥ η2

Since η = ‖v‖,
η2 + 2λ 〈d− v, v〉+ λ2 ‖d‖2 ≥ η2

2λ 〈d− v, v〉+ λ2 ‖d‖2 ≥ 0

〈d− v, v〉 ≥ −λ
2
‖d‖2

where the last equation is true for λ ∈ (0, 1]. Since the final inequality is true for all λ ∈ (0, 1],

it follows that:

〈d− v, v〉 ≥ lim
λ→0
−λ

2
‖d‖2

〈d− v, v〉 ≥ − limλ→0 λ

2
‖d‖2 = 0

〈d− v, v〉 ≥ 0
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where the second-to-last step follows by the continuity of scalar multiplication. �

Lemma 1.2. Let V be a Hilbert space, and C and W non-empty subsets of V , and HC and

HW be their respective convex hulls. Let D = {w − c | w ∈ HW ∧ c ∈ HC}. Let E be the

convex hull of F = {w − c | w ∈ W ∧ c ∈ C}. Then D = E (and D is therefore a convex

set).

Proof. Let d be an arbitrary element in D. Then d is equal to u − v where u ∈ HW and

v ∈ HC . Then there exist natural numbers m and n, non-negative scalars α1, . . . , αm where∑m
i=1 αi = 1, non-negative scalars β1, . . . , βn where

∑n
j=1 βj = 1, vectors w1, . . . , wm from W

such that u =
∑m

i=1 αiwi, and vectors c1, . . . , cn from C such that v =
∑n

j=1 βjcj. Expressing

d in terms of these elements gives us:

d = u− v

=

(
m∑
i=1

αiwi

)
−

(
n∑
j=1

βjcj

)

=

(
m∑
i=1

(
n∑
j=1

βj

)
αiwi

)
−

(
n∑
j=1

(
m∑
i=1

αi

)
βjcj

)

=

(
m∑
i=1

(
n∑
j=1

βjαiwi

))
−

(
n∑
j=1

(
m∑
i=1

αiβjcj

))

=

(
m∑
i=1

n∑
j=1

αiβjwi

)
−

(
n∑
j=1

m∑
i=1

αiβjcj

)

=

(
m∑
i=1

n∑
j=1

αiβjwi

)
−

(
m∑
i=1

n∑
j=1

αiβjcj

)

=
m∑
i=1

n∑
j=1

αiβj(wi − cj)

For each (i, j) ∈ {1, . . . ,m} × {1, . . . , n} the scalar given by αiβj is non-negative and vector

given by wi − cj is in F . The sum of αiβj over all such pairs (i, j) is
∑m

i=1

∑n
j=1 αiβj =

(
∑m

i=1 αi)
(∑n

j=1 βj

)
= 1. Consequently, d =

∑m
i=1

∑n
j=1 αiβj(wi − cj) is also in E. Since d

was an arbitrary element of D, it follows that D ⊆ E.
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Now let e be an arbitrary element of E. There exists a natural number n, non-

negative scalars γ1, . . . , γn that sum to 1, elements w1, . . . , wn of W , and elements c1, . . . , cn

of C, such that e =
∑n

i=1 γi(wi − ci). Let u =
∑n

i=1 γiwi and v =
∑n

i=1 γici and note that

e = u− v. Note also that u ∈ HW and v ∈ HC , so e ∈ D. Since e was an arbitrary element

of E, it follows that E ⊆ D. Since D ⊆ E and E ⊆ D, D = E. �

Lemma 1.3. Let P be a hyperplane in a real Hilbert space V . Then there exists v 6= 0 and

a scalar c such that P = {x | x ∈ V ∧ 〈x, v〉 = q}. Further: if there are two vector/scalar

pairs (v1, q1) and (v2, q2) that give rise to P in this way (i.e. P = {x | x ∈ V ∧ 〈x, v1〉 = q1}

and P = {x | x ∈ V ∧ 〈x, v2〉 = q2}, then v2 = αv1 where α is a non-zero scalar, and neither

v1 nor v2 are 0.

Proof. Since P is a hyperplane, P is closed. Since P is an affine subspace of V , there

exists H such that H is a vector subspace of V and at least one vector c ∈ V such that

P = {h + c | h ∈ H}. H is then a parallel hyperplane that contains the origin. Since P

has co-dimension 1, H does as well, so there exists a vector d such that d /∈ H. Consider

the set T = {h + d | h ∈ H}. Since d /∈ H and H is a group under addition, −d /∈ H so

0 /∈ T . Since H was closed, T is closed as well, and since T is closed and does not contain

0, there’s an open ball of non-zero radius separating 0 from T . Let η = inft∈T ‖t‖ and note

that η must therefore be greater than 0. Since T is convex and non-empty (0 ∈ H, so

0 + d = d ∈ T ), by lemma 1.1, there exists a vector v such that any minimizing sequence

for ‖·‖ from T converges to v, where ‖v‖ = η > 0. Since v is the limit of a sequence of

elements of T , and since T is closed, v ∈ T . So there exists h′ ∈ H such that h′ + d = v.

So the set {h + v | h ∈ H} = {h + h′ + d | h ∈ H}. Since H + h′ = H, this is just

{h+d | h ∈ H}, i.e. T . From the referenced lemma, we know that 〈t− v, v〉 ≥ 0 for all t ∈ T ,

so 〈h+ v − v, v〉 = 〈h, v〉 ≥ 0 for all h ∈ H. If 〈h, v〉 6= 0 for any h ∈ H, then − 1
〈h,v〉h ∈ H as

well, since H is closed under scalar multiplication, so
〈
− 1
〈h,v〉h, v

〉
= − 1

〈h,v〉 〈h, v〉 = −1 < 0.

Since this contradicts 〈h, v〉 ≥ 0, it follows that there can exist no elements h ∈ H such that

〈h, v〉 6= 0. So 〈h, v〉 = 0 for all h ∈ H. Now consider the set E = {x | x ∈ V ∧〈x, v〉 = 〈c, v〉}

6



(where c is as defined earlier). Since v /∈ H and v 6= 0 and H has co-dimension 1, it follows

that any element x ∈ V can be expressed in the form αv + h, for some α ∈ R and h ∈ H.

So c = αcv + hc for some scalar αc and some hc ∈ H, and we can express E in the form

{αv + h | α ∈ R ∧ h ∈ H ∧ 〈αv + h, v〉 = 〈c, v〉}. 〈αv + h, v〉 = α 〈v, v〉 + 〈h, v〉 = α 〈v, v〉

and 〈c, v〉 = 〈αcv + hc, v〉 = αc 〈v, v〉 + 〈hc, v〉 = αc 〈v, v〉. So 〈αv + h, v〉 = 〈c, v〉 when and

only when α 〈v, v〉 = αc 〈v, v〉. Since v 6= 0, this is true when and only when α = αc. So

E = {αcv+h | h ∈ H}. Since hc ∈ H and H is a group under addition, the sets {h | h ∈ H}

and {h + hc | h ∈ H} are identical, so E = {αcv + hc + h | h ∈ H} = {h + c | h ∈ H},

which is exactly the original hyperplane P . So the hyperplane P can be expressed in the

form P = {x | x ∈ V ∧ 〈x, v〉 = q} where v 6= 0 and q = 〈c, v〉.

Finally, let there be two vectors v1 and v2 and scalars q1 and q2 such that P = {x |

x ∈ V ∧ 〈x, v1〉 = q1} = {x | x ∈ V ∧ 〈x, v2〉 = q2}. If vj were 0 for some j ∈ {1, 2}, then for

all x ∈ V , 〈x, vj〉 = 0, so P = V or P = ∅ as qj = 0 or qj 6= 0. Since neither V nor ∅ are

affine subspaces of V of co-dimension 1, it follows that vj 6= 0 for any j ∈ {1, 2}. Let c be

a fixed arbitrary element of P and consider the set H = {v − c | v ∈ P}. Let j ∈ {1, 2} be

arbitrary. H may also be re-written:

H = {v − c | v ∈ V ∧ 〈v, vj〉 = qj}

= {w | w + c ∈ V ∧ 〈w + c, vj〉 = qj}

and since V is a group under addition,

H = {w | w ∈ V ∧ 〈w + c, vj〉 = qj}

= {w | w ∈ V ∧ 〈w, vj〉+ 〈c, vj〉 = qj}

and since c ∈ P ,

H = {w | w ∈ V ∧ 〈w, vj〉+ qj = qj}

= {w | w ∈ V ∧ 〈w, vj〉 = 0}

so H is the kernel of the map lj : V → R given by lj(w) = 〈w, vj〉. Since 〈vj, vj〉 6= 0,

lj(vj) 6= 0, so vj /∈ H. This is true for any j ∈ {1, 2}, so for arbitrary j ∈ {1, 2}, l1(vj) 6= 0

and l2(vj) 6= 0. Consider the map p : V → V given by p(x) = l1(x)
l1(v1)

v1. For any x ∈ V ,

7



consider l1(x−p(x)): l1(x−p(x)) = l1(x)−l1(p(x)) = l1(x)−l1( l1(x)
l1(v1)

v1) = l1(x)− l1(x)
l1(v1)

l1(v1) =

l1(x) − l1(x) = 0. Therefore, x − p(x) ∈ H for any i ∈ {1, 2}. Thus, any vector x ∈ V can

be expressed in the form x = h + αv1 for some h ∈ H and scalar α. So v2 = h + αv1 for

some h ∈ H and α ∈ R. Since 0 = 〈h, v2〉 = 〈h, v1〉, we have: 0 = 〈h, v2〉 = 〈h, h+ αv1〉 =

〈h, h〉+ α 〈h, v1〉 = 〈h, h〉+ α · 0 = 〈h, h〉, Since ‖h‖2 = 0, ‖h‖ = 0 and h = 0. So v2 = αv1.

Since v2 6= 0, α 6= 0. �

1.4. Motivating Examples

Now that our introductory lemmata have been proven, let us consider a few illustrative

examples of situations that can be (and some that cannot easily be) represented by support

vector machines.

Example 1.4. Assume for the moment that we’re separating the sheep from the goats in

a flock composed of both. We might guess that the features that distinguish sheep from

goats might be some combination of: number of horns, straightness of hair (perhaps on a

scale of 0 to 10 with 0 being straightest and 10 being curliest), weight in pounds, height

at the shoulder in inches, and average number of tin cans eaten per day. So we start with

the Cartesian product Z ×R3 ×Q. In this space, a flock member might be represented by

the tuple (2, 0, 50, 36, 7) if he or she had two horns, perfectly straight hair, weighed 50 lbs,

stood 36 inches tall at the shoulder, and ate an average of 7 tin cans per day. There are

certain points in this space that cannot represent any goat (for example, (−1, 10, 50, 36, 7)

as negative horn counts make no sense), so we consider only the subset of that space that

can represent an actual flock member. We call this subset the “feature space” and represent

it by F .

Notionally, there is a function Φ that serves to map elements from F (the data from

our flock) into a geometric setting in such a way that the “sheep” are mapped “away from”

the “goats”. Since real Hilbert spaces are, in some sense, the natural generalization of finite-

dimensional Euclidean space, we let Φ map F into a real Hilbert space V (with possibly

infinite, perhaps even uncountable, dimension). With careful construction of the notional

8



mapping function Φ, one can almost literally draw a “line in the sand” by determining a

hyperplane in V (an affine subspace of co-dimension 1) that separates the categories. If a

member of the flock, represented by an element x of F , is a sheep, then Φ(x) will be on one

side of the separating hyperplane. If the member of the flock is a goat, then Φ(x) will be on

the other side of the separating hyperplane.

Separation by drawing “lines in the sand” may be an appealing rhetorical device but

is often difficult to achieve.

Example 1.5. Consider a set S0 in R2 given by {(x, y) | x2 + y2 ≤ 1} and a set S1 given

by {(x, y) | r2 ≤ x2 + y2 ≤ (r + 1)2}, where r > 1. Let r be as large as necessary for S0 to

be considered “separate from” S1. Since S0 is the closed unit disc and S1 is a closed ring

of inner radius r (and outer radius r + 1) centered on the origin, it is intuitively clear that

there exists no separating hyperplane (separating line in this case) of the desired sort.

In some sense, this is a failure of convexity: S0 is clearly in the convex hull of S1, but

if two non-empty sets can be separated by hyperplane, their convex hulls are separated by

the same hyperplane.

Another failure of separation is of a more subtle sort and involves difficulty in resolving

on what side of a separating hyperplane an individual’s image may lie.

Example 1.6. Let S0 be the subset of R2 defined by S0 = {(x, y) | x > 0 ∧ y > 1/x} and

let S1 = {(x, y) | x > 0 ∧ y < 0}. S0 and S1 are clearly disjoint. Separating hyperplanes in

this case will again be straight lines. Any line other than y = 0 will have non-zero y-value

for some positive value of x, hence will intersect either S0 or S1 and fail to separate the two

sets. The line y = 0 does indeed separate the two sets S0 and S1, as all points in S0 have

positive y-cöordinate and all points in S1 have negative y-cöordinate. Consider however the

case of an individual mapped by our hypothetical Φ function to a point with great x-value

but negligible y-value. Any uncertainty in the value of y, whatever the cause, may very well

result in the mis-classification of this point and similar points. The result is that a classifier

based on this function Φ would not be robust. This problem can exist in principle whenever

9



the classification values (here, simply the y cöordinates of the images under Φ of individuals)

for each category (here S0 and S1) can be arbitrarily close together.

The sets S0 and S1 are separated in the sense that they have disjoint convex hulls,

unlike in example 1.5, but they’re not separated well enough to support a robust classifier

based on them, as there are cases where even small errors can result in a point from S0 being

categorized with points from S1, and vice-versa.

1.5. Separation by Hyperplane: Separating Functions.

Are these the only significant problems appearing when trying to separate sets by

hyperplane? In other words, given two non-empty sets C and W with convex hulls at a

non-zero distance from each other, can they be definitively separated by hyperplane?

The answer to this question is, unsurprisingly, yes. Let us state the result as a theorem

for later reference:

Theorem 1.7. Let V be a real Hilbert space. Let C and W be non-empty sets with convex

hulls HC and HW . Let η = infc∈HC∧w∈HW ‖w − c‖. Then HC and HW can be well-separated

by an affine hyperplane H if and only if η > 0. When this is true, there then exists an affine

hyperplane P = {x | x ∈ V ∧〈x, v〉 = a} that separates HC and HW well, where ‖v‖ = η > 0,

〈(w − c)− v, v〉 ≥ 0 for all c ∈ HC and w ∈ HW , and v is the limit of any sequence {sn}∞n=1

where there exists for each natural number n c ∈ HC and w ∈ HW such that sn = w− c and

where limn→∞ ‖sn‖ = η.

Proof. Let us consider in a real Hilbert space V two non-empty sets C and W where

HC and HW are well-separated by a hyperplane H. By lemma 1.3, H can be expressed as

{x | x ∈ V ∧ 〈x, v〉 = p} where v is a fixed non-zero vector and p a scalar. Let l(x) = 〈x, v〉.

Now consider the images of C, W , and H under l. By our selection of v, l(H) contains the

single point p. For p to separate l(C) from l(W ), either l(C) ⊂ (−∞, p] and l(W ) ⊂ [p,∞),

or l(C) ⊂ [p,∞) and l(W ) ⊂ (−∞, p]. Without loss of generality (either through relabeling

the sets C and W , or choosing −v and −p instead of v and p for the form of our expression

for the set H), we assume l(C) ⊂ (−∞, p] and l(W ) ⊂ [p,∞). Let c∗ = supc∈HC l(c) and
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w∗ = infw∈HW l(w). Since HC and HW are well-separated by this hyperplane, there must be

a gap between c∗ and w∗: |w∗ − c∗| > 0, and p must fall within this gap: p ∈ (w∗, c∗). H

separates the closure of their convex hulls as well: the closure of HC is a subset of the closed

set l−1((−∞, c∗]) and the closure of HW is a subset of the closed set l−1([w∗,∞)). To see that

the closed convex hulls are separated by a non-zero distance (hence HC and HW themselves),

note that l is uniformly continuous. So for ε = w∗ − c∗, there exists δ > 0 such that for

any two points x1 and x2 of the Hilbert space v, if ‖x1 − x2‖ < δ, |l(x1)− l(x2)| < w∗ − c∗.

Since for any two points c ∈ HC and w ∈ HW |l(c)− l(w)| ≥ w∗ − c∗, it follows that

‖c− w‖ ≥ δ > 0. So HC and HW necessarily have non-zero separation, as do HC and HW

consequently.

To show the sufficiency of these conditions, assume that C and W are non-empty

subsets of the Hilbert space V , let HC and HW be their respective convex hulls, and η > 0

be their distance from each other (η = infc∈HC∧w∈HW ‖w − c‖). Let D = {w − c | c ∈

HC ∧w ∈ HW}. Lemma 1.2 tells us that D is convex and obviously infd∈D ‖d‖ = η. Lemma

1.1 tells us that there exists a unique vector v in the closure of D that is the limit of any

minimizing sequence for ‖·‖ from D with ‖v‖ consequently being infd∈D ‖d‖ = η, and for

any d ∈ D, 〈d− v, v〉 ≥ 0, so for any c ∈ HC and w ∈ HW , 〈(w − c)− v, v〉 ≥ 0. Let c ∈ HC

and w ∈ HW . Since 〈(w − c)− v, v〉 ≥ 0, we have:

〈(w − c)− v, v〉 ≥ 0

〈w, v〉 − 〈c, v〉 − 〈v, v〉 ≥ 0

〈w, v〉 − 〈c, v〉 ≥ 〈v, v〉

Temporarily fix c and note that since this is true for all w ∈ HW , the set {〈w, v〉 | w ∈ HW}

is bounded from below by 〈c, v〉+‖v‖2. So w∗ = infw∈HW 〈w, v〉 exists and w∗−〈c, v〉 ≥ ‖v‖2.

Since w∗ − 〈c, v〉 ≥ ‖v‖2 is true for any c ∈ HC , the set {〈c, v〉 | c ∈ HC} is bounded from

above by w∗ − ‖v‖2, so it follows that c∗ = supc∈HC 〈c, v〉 exists and w∗ − c∗ ≥ ‖v‖2. So the

linear functional l(x) = 〈x, v〉 expresses a clear separation between the sets HC and HW . Let

a = c∗+w∗
2

. Consider the affine hyperplane defined by P = {x | x ∈ V ∧ 〈x, v〉 = a}. Since
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c∗ < w∗, c∗ < a < w∗, so w∗−a = w∗− c∗+w∗
2

= w∗−c∗
2

and a−c∗ = c∗+w∗
2
−c∗ = w∗−c∗

2
. Thus,

this hyperplane cleanly (and symmetrically!) separates the images of HC and HW . �

So for robust separation of non-empty sets by hyperplane it is necessary and sufficient

to have their convex hulls be at a strictly positive distance from each other.

In general, depending on the nature of Φ, there may be many hyperplanes that suffice

to divide the images of the two categories. Let C1 and C2 be subsets of F containing the

representatives of the two categories. (In example 1.4 above, C1 would consist of the images

of each “sheep” in F and C2 consist of the images of each “goat” in F .) Assume that Φ

has been selected in such a way that the convex hulls of C = Φ(C1) and W = Φ(C2) have

non-zero separation. We select for our hyperplane the hyperplane P whose existence was

proven in theorem 1.7 above, the associated vector v, and associated scalar a.

Given the function Φ, the process of constructing a support vector machine is then to

determine this vector v, associated linear functional l(x) = 〈x, v〉, and associated hyperplane

H = l−1({a}). From this, we then construct a function f : F → R given by f = l◦Φ. We can

call this function “f” a “separating function.” (One algorithm for generating such a vector v

will be given in section 3.) By our selection of f , f(C1) either lies entirely below a or above

a, and f(C2) lies entirely above or below a respectively. Without loss of generality, assume

f(C1) lies entirely below a and f(C2) above a. f is our sought-after classifying function:

Any individual u represented in F can be classified as to membership by checking whether

f(u) >, <, or = a. If f(u) < a, we consider u to be in the category C1. If f(u) > a, we

consider it to belong to category C2. If f(u) = a, it may be with equal justice be assigned

to C1 or C2 — an appropriate tie-breaking procedure will need to be determined.

In some sense, the Hilbert space V is likely larger than it needs to be. Consider: since

individuals are chosen from our feature space F , we only need V to be a Hilbert space large

enough to contain span Φ(F). Since C1 ⊆ F and C2 ⊆ F , Φ(C1) ⊆ Φ(F) and Φ(C2) ⊆ Φ(F).

Let C = Φ(C1) and W = Φ(C2) and note that both C ⊆ Φ(F) and W ⊆ Φ(F). Let HC

be the convex hull of C and HW be the convex hull of W and note that both are subsets of

span Φ(F). Since v is the limit of differences of elements from HC and HW , v is the limit
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of elements from span Φ(F), hence v ∈ span Φ(F). Since span Φ(F) is the smallest Hilbert

space containing Φ(F), and since our separating function has domain only of F , we can

without loss of generality assume that V = span Φ(F) or, equivalently, span Φ(F) is dense

in V .

It will be useful in further developments to express our separating function f more

directly in terms of Φ and the inner product relation. Recall that v is the limit of a sequence

of vectors from the set D = {w − c | c ∈ HC ∧ w ∈ HW}, which by lemma 1.2 is just the

convex hull of the set F = {w− c | w ∈ W ∧ c ∈ C}. Choose one such sequence {sn}∞n=1 with

elements in D converging to v. For each natural number n, let sn =
∑qn

i=1 αn,i(wn,i − cn,i)

where qn is a natural number and additionally, for each integer i between 1 and qn inclusive,

let αn,i be a non-negative scalar, wn,i be an element of W , and cn,i be an element of C. Let

the αn,i satisfy the additional restriction that for each natural number n,
∑qn

i=1 αn,i = 1. (As

D is the convex hull of F , each sn can be so written.) For each natural number n and integer

i between 1 and qn inclusive, because W = Φ(C2), we can express each element wn,i as the

image under Φ of an element xn,i from C2, and because C = Φ(C1), we can express each

element cn,i as the image under Φ of an element yn,i from C1. We can now express f in the

following fashion:

(1)

f(x) = 〈Φ(x), v〉 = lim
n→∞

〈
Φ(x),

qn∑
i=1

αn,i(wn,i − cn,i)

〉

= lim
n→∞

qn∑
i=1

αn,i (〈Φ(x),Φ(xn,i)〉 − 〈Φ(x),Φ(yn,i)〉)

This equation:

(2) f(x) = lim
n→∞

qn∑
i=1

αn,i (〈Φ(x),Φ(xn,i)〉 − 〈Φ(x),Φ(yn,i)〉)

will be of considerable use in later development of the theory.

Although our original example refers to sheep and goats in an imaginary flock, the

arbitrariness of the choice of F and of Φ shows that the general method can be adapted

to any non-trivial binary classification situation. Indeed, the situation can be reduced to

an absurdity: any binary classification scheme can be expressed as a set of individuals
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U , a subset C1, and a subset C2 where {C1, C2} is a partition of U . Define a mapping

m : U → {−1, 1} as m(u) = −1 when u ∈ C1 and m(u) = 1 otherwise (when u ∈ C2). The

feature space F would then be {−1, 1}. The Hilbert space V would just be R and Φ would

be the natural embedding e of F into R. The associated vector “v” could be any non-zero

real number, and the corresponding separating hyperplane would simply be the null vector.

While this technique can therefore accommodate any binary classification scheme, it

appears to do so at a high price. Although a feature space F can be constructed simply by

including any information that might conceivably be relevant, construction of the function

Φ would seem to require deep understanding of the particular classification scheme to be

implemented. As an example, support vector machines have been used to recognize pictures

of characters, including the character “a.” Implementation of a function to recognize the

letter “a” would seem to require detailed knowledge of just how to recognize that letter at

any size, with any acceptable shape of glyph, possibly in the presence of other characters,

in some variety of possible orientations.

1.6. Kernel Functions

Let F , Φ, V , C1, C2, v, f be as in our discussion in the previous section. In that

section, we’ve presumed the existence of a function Φ. Notice that in equation 2 for our

separating function f , however, Φ appears only in combination with the inner product 〈·, ·〉

on V .

Is it possible that we can somehow specify this combined function without having

to specify both explicitly? In other words, is there some function κ : F2 → R such that

κ(x1, x2) = 〈Φ(x1),Φ(x2)〉 for each (x1, x2) ∈ F2?

This is indeed possible. As far as determining a separating function goes, specifying

a unified function with certain properties has the same expressive power as separately spec-

ifying a Φ and a Hilbert space V , as we will now show. (The fundamental notion here, the

“kernel trick”, is a well-known process.)

Assume a feature space F , a Hilbert space V with inner product 〈·, ·〉), and a function

Φ: F → V where span Φ(F) is dense in V . Consider a function κ : F2 → R defined as
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κ(x, y) = 〈Φ(x),Φ(y)〉. Note that κ(p, q) = 〈Φ(p),Φ(q)〉 = 〈Φ(q),Φ(p)〉 = κ(q, p), so κ is a

symmetric function. Note also that for any natural number n, real constants {c1, . . . , cn},

and elements of F {x1, . . . , xn},
n∑
i=1

n∑
j=1

cicjκ(xi, xj) =
n∑
i=1

n∑
j=1

cicj 〈Φ(xi),Φ(xj)〉

=
n∑
i=1

n∑
j=1

〈ciΦ(xi), cjΦ(xj)〉

=
n∑
i=1

〈
ciΦ(xi),

n∑
j=1

cjΦ(xj)

〉

=

〈
n∑
i=1

ciΦ(xi),
n∑
j=1

cjΦ(xj)

〉

=

∥∥∥∥∥
n∑
i=1

ciΦ(xi)

∥∥∥∥∥
2

≥ 0

So κ as specified is also a positive-definite function. Our separating function (call it f) can

then be specified in terms of κ: we re-cast equation 2 as

f(x) = lim
n→∞

qn∑
i=1

αn,i (〈Φ(x),Φ(xn,i)〉 − 〈Φ(x),Φ(yn,i)〉)

= lim
n→∞

qn∑
i=1

αn,i (κ(x, xn,i)− κ(x, yn,i))

So a positive-definite function directly from the feature space F to R can summarize

any Φ and Hilbert space V we require. Is there any other salient restriction that κ must

satisfy? The answer turns out to be “no,” as we see below. We will show that given any

positive-definite function κ : F2 → R, we can create a Hilbert space (V, 〈·, ·〉V ) and a map

Φ: F → V such that span Φ(F) is dense in V and for any vectors v1 = Φ(x1), v2 = Φ(x2),

〈v1, v2〉 = κ(x1, x2).

Let F be a non-empty set (presumed a feature space) and let κ : F2 → R be a

symmetric positive-definite function. From κ, we can construct a real Hilbert space V with

inner product 〈·, ·〉 and feature space map Φ: F → V such that κ(x, y) = 〈Φ(x),Φ(y)〉.
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We begin the construction by letting U be the set of real-valued functions on F with

finite support. Addition on U is point-wise addition: if f, g ∈ U , (f + g)(x) = f(x) + g(x)

for each x ∈ F . (The support of f + g is a subset of supp(f) ∪ supp(g), hence finite.)

The field of scalars will be R and scalar multiplication will be standard multiplication of a

function by a number: if f ∈ U and c ∈ R, (c · f)(x) = cf(x) for each x ∈ F (and (c · f)’s

support will either be f ’s support or the empty set as the scalar c is not or is zero). It is

clear that under these conditions, U is a real vector space. For each x ∈ F , let δx be the

function that is 1 when its argument is x and 0 otherwise. δx clearly has finite support.

We embed Φ in U by x 7→ δx for each x ∈ F , and this map is clearly injective. It will

be useful to note that U = span Φ(F): any element f ∈ U can be expressed as a linear

combination of the functions δx. Since f has finite support, let supp(f) = {x1, . . . , xn}.

Then consider the function w(x) =
∑n

i=1 f(xi)δxi : its set of support is exactly that of f by

construction: for each xj ∈ supp(f), w(xj) =
∑n

i=1 f(xi)δxi(xj) = f(xj)δxj(xj) = f(xj) 6= 0,

and if x /∈ supp((f)), δxi(x) = 0 for each i ∈ {1, . . . , n}, so w(x) = 0. Since w is zero when

and only when f is, and for elements of x where f is not zero, w agrees with f , w = f . So

any arbitrary element of U can be expressed as the linear combination of elements of Φ(F),

so U = span Φ(F).

Define a function l : U × U → R by l(f, g) =
∑

i∈supp(f)

∑
j∈supp(g) f(i)g(j)κ(i, j) for

any functions f, g ∈ U . L is clearly symmetric since κ is. If α is a non-zero scalar,

l(αf, g) =
∑

i∈supp(αf)

∑
j∈supp(g)

(αf)(i)g(j)κ(i, j)

=
∑

i∈supp(f)

∑
j∈supp(g)

αf(i)g(j)κ(i, j)

= α
∑

i∈supp(f)

∑
j∈supp(g)

αf(i)g(j)κ(i, j)

= αl(f, g)

Now consider the situation when α = 0. When α = 0, supp(αf) = {} and the sum defining

l(αf, g) is empty, hence zero by definition. Since αl(f, g) = 0 as well, l(αf, g) = αl(f, g)

when α = 0. So for any scalar α, zero or non-zero, l(αf, g) = αl(f, g).
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If f, g ∈ U , then let h ∈ U and consider supp(f + h). It can be seen readily that

supp(f + h) = (supp(f) ∪ supp(h)) \ {x | x ∈ supp(f) ∩ supp(h) ∧ f(x) + h(x) = 0}. This

includes all of supp(f), except that part of supp(f)∩supp(h) such that f(x)+h(x) = 0 for any

x in that part. So supp(f) ⊆ supp(f + h)∪{x | x ∈ supp(f)∩supp(h)∧f(x)+h(x) = 0} and

a similar statement holds for supp(h). Let Z = {x | x ∈ supp(f)∩supp(h)∧f(x)+h(x) = 0}.

l(f + h, g)

=
∑

i∈supp(f+h)

∑
j∈supp(g)

(f + h)(i)g(j)κ(i, j)

=
∑

i∈supp(f+h)

∑
j∈supp(g)

(f(i) + h(i))g(j)κ(i, j)

=
∑

i∈supp(f+h)∪Z

∑
j∈supp(g)

(f(i) + h(i))g(j)κ(i, j)

=

 ∑
i∈supp(f+h)∪Z

∑
j∈supp(g)

f(i)g(j)κ(i, j)

+

 ∑
i∈supp(f+h)∪Z

∑
j∈supp(g)

h(i)g(j)κ(i, j)


=

 ∑
i∈supp(f)

∑
j∈supp(g)

f(i)g(j)κ(i, j)

+

 ∑
i∈supp(h)

∑
j∈supp(g)

h(i)g(j)κ(i, j)


= l(f, g) + l(h, g)

so l is linear in its first argument. By symmetry, therefore, l is linear in its second argument

as well, hence l is a bilinear function. Since κ is positive-definite, l(x, x) ≥ 0 for any x ∈ U .

U is generally not a Hilbert space, nor is l an inner product as specified, because there

is potentially a non-zero element x of U such that l(x, x) = 0. However, by taking an

appropriate quotient, and forming its completion, we can recover V . But first we show that

if l(x, x) = 0 for x ∈ U , for any y ∈ U , l(y, x) = 0. To see this, consider l(x + ay, x + ay).

As shown earlier, this must be non-negative. So we can, by expanding and using bilinearity,

show that l(x, x) + 2al(x, y) + a2l(y, y) ≥ 0. Since l(x, x) = 0 by hypothesis, we have

that 2al(x, y) + a2l(y, y) ≥ 0. If l(y, y) = 0, then consider a = −l(x, y). We then have

−2l(x, y)2 ≥ 0, implying that l(x, y) = 0. Otherwise, if l(y, y) 6= 0, consider a = −l(x,y)
l(y,y)

:

2−l(x,y)
l(y,y)

l(x, y) +
(
−l(x,y)
l(y,y)

)2

l(y, y) = −2l(x,y)2

l(y,y)
+ (−l(x,y))2

l(y,y)
= −−l(x,y)

l(y,y)
≥ 0. Since l(y, y) > 0, it
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follows that l(x, y) must be 0.

So now consider the set Z = {x | x ∈ U ∧ l(x, x) = 0}. Since 0 ∈ Z, Z is non-empty.

If x, y ∈ Z, then for any scalar a, l(x+ay, x+ay) = l(x, x)+2al(x, y)+a2l(y, y) = 2al(x, y).

By the previous paragraph, l(x, y) = 0, so l(x + ay, x + ay) = 2al(x, y) = 0. This suffices

to prove that Z is a subspace of U . Let W = U/Z, the quotient of U by Z. For sake of

convenience, let πZ : U → U/Z be the standard quotient map. Let L : W × W → R be

given by L(x, y) = l(p, q) for any x, y ∈ W and for any p in the coset x and q in the coset y.

This is well-defined: if p, p′ are each in the coset x, then p′ − p ∈ Z and p′ = p + zp where

zp ∈ Z and if q, q′ are each in the coset y, q′ − q ∈ Z and q′ = q + zq where zq ∈ Z. So

l(p′, q′) = l(p + zp, q + zq) = l(p, q) + l(p, zq) + l(zp, q) + l(zp, zq). Since l(y, z) = 0 for any

y ∈ U and z ∈ Z, the last three terms of this expression are 0, so l(p′, q′) = l(p, q). Since x

and y were arbitrary elements of W , this shows that L is well-defined. Since l was bilinear,

L is bilinear and, since l is positive semi-definite, L is (at least) positive semi-definite. If

L(a, a) = 0, then for any element a′ in the coset a, l(a′, a′) = 0. So a′ ∈ Z. Every element

in W is of the form x + Z for some element x ∈ U , so a = a′ + Z = Z and a = 0. Since

L(a, a) = 0 implies a = 0, and since L(a, a) ≥ 0 as proven before for any a ∈ W , L is

a positive-definite bilinear function. So W with the function L can be considered a real

inner-product space.

Finally, it is well-known that for any real inner-product space W and inner product

L, there is essentially a unique completion of W , which is a Hilbert space in which we can

consider W embedded densely and whose inner product restricted to W ×W is exactly L.

Call this space V , let 〈·, ·〉 be its inner product, and let i : W → V be the dense embedding.

For any x in the feature space F , let δx : F → R be given by

δx(y) =


1, y = x

0, otherwise

Then Φ: F → V is given succinctly by Φ(x) = i(πZ(δx)). To see this, let x and y be arbitrary
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elements of F . Then

〈Φ(x),Φ(y)〉 = L(πZ(δx), πZ(δy)) = l(δx, δy) =∑
i∈supp(δx)

∑
j∈supp(δy)

δx(i)δy(j)κ(i, j) = δx(x)δy(y)κ(x, y) = κ(x, y)

Thus, given a feature-space F and positive-definite function κ : F → R, we can

construct a Hilbert space V and a mapping function Φ: F → V such that span Φ(F) is

dense in V and such that for any x1, x2 ∈ F , κ(x1, x2) = 〈Φ(x1),Φ(x2)〉, In this way, we can

see that in the construction of support vector machines, selection of a kernel is essentially

equivalent to selection of a map Φ from a feature space to a particular Hilbert space.

An aside: Although computing with W (rather than U) seems a technicality, this step

is actually quite significant. It is the step where underlying linearities of the feature space,

when viewed “through the lens” of κ are exposed. Say, for example, that the underlying

feature space F is a finite-dimensional real vector space and that κ is a symmetric bilinear

function. Let us say that {e1, . . . , eq} are a basis for F . Consider an arbitrary element v ∈ F

of the form
∑q

i=1 ciei where v /∈ {e1, . . . , eq} and consider two different functions with finite

support from F → R given by:

v1(x) =


1, x = v

0, x 6= v

and

v2(x) =


ci, x = ei for some i ∈ {e1, . . . , eq} and ci 6= 0

0, otherwise

With some justice, both may be näıvely thought to represent v in W . (Without the as-

sumption of κ’s bilinearity, however, this equivalence does not hold.) Let us compute

l(v2−v1, v2−v1). Note that since v /∈ {e1, . . . , eq}, supp(v1)∩supp(v2) = ∅, so supp(v2 − v1) =
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supp(v2) ∪ supp(v1). We have:

l(v2 − v1, v2 − v1) =
∑

i∈supp(v2−v1)

∑
j∈supp(v2−v1)

(v2(i)− v1(i))(v2(j)− v1(j))κ(i, j)

=

q∑
i=1

q∑
j=1

(v2(ei)− v1(ei))(v2(ej)− v1(ej))κ(ei, ej)+

∑
i∈{v}

q∑
j=1

(v2(i)− v1(i))(v2(ej)− v1(ej))κ(i, ej)+

q∑
i=1

∑
j∈{v}

(v2(ei)− v1(ei))(v2(j)− v1(j))κ(ei, j)+

∑
i∈{v}

∑
j∈{v}

(v2(i)− v1(i))(v2(j)− v1(j))κ(i, j)

=

q∑
i=1

q∑
j=1

(ci − 0)(cj − 0)κ(ei, ej)+

∑
i∈{v}

q∑
j=1

(0− 1)(cj − 0)κ(i, ej)+

q∑
i=1

∑
j∈{v}

(ci − 0)(0− 1)κ(ei, j)+

∑
i∈{v}

∑
j∈{v}

(0− 1)(0− 1)κ(i, j)

=

q∑
i=1

q∑
j=1

cicjκ(ei, ej) +

q∑
j=1

−cjκ(v, ej) +

q∑
i=1

−ciκ(ei, v) + κ(v, v)
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By κ’s assumed bilinearity, this reduces to:

l(v2 − v1, v2 − v1) =
∑

i∈supp(v2−v1)

∑
j∈supp(v2−v1)

(v2(i)− v1(i))(v2(j)− v1(j))κ(i, j)

=

q∑
i=1

q∑
j=1

cicjκ(ei, ej) +

q∑
j=1

−cjκ(v, ej) +

q∑
i=1

−ciκ(ei, v) + κ(v, v)

= κ(

q∑
i=1

ciei,

q∑
j=1

cjej) + κ(−v,
q∑
j=1

cjej) + κ(

q∑
i=1

ciei,−v) + κ(−v,−v)

= κ(

(
q∑
i=1

ciei

)
− v,

q∑
j=1

cjej) + κ(

(
q∑
i=1

ciei

)
− v,−v)

= κ(0,

q∑
j=1

cjej) + κ(0,−v)

= 0

Thus, since v2 − v1 ∈ Z, v2 + Z = v1 + Z and the equivalence class of v2 and v1 in W are

the same. Since v was an arbitrary vector not in the set of basis vectors, the resulting inner

product space is certainly spanned by the set of functions δei(x) (where δei(x) = 1 when and

only when x = ei, 0 otherwise, for any i ∈ {1, . . . , q}). It’s easy to see that the requirement

of finite-dimensionality for F isn’t truly necessary to prove the conclusion and the resulting

inner-product space has no greater dimension than the original space. Letting W be U/Z

serves the same sort of purpose here as “modding out” the bilinearity relations from M2

(where M is some left R-module for some ring R) to form the tensor product of M with

itself.

In summary, then: support vector machines are essentially functions designed to

separate sets. Their operation is perhaps best understood geometrically through real Hilbert

spaces, though their implementation is almost always by means of limits of sums of positive-

definite kernel functions from a feature space to R. Construction of this function proceeds

by selecting a family of kernel functions, computing a minimum-distance vector between

the well-separated convex hulls of the categories in a related Hilbert space, then using this

vector to construct a separating function as a sum of linear combinations of kernel functions

with one variable free, and one evaluated at a particular element of the feature space as in
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equation 2. A practical method of finding such a vector is discussed in section 3.
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CHAPTER 2

A USEFUL KERNEL

2.1. Introduction

Kernels are important in support vector machine operation. Kernels are constructed

from positive-definite functions, usually from Rn for some natural number n. A typical

example of a kernel function is exp(−‖x‖2), where x varies over Rn for some fixed positive

integer n. Less well known is that fact that exp(−‖x‖λ) is positive definite if and only if

0 < λ ≤ 2. The proof of this fact for 0 < λ < 2 appears to be quite difficult. The first person

to prove this was Paul Lévy ([3]) in 1925, who used deep properties of stochastic processes

as the foundation of his proof. This was followed by a second proof by Salomon Bochner

([1]) which supposedly is simpler but again used nontrivial properties of stochastic processes.

The purpose of this chapter is to give a completely elementary proof that exp(−‖x‖λ) is

positive definite (when 0 < λ ≤ 2) using only concepts from undergraduate mathematics.

The least elementary fact from undergraduate matrix algebra that we use is that

for each square, self-adjoint, positive semi-definite real- or complex-valued matrix M , there

exists a square real- or complex-valued matrix N respectively such that M = N∗N , where

A∗ is defined as the transpose (respectively, conjugate-transpose) of the matrix A. A proof

of this can be found in most advanced undergraduate textbooks on linear algebra.

2.2. Lemmata and Proofs

First, some lemmata:

Lemma 2.1. Let n be a positive integer and let M and N be real (respectively, complex) n×n

matrices. Assume further that M and N are self-adjoint and positive semi-definite. Then

their component-wise product is also self-adjoint and positive semi-definite.

Proof. Let P denote the indicated component-wise product. For any integers i and j such

that 1 ≤ i, j ≤ n, Pi,j = Mi,jNi,j. So Pj,i = Mj,iNj,i = Mi,j Ni,j = Mi,jNi,j = Pi,j. Thus, P

is self-adjoint.
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Let M = A∗A and N = B∗B where A and B are real-valued (respectively, complex-

valued) n × n matrices, which matrices A and B we can always find. Also let x be an

arbitrary element of Rn (respectively Cn). We can assume x is represented as column-vector

(an n× 1 matrix). Consider the product x∗Px.

x∗Px = (x∗P )x =
n∑
j=1

(
n∑
i=1

(x∗)1,iPi,j)xj,1

=
n∑
j=1

n∑
i=1

xi,1Pi,jxj,1

=
n∑
j=1

n∑
i=1

xi,1Mi,jNi,jxj,1

=
n∑
j=1

n∑
i=1

xi,1(
n∑
k=1

(A∗)i,kAk,j)(
n∑
l=1

(B∗)i,lBl,j)xj,1

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

xi,1(A∗)i,kAk,j(B
∗)i,lBl,jxj,1

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

xi,1Ak,iAk,jBl,iBl,jxj,1

=
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

xi,1Ak,iBl,ixj,1Ak,jBl,j

=
n∑
k=1

n∑
l=1

n∑
i=1

n∑
j=1

xi,1Ak,iBl,ixj,1Ak,jBl,j

=
n∑
k=1

n∑
l=1

(
n∑
i=1

xi,1Ak,iBl,i)(
n∑
j=1

xj,1Ak,jBl,j)

=
n∑
k=1

n∑
l=1

(
n∑
i=1

xi,1Ak,iBl,i)(
n∑
i=1

xi,1Ak,iBl,i)

=
n∑
k=1

n∑
l=1

∣∣∣∣∣
n∑
i=1

xi,1Ak,iBl,i

∣∣∣∣∣
2

≥ 0

(3)

Since x was arbitrary, P is positive semi-definite, as required. �
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Lemma 2.2. Let n be a positive integer and M a self-adjoint positive semi-definite real n×n

matrix. Let {ak}∞k=0 be a sequence of non-negative numbers. Then the matrix whose i, jth

entry for integers 1 ≤ i, j ≤ n is
∑∞

k=0 akM
k
i,j is self-adjoint and positive semi-definite,

provided that each such series converges.

Proof. The n×n matrix U whose entries are all 1s is certainly self-adjoint viewed as either

a real or complex matrix. For any x ∈ Rn or x ∈ Cn, where x is represented as an n × 1

matrix,

x∗Ux = (x∗U)x =
n∑
j=1

(
n∑
i=1

(x∗)1,iUi,j)xj,1

=
n∑
i=1

n∑
j=1

(x∗)1,iUi,jxj,1

=
n∑
i=1

n∑
j=1

xi,1 1xj,1

=
n∑
i=1

n∑
j=1

xi,1xj,1

= (
n∑
i=1

xi,1)(
n∑
j=1

xj,1)

=

∣∣∣∣∣
n∑
i=1

xi,1

∣∣∣∣∣
2

≥ 0

(4)

So U is clearly positive semi-definite as a real or complex matrix. For any integer l ≥ 0,

define the i, jth element of Pl as M l
i,j for integers 1 ≤ i, j ≤ n. P0 is self-adjoint and

positive semi-definite as just demonstrated. If Pi is self-adjoint and positive semi-definite

for some integer i ≥ 0, Pi+1 being the component-wise product of Pi and M is self-adjoint

and positive semi-definite by lemma 2.1. So by mathematical induction, Pl is self-adjoint

and positive semi-definite for all integers l ≥ 0. If c is a real non-negative number and A is

a self-adjoint positive semi-definite n × n matrix, then for any n × 1 matrix x, x∗Ax ≥ 0,
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so c(x∗Ax) = x∗(cA)x ≥ 0 as well, so cA is positive semi-definite and clearly self-adjoint.

If A and B are n× n positive semi-definite self-adjoint matrices, then for any n× 1 matrix

x, x∗(A + B)x = (x∗(A + B))x = (x∗A + x∗B)x = x∗Ax + x∗Bx ≥ 0, so A + B is positive

semi-definite (and clearly self-adjoint).

Thus,
∑n

i=0 aiPi is self-adjoint and positive semi-definite.

If {Ak}∞k=1 is a convergent sequence of self-adjoint positive semi-definite matrices,

A = limk→∞Ak is clearly self-adjoint. To see that it is positive semi-definite, note that for a

fixed n×1 matrix x, fx(X) = x∗Xx defines a continuous function from n×n matrices to the

real numbers under any reasonable metric on n × n matrices. So fx(A) = limk→∞ fx(Ak).

Since fx(Ak) ≥ 0 for all k, it follows that limk→∞ fx(Ak) must also be non-negative. Since

this is true for arbitrary x, it follows that A is positive semi-definite.

Thus, limn→∞
∑n

i=0 aiPi, when it exists, must be a self-adjoint, positive semi-definite

n× n matrix. �

2.3. Main Proof

The proof here continues in a series of theorems leading to the final result. While

the earlier lemmata are sufficiently general as to warrant separate treatment, the following

theorems are merely scaffolding for the final result.

Theorem 2.3. Let x1, . . . , xn be a sequence of n linearly independent vectors in a complex

inner product space V with inner product 〈·, ·〉. There exists a positive real number K such

that for all real k > K, the matrix M whose i, jth entry is given by

Mi,j = 1−
∥∥∥∥xi − xjk

∥∥∥∥2

= 1−
〈
xi − xj
k

,
xi − xj
k

〉
for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite.

Proof. M is clearly a real symmetric matrix, hence self-adjoint. Since any vector β can be

written ‖β‖α where α = β
‖β‖ if β 6= 0 and where α is any vector on the unit sphere when

β = 0, to show that for any vector β, β∗Mβ = ‖β‖2 (α∗Mα) ≥ 0, all that remains to be

proven is that for any vector α on the unit sphere, α∗Mα ≥ 0.
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For any α ∈ Cn, with components α1, . . . , αn

α∗Mα =
n∑
i=1

n∑
j=1

αiMi,jαj

=

(
n∑
i=1

n∑
j=1

αiαj

)
−

(
n∑
i=1

n∑
j=1

αiαj

〈
xi − xj
k

,
xi − xj
k

〉)

=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
i=1

n∑
j=1

αiαj(〈xi, xi〉+ 〈xj, xj〉 − 〈xi, xj〉 − 〈xj, xi〉)

)

=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
i=1

n∑
j=1

αiαj 〈xi, xi〉

)
− (1/k2)

(
n∑
i=1

n∑
j=1

αiαj 〈xj, xj〉

)

+ (1/k2)

(
n∑
i=1

n∑
j=1

αiαj 〈xi, xj〉

)
+ (1/k2)

(
n∑
i=1

n∑
j=1

αiαj 〈xj, xi〉

)

=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
i=1

n∑
j=1

αj 〈xi, αixi〉

)
− (1/k2)

(
n∑
i=1

n∑
j=1

αi 〈αjxj, xj〉

)

+ (1/k2)

(
n∑
i=1

n∑
j=1

〈αixi, αjxj〉

)
+ (1/k2)

(
n∑
i=1

n∑
j=1

〈αjxj, αixi〉

)

=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
j=1

αj

)(
n∑
i=1

〈xi, αixi〉

)

− (1/k2)

(
n∑
i=1

αi

)(
n∑
j=1

〈αjxj, xj〉

)

+ (1/k2)

(〈
n∑
i=1

αixi,
n∑
j=1

αjxj

〉
+

〈
n∑
j=1

αjxj,
n∑
i=1

αixi

〉)

=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
j=1

αj

)(
n∑
i=1

〈xi, αixi〉

)

− (1/k2)

(
n∑
i=1

αi

)(
n∑
j=1

〈αjxj, xj〉

)

+ (1/k2)

(〈
n∑
i=1

αixi,

n∑
j=1

αjxj

〉
+

〈
n∑
j=1

αjxj,

n∑
i=1

αixi

〉)
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=

(
n∑
i=1

αi

)(
n∑
j=1

αj

)
− (1/k2)

(
n∑
j=1

αj

)(
n∑
i=1

〈αixi, xi〉

)

− (1/k2)

(
n∑
i=1

αi

)(
n∑
j=1

〈αjxj, xj〉

)

+ (1/k2)

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2


=

((
n∑
i=1

αi

)
− (1/k2)

(
n∑
i=1

〈αixi, xi〉

))((
n∑
j=1

αj

)
− (1/k2)

(
n∑
j=1

〈αjxj, xj〉

))

+ (1/k2)

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2
− (1/k4)

( n∑
i=1

〈αixi, xi〉

)(
n∑
j=1

〈αjxj, xj〉

)
=

∣∣∣∣∣
(

n∑
i=1

αi

)
− (1/k2)

(
n∑
i=1

〈αixi, xi〉

)∣∣∣∣∣
2

+ (1/k2)

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2


− (1/k4)

∣∣∣∣∣
n∑
i=1

〈αixi, xi〉

∣∣∣∣∣
2

So

α∗Mα ≥ (1/k2)

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2
− (1/k4)

∣∣∣∣∣
n∑
i=1

〈αixi, xi〉

∣∣∣∣∣
2

Let us now restrict α to the unit sphere. Since the unit sphere (in Cn) is compact

and 〈·〉 is continuous on V , it follows that ‖
∑n

i=1 αixi‖
2

+ ‖
∑n

i=1 αixi‖
2

attains a minimum

value of no less than 0. This value cannot be 0, since the zero vector is not on the unit

sphere and x1, . . . , xn are linearly independent, so this minimum is strictly greater than 0.

Call it 2B. |
∑n

i=1 〈αixi, xi〉|
2

also attains a non-negative maximum for α in the unit sphere.

Call this maximum U . Then for any α on the unit sphere:

α∗Mα ≥ (1/k4)(2Bk2 − U)
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Let K =
√

U
2B

and note that for any k > K, α∗Mα is non-negative, proving the

theorem. �

Theorem 2.4. Let x1, . . . , xn be a sequence of n linearly independent vectors in a complex

inner product space V and let µ ∈ [0, 1]. There exists a non-negative real number K such

that for all real k > K, the matrix M whose i, jth entry is given by

(5) Mi,j = 1− 〈xi − xj
k

,
xi − xj
k
〉µ

for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite.

Proof. By the binomial theorem for non-natural-number exponents, we have for µ ∈ (0, 1):

(6) (1 + y)µ = 1 +
∞∑
k=1

(
k−1∏
j=0

(µ− j)

)
(yk/k!)

for any y ∈ [−1, 1], since µ > 0. By inspection, when µ = 0 or µ = 1, the series

becomes finite and equal to (1 + y)µ trivially. Let x = y + 1. Then for any x ∈ [0, 2], we

have:

(7) xµ = 1 +
∞∑
k=1

(
k−1∏
j=0

(µ− j)

)
((x− 1)k/k!)

so

(8) xµ = 1 + µ

(
∞∑
k=1

(
k−1∏
j=1

(µ− j)

)
((x− 1)k/k!)

)
We may rewrite this as:
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xµ

= 1 + µ

(
∞∑
k=1

(
k−1∏
j=1

(j − µ)

)
(−1)k−1((x− 1)k/k!)

)

= 1 + µ

(
∞∑
k=1

(
k−1∏
j=1

(j − µ)

)
(−1)k−1(−1)k((1− x)k/k!)

)

= 1− µ

(
∞∑
k=1

(
k−1∏
j=1

(j − µ)

)
((1− x)k/k!)

)

= 1−

(
∞∑
k=1

(
µ

k−1∏
j=1

(j − µ)

)
((1− x)k/k!)

)

(9)

and, therefore,

(10) 1− xµ =
∞∑
l=1

(
µ
l−1∏
j=1

(j − µ)

)
((1− x)l/l!)

Note that since µ ≤ 1, j − µ ≥ 0 for any positive integer j. So for any positive

integer l, µ(
∏l−1

j=1(j − µ))/l! ≥ 0. Now for each pair of integers 1 ≤ i, j ≤ n in turn, let

x = 〈xi−xj
k
,
xi−xj
k
〉. The left-hand side of the expansion above is just the i, jth entry of the

matrix M defined in the statement of the theorem. The right-hand side is a power-series

expansion with non-negative coefficients in 1 − 〈xi−xj
k
,
xi−xj
k
〉. So for positive integers k, let

W (k) be the matrix whose i, jth entry is 1−〈xi−xj
k
,
xi−xj
k
〉 for integers 1 ≤ i, j ≤ n. Then by

lemma 2.2, as long as the series converges for each pair i, j of integers, and as long as W (k)

is self-adjoint and positive semi-definite, M as defined in the statement of the theorem will

be self-adjoint and positive semi-definite as well.

By lemma 2.3, there exists K ≥ 0 such that for any k > K, the matrix W (k) is self-

adjoint and positive semi-definite. Since x1, . . . , xn is a finite set, 〈xi − xj, xi − xj〉 attains

a maximum value, necessarily non-negative. Call it L. Let K ′ = max(K,
√
L/2). Because

K ≥ 0, K ′ ≥ 0 as well. Then for any k > K ′, k > K, so W (k) is self-adjoint and positive

semi-definite.
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(11)
k >

√
L/2 ≥ 0

0 < k−2 < 2/L

Since k is also greater than
√
L/2, 〈xi−xj

k
,
xi−xj
k
〉 ≤ 2. Thus, the indicated power

series converges for each entry in the matrix whenever k > K ′.

For any integer l ≥ 1, define the n × n matrix Pl whose i, jth entry is given by W l
i,j

for integers 1 ≤ i, j ≤ n. W = P1 is self-adjoint and positive semi-definite. Assume that Pi

is self-adjoint and positive semi-definite for some integer i ≥ 1. Then Pi+1 is the component-

wise product of Pi and W . By lemma 2.1, Pi+1 is self-adjoint and positive semi-definite as

well. So Pl is self-adjoint and positive semi-definite for each l ≥ 1.

Consider (µ
∏l−1

j=1(j − µ))(1/l!). Since µ ≤ 1, this product is non-negative. So the

matrix P ′l whose i, jth component is given by

(12) (µ
l−1∏
j=1

(j − µ))(1/l!)(1− 〈xi − xj
k

,
xi − xj
k
〉)l

for 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite as well, as is the matrix Sl

given by
∑l

k=1 P
′
k. Recall that 〈xi−xj

k
,
xi−xj
k
〉 ≤ 2 and certainly it is no less than 0. So the

matrix whose i, jth entry is given by

(13)
∞∑
k=1

(
µ

k−1∏
j=1

(j − µ)

)
((1− 〈xi − xj

k
,
xi − xj
k
〉)k/k!)

for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite as well, since the

limit as l goes to infinity of the i, jth element of Sl converges by equation 10 and this matrix

is this component-wise limit. Also by equation 10, this sum is just 1−〈xi−xj
k
,
xi−xj
k
〉µ. So for

k > K ′, the matrix whose i, jth element is given by

(14) 1− 〈xi − xj
k

,
xi − xj
k
〉µ
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for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite, with K ′ ≥ 0, as

desired. �

Theorem 2.5. Let x1, . . . , xn be a sequence of n linearly independent vectors in a complex

inner product space V and let µ ∈ [0, 1]. There exists a non-negative real number K such

that for all real k > K, the matrix M whose i, jth entry is given by

(15) Mi,j = e1−〈
xi−xj
k

,
xi−xj
k
〉µ

for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite.

Proof. The n × n identity matrix is self-adjoint and positive semi-definite trivially. Let

M be the matrix whose i, jth entry for integers 1 ≤ i, j ≤ n is given by 1 − 〈xi−xj
k
,
xi−xj
k
〉µ

The power-series expansion of ex converges everywhere on the real line and each coefficient

is non-negative. So when K is that given by theorem 2.4 and k > K, since the matrix whose

i, jth element is 1− 〈xi−xj
k
,
xi−xj
k
〉µ for 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite,

the indicated matrix must be self-adjoint and positive semi-definite as well. �

Theorem 2.6. Let x1, . . . , xn be a sequence of n linearly independent vectors in a complex

inner product space V . Let µ ∈ [0, 1]. Then the matrix M whose i, jth entry is given by

(16) Mi,j = e−〈xi−xj ,xi−xj〉
µ

for 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite.

Proof. By the corollary, there exists K such that for k > K, the matrix N whose i, jth

component is given by e1−〈
xi−xj
k

,
xi−xj
k
〉µ for 1 ≤ i, j ≤ n is self-adjoint and positive semi-

definite. Consider the matrix 1
e
N . This matrix must also be self-adjoint and positive semi-

definite since 1
e

is a positive number and is exactly equal to the matrix M whose i, jth entry

is e−〈
xi−xj
k

,
xi−xj
k
〉µ for integers 1 ≤ i, j ≤ n.
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Now let n be an integer greater than Kµ. Since K ≥ 0, n ≥ 1. Since n > Kµ,

n1/µ > K. So −(1/n2)〈xi− xj, xi− xj〉µ = −((1/n2/µ)〈xi− xj, xi− xj〉)µ = −〈xi−xj
n1/µ ,

xi−xj
n1/µ 〉µ.

So the matrix Q whose i, jth entry is given by

(17) e−(1/n2)〈xi−xj ,xi−xj〉µ

for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite. Since this matrix is

self-adjoint and positive semi-definite, it follows that the matrix whose i, jth entry is given

by

(18) (e−(1/n2)〈xi−xj ,xi−xj〉µ)n
2

for integers 1 ≤ i, j ≤ n is self-adjoint and positive semi-definite as well, being the

n2 repeated element-by-element product of Q with itself, by lemma 2.1. But this is just the

matrix M whose i, jth component is given by

(19) e−〈xi−xj ,xi−xj〉
µ

for integers 1 ≤ i, j ≤ n. Hence M is self-adjoint and positive semi-definite, as

desired. �

Theorem 2.7. Let ε be any positive number. Let x1, . . . , xn be a sequence of n vectors in

Cn. Then there exists a sequence of vectors y1, . . . , yn such that ‖yi − xi‖ < ε for 1 ≤ i ≤ n

and such that y1, . . . , yn is a linearly independent set.

Proof. Let I = {1, . . . , n} and for any J ⊆ I, VJ = {xk | k ∈ J}. Note that span(VI) =

span(VI), and I is finite, so there must be a set J ⊆ I with minimal cardinality such that

span(VJ) = span(VI). Since J has minimal cardinality, VJ must be a linearly independent

set of vectors — if not, then
∑

k∈J ckxk = 0 where for each k ∈ J , ck is a real number and at

least one such ck 6= 0, and one can express that xk as a linear combination of the remaining
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elements of J , hence the span of VJ is the same as the span of VJ\{k}, a contradiction of

the minimal cardinality of J . Since VJ is a linearly independent subset of Cn, there exists

a set of vectors C of Cn of size n − |VJ | such that VJ ∪ C forms a basis for Cn. Without

loss of generality, we may assume that each element of C has norm less than ε. Since

|C| = n − |VJ | = |I \ J |, there exists a bijection d from I \ J to C. Define the sequence

(y1, . . . , yn) by setting

(20) yk =


xk if k ∈ J

dk + xk if k ∈ I \ J

for all k ∈ I. This sequence of vectors is linearly independent, for if 0 =
∑

k∈I ckyk for some

sequence of scalars c, then

(21) 0 =
∑
k∈J

ckxk +
∑
k∈I\J

ck(dk + xk) =
∑
k∈I

ckxk +
∑
k∈I\J

ckdk

Since
∑

k∈I ckxk ∈ span(S), it is in the span of VJ as well, so
∑

k∈I ckxk =
∑

k∈J c
′
kxk for

some real constants c′k. Therefore 0 =
∑

k∈J c
′
kxk +

∑
k∈I\J ckdk. Since VJ ∪C spans Cn, its

vectors are linearly independent, hence c′k = 0 for k ∈ J and ck = 0 for each k ∈ I \ J . So

(22) 0 =
∑
k∈J

ckxk +
∑
k∈I\J

ck(dk + xk) =
∑
k∈J

ckxk

Since VJ is a linearly independent set of vectors, it follows that ck = 0 for all k ∈ J . So if

0 =
∑

k∈I ckyk, ck = 0 for all k ∈ I and the sequence (y1, . . . , yn) is linearly independent.

Finally, if k ∈ J , ‖yk − xk‖ = ‖xk − xk‖ = 0 and if k ∈ I \ J , ‖yk − xk‖ = ‖dk‖ < ε, as

desired. �

Theorem 2.8. Let x1, . . . , xn be a sequence of arbitrary vectors in a complex inner product

space V . Let µ ∈ [0, 1]. Then the matrix M whose i, jth entry is given by

(23) Mi,j = e−〈xi−xj ,xi−xj〉
µ

is positive semi-definite.
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Proof. Let S = span(x1, . . . , xn). S is a finite-dimensional inner product space of dimension

no greater than n. Call this dimension m. Then there is a linear mapping from S to Cm

that preserves inner products (necessarily a bijection). The standard linear embedding of

Cm into Cn also preserves inner products. So there exists a linear inner-product preserving

mapping from S to Cn. Pick an arbitrary such mapping and for each 1 ≤ i ≤ n, let x′i be

the vector in Cn corresponding to xi in V . Then the matrix M whose i, jth component is

given by

(24) e−〈x
′
i−x′j ,x′i−x′j〉µ

is identical to M in every respect.

Assume M is not positive semi-definite. Then there exists α ∈ Cn such that α∗Mα <

0. Let N(y1, . . . , yn) be for each y1, . . . yn ∈ Cn the matrix whose i, jth component is given

by e−〈yi−yj ,yi−yj〉
µ
. Consider α∗N(y1, . . . , yn)α. This is a continuous function of the argu-

ments y1, . . . , yn. So there exists δ > 0 such that for any (y1, . . . , yn) within δ of (x′1, . . . , x
′
n),

α∗N(y1, . . . , yn)α < 0 as well. Lemma 2.7 tells us that there exists a linearly independent

set of vectors y1, . . . , yn satisfying this condition. But by theorem 2.6, the linear indepen-

dence of the sequence (y1, . . . , yn) guarantees that N(y1, . . . , yn) is positive semi-definite, a

contradiction of α∗N(y1, . . . , yn)α < 0. So M must be positive semi-definite. �
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Our main result for this chapter is Theorem 2.9, below:

Theorem 2.9. The function f(x, y) = e−α‖x−y‖
λ

is a kernel on complex inner product spaces

V when 0 ≤ λ ≤ 2, α > 0, and ‖·‖ indicates the norm derived from the inner product.

Proof. e−α‖x−y‖
λ

= e−‖α1/λ(x−y)‖λ = e−‖(α1/λx)−(α1/λy)‖λ for any x, y ∈ V , so if g(x, y) =

e−‖x−y‖
λ

is a kernel on V , f must be as well. g(x, x) = 1 for all x ∈ V . e−‖x−y‖
λ

=

e−〈x−y,x−y〉
(λ/2)

where λ/2 ∈ [0, 1]. So for any sequence x1, . . . , xn of vectors in V , the matrix

whose i, jth entry is given by g(xi, xj) is positive semi-definite by theorem 2.8. So g is a

kernel on V , as must be f , QED. �
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CHAPTER 3

MAIN ALGORITHM

3.1. Introduction

In a practical construction of a particular support vector machine, the data we use to

classify each individual are generally encoded as a vector of real numbers in some fashion,

as shown in example 1.4. Z and Q in that particular example are identified with their

embeddings in R and each individual is assigned a vector from R5. In the general case, the

feature space is taken to be a subset (perhaps not explicitly defined and usually proper) of RΞ

for some natural number Ξ, and each individual is associated with a vector from this space.

From each of the disjoint classes, we take a finite set of representatives and use these as the

members of C1 and C2 (using the language of Chapter 1). (Since the goal of a support vector

machine is to generate a test for membership in C1 or C2, we don’t usually have an explicit

description of the categories C1 and C2. If such a description were available, it could much

more directly be converted into a membership testing function, obviating the construction

of the support vector machine!) Additionally, for any given execution of the support vector

machine, we restrict our space F to include only C1, C2, and the (finite!) set of individuals

to be tested for membership by the support vector machine. Thus, F is a merely finite set.

Finally, we select a kernel of some variety based on our needs and theoretical appreciation

of which kernel leads to an appropriate separating function.

Since we start with a feature space and a kernel, we conceptually use the approach

outlined in Section 1.6 on kernel functions. Let the vector spaces V , U , W , Z be as defined

in that discussion, and let Φ and F be as in that section also. We use the approach of that

section to create the Hilbert space V in which we will work and the mapping Φ from the

feature space to V . The restriction of F to being a finite set has useful consequences for the

construction of our support vector machine. Among these are that the space U from that

section, the space of real-valued functions on F with finite support, is spanned by a finite
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set: the set {fx | x ∈ F ∧ fx : F → R∧ fx(v) =


1, v = x

0, v 6= x

for each v ∈ F}. So U is finite-

dimensional, implying that the quotient W = U/Z from that section is a finite-dimensional

real vector space, and also implying that the function l : U ×U → R defined in that section

is a continuous function from U2 (under any reasonable metric making U homeomorphic to

Rn for some natural number n) to R. Thus, Z is closed and therefore the quotient space

W = U/Z is already a complete space. So the Hilbert space V , with the norm derived from

the inner product based on the function L defined in that section, is isomorphic to W , hence

may be identified with W = U/Z. Since V is a real finite-dimensional inner product space,

we may fruitfully regard it as isometrically isomorphic to Rσ for some natural number σ.

For the balance of this chapter, then, let V be a real vector space of finite dimension

constructed as in the last paragraph, let m and n be positive integers, and let VX = {xi}mi=1

and VY = {yi}ni=1 be two finite sequences of distinct vectors from V . (We identify Vx as the

image of C1 under Φ and Vy as the image of C2 under Φ.) Also let X and Y be the convex

hulls of VX and VY respectively and assume that X ∩ Y = ∅. Let D be the convex hull of

the set {xi − yj | i ∈ Ix ∧ j ∈ Iy} and recall that D may also be characterized by lemma

1.2 as {x− y | x ∈ X ∧ y ∈ Y }. (Incidentally, V ’s dimension may change based on (among

other things) the element under test from the feature space.)

The finiteness of VX and VY renders X and Y compact in the following way: for any

non-negative integer q, let the set ∆q = {(c0, c1, . . . , cq) | (c0, c1, . . . , cq) ∈ [0, 1]q+1 ∧ (∀i)(i ∈

{0, . . . , q} ⇒ ci ≥ 0)∧
∑q

i=0 ci = 1}. ∆q is a closed and bounded subset of Rq for any q, hence

is compact. The functions ϕX : ∆m−1 → X given by ϕX((c0, . . . , cm−1)) =
∑m−1

i=0 cixi+1 and

ϕY : ∆n−1 → Y given by ϕY ((c0, . . . , cn−1)) =
∑n−1

i=0 ciyi+1 are clearly continuous, as they

are the composition of the continuous functions of scalar multiplication and vector addition.

The compactness of ∆m−1 and ∆n−1 and the continuity of ϕX and ϕY render the images

ϕX(∆m−1) and ϕY (∆n−1) both compact. ϕX(∆m−1) is clearly the convex hull of the finite

sequence VX and ϕY (∆n−1) is just as clearly the convex hull of VY . So X and Y are

compact. Since X and Y are compact, their product is compact. Since s : X×Y → V given
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by s(x, y) = x− y for any (x, y) ∈ X × Y is continuous. So the image s(X × Y ) is compact

as well. s(X × Y ) is also equal to D, defined earlier. Thus, X, Y , and D are compact sets.

Let ϕX , ϕY , and ∆q for non-negative integers q retain their definitions from this section for

the rest of the chapter.

Since ‖·‖ restricted to D is a continuous function from D to R, and D is compact,

it attains a minimum value at some point v ∈ D. Since X ∩ Y = ∅, 0 /∈ D, so ‖v‖ 6= 0.

Hence, X and Y have separation strictly greater than 0. So by theorem 1.7, X and Y can

be well-separated by a hyperplane. By lemma 1.2, D is convex and by lemma 1.1, every

minimizing sequence for ‖·‖ from D converges to this element v of D where ‖·‖ attains its

minimum value. By theorem 1.7, this value for v in effect defines a separating hyperplane.

The separating function corresponding to this vector v is expressed by equation 1. In this

expression, f(x) = 〈Φ(x), v〉 = limn→∞ 〈Φ(x),
∑qn

i=1 αn,i(wn,i − cn,i)〉, where x is an arbitrary

element from the feature space, recall that the reason that the limit was taken is that, in the

general case, v is merely the limit of a sequence of elements from D — not necessarily an

element of D itself. Since we know here that v is a member of D, and since D is the convex

hull of {w − c | w ∈ Vx ∧ c ∈ Vy}, we can write v directly as
∑q

i=1 αi(wi − ci) where q is a

particular natural number, {wi}qi=1 is a particular sequence of elements from VX , {ci}qi=1 is

a particular sequence of elements from VY , and {αi}qi=1 is a particular sequence of positive

numbers that sum to 1. We can also write v =
∑q

i=1 αi(wi−ci) = (
∑q

i=1 αiwi)− (
∑q

i=1 αici).

We can express
∑q

i=1 αiwi as
∑m

i=1 γixi = mX , where mX ∈ X and {γi}mi=1 is a particular

sequence of non-negative real numbers that sum to 1, and
∑q

i=1 αici as
∑n

j=1 εjyj = mY ,

where mY ∈ Y and {εj}nj=1 is a particular sequence of non-negative real numbers that sums

to 1. (In particular, for each k ∈ {1, . . . ,m}, γk =
∑
{i|i∈{1,...,q}∧wi=xk} αi and for each

k ∈ {1, . . . , n}, εk =
∑
{i|i∈{1,...,q}∧ci=yk} αi.) Fix for the remainder of the chapter these

definitions of {γi}mi=1, {εj}nj=1, mX , and mY .

Our goal is, by the previous paragraph, the determination of v by creating a minimiz-

ing sequence for ‖·‖ on D. Any such sequence will converge to mX −mY as shown earlier.

One technique from the literature exploits the two ways of expressing D noted in lemma

39



1.2: instead of thinking of D as the “difference of convex hulls” of Vx and Vy (expressed as

{x− y | x ∈ X ∧ y ∈ Y }, this technique concentrates on expressing D as the “convex hull of

the differences” of Vx and Vy (expressed as the convex hull of {x− y | x ∈ Vx ∧ y ∈ Vy}). A

method for determining v by seeking where the minimum value of ‖·‖2 is attained is used:

KKT, or a similar quadratic programming algorithm. (Norm-minimization for convex poly-

topes appears to be a well-studied problem.) However, each technique that treats D as the

convex hull of a single polytope is applied to the convex hull of a set that is generally of size

mn. We present a different approach below (an algorithm proposed by Dr. Kallman) that

avoids the product-based proliferation. Our approach is an extension of the first algorithm

shown in [4].

3.2. Lemmata and Proofs

We set forth a procedure for determining mX−mY to any desired degree of precision.

It produces a sequence of pairs of elements {(ai, bi)}zi=1, where z may be a positive integer or

∞, and each element of the sequence belongs to X×Y . The sequence {ai− bi}zi=1 converges

to mX −mY , if z is ∞, or terminates with mX −mY , if z is finite. The proof of correctness

for this procedure is a novel variant of that in [4].

Let (x∗, y∗) ∈ X × Y . Define cX : X × Y → VX be given by letting cX(x∗, y∗) be the

element of least index xp in VX such that 〈xp − x∗, y∗ − x∗〉 = maxi∈{1,...,m} 〈xi − x∗, y∗ − x∗〉.

Similarly, let cY : X × Y → Vy be given by letting cY (x∗, y∗) be the element of least index yq

in VY such that 〈yq − y∗, x∗ − y∗〉 = maxi∈{1,...,n} 〈yi − y∗, x∗ − y∗〉.

Now define pX : X × Y → R by pX(x∗, y∗) = 〈cX(x∗, y∗)− x∗, y∗ − x∗〉 and pY : X ×

Y → R by pY (x∗, y∗) = 〈cY (x∗, y∗)− y∗, x∗ − y∗〉.

Lemma 3.1. For any (x∗, y∗) ∈ X × Y , x ∈ X, and y ∈ Y , 〈x− x∗, y∗ − x∗〉 ≤ pX(x∗, y∗)

and 〈y − y∗, x∗ − y∗〉 ≤ pY (x∗, y∗).

Proof. We prove only that 〈x− x∗, y∗ − x∗〉 ≤ pX(x∗, y∗), as the other proof is virtually

identical.
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Since x ∈ X, there exists a sequence {αi}mi=1 of non-negative real numbers such that∑m
i=1 αi = 1 and

∑m
i=1 αixi = x. So:

pX(x∗, y∗) = 〈cX(x∗, y∗)− x∗, y∗ − x∗〉

=
m∑
i=1

αi 〈cX(x∗, y∗)− x∗, y∗ − x∗〉

≥
m∑
i=1

αi 〈xi − x∗, y∗ − x∗〉

and

pX(x∗, y∗) ≥
m∑
i=1

αi 〈xi − x∗, y∗ − x∗〉

=
m∑
i=1

αi (〈xi, y∗ − x∗〉 − 〈x∗, y∗ − x∗〉)

=

(
m∑
i=1

αi 〈xi, y∗ − x∗〉

)
−

(
m∑
i=1

αi 〈x∗, y∗ − x∗〉

)

=

〈
m∑
i=1

αixi, y∗ − x∗

〉
− 〈x∗, y∗ − x∗〉

= 〈x, y∗ − x∗〉 − 〈x∗, y∗ − x∗〉

= 〈x− x∗, y∗ − x∗〉

�

Lemma 3.2. For each (x∗, y∗) ∈ X × Y , pX(x∗, y∗) ≥ 0 and pY (x∗, y∗) ≥ 0.

Proof. By lemma 3.1, 〈x∗ − x∗, y∗ − x∗〉 ≤ pX(x∗, y∗) and 〈y∗ − y∗, x∗ − y∗〉 ≤ pY (x∗, y∗).

Since each given inner product is clearly 0, the lemma follows. �

Lemma 3.3. For any (x∗, y∗) ∈ X × Y ,√
2(pX(x∗, y∗) + pY (x∗, y∗)) ≥ ‖(x∗ − y∗)− (mX −mY )‖ ≥ |‖x∗ − y∗‖ − ‖mX −mY ‖|

Proof. By lemma 3.1, we have

〈x∗ −mX , x∗ − y∗〉 = 〈mX − x∗, y∗ − x∗〉 ≤ pX(x∗, y∗)
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and

〈mY − y∗, x∗ − y∗〉 ≤ pY (x∗, y∗)

So

〈(x∗ − y∗)− (mX −mY ), x∗ − y∗〉

= 〈x∗ −mX , x∗ − y∗〉+ 〈mY − y∗, x∗ − y∗〉

≤ pX(x∗, y∗) + pY (x∗, y∗)

and

〈(x∗ − y∗)− (mX −mY ), x∗ − y∗〉

= ‖x∗ − y∗‖2 − 〈mX −mY , x∗ − y∗〉

≤ pX(x∗, y∗) + pY (x∗, y∗)

Since ‖mX −mY ‖2 ≤ ‖x∗ − y∗‖2, ‖mX −mY ‖2−〈mX −mY , x∗ − y∗〉 ≤ pX(x∗, y∗) +

pY (x∗, y∗), as well, so

2(pX(x∗, y∗) + pY (x∗, y∗)) ≥

‖x∗ − y∗‖2 − 〈mX −mY , x∗ − y∗〉+

‖mX −mY ‖2 − 〈mX −mY , x∗ − y∗〉 =

‖x∗ − y∗‖2 − 2 〈mX −mY , x∗ − y∗〉+ ‖mX −mY ‖2

‖(x∗ − y∗)− (mX −mY )‖2 ≥ 0

hence
√

2(pX(x∗, y∗) + pY (x∗, y∗)) ≥ ‖(x∗ − y∗)− (mX −mY )‖. The triangle inequality

gives us ‖(x∗ − y∗)− (mX −mY )‖ ≥ |‖(x∗ − y∗)‖ − ‖(mX −mY )‖| and the lemma has been

proved. �

We define a sequence of elements of X × Y , possibly finite, in the following way:

Let x∗0 be a random element of X and y∗0 be a random element of Y . Given x∗k ∈ X

and y∗k ∈ Y , let x∗ = x∗k and y∗ = y∗k . Let xp = cX(x∗, y∗) and yq = cY (x∗, y∗). If

pX(x∗, y∗) = 〈xp − x∗, y∗ − x∗〉 = 0 and pY (x∗, y∗) = 〈yq − y∗, x∗ − y∗〉 = 0, the sequence

terminates. Otherwise, since ‖λxp + (1− λ)x∗ − (µyq + (1− µ)y∗)‖, viewed as a function
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of (λ, µ) is a continuous function from [0, 1]2 to R, it attains a minimum value, and let

λ, µ ∈ [0, 1] be otherwise arbitrary numbers such that ‖λxp + (1− λ)x∗ − (µyq + (1− µ)y∗)‖

is minimized. Then let x∗k+1
= λxp+(1−λ)x∗ and y∗k+1

= µyq+(1−µ)y∗. Thus the sequence

is defined inductively.

Lemma 3.4. The sequence ‖x∗k − y∗k‖ is monotone non-increasing.

Proof. For any k, if x∗k+1
and y∗k+1

exist, then recall that x∗k+1
= λcX(x∗k , y∗k)+(1−λ)x∗k

and y∗k+1
= µcY (x∗k , y∗k) + (1− µ)y∗k , where λ ∈ [0, 1] and µ ∈ [0, 1] and

‖λcX(x∗k , y∗k) + (1− λ)x∗k − (µcY (x∗k , y∗k) + (1− µ)y∗k)‖ is minimal. So∥∥x∗k+1
− y∗k+1

∥∥
= min

(λ,µ)∈[0,1]2
‖λcX(x∗k , y∗k) + (1− λ)x∗k − (µcY (x∗k , y∗k) + (1− µ)y∗k)‖

≤ ‖λcX(x∗k , y∗k) + (1− λ)x∗k − (µcY (x∗k , y∗k) + (1− µ)y∗k)‖
∣∣∣
(λ,µ)=(0,0)

= ‖x∗k − y∗k‖

So for any k such that x∗k , y∗k , x∗k+1
, and y∗k+1

exist,
∥∥x∗k+1

− y∗k+1

∥∥ ≤ ‖x∗k − y∗k‖. Thus, by

a trivial induction proof, it follows that the indicated sequence is monotone non-increasing.

�

Lemma 3.5. Let x∗k , y∗k , x∗k+1
, y∗k+1

all exist. Then

‖x∗k − y∗k‖
2−
∥∥x∗k+1

− y∗k+1

∥∥2 ≥

min(pX(x∗k , y∗k) + pY (x∗k , y∗k),

(pX(x∗k , y∗k) + pY (x∗k , y∗k))
2/(diam(X) + diam(Y ) + 1)2)
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Proof. Let x∗ = x∗k and y∗ = y∗k . Let xp = cX(x∗, y∗) and yq = cY (x∗, y∗). Then

‖x∗k − y∗k‖
2 −

∥∥x∗k+1
− y∗k+1

∥∥2

= ‖x∗ − y∗‖2 −
(

min
(λ,µ)∈[0,1]×[0,1]

‖x∗ − y∗ + λ(xp − x∗)− µ(yq − y∗)‖
)2

= ‖x∗ − y∗‖2 −
(

min
(λ,µ)∈[0,1]×[0,1]

‖x∗ − y∗ + λ(xp − x∗)− µ(yq − y∗)‖2

)
= max

(λ,µ)∈[0,1]×[0,1]
‖x∗ − y∗‖2 − ‖x∗ − y∗ + λ(xp − x∗)− µ(yq − y∗)‖2

≥ max
λ∈[0,1]

‖x∗ − y∗‖2 − ‖x∗ − y∗ + λ((xp − x∗)− (yq − y∗))‖2

= max
λ∈[0,1]

‖x∗ − y∗‖2 − (‖x∗ − y∗‖2 + λ2 ‖(xp − x∗)− (yq − y∗)‖2 +

2λ 〈x∗ − y∗, (xp − x∗)− (yq − y∗)〉)

= max
λ∈[0,1]

−(λ2 ‖(xp − x∗)− (yq − y∗)‖2 +

2λ 〈x∗ − y∗, xp − x∗〉 − 2λ 〈x∗ − y∗, yq − y∗〉)

= max
λ∈[0,1]

−(λ2 ‖(xp − x∗)− (yq − y∗)‖2 − 2λpX(x∗, y∗)− 2λpY (x∗, y∗))

= max
λ∈[0,1]

2λ(pX(x∗, y∗) + pY (x∗, y∗))− λ2 ‖(xp − x∗)− (yq − y∗)‖2

Consider the expression

E(λ) = 2λ(pX(x∗, y∗) + pY (x∗, y∗))− λ2 ‖(xp − x∗)− (yq − y∗)‖2

. pX(x∗, y∗) + pY (x∗, y∗) ≥ 0 by lemma 3.2.

If ‖(xp − x∗)− (yq − y∗)‖2 = 0, E(λ) clearly has its maximum value when λ = 1 and

this maximum value is clearly 2(pX(x∗, y∗) + pY (x∗, y∗)), which is no less than pX(x∗, y∗) +

pY (x∗, y∗).

Otherwise, ‖(xp − x∗)− (yq − y∗)‖2 > 0 and elementary considerations dictate that

E(λ) attains its minimum value at

λ = min(max((pX(x∗, y∗) + pY (x∗, y∗))/ ‖(xp − x∗)− (yq − y∗)‖2 , 0), 1)
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Since pX(x∗, y∗) + pY (x∗, y∗) ≥ 0, this is just

min((pX(x∗, y∗) + pY (x∗, y∗))/ ‖(xp − x∗)− (yq − y∗)‖2 , 1)

If pX(x∗, y∗) + pY (x∗, y∗) ≥ ‖(xp − x∗)− (yq − y∗)‖2, E(λ) attains its maximum at

λ = 1. Then, pX(x∗, y∗) + pY (x∗, y∗) ≥ ‖(xp − x∗)− (yq − y∗)‖2, so

pX(x∗, y∗) + pY (x∗, y∗)− ‖(xp − x∗)− (yq − y∗)‖2 ≥ 0

and

E(1) = 2(pX(x∗, y∗) + pY (x∗, y∗))− ‖(xp − x∗)− (yq − y∗)‖2

= pX(x∗, y∗) + pY (x∗, y∗) + pX(x∗, y∗) + pY (x∗, y∗)− ‖(xp − x∗)− (yq − y∗)‖2

≥ pX(x∗, y∗) + pY (x∗, y∗)

so E has maximum value no less than pX(x∗, y∗) + pY (x∗, y∗).

Finally, if pX(x∗, y∗) + pY (x∗, y∗) < ‖(xp − x∗)− (yq − y∗)‖2, E attains its minimum

value at λ = (pX(x∗, y∗) + pY (x∗, y∗))/ ‖(xp − x∗)− (yq − y∗)‖2 and the attained value is

(pX(x∗, y∗) + pY (x∗, y∗))
2/ ‖(xp − x∗)− (yq − y∗)‖2. We have:

diam(X) + diam(Y ) + 1 ≥ diam(X) + diam(Y )

≥ ‖xp − x∗‖+ ‖y∗ − yq‖

≥ ‖xp − x∗ + y∗ − yq‖ ≥ 0

implying that 1/ ‖xp − x∗ − (yq − y∗)‖2 ≥ 1/(diam(X) + diam(Y ) + 1)2, which implies

(pX(x∗, y∗) + pY (x∗, y∗))
2/ ‖(xp − x∗)− (yq − y∗)‖2 ≥

(pX(x∗, y∗) + pY (x∗, y∗))
2/(diam(X) + diam(Y ) + 1)2

Thus the conclusion follows. �

Theorem 3.6. The sequence x∗k−y∗k either terminates with value mX−mY if the sequence

is finite, or converges to mX −mY if the sequence is not finite.
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Proof. If the sequence terminates, then for the index k of the last element of the sequence,

pX(x∗k , y∗k) = pY (x∗k , y∗k) = 0. By lemma 3.3 therefore,

0 =
√

2(pX(x∗k , y∗k) + pY (x∗k , y∗k)) ≥ ‖(x∗ − y∗)− (mX −mY )‖ ≥ 0

so ‖(x∗ − y∗)− (mX −mY )‖ = 0 and x∗ − y∗ = mX −mY .

Otherwise, the sequence does not terminate. Consider the sequence {γn}∞n=0 given by

γn = pX(x∗n , y∗n) + pY (x∗n , y∗n). Assume for purposes of contradiction that the sequence γ

does not converge to 0. Then there exists ω > 0 such that for any index n there exists an

index m ≥ n such that |γm − 0| ≥ ω. Since γm = pX(x∗m , y∗m) + pY (x∗m , y∗m) ≥ 0 by lemma

3.2, this implies that γm ≥ ω. Let

µ = min(ω, ω2/(diam(X) + diam(Y ) + 1)2)

and note that µ > 0. Also note that for any k such that γk ≥ ω,

µ ≤ min(pX(x∗k , y∗k) + pY (x∗k , y∗k),

(pX(x∗k , y∗k) + pY (x∗k , y∗k))
2/(diam(X) + diam(Y ) + 1)2) ≤

‖x∗k − y∗k‖
2 −

∥∥x∗k+1
− y∗k+1

∥∥2

where the last inequality follows by lemma 3.5. Define a function r from non-negative

integers to non-negative integers in the following way: Let r(0) be the least integer greater

than or equal to 0 such that γr(0) ≥ ω. This index always exists by hypothesis. Given that

r(n) is defined, let r(n + 1) be the least integer greater than or equal to r(n) + 1 such that

γr(n+1) ≥ ω. This index also exists by hypothesis. Note that for each non-negative integer

n, r(n) is such that γr(n) ≥ ω, hence
∥∥∥x∗r(n) − y∗r(n)∥∥∥2

−
∥∥∥x∗r(n+1)

− y∗r(n+1)

∥∥∥2

≥ µ. Let z be

the least non-negative integer strictly greater than ‖x∗0 − y∗0‖
2 /µ and consider the sum

G =

r(z−1)∑
i=0

‖x∗i − y∗i‖
2 −

∥∥x∗i+1
− y∗i+1

∥∥2

By lemma 3.4, this is a sum with exclusively non-negative terms. The index i attains each

value in the set R = {r(0), . . . , r(z − 1)}. So by the previous note, for each such i, at least

µ is added to the sum G. Hence the indicated sum contains at least z terms with value no
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less than µ, so the indicated sum G is at least zµ. Since µ > 0 and z > ‖x∗0 − y∗0‖
2 /µ,

G ≥ zµ > µ(‖x∗0 − y∗0‖
2 /µ) = ‖x∗0 − y∗0‖

2. Now∥∥∥x∗r(z−1)+1
− y∗r(z−1)+1

∥∥∥2

= ‖x∗0 − y∗0‖
2 +

r(z−1)∑
i=0

∥∥x∗i+1
− y∗i+1

∥∥2 − ‖x∗i − y∗i‖
2

= ‖x∗0 − y∗0‖
2 −G

≤ ‖x∗0 − y∗0‖
2 − zµ

< ‖x∗0 − y∗0‖
2 − ‖x∗0 − y∗0‖

2

< 0

an absurdity. Hence the sequence pX(x∗k , y∗k) + pY (x∗k , y∗k) must converge to 0. Since this

sequence converges to 0 and is non-negative, its continuous image√
2(pX(x∗k , y∗k) + pY (x∗k , y∗k))

also converges to 0. By lemma 3.3,

0 ≤ ‖(x∗k − y∗k)− (mX −mY )‖ ≤
√

2(pX(x∗k , y∗k) + pY (x∗k , y∗k))

for all indices k, so by the Sandwich Theorem, the sequence ‖(x∗k − y∗k)− (mX −mY )‖

converges to 0 as well. Thus, the sequence x∗k − y∗k converges to mX −mY . �
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